
Prism™ 6.1 User’s Guide
ument to: docfeedback@sun.comument to: docfeedback@sun.com
Part No. 806-3736-10
March 2000, Revision A

Send comments about this docSend comments about this doc
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900 USA
650 960-1300 Fax 650 969-9131

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies:

(c) Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, SunStore, AnswerBook2, docs.sun.com, Solaris, Sun HPC ClusterTools, Prism, Sun Performance

WorkShop Fortran, Sun Performance Library, Sun WorkShop Compilers C, Sun WorkShop Compilers C++, Sun WorkShop Compilers Fortran,

Sun Visual WorkShop, and UltraSPARC are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other

countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S.

and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR

52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,

ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303-4900 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à

Netscape Communicator™: (c) Copyright 1995 Netscape Communications Corporation. Tous droits réservés.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, Solaris , Sun HPC ClusterTools, Prism, Sun Performance WorkShop Fortran,

Sun Performance Library, Sun WorkShop Compilers C, Sun WorkShop Compilers C++, Sun WorkShop Compilers Fortran, Sun Visual

WorkShop, et UltraSPARC sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-

Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de

SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture

développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.
Please
Recycle

Contents

Preface xxi

1. The Prism Environment 1

Overview 1

The Look and Feel of the Prism Programming Environment 2

Loading and Executing Programs 4

Debugging 4

Visualizing Data 5

Analyzing Program Performance 5

Editing and Compiling 6

Obtaining Online Help and Documentation 6

Customizing the Prism Programming Environment 6

2. Using the Prism Environment 7

Before Entering the Prism Environment 7

Supported Languages and Compilers 8

Compiling and Linking Your Program 8

Combining Compiler Options 8

Setting Up Your Working Environment 8

▼ To Set Sun MPI Timeouts 10
iii

Entering the Prism Environment 10

Launching the Prism Environment 10

▼ To Launch the Prism Environment in Multiprocess Mode 11

Specifying a Threaded or Nonthreaded View of Programs 11

▼ To Specify a Threaded View of Programs 12

▼ To Specify an Nonthreaded View of Programs 12

▼ To Load a Threaded Single-Process Program 12

Attaching to a Process 13

Associating a Program or Process With a Core File 13

▼ To Associate a Program or Process With a Core File at Startup 13

Starting With the Commands-Only Interface 13

▼ To Start With the Commands-Only Interface 14

▼ To Start With the Commands-Only Interface, Redirecting Output 14

Specifying X Toolkit Options 14

Specifying Input and Output Files 14

▼ To Specify an Input File 14

▼ To Specify an Output File 15

Specifying the Host Environment 15

▼ To Specify Where the Host Prism Environment Is To Run 15

Specifying a Number of Processes Greater Than the Number of

Processors 16

▼ To Start More Processes Than You Have Processors 16

Specifying Runtime Environment Options 16

▼ To Supply bsub Arguments When You Launch the Prism

Environment 16

▼ To Supply mprun Arguments When You Launch the Prism

Environment 16

▼ To Specify Runtime Environment-Specific Options After Startup 17
iv Prism 6.1 Reference Manual • March 2000

▼ To Specify a Preferred Host by Name (Running LSF), 17

▼ To Specify a Preferred Partition by Name (Running CRE) 18

Executing Commands Within the Prism Environment 19

Using the Mouse 19

Using Keyboard Alternatives to the Mouse 19

Issuing Commands 21

Using the Menu Bar 21

Keyboard Accelerators 22

Using the Source Window 22

Moving Through the Source Code 23

▼ To Search for Text in a String or Regular Expression 23

▼ To Display Different Files 23

Selecting Text 24

Splitting the Source Window 24

▼ To Split the Source Window 24

▼ To Return to a Single Source Window 25

Using the Line-Number Region 26

Using the Command Window 27

Using the Command Line 28

Using the History Region 29

▼ To Specify the Maximum Number of Lines in the History Region 29

▼ To Select Text in the History Region 29

▼ To Re-Execute a Command 29

Redirecting Output 29

▼ To Redirect Output to a File 30

▼ To Redirect Output to a Window 30

Logging Commands and Output 31
Contents v

Writing Expressions in the Prism Environment 32

How the Prism Environment Chooses the Correct Variable or Procedure 32

▼ To Display the Fully Qualified Name of a Variable 33

Using Fortran Intrinsic Functions in Expressions 34

Using C Arrays in Expressions 35

Using Array-Section Syntax in C Arrays 36

Hints for Detecting NaNs and Infinities 37

▼ To Find Out if x Is a NaN 37

▼ To Find Out if x Is an Infinity 37

Using Fortran 90 Generic Procedures 37

Issuing Solaris Commands 39

▼ To Issue Solaris Commands From Within the Prism Environment 39

Changing the Current Working Directory 40

Setting and Displaying Environment Variables 40

Leaving the Prism Environment 41

▼ To Quit the Prism Environment 41

3. Loading and Executing a Program 43

Loading a Program 43

▼ To Load a Program From the Menu Bar 44

▼ To Load a Program From the Command Window 45

What Happens When You Load a Program 45

▼ To Load Subsequent Programs 45

Associating a Core File With a Loaded Program 46

▼ To Associate a Core File With a Loaded Program 46

▼ To Examine a Core File of a Local Process 46

Attaching to a Running Message-Passing Process 47

▼ To Attach to a Running Message-Passing Program 47
vi Prism 6.1 Reference Manual • March 2000

Executing a Program in the Prism Environment 48

▼ To Run a Program 48

Program I/O 49

Status Messages 50

Stepping and Continuing Through a Program 50

Interrupting and Waiting for Processes 51

▼ To Interrupt the Execution of a Process or Set of Processes 51

▼ To Wait for a Specified Process or Set of Processes to Stop Execution 51

▼ To End the Wait 52

Execution Pointer 52

▼ To Display a Pop-Up Window Showing the Executing Process(es) 53

▼ To Find out Execution Status 53

Executing Programs With the Commands-Only Interface 53

Using Psets in the Prism Environment 54

Using the Psets Navigator 55

Using the Psets Window 56

▼ To Display the Psets Window 56

Predefined Psets 58

Defining Psets 59

▼ To Specify a Pset as an Argument to a Command 59

▼ To Specify a Pset as a Subset of a Pset Clause 59

▼ To Evaluate Variable Psets 63

Viewing Psets Contents From the Psets Window 65

▼ To Display a Pset 65

▼ To Hide a Pset 65

▼ To View Psets Not Shown in the Display Window 66

Viewing Pset Contents From the Command Line 66
Contents vii

▼ To Print the Contents of the Specified Pset 66

Deleting Psets 68

▼ To Delete Psets 68

The Current Pset 68

▼ To Change the Current Pset 68

▼ To Find Out the Current Pset 69

▼ To List the Processes in the Current Pset 70

▼ To Update the Membership of a Variable Pset 71

The Current Process 71

▼ To Change the Current Process 71

▼ To Print the Current Process of the current Pset 73

Scope in the Prism Environment 73

The cycle Pset 73

▼ To Create a cycle Pset out of an Existing Pset 74

▼ To Cycle Through the Processes in the cycle Pset From the Psets

Window 74

▼ To Cycle Through the Processes in a Pset from the Command Line 74

▼ To Cycle Through the Processes in a Pset From the Source-Window

Pop-Up Menu 75

Hiding Threads From Psets 75

▼ To Hide Threads From Psets 76

▼ To Make Hidden Threads Available to Psets Again 76

▼ To Show Currently Hidden Threads 76

Using Psets in Commands 77

▼ To Use a Pset Qualifier 77

Using Unbounded Psets in Commands 78

Using Snapshots of Unbounded Psets in Commands 79

▼ To Create a Bounded Pset from an Unbounded Pset 80
viii Prism 6.1 Reference Manual • March 2000

Referring to Nonexistent Thread Identifiers 81

Using the Prism Environment With Sun MPI Client/Server Programs 82

Choosing the Current File and Function 82

▼ To Change the Current File 83

▼ To Change the Current Function or Procedure 84

Creating a Directory List for Source Files 84

▼ To Add a Directory to the Search Path 84

4. Debugging a Program 87

Overview of Events 87

Using the Event Table 89

Description of the Event Table 89

Adding an Event 92

▼ To Add an Event, Editing Field by Field 92

▼ To Add an Event, Using Common Events Buttons 92

Deleting an Existing Event 93

▼ To Delete an Existing Event, Using the Event Table 93

Editing an Existing Event 93

▼ To Edit an Existing Event 93

Disabling and Enabling Events 94

▼ To Disable an Event 94

▼ To Enable an Event 94

Saving Events 94

▼ To Save Events to a File 95

Events Taking Pset Qualifiers 95

▼ To Specify a Pset Qualifier 95

▼ To Continue All the Processes in a Pset 96

▼ To Display Events by Process 98
Contents ix

Setting Breakpoints 99

Using the Line-Number Region 99

▼ To Set a Breakpoint in the Line-Number Region 99

▼ To Delete Breakpoints Using the Line-Number Region 100

Using the Event Table and the Events Menu 100

▼ To Set a Breakpoint Using the Event Table 100

▼ To Delete Breakpoints Using the Event Table 101

Setting a Breakpoint Using Commands 102

▼ To Set a Breakpoint Using Commands 102

▼ To Set a Breakpoint Using Machine Instructions 103

▼ To Delete Breakpoints Using the Command Window 104

Tracing Program Execution 104

▼ To Trace Program Execution Using the Event Table and the Events

Menu 104

▼ To Delete Traces Using the Event Table 105

▼ To Trace Program Execution Using Commands 105

▼ To Trace Machine Instructions 106

▼ To Delete Traces Using the Command Window 106

Displaying and Moving Through the Call Stack 106

▼ To Display the Call Stack 106

Moving Through the Call Stack 107

▼ To Move Through the Call Stack 108

Displaying the Where Graph 108

▼ To Display the Where Graph 108

▼ To Display Processes Containing a Specific Function in Their Call

Stacks 109

▼ To Move the Position Displayed in the Where Graph 110

▼ To Display More of the Where Graph 110
x Prism 6.1 Reference Manual • March 2000

▼ To Display Additional Information About a Box in the Where

Graph 111

▼ To Increase the Size of the Where Graph’s Function Boxes 112

▼ To View Information About Individual Threads 114

▼ To Shrink Selected Portions of the Where Graph 114

▼ To Move Through the Where Graph 115

▼ To Make a Function the Current Pset 115

Combining Debug and Optimization Options 115

Interpreting Interaction Between an Optimized Program and the Prism

Environment 116

Accessing Variables in Optimized Routines 116

Examining the Contents of Memory and Registers 117

▼ To Display Memory 117

▼ To Display the Contents of Registers 119

5. Visualizing Data 121

Overview of Data Visualization 122

Printing and Displaying 122

Visualization Methods 122

▼ To Change the Default Radix 123

Data Visualization Limits 123

Choosing the Data to Visualize 124

▼ To Print or Display a Variable or Expression at the Current Program

Location 124

▼ To Print or Display From the Source Window 125

▼ To Print or Display From the Events Menu 125

▼ To Print or Display From the Event Table 126

▼ To Print or Display From the Command Window 127

▼ To Print or Display the Contents of a Register 128
Contents xi

▼ To Set the Context 128

▼ To Specify the Radix 129

Working With Visualizers 129

Using the Data Navigator in a Visualizer 131

▼ To Change the Axes 131

Using the Display Window in a Visualizer 131

▼ To Use the File Menu 132

Using the Options Menu 132

▼ To Choose the Representation 133

▼ To Set Parameters 139

▼ To Display a Ruler 142

▼ To Display Statistics 142

▼ To Use the Set Context Dialog Box 143

▼ To Change the Radix 144

Updating and Closing the Visualizer 144

▼ To Update Values 145

▼ To Close the Visualizer 145

Saving, Restoring, and Comparing Visualizers 145

▼ To Save the Values of a Variable 145

▼ To Restore the Data 146

▼ To Compare the Data 147

Visualizing Structures 149

Expanding Pointers 150

▼ To Expand a Single Pointer 150

▼ To Expand All Pointers in a Node 150

▼ To Expand All Pointers Recursively From the Selected Node on

Down 151

▼ To Pan and Zoom 151
xii Prism 6.1 Reference Manual • March 2000

▼ To Delete Nodes 152

More About Pointers in Structures 152

Augmenting the Information Available for Display 153

▼ To Update and Close a Structure Visualizer 155

Printing the Type of a Variable 155

▼ To Print the Type of a Variable From the Menu Bar 155

▼ To Print the Type of a Variable from the Source Window 155

▼ To Print the Type of a Variable from the Command Window 156

What Is Displayed 156

▼ To Modify Visualizer Data 156

Changing the Radix of Data 157

▼ To Change the Radix of a Value 157

▼ To Print the Names and Values of Local Variables 157

Printing Pointers as Array Sections 158

▼ To Print an Array by Section 158

▼ To View a Pointer as a One-Dimensional Array 159

▼ To Dereference an Array of Pointers 159

▼ To Cast Pointers 159

Visualizing Multiple Processes 160

▼ To Find Out the Value and Process Number for an Element 162

▼ To Open a cycle Visualizer Window 163

Visualizing MPI Message Queues 163

▼ To Launch the MPI Queue Visualizer 164

▼ To Select the Queue to Visualize 164

▼ To Zoom Through Levels of Message Detail 164

▼ To Control the Values of Message Labels 168

▼ To Sort Messages 169
Contents xiii

▼ To Display Message Fields 170

Interpreting Message Dialog Fields 170

Displaying Communicator Data 171

▼ To Change Communicator Colors 171

▼ To Display Communicator Data, 172

▼ To Display Data Types 173

Displaying and Visualizing Sun S3L Arrays 173

▼ To Display the Data Type of an Array Handle 175

▼ To Create an S3L Parallel Array 175

▼ To Display and Visualize Sun S3L Parallel Arrays 176

▼ To Visualize the Layouts of S3L Parallel Arrays 178

▼ To Print or Display an S3L Array Using the layout Intrinsic 179

6. Obtaining MPI Performance Data 181

Overview of MPI Performance Analysis 181

Getting Started 182

Managing MPI Performance Analysis 183

Environment Variables 183

Enabling rsh 186

MPI Performance Analysis Commands 186

TNF Probes 187

Collecting Performance Data 188

▼ To Run Performance Analysis 188

Naming TNF Data Files and Controlling Data Collection Buffer Size 189

Specifying Which TNF Probes to Enable 189

Turning on the Collection Process in Subsets of Your Code 190

Using a .prisminit File to Start the Collection of Performance Data 190

Controlling the Merging of Trace Data 190
xiv Prism 6.1 Reference Manual • March 2000

Displaying Performance Data 191

Using the tnfview Timeline Window 192

Using the tnfview Plot Window 195

Controlling the Scale of TNF Data Collection 205

Collecting Trace Data 205

Merging Trace Data Files 206

Managing Disk Space Requirements 207

Performance Analysis Tips 207

Reusing Performance Data Files 207

Enabling Probes Selectively 207

Anticipating Timing Problems 208

Miscellaneous Suggestions 209

Additional Information 209

7. Editing and Compiling Programs 211

Editing Source Code 211

▼ To Start the Default Editor on the Current Source File From Within the Prism

Environment 211

Using the make Utility 212

Creating the Makefile 212

Using the Makefile 212

▼ To Run make From the Menu Bar 212

▼ To Run make From the Command Window 213

8. Getting Help 215

The Prism Online Help Systems 215

▼ To Get Help in the Prism Environment 215

Using the Browser-based Help System 216

Choosing Selections From the Help Menu 216
Contents xv

Getting Help on Using the Mouse 216

Obtaining Help From the Command Window 217

▼ To Obtain Help From the Command Window. 217

Obtaining Online Documentation 217

Viewing Manual Pages 217

▼ To Obtain a Manual Page 217

9. Customizing the Prism Programming Environment 219

Initializing the Prism Environment 219

Customizing MP Prism Mode 220

▼ To Force the Prism Environment to Preprocess the .prisminit
File 220

Using the Tear-Off Region 221

Adding Menu Selections to the Tear-Off Region 221

▼ To Add a Menu Selection to the Tear-Off Region 221

Adding Prism Commands to the Tear-Off Region 222

▼ To Add a Command to the Tear-Off Region 222

Creating Aliases for Commands and Variables 223

▼ To create an Alias for a Prism Command 223

▼ To Remove an Alias 223

▼ To Set Up an Alternative Name for a Variable or Expression 224

Using the Customize Utility 224

▼ To Launch the Prism Customize Utility 225

Changing a Resource Setting 225

▼ To Set a Value for a Prism Resource 226

▼ To Close the Customize Window 226

Resources 226

Where the Prism Environment Stores Your Changes 228
xvi Prism 6.1 Reference Manual • March 2000

Changing Prism Environment Defaults 229

Adding Prism Resources to the X Resource Database 231

▼ To Add Resource Settings to the X Resource Database 231

▼ To Signal That There Is No More Input 232

Specifying the Editor and Its Placement 232

▼ To Specify an Editor and Its Placement 232

Specifying the Window for Error Messages 232

▼ To Specify the Window for Error Messages 232

Changing the Text Fonts 233

▼ To List the Names of the Fonts Available on Your System 233

▼ To Specify the Fonts for Prism 233

Changing Colors 233

▼ To Change the Colors Used for Colormap Visualizers 233

▼ To Change the Prism Environment’s Standard Colors 234

▼ Changing the Colors of MPI Communicators in the MPI Queue

Visualizer 234

Changing Keyboard Translations 235

▼ To Change Keyboard Translations for Dialog Boxes With a Single Text

Field 236

▼ To Change Keyboard Translations for Dialog Boxes With Several Text

Fields 236

▼ To Change a General Motif Keyboard Translation 237

Changing the Xterm to Use for I/O 238

▼ To Force the Prism Environment Not to Create a New I/O

Window 238

Changing the Way the Prism Environment Signals an Error 238

▼ To Force the Prism Environment to Ring the Bell on Errors 238

Changing the make Utility to Use 238

▼ To Specify an Alternative Make Utility 238
Contents xvii

Changing How the Prism Environment Treats Stale Data in Visualizers 239

▼ To Force the Prism Environment Not to Depict Stale Data With

Diagonal Lines 239

Specifying the Browser to Use for Displaying Help 239

▼ To Specify an Alternative HTML Browser for Displaying Online

Help 239

▼ To Force the Prism Environment to Start a New Help Browser 240

Changing the Way the Prism Environment Handles Fortran 90 Generic

Procedures 240

▼ To Suppress the Display of Menus or Dialog Boxes When Setting

Breakpoints in Fortran 90 Generic Procedures 240

▼ To Display a Different Maximum Number of Fortran 90 Generic

Procedures 240

10. Troubleshooting 241

Troubleshooting Tips 241

Launch the Prism Environment Without Invoking bsub or mprun 241

Avoid Using the –xs Compiler Option 242

Keep .o Files after Compilation 242

Expect a Pause After Issuing the First run Command 242

Monitor Your Use of Color Resources 242

Expect Only Stopped Processes to Be Displayed in the Where Graph 242

Use Only the MP Mode of the Prism Environment to Load MPI

Programs 243

Verify That /opt/SUNWlsf/bin Is in Your PATH 243

Use the –32 Option to Load 32-Bit Binaries For Performance Analysis on

Solaris 7 243

A. The Commands-Only Mode of the Prism Environment 245

Specifying the Commands-Only Option 245

Issuing Commands 246
xviii Prism 6.1 Reference Manual • March 2000

Useful Commands 247

Leaving the Commands-Only Mode of the Prism Environment 247

Running the Commands-Only Mode of the Prism Environment From an Xterm:

The –CX Option 248

B. C++ and Fortran 90 Support 249

C++ Support in the Prism Environment 249

Fortran 90 Support in the Prism Environment 252

C. Scalar Mode 261

Starting the Prism Environment 261

▼ To Launch the Prism Environment in Scalar Mode 261

Stepping and Continuing Through a Serial Program 262

▼ To Attach To a Running Process From Within the Prism Environment 263

Viewing the Call Stack 263
Contents xix

xx Prism 6.1 Reference Manual • March 2000

Preface

The Prism 6.1 User’s Guide explains how to use the Prism environment to develop,

execute, debug, and visualize data in serial and parallel programs.

These instructions are intended for application programmers developing serial or

parallel programs that are to run on a Sun™ HPC System. It is assumed you know

the basics of developing and debugging programs, as well as the basics of the

system on which you will be using the Prism™ environment. Some familiarity with

the Solaris™ debugger dbx is helpful but not required. Prism is based on the X and

OSF/Motif standards. Familiarity with these standards is also helpful but not

required.

Using UNIX Commands

This document may not contain information on basic UNIX® commands and

procedures such as shutting down the system, booting the system, and configuring

devices.

See one or more of the following for this information:

■ AnswerBook2™ online documentation for the Solaris operating environment

■ Other software documentation that you received with your system
xxi

Typographic Conventions

Shell Prompts

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output.

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output.

% su
Password:

AaBbCc123 Book titles, new words or

terms, words to be emphasized.

Command-line variable;

replace with a real name or

value.

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be root to do this.

To delete a file, type rm filename.

TABLE P-2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell

superuser

#

xxii Prism 6.1 User’s Guide • March 2000

Related Documentation

Ordering Sun Documentation

Fatbrain.com, an Internet professional bookstore, stocks select product

documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center

on Fatbrain.com at:

http://www1.fatbrain.com/documentation/sun

Accessing Sun Documentation Online

The docs.sun.com SM web site enables you to access Sun technical documentation

on the Web (Documentation for field test software is not generally available at this

site.). You can browse the docs.sun.com archive or search for a specific book title

or subject at:

http://docs.sun.com

TABLE P-3 Related Documentation

Application Title Part Number

All Sun HPC ClusterTools 3.1
Administrator’s Guide

806-3731-10

All Sun HPC ClusterTools 3.1 User’s Guide 806-3733-10

All Sun HPC ClusterTools 3.1 Product Notes 906-4182-10

Sun MPI Programming Sun MPI 4.1 Programming and Reference
Guide

806-3734-10

S3L Sun S3L 3.1 Programming and Reference
Guide

806-3735-10

Prism Prism 6.1 Reference Manual 806-3737-10
Preface xxiii

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments

and suggestions. You can email your comments to us at:

docfeedback@sun.com

Please include the part number of your document in the subject line of your email.
xxiv Prism 6.1 User’s Guide • March 2000

CHAPTER 1

The Prism Environment

The Prism™ programming environment is an integrated graphical environment

within which users can develop, execute, and debug programs. It provides an easy-

to-use, flexible, and comprehensive set of tools for performing all aspects of serial

and message-passing programming. Prism software operates on terminals or

workstations running the Solaris™ operating environment under either

OpenWindows™ environment or the Sun™ Common Desktop Environment (CDE).

In addition, a commands-only option allows you to operate on any terminal, but

without the graphical interface.

Overview
You can either load an executable program into the Prism environment, or start from

the beginning by calling up an editor and a UNIX® shell within the Prism

environment and using them to write and compile the program.

Once an executable program is loaded into the Prism environment, you can (among

other things):

■ Execute the program

■ Debug the program

■ Visualize data from the program

■ Analyze the performance of message-passing programs

The Prism environment is primarily a debugger and programming environment for

multiprocess programs (the MP Prism environment). Multiprocess programs can be

either message-passing programs (Sun MPI programs, for example) or threaded

serial programs. The Prism environment also supports the debugging and

development of nonthreaded serial programs. When running nonthreaded serial

programs under the Prism environment, the view presented to the user is usually

that of a single serial program. When running multi-process programs under the
1

Prism environment, features that are specific to multiple process programs (such as

pset support) are available. For information about using the Prism environment with

nonthreaded serial programs, see Appendix C.

The Look and Feel of the Prism
Programming Environment
FIGURE 1-1 shows the main window of the Prism environment with a program

loaded. It is within this window that you debug and analyze your program. You can

operate with a mouse, use keyboard equivalents of mouse actions, or issue keyboard

commands.
2 Prism 6.1 User’s Guide • March 2000

FIGURE 1-1 The Prism Programming Environment’s Main Window

Clicking on items in the menu bar displays pulldown menus that provide access to

most of the Prism environment’s functionality.

You can add frequently used menu items and commands to the tear-off region, below

the menu bar, to make them more accessible.

Tear-off

Status
region

Source
window

Command
window

Menu bar

Line-number
region

region
 Chapter 1 The Prism Environment 3

The status region displays the program’s name and messages about the program’s

status.

The source window displays the source code for the executable program. You can

scroll through this source code and display any of the source files used to compile

the program. When a program stops execution, the source window updates to show

the code currently being executed. You can select variables or expressions in the

source code and print their values or obtain other information about them.

The line-number region is associated with the source window. You can click to the

right of a line number in this region to set a breakpoint at that line.

The command window at the bottom of the main the Prism environment window

displays messages and output from the Prism environment. You can also type

commands in the command window rather than use the graphical interface.

General aspects of using these areas are discussed in Chapter 2 “Using the Prism

Environment”.

Loading and Executing Programs
You can load an executable program into the Prism environment when you start it

up, or any time afterward. Once the program is loaded, you can run the program or

step through it. You can also interrupt execution at any time.

You can also attach to a running program or associate a core file with a program.

See “Executing a Program in the Prism Environment” on page 48 for a discussion of

these topics.

Debugging
The Prism environment allows you to perform standard debugging operations such

as setting breakpoints and traces, and displaying and moving through the call stack.

Chapter 4 “Debugging a Program”, discusses these topics.
4 Prism 6.1 User’s Guide • March 2000

Visualizing Data
It is often important to obtain a visual representation of the data elements that make

up an array or parallel variable. In the Prism environment, you can create visualizers
that provide standard representations of variables or expressions. For example,

■ In the text representation, the data is shown as numbers or characters.

■ In the colormap representation, each data element is mapped to a color, based on a

range of values and a color map that you specify. (This representation is available

only on color workstations.)

■ In the threshold representation, each data element is mapped to either black or

white, based on a cutoff value that you can specify.

A data navigator lets you manipulate the display window relative to the data being

visualized. Options are available that let you update a visualizer or save a snapshot

of it.

See Chapter 5 “Visualizing Data” for a discussion of visualizing data. “Visualizing

Multiple Processes” on page 160 covers aspects of visualization unique to the MP

Prism environment.

Analyzing Program Performance
The Prism environment provides support for Trace Normal Form (TNF) performance

analysis for Sun MPI message-passing programs. By redirecting the

LD_LIBRARY_PATHenvironment variable, you can use a TNF-instrumented Sun

MPI library to generate data on the performance of your Sun MPI routines. Then,

you can display and analyze the TNF data in timeline graphs, scatter plots,

histograms, and tables.

See Chapter 6 “Obtaining MPI Performance Data” for a discussion of MPI

performance analysis.
 Chapter 1 The Prism Environment 5

Editing and Compiling
You can call up the editor of your choice within the Prism environment to edit

source code (or any other text files). If you change your source code and want to

recompile, the Prism environment also provides an interface to the UNIX make
utility. Editing and compiling are described in more detail in Chapter 7 “Editing and

Compiling Programs”.

Obtaining Online Help and
Documentation
The Prism environment features a comprehensive online help system. Help is

available for each menu, window, and dialog box in the Prism programming

environment.

In addition to help on the Prism environment itself, the Prism programming

environment online documentation is provided in the Sun AnswerBook2™.

Online help and documentation are described in more detail in Chapter 8 “Getting

Help”.

Customizing the Prism Programming
Environment
You can change aspects of the way the Prism environment operates. You can create

customized command buttons in the tearoff region of the main the Prism

programming environment window, create aliases for commands and variables, and

change the Prism environment default settings. These customizations are discussed

in Chapter 9 “Customizing the Prism Programming Environment”.
6 Prism 6.1 User’s Guide • March 2000

CHAPTER 2

Using the Prism Environment

This chapter describes general aspects of using the Prism environment. Succeeding

chapters describe how to perform specific functions within the Prism programming

environment.

The best way to learn how to use the Prism environment is to try it out for yourself

as you read this chapter. See the following sections:

■ “Before Entering the Prism Environment” on page 7

■ “Entering the Prism Environment” on page 10

■ “Executing Commands Within the Prism Environment” on page 19

■ “Using the Menu Bar” on page 21

■ “Using the Source Window” on page 22

■ “Using the Line-Number Region” on page 26

■ “Using the Command Window” on page 27

■ “Writing Expressions in the Prism Environment” on page 32

■ “Using Fortran 90 Generic Procedures” on page 37

■ “Issuing Solaris Commands” on page 39

■ “Leaving the Prism Environment” on page 41

Before Entering the Prism Environment
This section describes the programming conditions under which you can make use

of the Prism environment’s features.
7

Supported Languages and Compilers

You can work on Sun Fortran, C, and C++ programs within the Prism environment.

However, support for debugging Fortran 90 and C++ programs is limited. For

information on the specifics of the Prism environment support for Fortran 90 and

C++, see Appendix B “C++ Support in the Prism Environment”.

The Prism environment supports these compilers in Sun HPC ClusterTools™ 3.1:

■ SPARCompiler Fortran 77 4.2, and 5.0

■ SPARCompiler Fortran 90 4.2, and 5.0

■ SPARCompiler C 4.0, 4.2, and 5.0

■ SPARCompiler C++ 4.2, and 5.0

Compiling and Linking Your Program

To use the Prism environment’s debugging features, compile and link each program

module with the –g compiler option to produce the necessary debugging

information.

Note – The –g option overrides certain optimizations. For example, in C++ the –g
option turns on debugging and turns off inlining of functions. The –g0 (zero) option

turns on debugging and does not affect inlining of functions. You cannot debug

inline functions with this option. For another example, in Fortran 77 the –g conflicts

with the –auto-inlining and -depend options.

Combining Compiler Options

If you compile programs with both the debugging option –g and an optimization

option such as –xO[1,2,3,4,5] , the combined options change the behavior of

several Prism commands. For information about the effects of combining the debug

option with optimization options, see “Combining Debug and Optimization

Options” on page 115.

Setting Up Your Working Environment

To enter the Prism environment, you must be logged in to a terminal or workstation

running OpenWindows or the Common Desktop Environment (CDE).
8 Prism 6.1 User’s Guide • March 2000

DISPLAY Variable

Make sure that your DISPLAY environment variable is set for the terminal or

workstation from which you are running OpenWindows or CDE. For example, if

your workstation is named valhalla, you can issue this command (if you are running

the C shell):

% setenv DISPLAY valhalla:0

PATHVariable

Sun HPC ClusterTools requires that two directories be set in your PATH variable.

The default locations of the two directories are:

/opt/SUNWhpc/bin
/opt/SUNWlsf/bin

PRISM_BROWSER_SCRIPTVariable

The Prism environment uses the default HTML browser on your system to display

Prism online help. If launching a browser at a prompt in your local environment

calls up a script rather than invoking the browser directly, you must set the

environment variable PRISM_BROWSER_SCRIPTto yes before starting the Prism

environment:

% setenv PRISM_BROWSER_SCRIPT yes

If you do not set this variable in this situation, once the Prism help system responds

the browser may be brought up but may halt without displaying any help entries.

For information about the configuration of Sun HPC ClusterTools at your location,

see your Sun HPC ClusterTools system administrator.

MPI_INIT_TIMEOUT Variable

Sun MPI has timeouts built into the software to help detect when there are problems

starting an MPI job. However, you may trigger these timeouts erroneously when you

are debugging programs, such as when using the Prism environment. You should

disable the timeouts prior to using the Prism environment on a Sun MPI program.
 Chapter 2 Using the Prism Environment 9

▼ To Set Sun MPI Timeouts

● Type

%setenv MPI_INIT_TIMEOUT time

to lengthen or disable the timeout time.

When you set MPI_INIT_TIMEOUT to a positive integer, the timeout value is set to

that time in seconds. When you set MPI_INIT_TIMEOUT to 0 or a negative integer,

the timeout is disabled. The default value is 600 seconds (10 minutes).

For example, to disable timeouts (in a C shell):

% setenv MPI_INIT_TIMEOUT –1

Again in a C shell, to set timeouts to 5 minutes:

% setenv MPI_INIT_TIMEOUT 300

Entering the Prism Environment
The Prism environment supports both multiprocess and single-process programs.

Use the multiprocess mode (MP) Prism environment with message-passing

programs or threaded single-process programs. Use the scalar mode with

nonthreaded single-process programs. For more information about scalar mode, see

Appendix C “Scalar Mode”.

Launching the Prism Environment

The Prism environment offers many features (such as process sets or psets)

exclusively for multiprocess programs or threaded single-process programs. These

features are called, collectively, the multiprocess mode of the Prism environment.

When you specify the multiprocess mode of the Prism environment, the Prism

environment starts displaying the main window shown in FIGURE 1-1. By default, the

Prism environment executes from /opt/SUNWhpc/bin .

Note – Do not launch the Prism environment as an argument to the bsub command

(LSF) or the mprun command (CRE). It creates redundant instances of the Prism

environment. For information on bsub , see the LSF Batch User’s Guide. For

information about mprun , see the Sun MPI User’s Guide.
10 Prism 6.1 User’s Guide • March 2000

▼ To Launch the Prism Environment in Multiprocess Mode

● Type

%prism –n processnumber program

The –n argument specifies a number of processes to run. If you specify:

■ N processes (specifying a processnumber greater than one) — The Prism

environment launches as many processes of program as you specify.

■ One process (specifying a processnumber of 1) — The Prism environment starts one

process of program, and views it in multiprocess mode.

■ Zero (specifying the processnumber 0) processes — The Prism environment starts

one process of program on each available node.

The multiprocess mode supports debugging message-passing programs or

multithreaded single-process programs.When you use launch the Prism

environment in multiprocess mode, you are actually starting multiple Prism

processes, in a client/server model:

■ There is one client Prism process for each process in the program. The Prism

process attaches itself to the process to collect information about it.

■ There is a single server Prism process that communicates with the Prism

processes and provides the interface to the user. This process is referred to as

Host Prism.

■ The multiple Prism processes run on the same node as the program’s processes.

Specifying a Threaded or Nonthreaded View of

Programs

The multiprocess mode of the Prism environment identifies programs as threaded if

they have been linked to the libmpi_mt library (or the libthread library). Direct

the Prism environment to view programs as threaded that are not linked to one of

these libraries by using the –threads argument. If the loaded program does not use

threads, the –threads argument has no effect. Direct the Prism environment to

view programs as nonthreaded that are linked to libmpi_mt (or libthread) by

using the –nothreads argument.

Viewing a program as nonthreaded means viewing only the main stream of

execution in that program. When the Prism environment opens an nonthreaded

view of a program that (directly or indirectly, through library calls) uses threads, it

issues a warning that thread debugging has been disabled. The Prism environment

issues this warning for all programs linked with libmpi .
 Chapter 2 Using the Prism Environment 11

▼ To Specify a Threaded View of Programs

● Type

%prism –n processnumber –threads program

For example,

% prism –n 4 –threads a.out

This starts the Prism environment with a program, a.out , compiled without a link to

libmpi_mt , but enabling the Prism environment to view threads.

Issuing the prism command with the –threads argument causes the Prism

environment to view loaded programs as threaded programs—even though those

programs have not been linked to the libmpi_mt library. For example, you may

want to use this option if your program uses threads in its I/O or graphic user

interface.

Using the –threads option for a program that does not use threads has no effect.

▼ To Specify an Nonthreaded View of Programs

● Type

%prism –n processnumber –nothreads program

For example,

% prism –n 4 –nothreads a.out

This loads a message-passing program (threaded or nonthreaded) with a program,

a.out, compiled with a link to libmpi_mt, but viewing only the main thread.

By default, the Prism environment treats loaded Sun MPI programs as though they

are nonthreaded. This allows you to debug multithreaded programs viewing only

the main thread (thread 0). For example, you may want to use this option if your

program generates threads automatically (by making library calls that have threaded

implementations).

▼ To Load a Threaded Single-Process Program

● Type

%prism –n 1 program

For example,

% prism –n 1 primes.x

Specify the process number (one), even though the program runs on a single process.

See “Loading a Program” on page 43 for more information about loading a program.
12 Prism 6.1 User’s Guide • March 2000

p

Attaching to a Process

You can also attach to a process or message-passing job that is currently running.

However, the Prism environment must run on the same system on which the process

is running (or the same cluster on which the job is running).

See “Attaching to a Running Message-Passing Process” on page 47 for more

information about attaching to and detaching from a running serial process or a

message-passing job.

Associating a Program or Process With a Core File

You can associate a core file with a single-process program, or a process of a

multiprocess program.

▼ To Associate a Program or Process With a Core File at Startu

1. Type

%prism program corefile

or (if you have launched the Prism environment and loaded a single-process

program),

2. Type

(prism) core corefile

See “Associating a Core File With a Loaded Program” on page 46 for more

information about core files.

Note – In the multiprocess (MP) mode of the Prism environment, the Prism prompt

includes the current pset, such as (prism all). However, unless a pset is required

by the example, this manual often uses the simpler (prism).

Starting With the Commands-Only Interface

The Prism environment supports both a graphic user interface and a command-line

interface, called the commands-only interface.
 Chapter 2 Using the Prism Environment 13

ut
▼ To Start With the Commands-Only Interface

● Type

%prism –C options program

This allows you to bring up the Prism environment with the commands-only

interface on a terminal with no graphics capability.

▼ To Start With the Commands-Only Interface, Redirecting Outp

● Type

%prism –CX options program

This allows you to bring up the Prism environment with the commands-only

interface, redirecting the output of certain Prism commands to X windows.

See Appendix A “The Commands-Only Mode of the Prism Environment” for

information about the commands-only interface of the Prism environment.

Specifying X Toolkit Options

You can include most standard X toolkit command-line options when you issue the

prism command; for example, you can use the -geometry option to change the

size of the main Prism window. See your X documentation for information on these

options. Also, note these limitations:

■ The –font , –title , and –rv options have no effect.

■ The –bg option is overridden in part by the setting of the Prism.textBgColor
resource, which specifies the background color for text in the Prism environment;

see “Changing Colors” on page 233.

X toolkit options are ignored if you use -C to run the Prism environment with the

commands-only interface.

Specifying Input and Output Files

▼ To Specify an Input File

● Type

%prism < input–file

This specifies a file from which the Prism environment is to read and execute

commands upon startup.
14 Prism 6.1 User’s Guide • March 2000

▼ To Specify an Output File

● Type

%prism > log–file

This specifies a file to which the Prism environment commands and their output are

to be logged.

If you have created a .prisminit initialization file, the Prism environment

automatically executes the commands in the file when it starts up. See “Initializing

the Prism Environment” on page 219 for information on .prisminit .

Specifying the Host Environment

▼ To Specify Where the Host Prism Environment Is To Run

● Type

%prism –n processnumber

For example,

% prism -n 4

The number 4 specifies the number of processes to run.

The Prism environment starts Host Prism on the node to which you are logged in.

See “Entering the Prism Environment” on page 10 for more information on starting

the Prism environment, and see the Sun MPI Programming and Reference Guide for

more information on starting Sun HPC programs in general.
 Chapter 2 Using the Prism Environment 15

Specifying a Number of Processes Greater Than

the Number of Processors

▼ To Start More Processes Than You Have Processors

● Type

%prism –W program

The Prism environment can start the number of processes you specify, even when

that number exceeds the number of processors. By default, the Prism environment

launches one process per processor. For example,

%prism -n 4 -W a.x

starts four processes, regardless of the number of processors.

Specifying Runtime Environment Options

▼ To Supplybsub Arguments When You Launch the Prism
Environment

● Type

%prism –bsubargs options program

This provides the Prism environment (when using the LSF environment) with bsub
arguments. For example, using the C shell (csh), you can specify a preferred host by

name.

%prism -n 4 -W -bsubargs '-m argos' a.x

Here, you requested four processes to be launched on host argos , wrapping if

necessary.

▼ To Supplymprun Arguments When You Launch the Prism
Environment

● Type

%prism –mprunargs options program

This provides the Prism environment (when using the CRE environment) with

mprun arguments. For example, using the C shell (csh), you can specify a preferred

host by name.

%prism -n 4 -W -mprunargs '-p delos' a.x

Here, you requested four processes to be launched on partition delos , wrapping if

necessary.
16 Prism 6.1 User’s Guide • March 2000

p

Note – If the bsub option itself uses quotation marks, refer to the documentation

for your shell program for the syntax for handling quotes.

Specifying Runtime Environment-Specific Options After
Launching the Prism Environment

Sun HPC ClusterTools supports two run-time environments, Platform Computing’s

Load Sharing Facility (LSF) and the Cluster Runtime Environment (CRE). The Prism

environment runs on both environments.

▼ To Specify Runtime Environment-Specific Options After Startu

1. Identify the current environment by executing /opt/SUNWhpc/etc/hpc_rte .

For example,

2. Return to the Prism environment.

3. Issue environment-specific commands

Specify any bsub options (when using the LSF environment) or mprun options

(when using the CRE environment) that you want to apply to your message-passing

program.

The Prism environment stores these options, then applies them when you start up a

multiprocess program. Specifying the setting of a bsub option via the bsubargs
command, or an mprun option via the mprunargs command, overrides the setting

of the same option you have established via the prism command line. If it is an

option that has otherwise not been specified, it is added to the existing settings.

Note – The strings given to bsubargs or mprunargs should not contain the –I ,

–Ip , or –n flags, because the Prism environment internally generates values for

them, and the results will be undefined.

▼ To Specify a Preferred Host by Name (Running LSF),

1. Enter the Prism environment in the LSF environment.

% hpc_rte
lsf
 Chapter 2 Using the Prism Environment 17

2. Type

(prism) bsubargs options

For example,

3. Remove any existing bsub options you have specified by typing

(prism all) bsubargs off

This removes options you have set via the shell command line.

Issuing the bsubargs command with no options shows the current bsub options.

Note – The bsubargs command accepts a single string argument. Since this

argument is issued within the Prism environment, using the shell-specific syntax

appropriate for the –bsubargs option causes errors. Also, each time that you issue

the bsubargs command, the previously specified bsub options are replaced. To

keep a list of options in effect, you must specify the entire list whenever you change

any item in that list.

▼ To Specify a Preferred Partition by Name (Running CRE)

1. Start the Prism environment in the CRE environment.

2. Type

(prism all) mprunargs options

For example,

3. Remove any existing mprun options you have specified by issuing the command

Within the Prism environment, this removes options you have set via the command

line.

Issuing the mprunargs command with no options shows the current mprun options.

(prism all) bsubargs -m argos

(prism all) mprunargs -p delos

(prism all) mprunargs off
18 Prism 6.1 User’s Guide • March 2000

Note – The mprunargs command accepts a single string argument. Since this

argument is issued within the Prism environment, using the shell-specific syntax

appropriate for the –mprunargs option causes errors.

Executing Commands Within the Prism
Environment
Within the Prism environment, you can perform most actions in one of three ways:

■ By using a mouse; see “Using the Mouse” on page 19

■ By using keyboard alternatives to the mouse; see “Using Keyboard Alternatives

to the Mouse” on page 19

■ By issuing commands from the keyboard; see “Issuing Commands” on page 21

Using the Mouse

You can point and click with a mouse in the Prism environment to choose menu

items and to perform actions within windows and dialog boxes. The Prism

environment assumes that you have a standard three-button mouse.

In any window where you see this mouse icon:

you can left-click on the icon to obtain information about using the mouse in the

window.

Using Keyboard Alternatives to the Mouse

You can use the keyboard to perform many of the same functions you can perform

with a mouse. This section lists these keyboard alternatives.
 Chapter 2 Using the Prism Environment 19

In general, to use a keyboard alternative, the focus must be in the screen region

where you want the action to take place. The focus is generally indicated by the

location cursor, which is a heavy line around the region.

General keyboard alternatives to mouse control are listed below.

TABLE 2-1 General Keyboard Alternatives to Mouse Control

Key Name Description

Tab Use the Tab key to move the location cursor from field to field

within a window or dialog box. The buttons in a window or box

constitute one field. The location cursor highlights one of the

buttons when you tab to this field.

Shift-Tab Use the Shift-Tab keys to perform the same function as Tab, but

move through the fields in the opposite direction.

Return Use the Return key to choose a highlighted choice in a menu, or to

perform the action associated with a highlighted button in a

window or dialog box.

Arrow keys Use the up, down, left, and right arrow keys to move within a field.

For example, when the location cursor highlights a list, you can use

the up and down arrow keys to move through the choices in the list.

In some windows that contain text, pressing the Control key along

with an up or down arrow key scrolls the text one-half page.

F1 Use the F1 key instead of the Help button to obtain help about a

window or dialog box.

F10 Use the F10 key to move the location cursor to the menu bar.

Meta Use the Meta key along with the underlined character in the desired

menu item to display a menu or dialog box (equivalent to clicking

on the item with the mouse). The Meta key has different names on

different keyboards; on some it is the Left or Right key.

Control-C Use the Control-C key combination to interrupt command

execution.

Esc Use the Esc key instead of the Close or Cancel button to close the

window or dialog box in which the mouse pointer is currently

located.
20 Prism 6.1 User’s Guide • March 2000

The keys and key combinations described in TABLE 2-2 work on the command line

and in text-entry boxes—that is, fields in a dialog box or window where you can

enter or edit text.

In addition, you can use keyboard accelerators to perform actions from the menu bar;

see “Keyboard Accelerators” on page 22.

Issuing Commands

You can issue commands in the Prism environment from the command line in the

command window. Most commands duplicate functions you can perform from the

menu bar; you can use the command or the corresponding menu selection. Some

functions are only available via commands. See the Prism 6.1 Reference Manual for

complete information about Prism commands. “Using the Command Window” on

page 27 describes how to use the command window.

Many commands have the same syntax and perform the same action in both the

Prism environment and the Solaris debugger dbx . There are differences, however;

you should check the reference description of a command before using it.

Using the Menu Bar
The menu bar is the line of titles across the top of the main window of the Prism

environment.

TABLE 2-2 Text-Entry Keyboard Alternatives

Key Name Description

Back Space Deletes the character to the left of the I-beam cursor.

Delete Same as Back Space.

Control-A Moves to the beginning of the line.

Control-B Moves back one character.

Control-D Deletes the character to the right of the I-beam cursor.

Control-E Moves to the end of the line.

Control-F Moves forward one character.

Control-K Deletes to the end of the line.

Control-U Deletes to the beginning of the line.
 Chapter 2 Using the Prism Environment 21

Each title is associated with a pulldown menu, from which you can perform actions

within the Prism environment.

Keyboard Accelerators

A keyboard accelerator is a shortcut that lets you choose a frequently used menu

item without displaying its pulldown menu. Keyboard accelerators consist of the

Control key plus a function key; you press both at the same time to perform the

action. The keyboard accelerator for a menu selection is displayed next to the name

of the selection; if nothing is displayed, there is no accelerator for the selection.

The keyboard accelerators (on a Sun keyboard) are listed in TABLE 2-3.

Using the Source Window
The source window displays the source code for the executable program loaded into

the Prism environment. (Chapter 3 “Loading and Executing a Program” describes

how to load a program into the Prism environment, and how to display the different

source files that make up the program.) When you execute the program, and

execution then stops for any reason, the source window updates to show the code

being executed at the stopping place. The Source File field at the top of the source

window lists the file name of the file displayed in the window.

TABLE 2-3 Keyboard Accelerators for Main Menu Selections

Accelerator Function

Control-F1 Run

Control-F2 Continue

Control-F3 Interrupt

Control-F4 Step

Control-F5 Next

Control-F6 Where

Control-F7 Up

Control-F8 Down
22 Prism 6.1 User’s Guide • March 2000

The source window is a separate pane within the main window of the Prism

environment. You can resize it by dragging the small resize box at the lower right of

the window. If you change its size, the new size is saved when you leave the Prism

environment.

You cannot edit the source code displayed in the source window. To edit source code

within the Prism environment, you must call up an editor; see Chapter 7 “Editing

and Compiling Programs”.

Moving Through the Source Code

As mentioned above, you can move through a source file displayed in the source

window by using the scroll bar on the right side of the window. You can also use the

up and down arrow keys to scroll a line at a time, or press the Control key along

with the arrow key to move half a page at a time. To return to the current execution

point, type Control-X in the source window.

▼ To Search for Text in a String or Regular Expression

● Type

(prism) / regexp

or

(prism) ?regexp

The / regexp command searches forward in the file for the string (or regular

expression) that you specify and repositions the file at the first occurrence it finds.

The ?regexp command searches backward in the file for the string (or regular

expression) that you specify.

▼ To Display Different Files

● Choose the File or Func selection from the File menu.

See “Choosing the Current File and Function” on page 82.

The Prism environment keeps a list of the files you have displayed. With the mouse

pointer in the source window, do this to move through the list:

1. To display the previous file in the list, click the middle mouse button while

pressing the left button. You are returned to the location at which you left the file.

2. To display the next file in the list, click the right mouse button while pressing the

left button.
 Chapter 2 Using the Prism Environment 23

Selecting Text

You can select text in the source window by dragging over it with the mouse; the

text is then highlighted. Or double-click with the mouse pointer pointing to a word

to select just that word. Left-click anywhere in the source window to “deselect”

selected text.

Right-click in the source window to display a menu that includes actions to perform

on the selected text, see FIGURE 2-1. For example, select Print to display a visualizer

containing the value(s) of the selected variable or expression at the current point of

execution. (See Chapter 5 “Visualizing Data” for a discussion of visualizers and

printing.) To close the pop-up menu, right-click anywhere else in the main window.

FIGURE 2-1 Pop-up Menu in Source Window

You can display the definition of a function by pressing the Shift key while selecting

the name of the function in the source window. This is equivalent to choosing the

Func selection from the File menu and selecting the name of the function from the

list; see Chapter 3 “Loading and Executing a Program”. Do not include the

arguments to the function, just the function name.

Splitting the Source Window

You can split the source window to simultaneously display the source code and

assembly code of the loaded program. Follow these steps to split the source window:

▼ To Split the Source Window

1. Load a program.
24 Prism 6.1 User’s Guide • March 2000

2. Right-click in the source window to display the pop-up menu.

3. Click on the Show source pane selection in the pop-up menu.

This displays another menu.

4. Choose the Show .s source selection from the menu.

This causes the assembly code for your program to be displayed in the bottom pane

of the window, as shown in FIGURE 2-2.

FIGURE 2-2 Split Source Window

▼ To Return to a Single Source Window

1. Right-click in the pane you want to get rid of.
 Chapter 2 Using the Prism Environment 25

2. Choose “Hide this source pane” from the pop-up menu.

Using the Line-Number Region
The line-number region shows the line numbers associated with the source code

displayed in the source window. FIGURE 2-3 shows a portion of a line-number region,

with a breakpoint set.

FIGURE 2-3 Line Number Region

You will see the following symbols in the line-number region:

■ The > symbol in the line-number region in FIGURE 2-2 is the execution pointer.

When the program is being executed, the execution pointer points to the next line

to be executed, for the most-active function call; or to the call site for functions

higher on the stack. If you move elsewhere in the source code, typing Control-x

returns to the current execution point.

■ A B appears in the line-number region next to every line at which execution is to

stop. You can set simple breakpoints directly in the line-number region; all

methods for setting breakpoints are described in “Setting Breakpoints” on page

99.

■ A T appears in the line-number region next to a line for which the Prism

environment is tracing execution. See “Tracing Program Execution” on page 104

to learn how to trace program execution.

Shift-click on B or T in the line-number region to display the event associated with

the breakpoint or tracepoint. See “Overview of Events” on page 87 for a discussion

of events.
26 Prism 6.1 User’s Guide • March 2000

■ The – symbol is the scope pointer; it indicates the current source position (that is,

the scope). The Prism environment uses the current source position to interpret

names of variables. When you scroll through source code, the scope pointer

moves to the middle line of the code that is displayed. Various Prism commands

also change the position of the scope pointer.

■ The * symbol is used when the current source position is the same as the current

execution point; this happens whenever execution stops.

When a message-passing program is loaded, the Prism environment displays

additional information about breakpoints and tracepoints. With a message-

passing program, the Prism environment:

■ Displays a B next to a line number if all processes in the current pset have a

breakpoint set at that line.

■ Displays a b if some but not all of the processes in the current pset have a

breakpoint set at that line.

■ Displays a T if all processes in the current pset have a tracepoint set at that

line.

■ Displays a t if some but not all of the processes in the current pset have a

tracepoint set at that line.

If there is a mixture of breakpoints and tracepoints set on the line, the Prism

environment uses the B-b-T-t sequence to determine what letter to display. For

example, if a line has a breakpoint set in one process and a tracepoint set in all

processes, the Prism environment displays a b.

You can shift-click on the letter in the line-number region to display the complete

event (or events) associated with it.

If you right-click in the line-number window, you display the source-window

pop-up menu discussed in the previous section. Right-click anywhere in the main

window to close this menu.

Using the Command Window
The command window is the area at the bottom of the main window in which you

type commands and receive Prism output.

The command window consists of two boxes: the command line, at the bottom, and

the history region, above it. FIGURE 2-4 shows a command window, with a command

on the command line and messages in the history region.
 Chapter 2 Using the Prism Environment 27

FIGURE 2-4 Command Window With History Region

The command window is a separate pane within the main window. You can resize

this window (using the resize box at the top right of the window) and scroll through

it. If you don’t intend to issue commands in the command window, you may want to

make this window smaller, so that you can display more code in the source window.

If you use the command window frequently, you may want to make it bigger. If you

change the size of the window, the new size is saved when you leave the Prism

environment.

Using the Command Line

You type commands on the command line at the bottom of the command window.

You can type in this box whenever it is highlighted and an I-shaped cursor, called an

I-beam, appears in it. See “Text-Entry Keyboard Alternatives” on page 21 for a list of

keystrokes you can use in editing the command line. Press Return to issue the

command. Type Control-C to interrupt execution of a command (or choose the

Interrupt selection from the Execute menu).

You can issue multiple commands on the Prism command line; separate them with a

semicolon (;). One exception: If a command takes a file name as an argument, you

cannot follow it with a semicolon, because the Prism environment can’t tell if the

semicolon is part of the file name.

The Prism environment keeps the commands that you issue in a buffer. Type

Control-P to display the previous command in this buffer. Type

Control-N to display the next command in the buffer. You can then edit the

command and issue it in the usual way.

During long-running commands (for example, when you have issued the run
command to start a program executing), you may still be able to execute other

commands. If you issue a command that requires that the current command

complete execution, you receive a warning message and the Prism environment

waits for the command to complete.
28 Prism 6.1 User’s Guide • March 2000

n

Using the History Region

Commands that you issue on the command line are echoed in the history region,

above the command line. The Prism environment’s response appears beneath the

echoed command. The Prism environment also displays other messages in this area,

as well as command output that you specify to go to the command window. Use the

scroll bar at the right of this box to move through the display.

▼ To Specify the Maximum Number of Lines in the History Regio

● Type

(prism) set $history = value

The default is 10,000. For example,

set $history = 2000

reduces the number of lines to 2000.

The Prism environment uses up memory in maintaining a large history region. A

smaller history region, therefore, may improve performance and prevent the Prism

environment from running out of memory.

▼ To Select Text in the History Region

1. Select text using one of these methods:

■ Double-click to select the word to which the mouse pointer is pointing.

■ Triple-click to select the line on which the mouse pointer is located.

■ Press the left mouse button and drag the mouse over the text to select it.

2. Click the middle mouse button to paste the selected text into other text areas.

▼ To Re-Execute a Command

1. Triple-click on a line in the history region to select it.

2. Click the middle mouse button with the mouse pointer still in the history region.

3. Middle-click with the mouse pointer on the command line.

The selected text appears on the command line but is not executed. This gives you a

way to edit the text before executing it.

Redirecting Output

The commands whose output you cannot redirect are run,edit , make, and sh .
 Chapter 2 Using the Prism Environment 29

Note – Although the run command cannot be redirected using on or @, run can be

redirected using > and other shell redirections.

▼ To Redirect Output to a File

● Type

(prism) where @filename

For example,

where @ where.output

puts the output of a where command (a stack trace) into the file where.output , in

your current working directory within the Prism environment. This method works

for most commands.

▼ To Redirect Output to a Window

● Type

(prism) where on window

where window can be:

■ command(abbreviated com) — This sends output to the command window; this is

the default.

■ dedicated (abbreviated ded) — This sends output to a window dedicated to

output for this command. If you subsequently issue the same command (no

matter what its arguments are) and specify that output is to be sent to the

dedicated window, this window will be updated. For example,

list on ded

displays the output of the list command in a dedicated window. (Some

commands that have equivalent menu selections display their output in the

standard window for the menu selection.)

■ snapshot (abbreviated sna) — This creates a window that provides a snapshot

of the output. If you subsequently issue the same command and specify that

output is to be sent to the snapshot window, the Prism environment creates a

separate window for the new output. The time each window was created is

shown in its title. Snapshot windows let you save and compare outputs.

■ windowname — This creates a window with a name you have created.

Windowname appears in the title of the window. This is useful if you want a

particular label for a window. For example, if you were doing a stack trace at line

22, you could issue this command:

where on line22

to label the window with the location of the stack trace.
30 Prism 6.1 User’s Guide • March 2000

Logging Commands and Output

You can use the log command along with the source command to replay a session

in the Prism environment; see the next section. If you want to do this, you must edit

the log file to remove Prism output.

Use the log file for logging commands and output from within the Prism

environment.

● Type

(prism) log @ filename

This specifies the name of a log file.

The log file filename will be located in the current directory. This can be helpful in

saving a record of a Prism session. For example,

log @ prism.log

logs output to the file prism.log .

● Type

(prism) log @@filename

This appends the log to an existing file.

● Type

(prism) log off

This turns off logging.

● Use one of the following methods to execute Prism commands from a file

■ Type

%prism < input–file

The input–file is a file (such as a log file) from which the Prism environment is to

read and execute commands upon startup. For more information about input

files, see “Specifying Input and Output Files” on page 14.

■ Save the commands permanently in a .prisminit file.

If you have created a .prisminit initialization file, the Prism environment

automatically executes the commands in the file when it starts up. See

“Initializing the Prism Environment” on page 219 for information on

.prisminit .

■ Type

(prism all) source filename

Using the source command allows you to rerun a session you saved via the log
command. You might also use source if, for example, your program has a long

argument list that you don’t want to retype constantly.
 Chapter 2 Using the Prism Environment 31

For example,

(prism) source prism.cmds

reads in the commands in the file prism.cmds . They are executed as if you had

actually typed them in the command window. When reading the file, The Prism

environment interprets lines beginning with a pound sign (#) as comments.

The .prisminit file is a special file of commands; if it exists, the Prism

environment executes this file automatically when it starts up. See “Initializing

the Prism Environment” on page 219 for more information.

Writing Expressions in the Prism
Environment
While working in the Prism environment, there are circumstances in which you may

want to write expressions that the Prism environment will evaluate. For example,

you can print or display expressions, and you can specify an expression as a

condition under which an action is to take place. You can write these expressions in

the language of the program you are working on. This section discusses additional

aspects of writing expressions.

How the Prism Environment Chooses the Correct

Variable or Procedure

Multiple variables and procedures can have the same name in a program. This can

be a problem when you specify a variable or procedure in an expression. To

determine which variable or procedure you mean, The Prism environment tries to

resolve its name by using these rules:

1. It first tries to resolve the name using the scope of the current function. For

example, if you use the name x and there is a variable named x in the current

function or the current file, the Prism environment uses that x. The current

function is ordinarily the function at the program’s current stopping point, but

you can change this. See “Choosing the Current File and Function” on page 82.

2. If this fails to resolve the name, the Prism environment goes up the call stack and

tries to find the name in the caller of the current function, then its caller, and so

on, following the scoping and visibility rules of the current language.
32 Prism 6.1 User’s Guide • March 2000

3. If no match is found in any routine active on the stack, the Prism environment

searches the static and global name spaces. If no match is found, the Prism

environment prints an error.

4. If the name is not found in the call stack, the Prism environment arbitrarily

chooses one of the variables or procedures with the name in the source code.

When the Prism environment prints out the information, it adds a message of the

form “[using qualified name]”. Qualified names are discussed below.

▼ To Display the Fully Qualified Name of a Variable

● Type

(prism all) which identifier

This command displays the fully qualified name, as described in “Using Qualified

Names”.

Using Qualified Names

You can override the way that the Prism environment resolves names by qualifying
the name.

A fully qualified name starts with a back-quotation mark (`) . The symbol farthest

to the left in the name is the load object, followed optionally by the file, followed

optionally by the procedure, followed by the variable name. Each element is

preceded by a backquote (`) . Examples of the Prism environment’s identifier syntax

are shown in TABLE 2-4.

TABLE 2-4 Prism Identifier Syntax

Syntax Description

a Specifies the variable a in the

current scope. An error will be

reported if no variable a exists in

the current scope.

`a Specifies the variable a in the

global scope.

``a Specifies the variable a in the

global or file-static scope.

`foo.c`a Specifies the variable a in file

foo .c.

`foo.c`foo`a Specifies the a in the procedure

foo in the file foo .
 Chapter 2 Using the Prism Environment 33

Partially qualified names do not begin with ` , but have a ` in them. For example,

foo ` a

In this case, the Prism environment looks up the function name on the left first and

picks the innermost symbol with that name that is visible from your current location.

This is useful primarily in referring to variables in routines on the call stack.

Use the whereis command to display a list of all the fully qualified names that

match the identifier you specify.

The Prism environment assigns its own names (using the function:line syntax, where

function is the function and line is the line number where the variable declaration

appeared) to variables in local blocks of C code. This disambiguates variable names,

in case you reuse a variable name in more than one of these local blocks.

When debugging Fortran, the Prism environment attempts to be case-insensitive in

interpreting names, but will use case to resolve ambiguities.

Using Fortran Intrinsic Functions in Expressions

The Prism environment supports the use of a subset of Fortran intrinsic functions in

writing expressions; the intrinsics work for all languages that the Prism environment

supports, except as noted below.

The intrinsics, along with the supported arguments, are

`foo`a Specifies the variable a in function

foo (if foo is active).

`a.out`foo.c`foo`a Specifies the variable a in function

foo in file foo.c in load object

a.out .

`a.out`foo.c`foo:line`a Specifies the variable a in function

foo at line number line in file

foo.c in load object a.out .

` foo.x ` foo.cc ` Bar::print:71 ` dummy Specifies the variable dummyin

member function print of class

Symbol at line number 71 in file

foo.cc in load object foo.x.

"foo.c":line Specifies the line number line in

the file foo.c . Note the use of

double quotes.

TABLE 2-4 Prism Identifier Syntax (Continued)

Syntax (Continued) Description
34 Prism 6.1 User’s Guide • March 2000

■ ALL(logical array) — Determines whether all elements are true in a logical array.

Works for Fortran only.

■ ANY(logical array) — Determines whether any elements are true in a logical array.

Works for Fortran only.

■ CMPLX(numeric-arg, numeric-arg) — Converts the arguments to a complex
number. If the intrinsic is applied to Fortran variables, the second argument must

not be of type complex or double (double-precision complex).

■ COUNT(logical array) — Counts the number of true elements in a logical array.

Works for Fortran only.

■ SIZE (array) — Counts the total number of elements in the array.

■ ILEN (I) — Returns one less than the length, in bits, of the two’s-complement

representation of an integer. If I is nonnegative, ILEN (I) has the value

log2(I + 1); if I is negative, ILEN (I) has the value log2(-I).

■ IMAG(complex number) — Returns the imaginary part of a complex number. Works

for Fortran only.

■ MAXVAL(array) — Computes the maximum value of all elements of a numeric

array.

■ MINVAL(array) — Computes the minimum value of all elements of a numeric

array.

■ PRODUCT(array) — Computes the product of all elements of a numeric array.

■ RANK(scalar or array) — Returns the rank of the array or scalar.

■ REAL(numeric argument) — Converts an argument to real type. Works for Fortran

only.

■ SUM(array) — Computes the sum of all elements of a numeric array.

The intrinsics can be either upper- or lowercase.

Using C Arrays in Expressions

The Prism environment handles arrays slightly differently from the way C handles

them.

In a C program, if you have the declaration

int a[10];

and you use a in an expression, the type of a converts from “array of ints ” to

“pointer to int ”. Following the rules of C, therefore, a Prism command like

(prism all) print a + 2
 Chapter 2 Using the Prism Environment 35

should print a hexadecimal pointer value. Instead, it prints two more than each

element of a (that is, a[0] + 2, a[1] + 2, etc.). This allows you to do array

operations and use visualizers on C arrays in the Prism environment. (The print
command and visualizers are discussed in Chapter 5 “Visualizing Data”.)

To get the C behavior, issue the command as follows:

(prism all) print &a + 2

Using Array-Section Syntax in C Arrays

You can use Fortran 90 array-section syntax when specifying C arrays. This syntax is

useful, for example, if you want to print the values of only a subset of the elements

of an array. The syntax is:

(lower-bound: upper-bound: stride)

where

■ lower-bound — Specifies the lowest-numbered element you choose along a

dimension;

it defaults to 0.

■ upper-bound — Specifies the highest-numbered element you choose along the

dimension; it defaults to the highest-numbered element for the dimension.

■ stride — Specifies the increment by which elements are chosen between the

lower bound and upper bound; it defaults to 1.

You must enclose the values in parentheses (rather than brackets), as in Fortran. If

your array is multidimensional, you must separate the dimension specifications with

commas within the parentheses, once again as in Fortran.

For example, if you have this array:

int a[10][20];

then you can issue this command in the Prism environment to print the values of

elements 2-4 of the first dimension and 2-10 of the second dimension:

(prism all) print a(2:4,2:10)
36 Prism 6.1 User’s Guide • March 2000

Hints for Detecting NaNs and Infinities

The Prism environment provides expressions that you can use to detect NaNs

(values that are “not a number”) and infinities in your data. These expressions

derive from the way NaNs and infinities are defined in the IEEE standard for

floating-point arithmetic.

▼ To Find Out if x Is a NaN

● Use the expression

(x .ne. x)

For example, if x is an array, issue the command

(prism all) where (x .ne. x) print x

to print only the elements of x that are NaNs. (The print command is discussed in

Chapter 5 “Visualizing Data”.)

Also, note that if there are NaNs in an array, the mean of the values in the array will

be a NaN. (The mean is available via the Statistics selection in the Options
menu of a visualizer—see Chapter 5 “Visualizing Data”.)

▼ To Find Out if x Is an Infinity

● Type

(prism all) (x * 0.0 .ne. 0.0)

Using Fortran 90 Generic Procedures
You can use Fortran 90 generic procedures in any Prism command or dialog box that

asks for a procedure. If you do so, the Prism environment will prompt you for the

name(s) of the specific procedure(s) you want to use.

For example, you use the syntax stop in procedure to set a breakpoint in a

procedure. If you use this syntax for a generic procedure, using the graphical

interface of the Prism environment a dialog box like the one shown in FIGURE 2-5 is

displayed.
 Chapter 2 Using the Prism Environment 37

FIGURE 2-5 Generic Procedure Dialog Box

The commands-only interface of the Prism environment prompts you as in this

example:

(prism all) stop in fadd
More than one identifier ’fadd’.
Select one of the following names:
0) Cancel
1) ‘f90_user_op_generic.x‘f90_user_op_generic.f90 ‘fadd
! real*4 realadd
2) ‘f90_user_op_generic.x‘f90_user_op_generic.f90 ‘fadd
! integer*4 intadd
> >
38 Prism 6.1 User’s Guide • March 2000

If you press the Return key, you would see a menu like this:

If you choose 0 or press Return, the command is cancelled. If you choose other

numbers, the Prism environment sets the breakpoint(s) in the specified procedure(s).

For example,

Issuing Solaris Commands
You can issue Solaris commands from within the Prism environment.

▼ To Issue Solaris Commands From Within the Prism
Environment

● Perform one of the following

■ From the menu bar — Choose the Shell selection from the Utilities menu. The

Prism environment creates a Solaris shell. The shell is independent of the Prism

environment; you can issue Solaris commands from it just as you would from any

Solaris shell. The type of shell that is created depends on the setting of your

SHELL environment variable.

Select one of the following names:
0) Cancel
1) ‘f90_user_op_generic.x‘f90_user_op_generic.f90‘fadd
! real*4 realadd
2) ‘f90_user_op_generic.x‘f90_user_op_generic.f90‘fadd
! integer*4 intadd
>

Select one of the following names:
0) Cancel
1) ‘f90_user_op_generic.x‘f90_user_op_generic.f90‘fadd
! real*4 realadd
2) ‘f90_user_op_generic.x‘f90_user_op_generic.f90‘fadd
! integer*4 intadd
> 1
(1) stop in fadd
(prism)
 Chapter 2 Using the Prism Environment 39

■ From the command window — Issue the sh command on the command line.

With no arguments, it creates a Solaris shell. If you include a Solaris command

line as an argument, the command is executed, and the results are displayed in

the history region.

Some Solaris commands have equivalents in the Prism environment, as described

below.

Changing the Current Working Directory

By default your current working directory within the Prism environment is the

directory from which you started the Prism environment.

● Type

(prism all) pwd

This finds the current working directory.

● Type

(prism all) cd directoryname

This changes the current working directory.

For example,

(prism all) cd /sistare/bin

changes your working directory to /sistare/bin .

(prism all) cd ..

changes your working directory to the parent of the current working directory. Issue

cd with no arguments to change the current working directory to your login

directory.

The Prism environment interprets all relative file names with respect to the current

working directory. The Prism environment also uses the current working directory

to determine which files to show in file-selection dialog boxes.

Setting and Displaying Environment Variables

You can set, unset, and display the settings of environment variables from within the

Prism environment, just as you do in the Solaris environment.
40 Prism 6.1 User’s Guide • March 2000

● Type

(prism all) setenv VARIABLE value

This sets environment variable, VARIABLE, equal to value.

For example,

setenv EDITOR emacs

sets your EDITOR environment variable to emacs.

● Type

(prism all) unsetenv VARIABLE

This removes the setting of environment variable, VARIABLE.

For example,

unsetenv EDITOR

removes the setting of the EDITOR environment variable.

● Type

(prism all) printenv VARIABLE

This prints the setting of environment variable, VARIABLE.

For example,

(prism all) printenv EDITOR

prints the current setting of the EDITOR environment variable. Or, issue printenv
or setenv with no arguments to print the settings of all your environment variables.

Leaving the Prism Environment

▼ To Quit the Prism Environment

1. Perform one of the following

■ From the menu bar — Choose the Quit selection from the File menu. You are

asked if you are sure you want to quit. Click on OK if you’re sure; otherwise, click

on Cancel or press the Esc key to stay in the Prism environment.
 Chapter 2 Using the Prism Environment 41

■ From the command window — Type the quit command on the command line.

(You aren’t asked if you’re sure you want to quit.)

If you have created subprocesses while in the Prism environment (for example, a

Solaris shell), The Prism environment displays this message before exiting:

FIGURE 2-6 Sub-process Warning

2. Take one of the following actions:

■ Choose Yes (the default) to leave the Prism environment and terminate the

subprocesses.

■ Choose No to leave the Prism environment without terminating the subprocesses.

■ Choose Cancel to stay in the Prism environment.
42 Prism 6.1 User’s Guide • March 2000

CHAPTER 3

Loading and Executing a Program

This chapter describes how to load and run programs within the Prism environment.

For this chapter, you should already have an executable program that you want to

run within the Prism environment. You can also develop a new program by calling

up an editor within the Prism environment; see Chapter 7 “Editing and Compiling

Programs”. See the following sections:

■ “Loading a Program” on page 43

■ “Associating a Core File With a Loaded Program” on page 46

■ “Attaching to a Running Message-Passing Process” on page 47

■ “Executing a Program in the Prism Environment” on page 48

■ “Using Psets in the Prism Environment” on page 54

■ “Using the Prism Environment With Sun MPI Client/Server Programs” on page

82

■ “Choosing the Current File and Function” on page 82

■ “Creating a Directory List for Source Files” on page 84

Loading a Program
Before you can execute or debug a program in the Prism environment, you must first

load the program into the Prism environment. You can load only one program at a

time.

As described in Chapter 2 “Using the Prism Environment”, you can load a program

into the Prism environment by specifying its name as an argument to the prism
command. If you don’t use this method, you can load a program once you are in the

Prism environment by using one of the methods discussed next.
43

▼ To Load a Program From the Menu Bar

1. Choose the Load selection from the File menu.

(It is also by default in the tear-off region.) A dialog box appears, as shown in

FIGURE 3-1.

FIGURE 3-1 Load Program Filter

2. Double-click on the program name, if the name appears in the Programs
scrollable list.

Or, you can put its path name into the Selection box, then click on Load. To put the

file’s path name into the Selection box, you can either type it directly in the box or

click on its name in the Programs list. The Programs list contains the executable

programs in your current working directory; see “Changing the Current Working

Directory” on page 40.

Use the Load-Program Filter box to control the display of file names in the Programs

list; the box uses standard Solaris filters. For example, you can click on a directory in

the Directories list if you want to change to that directory. But the Programs list does

not update automatically to show the programs in the new directory. Instead, the

filter changes to directory-name/*, indicating that all files in directory-name are to be

displayed. Click on Filter to display the file names of the programs. Or simply

double-click on the directory name in the Directories list to display the programs in

the directory.

If you want to use a different filter, you can edit the Load-Program Filter box

directly. For example, change it to directory-name/prog* to display only programs

beginning with prog.

3. Click on Cancel or press the Esc key if you decide not to load a program.
44 Prism 6.1 User’s Guide • March 2000

▼ To Load a Program From the Command Window

● Type

(prism all) load program

Use the name of the executable program as its argument. For example,

(prism all) load myprogram

The program you specify is loaded.

What Happens When You Load a Program

Once a program is successfully loaded:

■ The program’s name appears in the Program field in the main window.

■ The source file containing the program’s main function appears in the source

window.

■ The Load dialog box disappears (if you loaded the program using this box).

■ The status region displays the message not started .

You can now issue commands to execute and debug this program.

If the Prism environment can’t find the source file, it displays a warning message in

the command window. Choose the Use selection from the File menu to specify other

directories in which the Prism environment is to search; see “Creating a Directory

List for Source Files” on page 84.

▼ To Load Subsequent Programs

● Perform one of the following:

■ If you have a program loaded and you want to switch to a new program, simply

load the new program; the previously loaded program is automatically unloaded.

■ If you want to start fresh with the current program, issue the reload command

with no arguments; the currently loaded program is reloaded into the Prism

environment.

Note – You can load only one program at a time.
 Chapter 3 Loading and Executing a Program 45

Associating a Core File With a Loaded
Program
As mentioned in Chapter 2 “Using the Prism Environment”, you can have the Prism

environment associate a core file with a program by specifying its name after the

name of the program on the prism command line.

▼ To Associate a Core File With a Loaded Program

● Type

(prism all) core corefile

Where corefile is the name of the corresponding core file.

The Prism environment’s core command is not available when using the Prism

environment with message-passing programs. Instead, you must specify the name of

the process core file from the Prism command line.

In either case, the Prism environment reports the error that caused the core dump

and loads the program with a stopped status at the location where the error occurred.

You can then work with the program within the Prism environment. You can, for

example, examine the stack and print the values of variables. You cannot, however,

continue execution from the current location.

▼ To Examine a Core File of a Local Process

You can use the Prism environment to examine a core file created by a message-

passing program.

1. Type

%prism program corefile

2. Type

(prism all) where

This produces a stack trace.

(prism all) print variable

This lets you inspect the state of your process at the time the core dump was taken.

Note these restrictions:
46 Prism 6.1 User’s Guide • March 2000

■ You actually start the Prism environment in scalar mode rather than in

multiprocess mode (MP Prism mode), since there is only one core file. Thus, you

cannot use process sets (psets) or other features of MP Prism mode.

■ You cannot issue any execution commands (for example, run , cont , or step).

■ You cannot change the values of variables via the assign command.

■ You cannot use the core command to examine a core file once you have started

the Prism environment in MP Prism mode. If multiple processes dumped core,

the resulting core file may be overwritten, and therefore invalid.

Attaching to a Running Message-Passing
Process
You can load the processes of a message-passing job into the Prism environment.

▼ To Attach to a Running Message-Passing Program

1. Obtain the job ID of the processes.

■ If you are using the LSF environment, by issuing the bjobs command (You can

also get the job ID from the bsub command when it starts the job).

■ If you are using the CRE environment, by issuing the mpps command (You can

also get the job ID from the mprun command when it starts the job).

For example, using the LSF environment:

2. Type

%prism –options program job_ID

Note that job_ID ias the ID of the processes (not an individual process ID).

3. Use the –n (or –np , –c , –p) option when you request that the Prism environment
attach to a job.

Without one of these options, the Prism environment assumes that the ID number is

a process ID rather than a job ID.

host4-0 54 => bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
15232 jay RUN hpc host4-0 host4-0 chess Sep 24 13:35
host4-1
 Chapter 3 Loading and Executing a Program 47

For example,

% prism -n 2 mpiprog 15232

This starts the Prism environment and attaches to the running processes in job 15232.

See the LSF Batch User’s Guide for further information about bjobs . See the Sun MPI
User’s Guide for further information about mpps.

You attach to a single process of a message-passing program by specifying its

process ID. If you do this, however, you won’t be able to view or debug what is

happening in the other processes.

If you attach to a program under the Prism environment, your job will be

automatically detached from the Prism environment if you quit or run another

program. You can detach from the job by issuing the detach command from within

the Prism environment.

The Prism environment only lets you detach when all the processes in the job are

stopped. The detach operation itself sets them all running again, outside control of

the debugger.

Executing a Program in the Prism
Environment
You start execution of a program in the Prism environment by issuing the run
command or choosing the Run or Run (args) selection from the Execute menu. You

can also attach to an already-running program using the attach command, as

described in “Attaching to a Running Message-Passing Process” on page 47.

Note the key advantage of using the Prism environment with a Sun MPI program:

The Sun MPI program is viewed as a single parallel program; all processes of the

parallel program are visible from within a single Prism session. You do not have to

attach a separate debugger to each Sun MPI process.

▼ To Run a Program

● Perform one of the following:

■ From the menu bar — If you have no command-line arguments you want to

specify, choose the Run selection from the Execute menu; execution starts

immediately. (The Run selection by default is in the tear-off region.)
48 Prism 6.1 User’s Guide • March 2000

If you have command-line arguments, choose the Run (args) selection from the

Execute menu. A dialog box is displayed, in which you can specify any

command-line arguments for the program; see FIGURE 3-2. If you have more

arguments than fit in the input box, they scroll to the left. Click on the Run button

to start execution.

FIGURE 3-2 Run (args) Dialog Box

■ From the command window — Type the run command, including any arguments

to the program on the command line. You can abbreviate the command to r. If you

have already run the program, you can issue the rerun command to run it again,

using the same argument list you previously passed to the program. In both

cases, you can redirect input or output using < or > in the standard Solaris

manner.

When the program starts executing, the status region displays the message

running .

You can continue to interact with the Prism environment while a program is

running, but many features will be unavailable. Unavailable selections are grayed

out in menus. If you issue a command that cannot be executed while the program is

running, it is queued until the program stops.

Program I/O

By default, the Prism environment creates a new window for a program’s I/O. This

window persists across multiple executions and program loads, giving you a

complete history of your program’s input and output. If you prefer, you can display

I/O in the Xterminal from which you invoked the Prism environment; see

“Resources” on page 226.
 Chapter 3 Loading and Executing a Program 49

Status Messages

The Prism environment displays the status messages before, during, and after the

execution of a program, as listed in TABLE 3-1.

Stepping and Continuing Through a Program

When using the Prism environment to debug a multiprocess program (such as a Sun

MPI program), menu actions such as Step and Next apply to the processes (or

threads) belonging to the current set of processes (or threads). The Prism term for a

set of processes (or threads) is pset. For information about how you specify whether

to view a program at the thread level, see “Specifying the Host Environment” on

page 15.

The Prism environment supports several kinds of predefined psets as well as user-

defined psets. For information about psets, see “Using Psets in the Prism

Environment” on page 54.

TABLE 3-1 Status Messages

Message Meaning

error Prism has encountered an internal error.

connected Prism has connected to other nodes to work on a message-passing

program.

connecting Prism is connecting to other nodes in order to work on a message-

passing program.

initial Prism is starting up without a program loaded.

interrupted The program has been interrupted.

loading Prism is loading a program.

not started The program is loaded but not yet started.

running The program is running.

stopped The program has stopped at a breakpoint or signal.

terminated The program has run to completion and the process has gone away.
50 Prism 6.1 User’s Guide • March 2000

Interrupting and Waiting for Processes

It is useful in debugging multiprocess programs to wait for a specific process or set

of processes to stop executing, or to be able to interrupt execution of individual

processes. Because message-passing programs are distributed among multiple,

separate machines, extra consideration must be given to controlling selected subsets

of processes. The Prism environment therefore provides the commands interrupt
and wait .

▼ To Interrupt the Execution of a Process or Set of Processes

● Perform one of the following

■ Type

(prism all) interrupt

The Prism term for a set of processes is pset. For information about psets, see

“Using Psets in the Prism Environment” on page 54.

For example,

(prism all) interrupt pset 0

interrupts execution of process 0.

(prism all) interrupt pset running

interrupts all processes in the predefined process set (pset) running .

Using the interrupt command resets the predefined pset interrupted so that

it includes the newly interrupted processes. Processes leave this pset when they

continue execution.

■ Select Interrupt from the Execute menu

This will interrupt processes in the current pset that are running.

▼ To Wait for a Specified Process or Set of Processes to Stop
Execution

● Type

(prism) wait

A process is considered to have stopped if it has entered the done , break ,

interrupted , or error state.

There are two versions of the wait command:

■ Use the syntax wait or wait every to wait for every member of the specified

pset to stop. If no pset is specified, the command applies to the current pset. Thus,

(prism notx) wait every
 Chapter 3 Loading and Executing a Program 51

waits for every process in the pset notx to stop. The current process will be

whatever it would normally be; see “The Current Pset” on page 68. This is the

default behavior of the wait command.

■ Use the syntax wait any to wait for any member of the specified pset to stop. If

no pset is specified, the command applies to the current pset. When the first

process stops, it becomes the current process of this pset. Thus,

(prism all) wait any pset foo

waits for the first process in pset foo to stop.

There are corresponding Wait Any and Wait Every selections in the Prism

environment’s Execute menu. They apply to the processes of the current set.

Note that, if you prefer that step and next commands wait for processes to finish

executing before letting you issue other commands, you can issue them along with

the wait command. For example,

(prism all) step; wait

This executes the next line, then waits for all processes in the current pset to finish

execution.

If you use this command sequence frequently, you can provide an alias for it via the

alias command. The Prism environment provides the default alias contw for these

commands:

(prism all) cont; wait

▼ To End the Wait

● Perform one of the following:

■ Type Control-C; this does not affect processes that are running.

■ Choose the Interrupt selection from the Execute menu; this stops processes that

are running, as well as ending the wait.

Execution Pointer

When using the Prism environment to debug a scalar program, the > symbol in the

line-number region points to the next line to be executed; see “Using the Line-

Number Region” on page 26. In a multiprocess or multithreaded program, there can

be multiple execution points within the program. The Prism environment marks all

the execution points for the processes in the current set by a > in the line-number

region (or a * if the current source position is the same as the current execution

point).
52 Prism 6.1 User’s Guide • March 2000

es)
▼ To Display a Pop-Up Window Showing the Executing Process(

● Shift-click on the execution pointer symbol.

This shows the process(es) for which the symbol is the execution pointer.

▼ To Find out Execution Status

● Perform one of the following:

■ Type

(prism all) pstatus

This finds out the execution status of processes in the current pset.

For example,

■ Type

(prism all) pstatus pset_qualifier

This finds out the execution status of the specified pset. For information about

psets, see “Using Psets in the Prism Environment” on page 54.

Executing Programs With the Commands-Only

Interface

● Type

(prism all) run

This starts a program using the commands-only interface. The program starts up in

the background.

● Type

(prism all) fg

This brings the running into the foreground. You cannot execute Prism commands

while the program is executing in the foreground.

(prism all) pstatus
process 0: running
process 1: stopped in procedure ”pawn_moves” at ”chess.c”:49
process 2: interrupted in procedure ”construct_move” at
”chess.c”:1187
process 3: interrupted in procedure ”rook_check” at ”chess.c”:746
 Chapter 3 Loading and Executing a Program 53

● Type

Control-Z

This returns a running program to the background. This key sequence sends the

running program to the background and regains the (prism) prompt.

● Type

(prism all) quit

This command terminates the debugging session. Before quitting, the Prism

environment kills the debugging process if it was started with run , or the Prism

environment will detach from it if the program was previously attached.

Using Psets in the Prism Environment
The Prism environment allows you to you view your program at the level of an

individual process or individual thread.

Note – To view a program at the process level means to view the program at the

level of the main thread.

You can use the Prism environment to view groups of such processes or threads, or

all processes and threads that make up the program. For example, at times it may be

useful to look at the status of process 0 (or thread 0.1), because you have reason to

believe there is a problem with it. At other times you may want to look at all

processes or threads that have encountered an error, or at all processes or threads in

which the value of a particular variable exceeds a certain number.

These groups of threads (remember, processes are equivalent to main threads in

nonthreaded programs), typically chosen because they have some useful

characteristic in common, are referred to as psets (pronounced “pee-sets”). The Prism

environment treats a pset as a unit: For example, you can use the name of a pset as a

qualifier for many commands. The command is then executed for each thread in the

set. For example, you can set a breakpoint that applies only to the threads in a

specified pset. (See “Hiding Threads From Psets” on page 75 for more information.)

In addition, many graphical actions apply only to the threads in a pset.

If you don’t need to view your program at the level of an individual thread or a

subset of threads, you can also view its operation on all the threads that make up

your program.

You can view psets in the Psets window, as described in “Using the Psets Window”

on page 56 and “Viewing Psets Contents From the Psets Window” on page 65.
54 Prism 6.1 User’s Guide • March 2000

Note – The Prism environment assigns a logical ID number to each process that

makes up a message-passing program. For example, in an 8-process message-

passing program, the individual processes would be numbered 0-7. These numbers

are used to identify processes in psets. In multithreaded programs, the Prism

environment identifies threads numerically. For example, the first thread in process 0

is thread 0.1. Do not confuse these numbers with the Solaris process IDs (pids)

assigned by the system to the message-passing processes.

As described in “Predefined Psets” on page 58, the Prism environment provides

predefined psets for certain standard groups of threads; for example, the set of all

threads in an error state is a predefined pset. You can also define your own psets, as

described in “Defining Psets” on page 59; for example, you can define a pset to be

those threads in which variable x is greater than 0. “To Delete Psets” on page 68

describes how to delete psets.

If you don’t specify a pset as a qualifier to a command (that can take a pset

qualifier), the command is executed on the current pset; many graphical actions also

apply to threads in the current set. The concept of the current pset is described in

“The Current Pset” on page 68. “The Current Process” on page 71 describes the

current process, which is a distinguished process (or thread) within a pset.

Note – In threaded programs, the Prism environment extends the notion of current

process to refer to the current thread of a pset.

“The cycle Pset” on page 73 describes the cycle pset, which is a predefined pset

with special characteristics.

Using the Psets Navigator

You can navigate to any defined pset using the pull-down menu and arrow keys on

the main MP Prism window. The pset navigator controls are shown at the bottom of

FIGURE 3-3.

FIGURE 3-3 Pset Navigator Controls
 Chapter 3 Loading and Executing a Program 55

Using the Psets Window

You can use the Psets window to view the current status of the processes in your

program and to perform many of the actions associated with psets.

▼ To Display the Psets Window

● Perform One of the Following:

■ From the menu bar — Choose the Psets selection from the Debug menu.

■ From the command window — Type

(prism all) show psets on dedicated

FIGURE 3-4 shows the Psets window for a nonthreaded 16-process message-passing

program, including several user-defined psets. FIGURE 3-5 shows the Psets window

for a multithreaded program, including the predefined psets.

FIGURE 3-4 Psets Window (nonthreaded)
56 Prism 6.1 User’s Guide • March 2000

FIGURE 3-5 Psets Window (threaded)

The various components of the window are described in detail in later sections. Here

is a brief overview:

■ The main area of the window shows psets and their members. In nonthreaded

psets, processes that are members of a set are shown as black (or colored) cells

within a rectangle that represents the entire set of processes that make up the

message-passing program. Threads of a threaded pset are shown as colored

stripes. By default, threads 2, 3, and 4 in all ranks belong to the hide set. These are

auxiliary threads created by any program that is linked with libthread.so , and

are rarely interesting to a programmer. For further information about hiding

threads, see “Hiding Threads From Psets” on page 75.

■ The current process or thread (see “The Current Process” on page 71) for each

pset is shown in gray (or, on a color workstation, a darker shade of the color in

the other squares). The current pset (see “The Current Pset” on page 68) is

shown in the upper left corner of the window. The name of the current pset and

the number of the current process are displayed in the small window in the upper

right side of the control panel.
 Chapter 3 Loading and Executing a Program 57

■ You can cycle through the cycle pset (see “The cycle Pset” on page 73) by

clicking on the left and right arrows labeled Cycle at the top left of the control

panel.

■ If you have many psets and a large number of processes or threads, you can use

the Zoom arrows to zoom in or out on these psets. The box next to the arrows

shows what part of the entire display you are seeing; you can drag the mouse

through this box to pan through the display.

■ You can view and change the current pset and current process or thread via the

boxes at the top right of the window

■ The Options menu at the top left of the window lets you hide, display, create, and

delete psets. See the discussions starting with “Defining Psets” on page 59

through “To Delete Psets” on page 68.

■ The File menu lets you close the Psets window.

Predefined Psets

The Prism environment provides these predefined psets:

■ all — Contains all the threads in the program; it is the default current pset at

start-up. The all pset does not contain threads that have terminated or were

joined.

■ running — Contains all threads that are currently executing.

■ error — Contains all threads that have encountered an error.

■ interrupted — Contains the threads that were most recently forcibly

interrupted by the user. See “Interrupting and Waiting for Processes” on page 51

for a discussion of the interrupt command and a further explanation of this

pset.

■ break — Contains the threads that are currently stopped at breakpoints.

■ stopped — Contains all threads that are currently stopped. It is the union of the

sets error , interrupted , and break .

■ done — Contains all threads that have terminated successfully. For user threads

(not thread 1), the done set contains only zombie threads (threads that are

unjoined). Once a thread is joined, it ceases to exist.

These sets are dynamic; that is, as a program executes, the Prism environment

automatically adjusts the contents of each set to reflect the program’s current state.

In addition, there are two set names that have special meaning: current and

cycle . They are discussed in “The Current Pset” on page 68 and “The cycle Pset”

on page 73, respectively.
58 Prism 6.1 User’s Guide • March 2000

Defining Psets

You can create psets in the Prism environment. This section describes the syntax of

pset creation.

Syntax for Defining a Pset

This section describes the syntax you can use to specify a pset. As described below,

you can assign a name to a pset you specify using this syntax; this provides a useful

shorthand for complicated pset specifications.

Psets can be composed from any of the following:

■ An individual process (or thread) number.

■ The name of a pset. The new pset will have the same definition as the existing set.

■ A list of process (or thread) numbers. Separate the numbers with commas. Use a

colon between two process (or thread) numbers to indicate a range. Use a second

colon to indicate the stride to be used within this range.

■ A union, difference, or intersection of psets. To specify the union, use the symbol +,
|, or || . To specify the difference, use the minus sign (–). To specify the

intersection, use the symbol &, && , or *.

■ A snapshot of a pset expression. Use the snapshot (pset_expression) argument to

define a pset with a constant value (in a multithreaded program) which could

otherwise change during program execution. For more information about the

snapshot intrinsic, see “Using Snapshots of Unbounded Psets in Commands” on

page 79.

▼ To Specify a Pset as an Argument to a Command

● Type

(prism all) command pset pset_specifier

Put the pset_specifier clause at the end of the command line (but before an on window
clause, if any). Thus,

(prism all) print x pset error

prints the values of the variable x in the predefined pset error . (See “Visualizing

Multiple Processes” on page 160 for a discussion of printing variables in the Prism

environment.)

▼ To Specify a Pset as a Subset of a Pset Clause

● Perform one of the following:
 Chapter 3 Loading and Executing a Program 59

■ Specify an individual process number. An individual process can constitute a

pset. Thus,

(prism all) print x pset 0

prints the value of x in process 0 if the program is not multithreaded. If the

program is multithreaded, it prints the value of x in all threads in process 0.

■ Specify an individual thread number. An individual thread can constitute a pset.

Thus,

(prism all) print x pset 0.1

prints the value of x in thread 0.1

■ Specify the name of a pset. Name a pset using the define pset command, as

described in the section “Naming Psets,” below. Thus,

(prism all) print x pset foo

prints x in the threads you have defined to be members of pset foo .

■ Specify a list of process numbers. Separate the numbers with commas. Thus,

(prism all) print x pset 0, 4, 7

prints x in processes 0, 4, and 7.

Ranges and strides are allowed. Use a colon between two process numbers to

indicate a range. Use a second colon to indicate the stride to be used within this

range. Thus,

(prism all) print x pset 0:10

prints x in processes 0 through 10. And

(prism all) print x pset 0:10:2

prints x in processes 0, 2, 4, 6, 8, and 10.

You can also combine comma-separated process numbers and range

specifications. For example,

(prism all) print x pset 0, 1, 3:5, 8

prints x in processes 0, 1, 3, 4, 5, and 8.

■ Specify a union, difference, or intersection of psets. To specify the union of two

psets, use the symbol +, | , or || . For example,

(prism all) print x pset 0:2 + 8:10

prints x in processes 0, 1, 2, 8, 9, and 10.

(prism all) print x pset foo | bar

prints x in processes that are members of either pset foo or pset bar .
60 Prism 6.1 User’s Guide • March 2000

The Prism environment evaluates the pset expression from left to right. If a

process is a member of the first part of the expression, it is not evaluated in the

rest of the expression. In the above example, if a process is a member of foo , its

value of x is printed; the Prism environment does not check its membership in

bar .

■ Specify the difference of two psets by using a minus sign. For example,

(prism all) print x pset stopped - foo

prints x in all processes that are stopped except those belonging to the pset foo .

Note that you can use predefined psets to define new psets. Except for pset all ,

when you use a predefined pset to define a new pset, the Prism environment uses

the instantaneous value of the predefined pset. Thus, even if the predefined pset

changes, the user-defined pset remains unchanged until the user forces

re-evaluation with a Prism command such as eval pset .

To specify the intersection of two psets, use the &, &&, or * symbol. For example,

(prism all) print x pset foo & bar

prints x in processes that are members of both pset foo and pset bar . If a process

returns false for the first part of the expression, it is not evaluated further. In the

above example, if a process is not a member of foo , the Prism environment

doesn’t bother checking its membership in bar ; it won’t be printed in any case.

The Prism environment must evaluate a pset expression in each process at the

time the command is executed; the processes must be stopped for the Prism

environment to do this. The evaluation fails if any of the processes being

evaluated are running. Using the predefined pset stopped on the left of an

intersection expression is a useful way of ensuring that a command applies only

to stopped processes.

Thus,

print x pset stopped & foo

prints x only in the members of foo that are stopped.

■ Specify a condition to be met. Put braces around an expression that evaluates to

true or false in each process. Processes in which the expression is true are part of

the set.

Thus,

(prism all) print x pset { y > 1 }

prints x in processes where y is greater than 1. And

(prism all) print x pset all - { y == 1 }

prints x in all processes except those in which y is equal to 1.
 Chapter 3 Loading and Executing a Program 61

■ Membership in a some psets can change based on the current state of your

program; such a pset is referred to as variable. See “To Evaluate Variable Psets” on

page 63 to learn how to update the membership of a variable pset.

For this syntax to work, the variable must be active in all processes in which the

expression is evaluated. If the variable isn’t active in a process, you get an error

message and the command is not executed. To ensure that the command is

executed, use the intrinsic isactive in the pset definition. The expression

isactive (variable) returns true if variable is on the stack for a process or is a

global.

Thus, you could use this syntax to ensure that x is printed:

(prism all) print x pset stopped && {isactive(x)}

Naming Psets

You can assign a name to a pset. This is convenient if you plan to use the set

frequently in your Prism session.

Use the syntax described above in “Defining Psets” to specify the pset. You can use

any name except the names that the Prism environment pre-defines; see “Predefined

Psets” on page 58. The name must begin with a letter; it can contain any

alphanumeric character, plus the dollar sign ($) and underscore (_).

■ From the Psets window — Choose Define Set from the Options menu. A

dialog box is displayed that prompts for the name and definition of the pset. Click

on Create to create the pset.

■ From the command line — Issue the define pset command.

For example,

(prism all) define pset odd 1:31:2

creates a pset called odd containing the odd-numbered processes between 1 and 31.

(prism all) define pset gui_thread 1.1

creates a pset from the first thread in process one.

(prism all) define pset io_thread 1.2

creates a pset from the second thread in process one.

(prism all) define pset workers (all.all - gui_thread - io_thread)

creates a pset from an expression that takes the intersection of all ranks and all

threads, subtracting the two psets defined in the two previous examples.

(prism all) define pset xon { x .NE. 0 }
62 Prism 6.1 User’s Guide • March 2000

defines a pset consisting of those processes in which x is not equal to 0. Note that x
must be active in all processes for this syntax to work. As described above, you can

use the intrinsic isactive to ensure that x is active in the processes that are

evaluated. For example,

(prism all) define pset xon { isactive(x) && (x .NE. 0) }

Both versions create a variable pset whose contents will change based on the value

of x . See below for more discussion of variable psets. Finally, note that all processes

must be stopped for this syntax to work. To ensure that the definition applies only to

stopped processes, use this syntax:

(prism all) define pset xon stopped && { isactive(x) && (x .NE. 0) }

Dynamic user-defined psets are deleted when you reload a program. To get a list of

these psets before reloading, issue the command show psets . You can then use this

list to help reissue the define pset commands. See “Viewing Psets Contents From

the Psets Window” on page 65 for more information about show psets .

The Prism environment evaluates the membership of a variable pset when it is

defined. If no processes meet the condition (for example, because the program is not

active), the Prism environment prints appropriate error messages, but the set is

defined.

▼ To Evaluate Variable Psets

● Type

(prism all) eval pset psetname

For example,

(prism all) eval pset xon

evaluates the membership of the pset xon . This causes the display for the pset to be

updated in the Psets window.

Note that this evaluation will fail if:

■ Processes are running that need to be polled in evaluating the pset; or

■ The pset’s definition contains a variable that is not active in any of the processes

being polled

For example, if you type this command:

(prism all) define pset foo { x > 0 }

you must make sure that all processes are stopped, and x is active on all processes,

when you type the command

(prism all) eval pset foo

To ensure that the evaluation succeeds, use the more complicated syntax:
 Chapter 3 Loading and Executing a Program 63

(prism all) define pset foo stopped && { isactive(x) && (x > 0) }

This ensures that the evaluation takes place only in processes that are stopped and in

which x is active.

If an evaluation fails, the membership of the pset remains what it was before you

issued the eval pset command.

You can use the eval pset command in event actions; see “Events Taking Pset

Qualifiers” on page 95.

Note the difference between dynamic and variable psets. The membership in both can

change as a program executes. Dynamic psets are predefined sets like stopped and

interrupted ; the Prism environment automatically updates their membership as

the program executes. Variable psets are defined by the user, and the user must

explicitly update their membership by issuing the eval pset command.

Combining Named Psets and Pset Expressions

You can use combinations of named psets and pset expressions to isolate the threads

of interest. For example:

Each of the following specify the same pset:

pset 1.3 Thread 3 in process 1

pset 1:10.3 Thread 3 in processes 1 to 10

pset 1.1, 2.2:5 Process 1, thread 1 and process 2, threads 2,

3, 4 and 5

pset 1.all All threads in process 1

pset 1 All threads in process 1

pset .4 Thread 4 in all processes. Same as all.4

pset 1,2.(3,4) All threads in process 1, threads 3 and 4 in

process 2

pset 1,2.3,4 All threads in processes 1 and 4, thread 3 in

process 2

pset {isactive(var) && var == 1} All threads in which the variable var is on

the stack for a process (or is a global) and

has value 1

pset {var_i == 3} . { var_j == 4}

pset {var_i == 3} & { var_j == 4}

pset {var_i == 3 && var_j == 4}
64 Prism 6.1 User’s Guide • March 2000

Viewing Psets Contents From the Psets Window

The easiest way to view the contents of psets is to use the Psets window.

By default, the window displays the current pset (which starts out being the

predefined pset all), and the psets break , running , and error . When you create

a new pset via the define pset command, that set is also displayed automatically.

The processes within a pset are numbered starting at the upper left, increasing from

left to right and then jumping to the next row. You can display information about

them as follows:

■ Shift-click on a cell to view the Prism ID number of the process it represents.

■ Shift-click elsewhere in the pset rectangle (for example, on a border) to display all

the ID numbers of the processes in the pset.

■ Shift-middle-click on a cell to view the process’s Solaris pid and the hostname of

the node on which it is running.

■ Shift-middle click elsewhere in the rectangle to display the entire list of pids and

hostnames for the processes in the pset.

▼ To Display a Pset

● Choose the Show selection from the Options menu in the Psets window.

This displays a list of psets; the predefined psets are at the top, followed by any

user-defined set names. Click on a set name, and that set is displayed in the window.

▼ To Hide a Pset

1. Choose the Hide selection from the Options menu.

This displays the list of predefined and user-defined psets.

2. Click on a set name to remove that set from the display.

Note that hiding a pset doesn’t otherwise affect its status; it still exists and can be

used in commands.

Note also that there are choices All Sets and all in the Show and Hide submenus.

The All Sets choice refers to all psets; the all choice refers to the predefined pset all .
 Chapter 3 Loading and Executing a Program 65

▼ To View Psets Not Shown in the Display Window

1. Use the navigator rectangle to the right of the Cycle arrows to pan through the
psets.

The white box in the rectangle shows the position of the display area relative to all

the psets that are to be displayed:

2. Either drag the box or click at a spot in the rectangle.

The box moves to that spot, and the display window shows the psets in this area of

the total display.

To display more psets at the same time, click on the Zoom up arrow to the right of

the navigator rectangle. This reduces the size of the boxes representing the psets.

Clicking on the Zoom down arrow increases the size of these boxes. By default, the

boxes are at their highest zoom setting.

Viewing Pset Contents From the Command Line

▼ To Print the Contents of the Specified Pset

● Type

(prism all) show pset [psetname]

For example, the command

(prism all) show pset stopped

might produce this response:

The set contains the following processes: 0:3.

The show pset command is discussed further in “To Find Out the Current Pset” on

page 69.
66 Prism 6.1 User’s Guide • March 2000

The show psets command displays the contents and status of all psets.

(prism all) show psets
foo:
 definition = 0:31:2
 members = 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30
 current process = 0
break:
 definition = break
 members = nil
 current process = (none)
done:
 definition = done
 members = 0:31
 current process = 0
interrupted:
 definition = interrupted
 members = nil
 current process = (none)
error:
 definition = error
 members = nil
 current process = (none)
running:
 definition = running
 members = nil
 current process = (none)
stopped:
 definition = stopped
 members = nil
 current process = (none)
current:
 definition = 6, 9, 12
 members = 6,9,12
 current process = 6
cycle:
 definition = 6, 9, 12
 members = 6,9,12
 current process = 6
all:
 definition = all
 members = 0:31
 current process = 12
 Chapter 3 Loading and Executing a Program 67

Deleting Psets

▼ To Delete Psets

You can delete named psets that you have defined. You cannot delete any predefined

pset except cycle ; see “The cycle Pset” on page 73. To delete a pset:

● Perform one of the following:

■ From the Psets window — Choose the Delete selection from the Options menu.

This displays a list of psets that you can delete. Click on the name of the pset you

want to delete. If it is currently displayed in the Psets window, it disappears.

■ From the command line — Issue the delete pset command, using a pset

qualifier to specify the name of a user-defined pset. For example,

(prism all) delete pset xon

deletes the pset named xon .

See “Events Taking Pset Qualifiers” on page 95 for a discussion of the effect of

deleting a pset on events that have been defined to affect the members of that set.

The Current Pset

The command syntax described in “Defining Psets” on page 59 lets you apply a

command to a specific pset. If you don’t use this syntax, the command is applied to

the current pset; current is a predefined pset name in the Prism environment. In

addition, many graphical actions in the Prism environment apply only to the

members of the current set.

You cannot change the current pset to one that has no members. If you try to do so,

nothing happens in the Psets window, and you get a message like this one in the

history region of the command window:

Cannot set current pset to running -- it is empty.

When a program is first loaded, the current pset is the default pset, all .

▼ To Change the Current Pset

● Perform one of the following:

■ From the Psets window — There are several ways of changing the current pset via

the Psets window:

■ If the set is displayed in the Psets window, simply double-click anywhere in its

display (for example, on its name, or in the box beneath its name).
68 Prism 6.1 User’s Guide • March 2000

■ Choose the Set Pset selection from the Options menu. This displays a list of

psets. Click on the name of the set you want to be current.

■ Edit the name of the pset in the box below Current Set at the top right of the

Psets window, then press Return.

When you change the current set, the new name appears in the Current Set box

in the Psets window, and the current set shown at the top left of the psets area

changes to reflect the contents of the new set.

■ From the command line — Type

(prism all) pset pset_specifier

(prism all) pset foo

changes the current pset to foo .

You can also use the pset command with the pset-specification syntax described

in “Defining Psets” on page 59. For example,

(prism all) pset 0:15:3

▼ To Find Out the Current Pset

● Perform one of the following:

■ Look for the name in the Current Set box at the top right of the Psets window.

■ Look in the status region in the Prism environment’s main window.

■ Type

(prism all) pset

This displays the current set.

■ Examine the (prism) prompt on the command line of the graphical mode and in

the commands-only mode of the Prism environment.

For example, the Prism environment’s response to the pset command in the

previous section would look like this:

Note – In giving examples of Prism commands, the (prism) prompt is used only

when necessary to show the effect of a command.

(prism all) pset foo
(prism foo)
 Chapter 3 Loading and Executing a Program 69

▼ To List the Processes in the Current Pset

● Type

(prism all) show pset

For example,

The Psets window also displays the processes in the current pset.

Current Pset and Dynamic Psets

“Predefined Psets” on page 58 describes dynamic psets—predefined sets like

running , stopped , and interrupted , whose contents the Prism environment

automatically updates during the execution of the program.

If you specify a dynamic pset as the current pset, you create a static pset that consists

of the processes that are members of the dynamic set at the time you issue the pset
command (or otherwise choose it to be the current set). To make this clear, the

(prism) prompt changes to list the processes that are members of this static set. For

example, if processes 0, 1, and 13 are the only processes that are stopped, the pset
command has this effect:

Output of the show pset command is explicit under these circumstances:

Issuing the pset command with no arguments displays the same information.

Note that the (prism) prompt can become quite long if there are many processes in

a current pset derived from a dynamic pset. By default, the prompt length is limited

to 25 characters. You can change this default by issuing the set command with the

(prism foo) show pset
pset ’current’ is defined as ’foo’.
The set contains the following processes: 1,2.

(prism all) pset stopped
(prism 0:1, 13)

(prism all) pset stopped
(prism 0:1. 13) show pset
The current set was created by evaluating the pset
’stopped’ once at the time when it became the current set.
The set contains the following processes: 0:1, 13.
70 Prism 6.1 User’s Guide • March 2000

$prompt_length variable, specifying the maximum number of characters to

appear in the pset part of the prompt. For example, this command shortens the

prompt long_pset_name to long_pset :

Current Pset and Variable Psets

“Defining Psets” on page 59 describes how to create variable psets—user-defined

psets whose membership can change in the course of program execution.

▼ To Update the Membership of a Variable Pset

● Type

(prism all) eval pset

If you make a variable pset your current set, its membership is determined by the

most recent eval pset command you have executed for the set. If you have not

executed an eval pset command to update the set’s membership, the membership

continues to be what it was when you created the set.

The Current Process

Each pset has a current process, which serves as the scoping point for Prism

commands. By default, the current process is the lowest-rank process and (in

threaded programs) the lowest numbered thread in the pset.

The current process has a variety of uses in the Prism environment:

■ The source window displays the source code executing in the current process of

the current pset.

■ The Where graph centers around the call stack of the current pset’s current

process; see “Displaying the Where Graph” on page 108.

■ The current process determines the scope used in interpreting the names of

variables; see “Scope in the Prism Environment” on page 73.

▼ To Change the Current Process

When you change a current process, by any of the methods described below, the pset

keeps this new current process until you explicitly change it. That is, if you switch to

a different current set, then switch back to the original set, the original set will still

have the same current process.

(prism long_pset_name) set $prompt_length=9
(prism long_pset)
 Chapter 3 Loading and Executing a Program 71

● Perform one of the following:

■ From the Psets window — Use one of these methods to change the current

process via the Psets window:

■ Click on the cell representing the process in the displayed pset. The cell turns a

darker shade of the color for the other processes (or, on a non-color

workstation, gray).

■ To change the current process in the current pset, you can also edit the number

in the box under Process (or Thread if the loaded program is a threaded

program) at the top right of the window, then press Return.

■ From the command line — Issue the process command to specify another

current process for the current pset. For example,

The syntax of the process command includes both process number and thread

ID:

(prism all) process process_number.thread_ID

where thread_ID is a single thread identifier, and process_number is the number of

a single process. If thread_ID is omitted, it defaults to the lowest numbered thread

ID on that process, which is part of the current pset. For example:

pset 1:4:2.2:3

In this case, the current pset is: 1.2 (the current process), 1.3, 3.2, and 3.3 Then, if

you issue the following command,

(prism all) process 3

the current process changes from 1.2 to 3.2

By default, the lowest numbered thread from the lowest numbered process in the

pset is the current process. You can use the process command to change only the

current thread. For example:

As shown in this example, when operating on a multiprocess or multithreaded

program, the Prism command prompt displays the current pset. When

debugging a threaded program, the Prism prompt includes the thread part where

appropriate.

The Prism environment uses the current process and current thread in several

ways:

(prism all) process 2
The current process is now 2.

(prism 1.4) process 1.3
(prism 1.3)
72 Prism 6.1 User’s Guide • March 2000

■ The Prism environment’s source window displays the source executing in the

current process or current thread — as appropriate.

■ The Prism environment centers the where graph around the call stack of the

current process or current thread — as appropriate.

■ The Prism environment uses the current process or current thread to resolve

(look up) variable names — as appropriate.

▼ To Print the Current Process of thecurrent Pset

● Type

(prism all) process

Scope in the Prism Environment

When using the Prism environment to debug a message-passing program, the scope

of the current process determines the scope for resolving the names of variables. See

“The Current Process” on page 71 for a discussion of the current process.

If a command applies to a pset other than the current set, the Prism environment

uses the scope of that set’s current process.

It is possible that other members of the pset will have different scopes from that of

the current process, or that its scope level will not even exist in these processes. In

these cases, you receive an error message when you try to issue a command (for

example, print or display) that requires a consistent scope. To solve the problem,

you can do one of the following:

■ Restrict your pset so that it contains only members with the same scope.

■ If the current process’s scope level does not exist in other processes in the set, you

can use the up command to move up its call stack to a point where it has a scope

level that does exist in the other processes.

■ If different processes in the set have different scopes, you can issue the up and

down commands as needed to ensure that they all have the same scope.

Commands such as pset and process that affect scope print the current function

when you issue them.

The cycle Pset

In debugging a message-passing program, you may often want to look in turn at

each process within a pset—for example, to see what the problem is for each process

in the error pset. The cycle pset provides you with a convenient way of doing

this.
 Chapter 3 Loading and Executing a Program 73

▼ To Create acycle Pset out of an Existing Pset

● Type

(prism all) define pset cycle psetname

If psetname is dynamic, the cycle pset is statically fixed when you create it. You can

then cycle through each process in this pset to examine it in turn.

By default, the cycle pset is equivalent to the current pset. For more information

about the define psets command, see“Defining Psets” on page 59.

For example,

(prism all) define pset cycle foo

copies foo into the cycle pset.

Note that changing the cycle pset erases any previous cycling information. For

example, if you do the following:

1. Make foo the current set and cycle partway through it.

2. Make bar the current set.

3. Once again make foo the current set.

Then you start at the beginning again when you cycle through the members of

foo .

▼ To Cycle Through the Processes in thecycle Pset From the
Psets Window

1. Use the Cycle arrows at the top left of the window to cycle through the members
of the cycle set.

2. Click on the right arrow to cycle up through the members of the set; click on the
left arrow to cycle down through the members.

Clicking on a Cycle arrow:

■ Advances the current process in the cycle pset to be the next member

in the set.

■ Makes the current pset consist of only this process.

▼ To Cycle Through the Processes in a Pset from the Command
Line

● Type

(prism all) cycle

This has the same effect as clicking on the right cycle arrow in the Psets window.
74 Prism 6.1 User’s Guide • March 2000

In a nonthreaded program, the cycle command sets the current process to the next

one in the current pset. In a threaded program, it sets the current process to be the

next valid thread on the current rank, and steps to the next rank when appropriate.

For example, this Prism session defines a pset, makes it the current set, and then

cycles through its members:

▼ To Cycle Through the Processes in a Pset From the Source-
Window Pop-Up Menu

● Choose Cycle from this menu

This advances to the next member of the cycle pset.

Cycle Visualizer Window

The Prism environment includes a Cycle window type for visualizing data. When

you print a variable’s value to the Cycle window, the value changes to that of the

variable in the new process whenever you cycle through the members of the cycle
pset. For more information, see “Visualizing Multiple Processes” on page 160.

Hiding Threads From Psets

The pset command takes two thread-specific options, –hide and –unhide . These

options control membership in a set of hidden threads.

Threads in the set of hidden threads never appear in any pset, and debugging

commands are never sent to them regardless of the definition of the current set.

Once hidden, those threads are represented by empty stripes in the Psets window

and Where graph. By default, the set of hidden threads consists of threads 2, 3, and

4 in all ranks. These are auxiliary threads created by any program that is linked with

libthread.so , and are rarely interesting to a programmer.

These procedures are valid only when debugging a multithreaded program.

(prism all) define pset foo 0:3
(prism all) pset foo
(prism foo) cycle
(prism 1) cycle
(prism 2) cycle
(prism 3) cycle
(prism 0)
 Chapter 3 Loading and Executing a Program 75

▼ To Hide Threads From Psets

● Type

(prism all) pset –hide pset_expression

The Prism environment evaluates pset_expression and adds the result to the set of

hidden threads.

▼ To Make Hidden Threads Available to Psets Again

● Type

(prism all) pset –unhide pset_expression

The Prism environment evaluates pset_expression and subtracts the result from the set

of hidden threads.

▼ To Show Currently Hidden Threads

● Type

(prism all) pset –hide
76 Prism 6.1 User’s Guide • March 2000

Using Psets in Commands
As mentioned at the beginning of “Using Psets in the Prism Environment” on page

54, you can specify pset qualifers with several Prism commands. The following

commands can take a pset as a qualifier:

▼ To Use a Pset Qualifier

● Type

(prism) command options pset_qualifier [on window]

A command with a pset qualifier applies only to the processes in the set. If you omit

the qualifier, the command applies to the processes in the current set.

For example,

(prism all) stop at 12 pset erro r

sets a breakpoint at line 12 for the processes in pset error .

address/

assign
call
catch
cont, contw
display
ignore
interrupt
lwps
next, nexti
print
pstatus
return, stepout
step, stepi
stop, stopi
sync, syncs
thread, threads
trace, tracei
wait
whatis
where
 Chapter 3 Loading and Executing a Program 77

(prism all) where pset 0:10 on dedicated

displays the Where graph for processes 0 through 10. See “Displaying the Where

Graph” on page 108 for a description of the Where graph. For example,

(prism all) trace at 12 if x > 10

This creates a trace event for the members of the current pset.

Note that this last command applies only to the members of the current pset. To

apply it to all processes, use the syntax

(prism all) trace at 12 if x > 10 pset all

Many commands, of course, cannot logically take a pset qualifier. You get an error

message if you try to issue one of these commands with a pset qualifier.

Using Unbounded Psets in Commands

When running threaded programs in the Prism environment, you can encounter

unbounded psets. An unbounded pset is one that contains the value of "all" in the

thread-part of a pset specifier. The membership of such psets varies unpredictably.

The term unbounded distinguishes such psets from those whose membership varies

deterministically, referred to as variable psets (see “Naming Psets” on page 62).

For example,

pset 3.all

The size of such an unbounded pset is not constant, since it contains all threads

created during the life of the program. The size of this set will change as threads are

created and destroyed.

Pset expressions that omit specifying the thread-part implicitly mean all threads, so

that pset 2 means pset 2.all , and pset all means pset all.all , both of which are

unbounded sets.

Pset expressions that are composed of one or more unbounded psets are also

unbounded.

Note – The use of all in only the process-part of a pset specifier does not create an

unbounded set. The Prism environment creates a constant number of processes at

startup, taken from the number of processes you specify when you start the Prism

environment with a –n (or –np) argument.

For example, pset all.1 is a bounded set.
78 Prism 6.1 User’s Guide • March 2000

The Prism environment places several restrictions on the use of unbounded psets.

You cannot use an unbounded pset as the context for an event specification or a

wait every command. For an overview of information about event specifications,

see “Overview of Events” on page 87.

For example, both of these examples of the wait every commands are illegal:

Similarly, you may not use unbounded sets as the context for the stop or trace
commands when these commands contain actions. Examples:

You make a pset current using the pset command. For information about the

current process, see “The Current Process” on page 71. When you make a normal

(bounded) pset current, the Prism environment records the current membership of

the pset, and assigns the current pset this membership. The members of the

current pset remain unchanged until you issue a new pset command. When an

unbounded set has been made current, the members of the current pset will

change dynamically as threads are created and destroyed.

The Prism environment handles the psets that apply to the wait every , stop , and

trace commands in a similar manner. When using a constant (bounded) pset, the

Prism environment records the membership of the pset when the command is

issued. When using an unbounded pset, the Prism environment re-evaluates the pset

each time the command executes.

(prism all) stop at 10 pset foo

where foo is an unbounded pset. Each time a thread executes line 10, the Prism

environment revaluates pset foo , and stops the thread if it is a member of foo .

Using Snapshots of Unbounded Psets in

Commands

The Prism environment allows you to control the contents of psets derived from

unbounded sets of threads. You can specify a constant membership of such a pset by

capturing snapshots of the unbounded sets.

(prism all) wait every pset all
...
(prism all) pset all
(prism all) wait every

(prism all) stop in foo { print x} pset all ; illegal
(prism all) stop in foo pset all ; legal, does not contain an action
 Chapter 3 Loading and Executing a Program 79

Here is an example of how the contents of unbound psets can vary:

Then, after running the program for a while, the membership of all and all1 both

change:

▼ To Create a Bounded Pset from an Unbounded Pset

You can specify a constant pset, or snapshot of the membership of an unbounded

pset, using the snapshot (pset_expression) argument with any command that takes a

pset qualifier.

● Type

(prism all) command (pset_name) pset snapshot (expression)

For example

(prism all) pset
The current set was created by evaluating the Pset ’all’ once at
the time when it became the current set. The set contains threads:
0:2.1.

(prism all) define pset all1 all - 1.1
(prism all) show pset all1
Pset ’all1’ is defined as ’all - 1.1’.
The set contains the following threads: (0,2).1.

(prism all) show pset all
The set contains the following threads: 0:2.(1,5,6).
(prism all) show pset all1
Pset ’all1’ is defined as ’all - 1.1’.
The set contains the following threads: (0,2).(1,5,6), 1.(5,6).

(prism all) pset
The current set was created by evaluating the Pset
’all’ once at the time when it became the current set.
The set contains threads: 0:2.1.
(prism all) define pset snap1 snapshot (all - 1.1)
(prism all) show pset snap1
Pset ’snap1’ is defined as ’snapshot (all - 1.1)’.
The set contains the following threads: (0,2).1.
80 Prism 6.1 User’s Guide • March 2000

Then, after running the program for a while, the membership of (all - 1.1) and

snap1 differ:

However, you can force the update of the membership of pset snap1 by issuing the

eval pset command. For example,

The following example shows a situation in which using an unbounded pset, all ,

generates an error. Note that, in a threaded program, all is equivalent to the

unbounded set of all .all , which is the union of all processes and all threads. The

use of the snapshot argument, however, avoids that error.

Referring to Nonexistent Thread Identifiers

Pset expressions may refer to thread identifiers that do not yet exist in the running

program. For example, the pset all.5 refers to thread 5, which will not exist before

the program begins execution. You can use such psets only in certain pset contexts,

such as setting a breakpoint. In particular, you cannot establish a current pset

containing non-existent threads. For example,

(prism all) show pset all
The set contains the following threads: 0:2.(1,5,6).
(prism all) show pset snap1
Pset ’snap1’ is defined as ’snapshot (all - 1.1)’.
The set contains the following threads: (0,2).1.

(prism all) eval pset snap1
(prism all) show pset snap1
Pset ’snap1’ is defined as ’snapshot (all - 1.1)’.
The set contains the following threads: (0,2).(1,5,6), 1.(5,6)

(prism all - 1.1) stop in func {print 1 } pset all
Currently, dynamic psets are not allowed in events.
Action is dropped from event 3 because of dynamic pset all
(3) stop in func pset all
(prism all - 1.1) stop in func {print 2 } pset snapshot(all)
(4) stop in func { print 2 } pset snapshot(all)

(prism all) show pset all
The set contains the following threads: (0:3).1
(prism all) pset all.5 ; illegal, there is no thread 5 yet
 Chapter 3 Loading and Executing a Program 81

However, you may use a pset qualifier containing non-existent threads when setting

a breakpoint. For example

Using the Prism Environment With Sun
MPI Client/Server Programs
You can use a Prism session to debug only one Sun MPI job at a time. Therefore, if

an MPI job spawns or connects to another job (using MPI_Comm_accept and

MPI_Comm_connect to implement client/server communication, for example), the

current Prism session nonetheless has control only of the parent or server MPI job. It

cannot debug the children or clients of that job. To debug a child or client program it

is necessary to launch an additional Prism session.

To use the Prism environment to debug a Sun MPI program, the program must be

written in the SPMD (single process, multiple data) style—that is, all processes that

make up a Sun MPI program must be running the same executable.

Note – MPI_Comm_spawn_multiple can create multiple executables with only one

job id; therefore, you cannot use the Prism environment to debug jobs with different

executables that have been spawned with this command.

Choosing the Current File and Function
The Prism environment uses the concepts of current file and current function.

The current file is the source file currently displayed in the source window. The

current function is the function or procedure displayed in the source window. You

might change the current file or function if, for example, you want to set a

breakpoint in a file that is not currently displayed in the source window, and you

don’t know the line number at which to set the breakpoint.

In addition, changing the current file and current function changes the scope used

by the Prism environment for commands that refer to line numbers without

specifying a file, as well as the scope used by the Prism environment in identifying

(prism all) stop in foo pset all.5
(prism all)
82 Prism 6.1 User’s Guide • March 2000

variables; see “How the Prism Environment Chooses the Correct Variable or

Procedure” on page 32 for a discussion of how the Prism environment identifies

variables. The scope pointer (-) in the line-number region moves to the current file

or current function to indicate the beginning of the new scope.

▼ To Change the Current File

● Perform one of the following:

■ From the menu bar — Choose the File selection from the File menu. A window is

displayed, listing in alphabetical order the source files that make up the loaded

program. Click on one, and it appears in the Selection box; click on OK, and the

source window updates to display the file. Or simply double-click, rapidly, on the

source file. You can also edit the file name in the Selection box.

Note – The File window displays only files compiled with the -g switch.

FIGURE 3-6 File Window

■ From the command window – Issue the file command, with the name of a file

as its argument. The source window updates to display the file.
 Chapter 3 Loading and Executing a Program 83

▼ To Change the Current Function or Procedure

● Perform one of the following:

■ From the menu bar — Choose the Func selection from the File menu. A window

is displayed, listing the functions in the program in alphabetical order. (Fortran

procedure names are converted to all lowercase.) Click on one, and it appears in

the Selection box; click on OK, and the source window updates to display the

function. Or simply double-click on the function name in the list. You can also

edit the function name in the Selection box.

By default, the Func window displays only functions in files compiled with the

-g switch. To display all functions in the program, click on the Select All

Functions button. The button then changes to Show -g Functions; click on it to

return to displaying only the -g functions.

■ From the command window — Issue the func command with the name of a

function or subroutine as its argument. The source window updates to display the

function.

■ From the source window — Select the name of the function in the source window

by dragging the mouse over it while pressing the Shift key. When you let go of

the mouse button, the source window is updated to display the definition of this

function.

Note – Include only the function name, not its arguments.

Note that if the function you choose is in a different source file from the current file,

changing to this function also has the effect of changing the current file.

Creating a Directory List for Source Files
If you have moved a source file, or if for some other reason the Prism environment

can’t find it, you can explicitly add its directory to the Prism environment’s search

path.

▼ To Add a Directory to the Search Path

● Perform one of the following:
84 Prism 6.1 User’s Guide • March 2000

■ From the menu bar — Choose the Use selection from the File menu. This displays

a dialog box, as shown in FIGURE 3-7. To add a directory, type its path name in the

Directory box, then click on Add. To remove a directory, click on it in the

directory list, then click on Remove.

FIGURE 3-7 Use Dialog Box

■ From the command window — Issue the use command on the command line.

Specify a directory as an argument; the directory is added to the front of the

search path. Issue use with no arguments to display the list of directories to be

searched.

Note – No matter what the contents of your directory list are, the Prism

environment searches for the source file first in the directory in which the program

was compiled.
 Chapter 3 Loading and Executing a Program 85

86 Prism 6.1 User’s Guide • March 2000

CHAPTER 4

Debugging a Program

This chapter discusses how to debug programs in the Prism environment. It also

describes how to use events to control the execution of a program. The principles that

apply to debugging serial programs also apply to debugging message-passing

programs. However, debugging a message-passing program can be considerably

more complex than debugging a serial program, since you are in effect debugging

multiple individual programs concurrently. The Prism environment’s concept of

psets lets you focus your debugging efforts on the processes that are of particular

interest. The following discussions distinguish features (where necessary) that apply

exclusively to debugging the processes of message-passing programs:

■ “Overview of Events” on page 87

■ “Using the Event Table” on page 89

■ “Setting Breakpoints” on page 99

■ “Tracing Program Execution” on page 104

■ “Displaying and Moving Through the Call Stack” on page 106

■ “Combining Debug and Optimization Options” on page 115

■ “Examining the Contents of Memory and Registers” on page 117

Overview of Events
A typical approach to debugging is to stop the execution of a program at different

points so that you can perform various actions—for example, check the values of

variables. You stop execution by setting a breakpoint. If you perform a trace, execution

stops, then automatically continues.
87

Breakpoints and traces are events. You can specify before the execution of a program

begins what events are to take place during execution. When an event occurs:

1. The execution pointer moves to the current execution point.

2. A message is printed in the command window.

3. If you specified that an action was to accompany the event (for example, the

printing of a variable’s value), it is performed.

4. If the event is a trace, execution then continues. If it is a breakpoint, execution

does not resume until you explicitly order it to (for example, by choosing

Continue from the Execute menu).

The Prism environment provides various ways of creating these events—for

example, by issuing commands, or by using the mouse in the source window.

“Setting Breakpoints” on page 99 describes how to create breakpoint events;

“Tracing Program Execution” on page 104 describes how to create trace events.

“Using the Event Table” on page 89 describes the Event Table, which provides a

unified method for listing, creating, editing, and deleting events.

See “Events Taking Pset Qualifiers” on page 95 for a discussion of events in the

Prism environment.

You can define events so that they occur:

■ When the program reaches a certain point in its execution — For example, at a

specified line or function.

■ When the value of a variable changes — For example, you can define an event that

tells the Prism environment to stop the program when x changes value. This kind

of event is sometimes referred to as a watchpoint. It slows execution considerably,

since the Prism environment has to check the value of the variable after each

statement is executed.

■ At every line or assembly-language instruction.

■ Whenever a program is stopped — For example, you can define an event that tells

the Prism environment to print the value of x whenever the program stops.

Such events are referred to as triggering conditions.

In addition, you can qualify an event as follows:

■ So that it occurs only if a specified condition is met — For example, you can tell the

Prism environment to stop at line 25 if x is not equal to 1. Like watchpoints, this

kind of event slows execution.

■ So that it occurs only after its triggering condition has been met a specified number of
times — For example, you can tell the Prism environment to stop the tenth time

that the program reaches the function foo .
88 Prism 6.1 User’s Guide • March 2000

You can include one or more Prism commands as actions that are to take place as

part of the event. For example, using Prism commands, you can define an event that

tells the Prism environment to stop at line 25, print the value of x , and do a stack

trace.

Using the Event Table
The Event Table provides a unified method for controlling the execution of a

program. Creating an event in any of the ways discussed later in this chapter adds

an event to the list in this table. You can also display the Event Table and use it to:

■ Add new events

■ Delete existing events

■ Edit existing events

You display the Event Table by choosing the Event Table selection from the Events

menu.

This section describes the general process of using the Event Table.

Description of the Event Table

FIGURE 4-1 shows the Event Table.
 Chapter 4 Debugging a Program 89

FIGURE 4-1 Event Table

The top area of the Event Table is the event list—a scrollable region in which events

are listed. When you execute the program, the Prism environment uses the events in

this list to control execution. Each event is listed in a format in which you could type

it as a command in the command window. It is prefaced by an ID number assigned

by the Prism environment. For example, in FIGURE 4-1, the events have been assigned

the IDs 1 and 2.

The middle area of the Event Table is a series of fields that you fill in when editing

or adding an event; only a subset of the fields is relevant to any one event. The fields

are:

■ ID – This is an identification number associated with the event. You cannot edit

this field.

■ Location – Use this field to specify the location in the program at which the event

is to take place. Use the syntax "filename":line-number to identify the source file

and the line within this file. If you just specify the line number, the Prism

environment uses the current file. There are also three keywords you can use in

this field:
90 Prism 6.1 User’s Guide • March 2000

■ Use eachline to specify that the event is to take place at each line of the

program; this is the default.

■ Use eachinst to specify that the event is to take place at each assembly-

language instruction.

■ Use stopped to specify that the event is to take place whenever the program

stops execution.

■ Watch — Use this field to specify a variable or expression whose value(s) are to be

watched; the event takes place if the value of the variable or expression changes.

(If the variable is an array or a parallel variable, the event takes place if the value

of any element changes.) This slows execution considerably.

■ Actions — Use this field to specify the action(s) associated with the event. The

actions can be most Prism commands; separate multiple commands with

semicolons. (The commands that you can’t include in the Actions field are

attach , core , detach , load , return , run , and step .)

■ Condition — Use this field to specify a logical condition that must be met if the

event is to take place. The logical condition can be any language expression that

evaluates to true or false. See “Writing Expressions in the Prism Environment” on

page 32 for more information about writing expressions in the Prism

environment. Specifying a condition slows execution considerably, unless you

also specify a location at which the condition is to be checked.

■ After — Use this field to specify how many times a triggering condition is to be

met (for example, how often a program location is reached) before the event is to

take place. The Event Table updates during execution to show the current count

(that is, how many times are left for the triggering condition to be met before the

event is to take place). Once the event takes place, the count is reset to the original

value. The default setting is 1, and the event takes place each time the condition is

met. See “Overview of Events” on page 87 for a discussion of triggering

conditions.

■ Stop — Use this field to specify whether or not the event is to halt execution of

the program. Putting a y in this field creates a breakpoint event; putting an n in

this field creates a trace event.

■ Inst — Use this field to specify whether to display a disassembled assembly-

language instruction when the event occurs.

■ Silent — Use this field to specify whether or not the event is to cause a message to

appear in the command window when it occurs.

■ Enabled — Use this field to specify whether the event is enabled. Putting an n in

this field disables the event; it still exists, but it does not affect program execution.

■ Pset — Use this field to specify the intended pset (for events that take pset

qualifiers).

The buttons beneath these fields are for use in creating and deleting events, and are

described below.
 Chapter 4 Debugging a Program 91

The area headed Common Events contains buttons that provide shortcuts for

creating certain standard events.

Click on Close or press the Esc key to cancel the Event Table window.

Adding an Event

You can either add an event, editing field by field, or you can use the Common

Events buttons to fill in some of the fields for you. You would add an event from the

beginning if it weren’t similar to any of the categories covered by the Common

Events buttons.

▼ To Add an Event, Editing Field by Field

1. Click on the New button.

All values currently in the fields are cleared.

2. Fill in the relevant fields to create the event.

3. Click on the Save button to save the new event.

It appears in the event list.

▼ To Add an Event, Using Common Events Buttons

1. Click on the button for the event you want to add—for example, Print.

This fills in certain fields (for example, it puts print on dedicated in the Actions field)

and highlights the field or fields that you need to fill in (for example, it highlights

the Location field when you click on Print, because you have to specify a program

location).

2. Fill in the highlighted field(s).

You can also edit other fields, if you like.

3. Click on Save to add the event to the event list.

Most of these Common Events buttons are also available as separate selections in the

Events menu. This lets you add one of these events without having to display the

entire Event Table. The menu selections, however, prompt you only for the field(s)

you must fill in. You cannot edit other fields.

Individual Common Events buttons are discussed throughout the remainder of this

guide.

You can also create a new event by editing an existing event; see “Editing an

Existing Event” on page 93.
92 Prism 6.1 User’s Guide • March 2000

Deleting an Existing Event

You can delete events using the Event Table or the Delete selection from the Events

menu.

▼ To Delete an Existing Event, Using the Event Table

1. Click on the line representing the event in the event list, or move to it with the up
and down arrow keys.

This causes the components of the event to be displayed in the appropriate fields

beneath the list.

2. Click on the Delete button.

You can also choose the Delete selection from the Events menu to display the Event

Table. You can then follow the procedure described above.

Deleting a breakpoint at a program location also deletes the B in the line-number

region at that location.

Editing an Existing Event

You can edit an existing event to change it, or to create a new event similar to it.

▼ To Edit an Existing Event

1. Click on the line representing the event in the event list, or move to it with the up
and down arrow keys.

This causes the components of the event to be displayed in the appropriate fields

beneath the list.

2. Edit these fields.

For example, you can change the Location field to specify a different location in the

program.

3. Click on Replace to save the newly edited event in place of the original version of
the event.

Click on the Save button to save the new event in addition to the original version of

the event; it is given a new ID and is added to the end of the event list. Clicking on

Save is a quick way of creating a new event similar to an event you have already

created.
 Chapter 4 Debugging a Program 93

Disabling and Enabling Events

You can disable and enable events. When you disable an event, the Prism

environment keeps it in the event list, but it no longer affects execution. You can

subsequently enable it when you once again want it to affect execution. This can be

more convenient than deleting events and then redefining them.

▼ To Disable an Event

● Perform one of the following:

■ From the Event Table — The Event Table has an Enabled field. By default, there is

a y in this field, meaning that the event being defined or edited is enabled. Click

on the field and change the y to an n to disable the event. The event remains in

the event list, but is labeled (disabled). You can then edit the event as described

in “Editing an Existing Event” on page 93 and change the field back to a y to

enable the event once again.

■ From the command line — Issue the disable command to disable an event. Use

the event’s ID as the argument. You can obtain this ID from the event list in the

Event Table, or by issuing the show events command.

For example, this sequence of commands displays the event list, then disables an

event, then re-displays the event list:

▼ To Enable an Event

● Type

(prism all) enable event_ID

This re-enables event_ID.

Saving Events

Events that you create for a program are automatically maintained when you reload

the same program during a Prism session. This saves you the effort of redefining

these events each time you reload a program.

(prism all) show events (1) trace
(2) when stopped { print board }
(prism all) disable 1
event 1 disabled
(prism all) show events
(1) trace (disabled)
(2) when stopped { print board }
94 Prism 6.1 User’s Guide • March 2000

Note these points:

■ The Prism environment prints a warning message if it can’t maintain an event—

for example, because the event is supposed to occur at a source line that no

longer exists. Obviously, changing the program can also change the meaning of

events; a breakpoint set at line 32, for example, may still be a valid event, but it

may not be the event you want if you have deleted lines earlier in the program.

■ Disabled events become enabled when a program is reloaded.

■ Events are deleted when you leave the Prism environment.

▼ To Save Events to a File

You can use Prism commands to save your events to a file, and then execute them

from the file rather than individually.

1. Type

(prism all) show events

This displays the event list.

Redirect the output to a file. For example,

(prism all) show events @ primes.events

2. Edit this file to remove the ID number at the beginning of each event.

This leaves you with a list of Prism commands.

3. Type

(prism all) source filename

This reads in and executes the commands from filename.

For example,

(prism all) source primes.events

Events Taking Pset Qualifiers

Events in the Prism environment can take a pset qualifier.

▼ To Specify a Pset Qualifier

● Type the pset name in the Pset field in the Event Table, as shown in FIGURE 4-2.
 Chapter 4 Debugging a Program 95

FIGURE 4-2 Pset Field in Prism’s Event Table

If you don’t supply a pset qualifier, the event applies to the current pset. If you

create the event before changing the current set, the event applies to the default set,

which is all .

For example,

(prism all) stop in receive pset notx

sets a breakpoint in the receive routine for the processes in the set notx . Each

process in the set stops when it reaches this routine. It is possible, of course, that

some processes may never reach this routine. This becomes an issue when you

include actions in an event; see below.

Here is another example:

(prism all) stop if x > 10

This command stops execution for any process in the current pset if the process’s

value for the variable x is greater than 10.

The Prism environment evaluates the expression in the condition locally—that is,

separately for each process. Similarly, if a and b are arrays,

(prism all) stop if sum(a) > sum(b)

stops execution for a process in the current set if the sum of the values of a in that

process is greater than the sum of the values of b.

All processes that are stopped at breakpoints are members of the predefined pset

break .

▼ To Continue All the Processes in a Pset

● Type

(prism all) cont

For example,

(prism all) cont pset notx
96 Prism 6.1 User’s Guide • March 2000

Events and Dynamic Psets

If you use a dynamic pset as a qualifier for an event, its membership is evaluated

when you issue the command defining the event. Thus, the command

(prism all) stop at 10 pset interrupted

creates a breakpoint only in the processes that are interrupted at the time the

command is issued. If no processes are currently interrupted, you receive an error

message.

One result of this is that you cannot define events that involve dynamic psets before

the program starts execution.

Events and Variable Psets

If you use a user-defined variable pset as a qualifier, its membership is determined

by the most recent eval pset command you issued for that pset.

As is the case with dynamic psets, you cannot define events that involve variable

psets before the program starts execution.

Actions in Events

Events in the Prism environment can take action clauses. For example, in a message-

passing program, the following action clause prints x for the pset foo when the

members of foo are stopped at line 10:

(prism all) stop at 10 {print x} pset foo

Note – Associating an action with an event forces a global synchronization at the

breakpoint or tracepoint. In the example above, every process in pset foo must stop

at line 10 before x can be printed. If a member does not stop at line 10, the action

never takes place. In a trace event, all processes in the pset must stop at the specified

place and synchronize; the action then takes place, and the processes automatically

continue execution.

You can include an eval pset command as an event action. For example,

(prism all) stop in send {eval pset sending}

evaluates the pset sending when all the members of the current pset are stopped in

send . You receive error messages if it is impossible to evaluate membership in a pset

(for example, because a variable in the set definition is not active).

Note these limitations in using event actions:
 Chapter 4 Debugging a Program 97

■ You cannot include the following commands that manipulate psets:

■ define pset

■ delete pset

■ process

■ pset

■ You cannot include a pset qualifier in the action. The command in the action

clause takes its pset from the pset of the event.

■ You cannot include commands that affect program execution, specifically:

■ cont and contw

■ run

■ step and stepi

■ next and nexti

■ wait

■ You cannot include the load , reload , return , and core commands.

■ You cannot use an unbounded pset as the context for an event specification. For

information about unbounded psets, see “Using Unbounded Psets in Commands”

on page 78.

▼ To Display Events by Process

● Type

(prism all) show events (processnumber)

This displays all events associated with that process.

Issuing show events with no arguments has its standard behavior; that is, it prints

out all events. For example,

Events and Deleted Psets

If you create an event that applies to a particular pset, and subsequently delete the

pset, the event continues to exist. Its printed representation, however, is changed so

that it shows the processes that were members of the pset at the time you deleted the

set.

(prism all) show events
(1) trace
(2) when stopped { print board }
(prism all) disable 1
event 1 disabled
(prism all) show events
(1) trace (disabled)
(2) when stopped { print board }
98 Prism 6.1 User’s Guide • March 2000

Setting Breakpoints
A breakpoint stops execution of a program when a specific location is reached, if a

variable or expression changes its value, or if a certain condition is met. Breakpoints

are events that the Prism environment uses to control execution of a program. This

section describes the methods available in the Prism environment for setting a

breakpoint.

You can set a breakpoint

■ By using the line-number region

■ By using the Event Table and the Events menu

■ From the command window, by issuing the command stop or when

You’ll probably find it most convenient to use the line-number region for setting

simple breakpoints; however, the other two methods give you greater flexibility—

for example, in setting up a condition under which the breakpoint is to take place.

In all cases, an event is added to the list in the Event Table. If you delete the

breakpoint using any of the methods described in this section, the corresponding

event is deleted from the event list. If you set a breakpoint at a program location, a B
appears next to the line number in the line-number region.

Using the Line-Number Region

To use the line-number region to set a breakpoint, the line at which you want to stop

execution must appear in the source window. If it doesn’t, you can scroll through the

source window (if the line is in the current file), or use the File or Func selection

from the File menu to display the source file you are interested in.

▼ To Set a Breakpoint in the Line-Number Region

1. Position the mouse pointer to the right of the line numbers.

The pointer turns into a B.

2. Move the pointer next to the line at which you want to stop execution.
 Chapter 4 Debugging a Program 99

3. Left-click the mouse.

A B is displayed, indicating that a breakpoint has been set for that line.

A message appears in the command window confirming the breakpoint, and an

event is added to the event list.

The source line you choose must contain executable code; if it does not, you receive

a warning in the command window, and no B appears where you clicked.

4. Shift-click on the letter in the line-number region to display the complete event
(or events) associated with it.

See “Using the Line-Number Region” on page 26 for more information on the line-

number region.

See “Using the Line-Number Region” on page 99 for a discussion of the line-number

region in the Prism environment.

▼ To Delete Breakpoints Using the Line-Number Region

● Left-click on the B that represents the breakpoint you want to delete.

The B disappears; a message appears in the command window, confirming the

deletion.

What Happens in a Split Source Window

As described in “Moving Through the Source Code” on page 23, you can split the

source window to display source code and the corresponding assembly code.

You can set a breakpoint in either pane of the split source window. The B appears in

the line-number region of both panes, unless you set the breakpoint at an assembly

code line for which there is no corresponding source line.

Deleting a breakpoint from one pane of the split source window deletes it from the

other pane as well.

Using the Event Table and the Events Menu

Choose the Stop <loc> or Stop <var> selection from the Events menu. These choices

are also available as Common Events buttons within the Event Table itself; see

“Adding an Event” on page 92.

▼ To Set a Breakpoint Using the Event Table

● Perform one of the following:
100 Prism 6.1 User’s Guide • March 2000

■ Stop <loc> prompts for a location at which to stop the program. You can also

specify a function or procedure; the program stops at the first line of the function

or procedure.

FIGURE 4-3 Stop <loc> Dialog Box

■ Stop <var> prompts for a variable name. The program stops when the variable’s

value changes. The variable can be an array, in which case execution stops any

time any element of the array changes. This slows execution considerably.

In addition, Stop <cond> is available as a Common Events button. It prompts for a

condition, which can be any expression that evaluates to true or false; see “Writing

Expressions in the Prism Environment” on page 32 for more information on

expressions. The program stops when the condition is met. This slows execution

considerably.

You can also use the Event Table to create combinations of these breakpoints; for

example, you can create a breakpoint that stops at a location if a condition is met.

In addition, you can use the Actions field of the Event Table to specify the Prism

commands that are to be executed when execution stops.

▼ To Delete Breakpoints Using the Event Table

● Perform one of the following:

■ From the Events menu, choose Delete.

■ From the Event Table, use the Delete button.

For more information about deleting events, see “Deleting an Existing Event” on

page 93.
 Chapter 4 Debugging a Program 101

Setting a Breakpoint Using Commands

▼ To Set a Breakpoint Using Commands

● Type

(prism all) stop

Or

(prism all) when

The when command is an alias for the stop command.

The syntax of the stop command is also used by the stopi , trace , and tracei
commands, which are discussed below. The general syntax for all the commands is:

command [variable | at line | in func] [if expr] [{cmd[; cmd...]}] [after n]

where

■ command — As mentioned above, can be stop , stopi , when, trace , or tracei .

■ variable — Is the name of a variable. The command is executed (in other words,

the event takes place) if the value of the variable changes. If the variable is an

array, an array section, or a parallel variable, the command is executed if the

value of any element changes. This form of the command slows execution

considerably. You cannot specify both a variable and a program location.

■ line – Specifies the line number where the stop or trace is to be executed. If the

line is not in the current file, use the format:

at filename:line-number

■ func — Is the name of the function or procedure in which the stop or trace is to be

executed.

■ expr – Is any language expression that evaluates to true or false. This argument

specifies the logical condition, if any, under which the stop or trace is to be

executed. For example,

if a .GT. 1

This form of the command slows execution considerably, unless you combine it

with the at line syntax. See “Writing Expressions in the Prism Environment” on

page 32 for more information on writing expressions in the Prism environment.

■ cmd — Is any Prism command (except attach , core , detach , load , return ,

run , or step). This argument specifies the actions, if any, that are to accompany

the execution of the stop or trace. For example, {print a} prints the value of a.

If you include multiple commands, separate them with semicolons.

■ n — Is an integer that specifies how many times a triggering condition is to be

reached before the stop or trace is executed; see “Overview of Events” on page 87

for a discussion of triggering conditions. This is referred to as an after count. The
102 Prism 6.1 User’s Guide • March 2000

default is 1. Once the stop or trace is executed, the count is reset to its original

value. Note that if there is both a condition and an after count, the condition is

checked first.

The first option listed (specifying the location or the name of the variable) must

come first on the command line; the other options, if you include them, can be in any

order.

For the when command, you can use the keyword stopped to specify that the

actions are to occur whenever the program stops execution.

When you issue the command, an event is added to the event list. If the command

sets a breakpoint at a program location, a B appears in the line-number region next

to the location.

Examples of the stop Command

To stop execution the tenth time in function foo and print a:

(prism all) stop in foo {print a} after 10

To stop at line 17 of file bar if a is equal to 0:

(prism all) stop at “bar”:17 if a == 0

To stop whenever a changes:

(prism all) stop a

To stop the third time a equals 5:

(prism all) stop if a .eq. 5 after 3

To print a and do a stack trace every time the program stops execution:

(prism all) when stopped {print a; where}

▼ To Set a Breakpoint Using Machine Instructions

● Type

(prism all) stopi

Use the syntax described above, and specifying a machine address. For example,

(prism all) stopi at 0x1000

stops execution at address 1000 (hex).

The history region displays the address and the machine instruction. The source

pointer moves to the source line being executed.
 Chapter 4 Debugging a Program 103

e

▼ To Delete Breakpoints Using the Command Window

1. Type

(prism all) show events

This prints out the event list. Each event has an ID number associated with it.

2. Type

(prism all) delete ID [ID ...]

List the ID numbers of the events you want to delete; separate multiple IDs with one

or more blank spaces. For example,

delete 1 3

deletes the events with IDs 1 and 3. Use the argument all to delete all existing

events.

Tracing Program Execution
You can trace program execution by using the Event Table or Events menu, or by

issuing commands. All methods add an event to the Event Table. If you trace a

source line, the Prism environment displays a T next to the line in the line-number

region.

As described earlier, tracing is essentially the same as setting a breakpoint, except

that execution continues automatically after the breakpoint is reached. When tracing

source lines, the Prism environment steps into procedures if they were compiled

with the -g option; otherwise it steps over them as if it had issued a next command.

▼ To Trace Program Execution Using the Event Tabl
and the Events Menu

● Choose the Trace, Trace <loc>, or Trace <var> selection from the Events menu.

These choices are also available as Common Events buttons within the Event Table

itself.

■ Trace displays source lines in the command window before they are executed.

■ Trace <loc> prompts for a source line. The Prism environment displays a

message immediately prior to the execution of this source line.
104 Prism 6.1 User’s Guide • March 2000

■ Trace <var> prompts for a variable name. A message is printed when the

variable’s value changes. The variable can be an array, an array section, or a

parallel variable, in which case a message is printed any time any element

changes. This slows execution considerably.

In addition, Trace <cond> is available as a Common Events button. It prompts for

a condition, which can be any expression that evaluates to true or false; see “Writing

Expressions in the Prism Environment” on page 32 for more information on writing

expressions. The program displays a message when the condition is met. This also

slows execution considerably.

For variations of these traces, you can create your own event in the Event Table. You

can also use the Actions field to specify Prism commands that are to be executed

along with the trace.

▼ To Delete Traces Using the Event Table

● Choose the Delete selection from the Events menu, or use the Delete button in the
Event Table.

For more information about deleting existing events, see “Deleting an Existing

Event” on page 93.

▼ To Trace Program Execution Using Commands

● Type

(prism all) trace

Issuing trace with no arguments causes each source line in the program to be

displayed in the command window before it is executed.

The trace command uses the same syntax as the stop command; see “Setting a

Breakpoint Using Commands” on page 102. For example:

To trace and print a on every source line:

(prism all) trace {print a}

To trace line 17 if a is greater than 10:

(prism all) trace at 17 if a .GT. 10

In addition, the Prism environment interprets

(prism all) trace line-number

as being the same as

(prism all) trace at line-number
 Chapter 4 Debugging a Program 105

▼ To Trace Machine Instructions

● Type

(prism all) tracei address

When tracing machine instructions, the Prism environment follows all procedure

calls down. The tracei command has the same syntax as the stop command; see

“Setting a Breakpoint Using Commands” on page 102.

The history region displays the address and the machine instruction. The execution

pointer moves to the next source line to be executed.

▼ To Delete Traces Using the Command Window

1. Type

(prism all) show events

This obtains the ID associated with the trace.

2. Type

(prism all) delete ID

For further information, see “Setting a Breakpoint Using Commands” on page 102.

Displaying and Moving Through the
Call Stack
The call stack is the list of procedures and functions currently active in a program.

The Prism environment provides you with methods for examining the contents of

the call stack.

See “Displaying the Where Graph” on page 108 for a discussion of displaying the

call stack graphically in the Prism environment.

▼ To Display the Call Stack

Values of arguments in displayed procedures are shown in the default radix, which

is decimal unless you change it via the set $radix command; see “To Change the

Default Radix” on page 123.

● Perform one of the following:
106 Prism 6.1 User’s Guide • March 2000

■ From the menu bar — Choose the Where selection from the Debug menu. The

Where window is displayed; see FIGURE 4-4. The window contains the call stack;

it is updated automatically when execution stops or when you issue commands

that change the stack.

FIGURE 4-4 Where Window

■ From the command window — Type where on the Prism command line. If you

include a number, it specifies how many active procedures are to be displayed;

otherwise, all active procedures are displayed in the history region.

■ From the command window — Type where on snapshot on the Prism

command line to put the history-region output into a window.

Moving Through the Call Stack

Moving up through the call stack means heading toward the main procedure.

Moving down through the call stack means heading toward the current stopping

point in the program.

Moving through the call stack changes the current function and repositions the

source window at this function. It also affects the scope that the Prism environment

uses for interpreting the names of variables you specify in expressions and

commands. For information about scope in the Prism environment, see “Scope in the

Prism Environment” on page 73.
 Chapter 4 Debugging a Program 107

▼ To Move Through the Call Stack

● Perform one of the following:

■ From the menu bar — Choose Up or Down from the Debug menu. Up moves up

one level in the call stack; Down moves down one level. These selections are

available by default in the tear-off region.

■ From the command window — Issue the up command on the command line to

move up one level. If you specify an integer as an argument, you move up that

number of levels. Issue the down command to move down one level; specifying

an integer moves down that number of levels.

■ From the Where window — If the Where window is displayed, clicking on a

function in it changes the stack level to make that function current.

Displaying the Where Graph

When using the Prism environment to debug a multiprocess program, choosing

Where from the Debug menu displays the call stacks for the program — a

multiprocess program can have multiple call stacks, one for each process. A

threaded program can have a separate stack for each thread in each process. To show

the relationships among these call stacks, the Prism environment provides a Where
graph; this window displays a snapshot of the dynamic call graph of the program.

The Where graph displays information about all processes that are not running.

▼ To Display the Where Graph

● Perform one of the following:

■ From the menu bar — Choose Where from the Debug menu.

■ From the command line — Type where on dedicated .

A window like the one shown in FIGURE 4-5 is displayed.
108 Prism 6.1 User’s Guide • March 2000

FIGURE 4-5 Where Graph

The Where graph centers on the current process of the current pset—that is, the

processes related to it are lined up in a single column. In FIGURE 4-1, process 0 is the

current process. If you change the current process, the Where graph rearranges itself.

The default zoom level of the Where graph shows the arguments for the current

process.

At the bottom of each box are line numbers indicating where processes branch.

▼ To Display Processes Containing a Specific Function in Their
Call Stacks

● Shift-click in each function’s box.

This displays a pop-up window showing the numbers of the processes with this

function in their call stack, along with their arguments.
 Chapter 4 Debugging a Program 109

Panning and Zooming in the Where Graph

As FIGURE 4-6 shows, the Where graph can get quite large, so the Prism environment

provides methods for panning through it and zooming in and out.

The white box in the navigator rectangle at the top of the window shows the

position of the display area relative to the entire Where graph.

▼ To Move the Position Displayed in the Where Graph

● Perform one of the following:

■ Drag the box.

■ Click at a spot in the navigator.

The box moves to that spot, and the window shows the Where graph in this area of

the total display.

▼ To Display More of the Where Graph

● Click on the Zoom down arrow to the right of the navigator.

This reduces the size of the boxes representing the functions and removes

information. FIGURE 4-6 shows the Where graph of FIGURE 4-5, zoomed out one level.

Note that the information about the current process’s arguments is gone.
110 Prism 6.1 User’s Guide • March 2000

FIGURE 4-6 Where Graph, Zoomed Out One Level

As you zoom further out, the Where graph removes the line numbers, and one more

level after that removes the function names, leaving only boxes connected by lines.

▼ To Display Additional Information About a Box in the Where
Graph

● Shift-click on a box to display information about it.

If your program is multithreaded, its call stacks are not rooted at main . Thus, at

maximum zoom the Where graph displays the call stacks as multiple trees, a forest,

rather than a single tree. For example, FIGURE 4-7 shows the Where graph of a

multithreaded program.
 Chapter 4 Debugging a Program 111

FIGURE 4-7 Where Graph, Zoomed Out to the Maximum

▼ To Increase the Size of the Where Graph’s Function Boxes

● Click on the Zoom up arrow.

This increases the size of the function boxes and includes more information in them.

FIGURE 4-8 shows the Where graph of FIGURE 4-5, zoomed in. In this case, the Where

graph shows, for each function, the processes that have that function in their call

stack. As in the Psets window, the processes are represented as bitmaps of cells,

numbered starting at the upper left, increasing from left to right and then jumping to

the next row.
112 Prism 6.1 User’s Guide • March 2000

FIGURE 4-8 Where Graph, Zoomed In

Zooming in another level shows all arguments for all processes.
 Chapter 4 Debugging a Program 113

FIGURE 4-9 Where Graph of a Threaded Program, Zoomed in to Show Thread Stripes

If your Where graph displays a threaded program, you can zoom in to the level

shown in FIGURE 4-9.

▼ To View Information About Individual Threads

● Shift-click on the individual stripes.

This displays information about the corresponding threads.

▼ To Shrink Selected Portions of the Where Graph

You can shrink selected portions of the Where graph. This is useful if you want to

see the overall structure of the graph, but in addition want to focus on certain

functions.

● Perform one of the following:

■ Middle-click on a function to iconify it and all of its children. Middle-click on an

iconified function to re-expand it and its children to the current zoom level.
114 Prism 6.1 User’s Guide • March 2000

■ Alternatively, you can click on the (De) iconify Node button next to the Zoom

arrows at the top of the Where graph. This changes the mouse pointer to a target.

You can then left-click on a function to iconify it and its children. If it is already

iconified, left-clicking on it will re-expand it and its children. To cancel the

operation, left-click anywhere outside of the boxes surrounding the functions.

▼ To Move Through the Where Graph

When you first display the Where graph, the main function is highlighted.

● Left-click on a function to highlight it. Or, move through the Where graph via the
keyboard:

■ Use the up arrow key to move to the parent of the highlighted function.

■ If line numbers are visible in the highlighted function, by default the leftmost

number is selected by having a box drawn around it. Use the left and right arrows

to select other line numbers in the function. You can then use the down arrow key

to highlight the function called at the selected line.

▼ To Make a Function the Current Pset

● Press the spacebar while in the Where graph

The following actions occur:

■ The current function changes to the function that is highlighted in the Where

graph.

■ The highlighted function in the source window is displayed.

■ A new current pset is created, with the same name as the function, and containing

the processes with this function in their call stack. The current process of this

current set is the lowest-numbered process in the set.

Combining Debug and Optimization
Options
When you use the Prism environment on programs that have been compiled with

optimization options, Prism commands behave differently and the visibility of

variables in the optimized programs changes.
 Chapter 4 Debugging a Program 115

Interpreting Interaction Between an Optimized

Program and the Prism Environment

When the control flow is inside a routine that has been compiled with both –g and

an optimization option (a debuggable optimized routine), the next and step
commands change their behavior:

■ next steps out of the current routine and stops in the next debuggable routine

that differs from the original routine.

■ step stops in the next debuggable routine (including recursive calls of the

original routine).

You can set breakpoints using the stop at command inside debuggable optimized

routines only at the first line of such a routine. If the routine name is foo and the

first instruction in foo is ADDR_INSTRthen the breakpoint is set as if you had used

stop in foo or stopi at ADDR_INSTR .

Note that the following (related) commands are unaffected:

■ nexti

■ stepi

■ stopi

When the control flow returns to a debuggable optimized routine, as a result of one

of the following commands:

■ return

■ stepout

then the Prism environment assumes that the current position is at the first line of

the current routine. The Prism environment makes the same assumption when the

source file position (at the command line or in the GUI) is updated as a result of up
or down commands ending in a debuggable optimized routine.

Accessing Variables in Optimized Routines

Due to the effects of optimization on variable location in executable programs that

have been compiled with optimization, not all variables can be accessed by the

Prism environment at all times.

The accessibility of variables can be defined by whether the variables can be used in

expressions that require the right value of the variable (such as print X , or call
foo(X)) or the left value of the variable (such as assign X=1).

The limits of accessibility can be described by the flow of control in an optimized

program. When the flow of control is in a routine compiled with both –g and an

optimization flag:
116 Prism 6.1 User’s Guide • March 2000

■ If the control flow is at the first machine instruction of the routine (which has not

yet been executed), then all global variables and the routine’s arguments are

accessible. No other local variable is accessible.

■ If the first machine instruction of the current routine has already been executed,

then only the global variables are accessible. No local variable is accessible.

The following commands can use only accessible variables:

■ assign

■ call

■ display

■ dump

■ print

■ trace

■ tracei

■ varsave

■ when

■ where — The where stack will display values only for accessible arguments, and

‘???’ for all the others.

The where command reports all active stack frames that have a stack pointer. The

where command does not report routines that have no frame pointer and routines

that have been inlined.

Examining the Contents of Memory and
Registers
You can issue commands in the command window to display the contents of

memory addresses and registers.

▼ To Display Memory

● Specify the address on the command line, followed by a slash (/).

For example,
 Chapter 4 Debugging a Program 117

(prism all) 0x10000/

If you specify the address as a period, the Prism environment displays the contents

of the memory address following the one printed most recently.

Specify a symbolic address by preceding the name with an &. For example,

(prism all) &x/

prints the contents of memory for variable x . The Prism output, for example, might

be

0x000237f8: 0x3f800000

The address you specify can be an expression made up of other addresses and the

operators +, - , and indirection (unary *). For example,

(prism all) 0x1000+100/

prints the contents of the location 100 addresses above address 0x1000.

After the slash you can specify how memory is to be displayed. Formats that are

supported are listed in TABLE 4-1.

The initial format is X. If you omit the format in your command, you get either X (if

you haven’t previously specified a format) or the format you specified previously.

You can print the contents of multiple addresses by specifying a number after the

slash (and before the format). For example,

TABLE 4-1 Memory Address Formats

Format Description

d Print a short word in decimal

D Print a long word in decimal

o Print a short word in octal

O Print a long word in octal

x Print a short word in hexadecimal

X Print a long word in hexadecimal

b Print a byte in octal

c Print a byte as a character

s Print a string of characters terminated by a null byte

f Print a single-precision real number

F Print a double-precision real number

i Print the machine instruction
118 Prism 6.1 User’s Guide • March 2000

(prism all) 0x1000/8X

displays the contents of eight memory locations starting at address 0x1000. Contents

are displayed as hexadecimal long words.

▼ To Display the Contents of Registers

You can examine the contents of registers in the same way that you examine the

contents of memory.

● Specify a register by preceding its name with a dollar sign.

For example,

(prism all) $f0/

prints the contents of the f0 register.

Specify a number after the slash to print the contents of multiple registers. For

example,

(prism all) $f0/3

prints the contents of registers f0 , f1 , and f2 . The order in which the registers are

displayed is that shown in TABLE 4-1.

You can also specify a format, as described above. The format specifier controls the

display of the output; it doesn’t affect how much of the register contents is

displayed. Thus,
 Chapter 4 Debugging a Program 119

$f0/3X

displays three registers; the output is displayed as hexadecimal longwords.

The registers in the UltraSPARC™ processor are listed in TABLE 4-2.

TABLE 4-2 UltraSPARC Registers

Name Register

$g0-$g7 Global registers (64 bits)

$o0-$o7 Output registers (64 bits)

$l0-$l7 Local registers

$i0-$i7 Input registers

$psr Processor state register

$pc Program counter

$npc Next program counter

$y Y register

$wim Window invalid mask

$tbr Trap base register

$f0-$f31 Floating-point registers

$fsr Floating status register (64 bits)

$f0f1-$f62f63 Floating-point registers

$xg0-$xg7 Upper 32 bits of $g0-$g7 (SPARC V8 plus only, or higher)

$xo0-$xo7 Upper 32 bits of $o0-$o7 (SPARC V8 plus only, or higher)

$xfsr Upper 32 bits of $fsr (SPARC V8 plus only, or higher)

$fprs Floating-point registers state (SPARC V8 plus only, or higher)

$tstate Trap state register (SPARC V8 plus only, or higher)

$fp Frame pointer (synonym for $i6)

$sp Stack pointer (synonym for $o6)
120 Prism 6.1 User’s Guide • March 2000

CHAPTER 5

Visualizing Data

This chapter describes how to examine the values of variables and expressions in

your program. This is referred to as visualizing data. In addition, it describes how to

find out the type of a variable and change its values.

See the following sections:

■ “Overview of Data Visualization” on page 122

■ “Choosing the Data to Visualize” on page 124

■ “Working With Visualizers” on page 129

■ “Saving, Restoring, and Comparing Visualizers” on page 145

■ “To Visualize the Layouts of S3L Parallel Arrays” on page 178

■ “Visualizing Structures” on page 149

■ “Printing the Type of a Variable” on page 155

■ “Changing the Radix of Data” on page 157

■ “To Print the Names and Values of Local Variables” on page 157

■ “Printing Pointers as Array Sections” on page 158

■ “Visualizing Multiple Processes” on page 160

■ “Visualizing MPI Message Queues” on page 163

■ “Displaying and Visualizing Sun S3L Arrays” on page 173
121

Overview of Data Visualization
You can visualize either variables (including arrays, structures, pointers, etc.) or

expressions; see “Writing Expressions in the Prism Environment” on page 32 for

information about writing expressions in the Prism environment. In addition, you

can provide a context, so that the Prism environment handles the values of data

elements differently, depending on whether they meet the condition you specify.

Printing and Displaying

The Prism environment provides two general methods for visualizing data:

■ Printing data shows the value(s) of the data at a specified point during program

execution.

■ Displaying data causes its value(s) to be updated every time the program stops

execution.

Printing or displaying to the history region of the Command window prints out the

numeric or character values of the data in standard fashion.

Printing or displaying to a graphical window creates a visualizer, which provides

you with various options as to how to represent the data.

Visualization Methods

The Prism environment provides these methods for choosing what to print or

display:

■ By choosing the Print or Display selection from the Debug menu in the menu bar

(see “To Print or Display a Variable or Expression at the Current Program

Location” on page 124)

■ By selecting text within the source window (see “To Print or Display From the

Source Window” on page 125)

■ By adding events to the Event Table (see “To Print or Display From the Event

Table” on page 126)

■ By issuing commands from the Command window (see “To Print or Display

From the Command Window” on page 127)
122 Prism 6.1 User’s Guide • March 2000

In all cases, choosing Display adds an event to the event list, since displaying data

requires an action to update the values each time the program is stopped. Note that,

since Display updates automatically, the only way to keep an unwanted display

window from reappearing is to delete the corresponding display event.

You create print events only via the Event Table and the Events menu.

▼ To Change the Default Radix

● Type

(prism all) set $radix = number

Specifying as a setting 2 (binary), 8 (octal), or 16 (hexadecimal). For example,

(prism all) set $radix = 16

changes the default representation to hexadecimal. To reset the default to decimal,

issue the command

(prism all) set $radix = 10

By default, the Prism environment prints and displays values as decimal numbers.

You can override the default for an individual print or display operation. See “To

Print or Display From the Command Window” on page 127 and “Using the Options

Menu” on page 132.

The default setting also affects the display of argument values in procedures in the

call stack; see “To Display the Call Stack” on page 106.

Data Visualization Limits

Note these points in visualizing data:

■ You cannot print or display any variables after a program finishes execution.

■ Visualizers do not deal correctly with Fortran adjustable arrays. The size is

determined when you create a visualizer for such an array. Subsequent updates to

the visualizer will continue to use this same information, even though the size of

the array may have changed since the last update. This will result in incorrect

values in the visualizer. Printing or displaying values of an adjustable array in the

Command window or to a new window will work, however.
 Chapter 5 Visualizing Data 123

Choosing the Data to Visualize
This section describes the methods the Prism environment provides for printing and

displaying data.

▼ To Print or Display a Variable or Expression at the
Current Program Location

1. Perform one of the following

■ To print a variable or expression at the current program location, chose Print from

the Debug menu. It is also by default in the tear-off region.

■ To display a variable or expression every time execution stops, starting at the

current program location, choose Display from the Debug menu.

■ When you choose Print or Display, a dialog box appears; FIGURE 5-1 shows an

example of the Print dialog box.

FIGURE 5-1 Print Dialog Box

2. In the Expression box, enter the variable or expression whose value(s) you want
printed.

Text selected in the source window appears as the default; you can edit this text.

The dialog boxes also offer choices as to the window in which the values are to

appear:

■ You can specify that the values are to be printed or displayed in a standard

window dedicated to the specified expression. The first time you print or display

the data, the Prism environment creates this window. If you print data, and

subsequently print it again, this standard window is updated. This is the default

choice for both Print and Display.

■ You can create a separate snapshot window for printing or displaying values. This

is useful if you want to compare values between windows.
124 Prism 6.1 User’s Guide • March 2000

■ You can print out the values in the Command window.

■ Click on Print or Display to print the values of the specified expression at the

current program location.

■ Click on Cancel or press the Esc key to close the window without printing or

displaying.

▼ To Print or Display From the Source Window

1. Select the variable or expression by dragging over it with the mouse or double-
clicking on it.

To print without bothering to display the menu, press the Shift key while selecting

the variable or expression.

2. Right-click the mouse to display a pop-up menu.

3. Click on Print in this menu

This displays a snapshot visualizer containing the value(s) of the selected variable or

expression at that point in the program’s execution.

4. Click on Display

This displays a visualizer that is automatically updated whenever execution stops.

Note – The Prism environment prints the correct variable when you choose it in this

way, even if the scope pointer sets a scope that contains another variable of the same

name.

▼ To Print or Display From the Events Menu

1. Select Print on the Events menu.

You can use the Events menu to define a print or display event that is to take place

at a specified location in the program.

2. Fill out the fields in the Print dialog box.

The Print dialog box prompts for the variable or expression whose value(s) are to be

printed, the program location at which the printing is to take place, and the name of

the window in which the value(s) are to be displayed.
 Chapter 5 Visualizing Data 125

FIGURE 5-2 Print Dialog Box

Window names are dedicated, snapshot, and command; you can also make up your

own name. The default is dedicated. See “To Redirect Output to a File” on page 30

for a discussion of these names.

3. Click on OK

The event is added to the Event Table. When the location is reached in the program,

the value(s) of the expression or variable are printed.

The Display dialog box is similar, but it does not prompt for a location; the display

visualizer will update every time the program stops execution.

▼ To Print or Display From the Event Table

You can use the Event Table to define a print or display event that is to take place at

a specified location in the program.

● Click on Print or Display in the Common Events buttons to create an event that
will print or display data.

■ If you click on Print, the Location and Action fields are highlighted. Put a

program location in the Location field. Complete the print event in the Actions

field, specifying the variable or expression, and the window in which it is to be

printed. For example,

(prism all) print d2 on dedicated

■ If you click on Display, the Location field displays stopped , and the Actions field

displays print on dedicated . Complete the description of the print event, as

described above. The variable or expression you specify is then displayed

whenever the program stops execution.
126 Prism 6.1 User’s Guide • March 2000

▼ To Print or Display From the Command Window

● Perform one of the following:

■ Type

(prism all) print

This prints the value(s) of a variable or expression from the Command window.

■ Type

(prism all) display

This display the value(s).

The display command prints the value(s) of the variable or expression

immediately, and creates a display event so that the values are updated

automatically whenever the program stops.

The commands have this format:

[where (expression)] command variable[, variable ...]

The optional where (expression) syntax sets the context for printing the variable or

expression; see below.

In the syntax, command is either print or display , and variable is the variable or

expression to be displayed or printed.

Redirection of output to a window via the on window syntax works slightly

differently for display and print from the way it works for other commands; see

“To Redirect Output to a File” on page 30 for a discussion of redirection. Separate

windows are created for each variable or expression that you print or display. Thus,

the commands

create three windows, each of which is updated separately.

display x on dedicated as colormap
display y/4 on dedicated as histogram
display [0:128:2]z on dedicated as text
 Chapter 5 Visualizing Data 127

▼ To Print or Display the Contents of a Register

● Type

(prism all) print $name

or

(prism all) display $name

For example,

(prism all) print $pc

prints the program counter register. See “To Display the Contents of Registers” on

page 119 for a list of register names supported by the Prism environment.

▼ To Set the Context

● Type

(prism all) where (expression) print variable

or

(prism all) where (expression) display variable

You can precede the print or display command with a where statement that can

make elements of a variable or array inactive. Inactive elements are not printed in the

Command window; “Overview of Data Visualization” on page 122 describes how

they are treated in visualizers. Making elements inactive is referred to as setting the
context.

The expression must evaluate to true or false for every element of the variable or

array being printed.

For example,

(prism all) where (i .gt. 0) print i

prints (in the Command window) only the values of i that are greater than 0.

You can use certain Fortran intrinsics in the where statement. For example,

(prism all) where (a .eq. maxval(a)) print a

prints the element of a that has the largest value. (This is equivalent to the MAXLOC
intrinsic function.) See “Writing Expressions in the Prism Environment” on page 32

for more information on writing expressions in the Prism environment.

Note that setting the context affects only the printing or displaying of the variable.

It does not affect the actual context of the program as it executes.
128 Prism 6.1 User’s Guide • March 2000

▼ To Specify the Radix

● Type

(prism all) print / radix variable

or

(prism all) display / radix variable

radix can be b (binary), d (decimal), x (hexadecimal), or o (octal).

For example,

(prism all) print/b pvar1

prints the binary representation of pvar1 in the Command window.

(prism all) display/x pvar2 on dedicated

displays the hexadecimal values of pvar2 in a dedicated window.

The default radix is decimal, unless you have used the set $radix command to

change it; see “To Change the Default Radix” on page 123.

Working With Visualizers
The window that contains the data being printed or displayed is called a visualizer.

FIGURE 5-3 shows a visualizer for a three-dimensional array.
 Chapter 5 Visualizing Data 129

FIGURE 5-3 Visualizer for a Three-Dimensional Array

The visualizer consists of two parts: the data navigator and the display window. There

are also File and Options pulldown menus.

The data navigator shows which portion of the data is being displayed, and provides

a quick method for moving through the data. The appearance of the data navigator

depends on the number of dimensions in the data. It is described in more detail in

“Using the Display Window in a Visualizer” on page 131.

The display window is the main part of the visualizer. It shows the data, using a

representation that you can choose from the Options menu. The default is text : that

is, the data is displayed as numbers or characters. FIGURE 5-3 is a text visualizer. The

display window is described in more detail in “Using the Options Menu” on page

132.

The File menu lets you save, update, or cancel the visualizer; see “To Use the File

Menu” on page 132 for more information. The Options menu, among other things,

lets you change the way values are represented; see Section “Using the Options

Menu” on page 132.
130 Prism 6.1 User’s Guide • March 2000

Using the Data Navigator in a Visualizer

The data navigator helps you move through the data being visualized. It has

different appearances, depending on the number of dimensions in your data. If your

data is a single scalar value, there is no data navigator.

For one-dimensional arrays and parallel variables, the data navigator is the scroll bar

to the right of the data. The number to the right of the buttons for the File and

Options menus indicates the coordinate of the first element that is displayed. The

elevator in the scroll bar indicates the position of the displayed data relative to the

entire data set.

For two-dimensional data, the data navigator is a rectangle in the shape of the data,

with the axes numbered. The white box inside the rectangle indicates the position of

the displayed data relative to the entire data set. You can either drag the box or click

at a spot in the rectangle. The box moves to that spot, and the data displayed in the

display window changes.

For three-dimensional data, the data navigator consists of a rectangle and a slider,

each of which you can operate independently. The value to the right of the slider

indicates the coordinate of the third dimension. Changing the position of the bar

along the slider changes which two-dimensional plane is displayed out of the

three-dimensional data.

For data with more than three dimensions, the data navigator adds a slider for each

additional dimension.

▼ To Change the Axes

You can change the way the visualizer lays out your data by changing the numbers

that label the axes.

1. Click in the box surrounding the number; it is highlighted, and an I-beam
appears.

2. Type in the new number of the axis; you don’t have to delete the old number.

The other axis number automatically changes; for example, if you change axis 1 to 2,

axis 2 automatically changes to become axis 1.

Using the Display Window in a Visualizer

The display window shows the data being visualized.

In addition to using the data navigator to move through the data, you can drag the

data itself relative to the display window by holding down the left mouse button;

this provides finer control over the display of the data.
 Chapter 5 Visualizing Data 131

To find out the coordinates and value of a specific data element, click on it while

pressing the Shift key. Its coordinates are displayed in parentheses, and its value is

displayed beneath them. If you have set a context for the visualizer, you also see

whether the element is active or inactive (see “Using the Options Menu” on page

132). Drag the mouse with the Shift key pressed, and you see the coordinates, value,

and context of each data element over which the mouse pointer passes.

You can resize the visualizer to display more (or less) data either horizontally or

vertically.

▼ To Use the File Menu

1. Click on File to pull down the File menu.

2. Perform one of the following:

■ Choose Update from this menu to update the display window for this variable,

using the value(s) at the current program location. See “Updating and Closing the

Visualizer” on page 144 for more information on updating a visualizer.

■ Choose Save or Save As to save the visualizer’s values to a file. See “To Save the

Values of a Variable” on page 145 for more information.

■ Choose Diff or Diff With to compare the visualizer’s values with values stored in

a file. See “To Compare the Data” on page 147 for more information.

■ Choose Snapshot to create a copy of the visualizer, which you can use to compare

with later updates.

■ Choose Close to cancel the visualizer.

Using the Options Menu

Click on Options to pull down the Options menu. See FIGURE 5-4.
132 Prism 6.1 User’s Guide • March 2000

FIGURE 5-4 Options Menu in a Visualizer

▼ To Choose the Representation

● Choose Representation from the Options menu.

That displays another menu that gives the choices for how the values are

represented in the display window. The choices are described below. You can control

aspects of the way these visualizers appear by changing their parameters, as

described later in this section.

■ Choose Text to display the values as numbers or letters. This is the default.

■ Choose Histogram to display the values of an array or parallel variable in a

histogram. See FIGURE 5-5 for an example.

The vertical axis displays the number of data points; the horizontal axis displays

the range of values. The Prism environment divides up this range evenly in

creating the histogram bars. It prints summary data above the histogram.

Shift-click on a histogram bar to display the range and number of data points it

represents.

Note that the histogram represents all the values of the variable, not just those

shown in the two-dimensional slice of data that happens to be displayed in other

representations.
 Chapter 5 Visualizing Data 133

FIGURE 5-5 Histogram Visualizer

■ Choose Dither to display the values as a shading from black to white. Groups of

values in a low range are assigned more black pixels; groups of values in a high

range are assigned more white pixels. This has the effect of displaying the data in

various shades of gray. FIGURE 5-6 shows a two-dimensional dither visualizer. The

lighter area indicates values that are higher than values in the surrounding areas;

the darker area indicates values that are lower than surrounding values.

■ You can left-click on a histogram visualizer bar to get a pop-up window, showing

its contents.

For complex numbers, the Prism environment uses the modulus.
134 Prism 6.1 User’s Guide • March 2000

FIGURE 5-6 Dither Visualizer

■ Choose Threshold to display the values as black or white. By default, the Prism

environment uses the mean of the values as the threshold; values less than or

equal to the mean are black, and values greater than the mean are white.

FIGURE 5-7 shows a threshold representation of a three-dimensional array.

For complex numbers, the Prism environment uses the modulus.
 Chapter 5 Visualizing Data 135

FIGURE 5-7 Threshold Visualizer

■ Choose Colormap (if you are using a color workstation) to display the values as a

range of colors. By default, the Prism environment displays the values as a

continuous spectrum from blue (for the minimum value) to red (for the maximum

value). You can change the colors that the Prism environment uses; see “Changing

Colors” on page 233.

For complex numbers, the Prism environment uses the modulus.

■ Choose Graph to display values as a graph, with the index of each array element

plotted on the horizontal axis and its value on the vertical axis. A line connects

the points plotted on the graph. This representation is particularly useful for

one-dimensional data, but can be used for higher-dimensional data as well; for

example, in a two-dimensional array, graphs are shown for each separate

one-dimensional slice of the two-dimensional plane.

FIGURE 5-8 shows a graph visualizer for a one-dimensional slice of an array.
136 Prism 6.1 User’s Guide • March 2000

FIGURE 5-8 One-Dimensional Graph Visualizer

■ Choose Surface (if your data has more than one dimension) to render the

three-dimensional contours of a two-dimensional slice of data. In the

representation, the two-dimensional slice of data is tilted 45 degrees away from

the viewer, with the top edge further from the viewer than the bottom edge. The

data values rise out of this slice. FIGURE 5-9 is an example.
 Chapter 5 Visualizing Data 137

FIGURE 5-9 Surface Visualizer

Note – If there are large values in the top rows of the data, they may be drawn off

the top of the screen. To see these values, flip the axes as described earlier in this

section, so that the top row appears in the left column.

■ Choose Vector to display data as vectors. The data must be a Fortran complex or

double complex number, or a pair of variables to which the CMPLXintrinsic

function has been applied (see “Using Fortran Intrinsic Functions in Expressions”

on page 34). The complex number is drawn showing both magnitude and

direction. The length of the vector increases with magnitude. There is a minimum

vector length of five pixels, because direction is difficult to see for smaller vectors.

By default, the lengths of all vectors scale linearly with magnitude, varying

between the minimum and maximum vector lengths. FIGURE 5-10 shows a vector

visualizer.
138 Prism 6.1 User’s Guide • March 2000

FIGURE 5-10 Vector Visualizer

▼ To Set Parameters

● Choose Parameters from the Options menu.

In the dialog box you can change various defaults that the Prism environment uses

in setting up the display window; see FIGURE 5-11. If a parameter is grayed out or

missing, it does not apply to the current representation.
 Chapter 5 Visualizing Data 139

FIGURE 5-11 Visualization Parameters Dialog Box

The parameters (for all representations except the histogram representation) are:

■ Field Width — Type a value in this box to change the width of the field that the

Prism environment allocates to every data element.

For the text representation, the field width specifies the number of characters in

each column. If a number is too large for the field width you specify, dots are

printed instead of the number.

For dither, threshold, colormap, and vector representations, the field width

specifies how wide (in pixels) the representation of each data element is to be. By

default, dither, threshold, and colormap visualizers are scaled to fit the display

window. Note, however, that for dither visualizers, the gray shading may be more

noticeable with a smaller field width.

For the graph representation, the field width specifies the horizontal spacing

between elements.

For the surface representation, it specifies the spacing of elements along both

directions of the plane.

■ Precision — Type a value in this box to change the precision with which the Prism

environment displays real numbers in a text visualizer. The precision must be less

than the field width. By default, the Prism environment prints doubles with 16

significant digits, and floating-point values with 7 significant digits. You can

change this default by issuing the set command with the $d_precision
variable (for doubles) or $f_precision variable (for floating-point values). For

example,

(prism all) set $d_precision = 11

sets the default precision for doubles to 11 significant digits.
140 Prism 6.1 User’s Guide • March 2000

■ Minimum and Maximum — For colormap representations, use these variables to

specify the minimum and maximum values that the Prism environment is to use

in assigning color values to the data elements. Data elements that have values

below the minimum and above the maximum are assigned default colors.

For graph, surface, and vector representations, these parameters represent the

bottom and top of the range that is to be represented. Values below the minimum

are shown as the minimum; values above the maximum are shown as the

maximum.

By default the Prism environment uses the entire range of values for all these

representations.

■ Threshold — For threshold representations, use this variable to specify the value

at which the Prism environment is to change the display from black to white.

Data elements whose values are at or below the threshold are displayed as black;

data elements whose values are above the threshold are displayed as white. By

default, the Prism environment uses the mean of the data as the threshold.

The parameters for the histogram representation are:

■ Bar Width — Specifies the width in pixels of each histogram bar (except for the

bars representing infinities and NaNs, which must be wide enough to fit the Inf
or NaN label underneath). The default is 10 pixels.

■ Bar Height — Specifies the height in pixels of the largest histogram bar.

The default is 100 pixels.

■ Minimum — Specifies the minimum value to be included in the histogram.

By default the actual minimum value is used.

■ Maximum— Specifies the maximum value to be included in the histogram.

By default the actual maximum value is used.

If you specify a different minimum or maximum, values below the minimum or

above the maximum are not displayed in the histogram, but are counted as

outliers instead; the number of outliers is displayed above the histogram.

■ Max Buckets — Specifies the number of “buckets” into which values are to be

poured—in other words, the number of histogram bars to be used. The default is

30. (The Prism environment may use fewer to make the horizontal labels come

out evenly.)
 Chapter 5 Visualizing Data 141

▼ To Display a Ruler

● Choose Ruler from the Options menu

This toggles the display of a ruler around the data in the display window.

The ruler is helpful in showing which elements are being displayed. FIGURE 5-12

shows a three-dimensional threshold visualizer with the ruler displayed.

In the surface representation, the ruler cannot indicate the coordinates of elements in

the vertical axis, since they change depending on the height of each element.

However, you can press the Shift key and left-click to display the coordinates and

value of an element.

FIGURE 5-12 Threshold Visualizer With a Ruler

▼ To Display Statistics

● Choose Statistics from the Options menu

This displays a window containing statistics and other information about the

variable being visualized.

The window contains:

■ The name of the variable

■ Its type and number of dimensions
142 Prism 6.1 User’s Guide • March 2000

■ The total number of elements the variable contains, and the total number of active

elements, based on the context you set within the Prism environment (see the next

section for a discussion of setting the context)

■ The variable’s minimum, maximum, and mean; these statistics reflect the context

you set for the visualizer

FIGURE 5-13 gives an example of the Statistics window.

FIGURE 5-13 Statistics for a Visualizer

For complex numbers, the Prism environment uses the modulus.

▼ To Use the Set Context Dialog Box

● Choose Set Context from the Options menu.

In this dialog box you can specify which elements of the variable are to be

considered active and which are to be considered inactive. Active and inactive

elements are treated differently in visualizers:

■ In text, graph, surface, and vector visualizers, inactive elements are grayed out.

■ In colormap visualizers, inactive elements by default are displayed as gray. You

can change this default; see “Changing Colors” on page 233.

■ Context has no effect on dither and threshold visualizers.

FIGURE 5-14 shows the Set Context dialog box.
 Chapter 5 Visualizing Data 143

FIGURE 5-14 Set Context Dialog Box

By default, all elements of the variable are active; this is the meaning of the

everywhere keyword in the text-entry box. To change this default, you can either

edit the text in the text-entry box directly or click on the Where button to display a

menu. The choices in the menu are everywhere and other:

■ Choose everywhere, as mentioned above, to make all elements active.

■ Choose other to erase the current contents of the text-entry box. You can then

enter an expression into the text-entry box.

In the text-entry box, you can enter any valid expression that will evaluate to true or

false for each element of the variable.

The context you specify for printing does not affect the program’s context; it just

affects the way the elements of the variable are displayed in the visualizer.

See “Setting the Context” above for more information on context. See “Writing

Expressions in the Prism Environment” on page 32 for more information on writing

expressions in the Prism environment.

Click on Apply to set the context you specified. Click on Cancel or press the Esc key

to close the dialog box without setting the context.

▼ To Change the Radix

1. Choose Radix from the Options menu.

This changes the radix used in the text representation of a value.

2. Choose one of the items from the submenu: Decimal, Hex, Octal, and Binary.

The value to the specified radix changes. The Prism environment continues to use

this radix if the visualizer is updated.

By default, the Prism environment displays values in decimal. You can change this

default via the set $radix command; see “To Change the Default Radix” on page

123. You can also override it for a specific print or display command; see “To

Print or Display From the Command Window” on page 127.

Updating and Closing the Visualizer

If you created a visualizer by issuing a display command, it automatically updates

every time the program stops execution.
144 Prism 6.1 User’s Guide • March 2000

If you created the visualizer by issuing a print command, its display window is

grayed out when the program resumes execution and the values in the window are

outdated.

▼ To Update Values

● Choose Update from the visualizer’s File menu.

▼ To Close the Visualizer

● Choose Close from the File menu, or press the Esc key.

Saving, Restoring, and Comparing
Visualizers
You can save the values of a variable or expression to a file. You can subsequently

visualize these values and compare them with the values in another visualizer—for

example, the same variable later in the run, or during a totally separate execution of

the program. This provides a convenient way of spotting changes in the values of a

variable.

▼ To Save the Values of a Variable

You can save the values of a variable or expression to a file for later use.

● Perform one of the following:

■ From the command line — Use the command varsave to save the values of a

variable or expression to a file.

Its syntax is varsave “filename” expression

where filename is the name of the file to which the data is to be saved, and

expression is the variable or expression whose values are to be saved.

For example, varsave ”alpha.data” alpha

saves the values of the variable alpha in the file alpha .data (in your current

working directory within the Prism environment).

varsave ”/u/kathy/alpha2.data” alpha*2

saves the results of the expression alpha*2 in the file with the path name

/u/kathy/alpha2.data.
 Chapter 5 Visualizing Data 145

■ From a visualizer — Use the Save or Save As selection from a visualizer’s File

menu to save the visualizer’s values to a file.

If you choose Save As, a dialog box appears in which you can specify the name of

the file to which the values are to be saved; see FIGURE 5-15.

FIGURE 5-15 Saving a Visualizer’s Data to a File

The highlighted directory is the current working directory. If you want to put the

file there, simply type its name in the Save As box and click on OK.

If you want to put the file in another directory, click on the directory. (The parent

directories of the current working directory are shown above it in the Directories

list; its subdirectories are listed beneath it.) This will display the subdirectories of

the directory you clicked on. You can traverse the directory structure in this

manner until you find the directory in which you want to put the file, or, you can

simply type the entire path name in the Save As box.

Choose the Save selection to save the values in the file you most recently

specified. If you haven’t specified a file, the values are saved in a file called

noname.var in your current working directory in the Prism environment.

▼ To Restore the Data

This intrinsic brings values you have saved to a file back into the Prism

environment.
146 Prism 6.1 User’s Guide • March 2000

● Type

(prism all) command varfile (”filename”

where filename is the name of the file that contains the values you want to restore.

Note – The varfile intrinsic is not available for use with message-passing

programs.

You can use the varfile intrinsic anywhere you could have used the original

variable or expression that you saved to a file. For example, if you saved x :

(prism all) varsave ” x.var ” x

then the command

(prism all) print varfile(”x.var”)

is equivalent to

(prism all) print x

Note that this allows you to save a variable’s values, then print them during a later

Prism session, without having a program loaded or running.

▼ To Compare the Data

You can compare a variable or expression whose values have been saved in a file

with another version of the variable or expression. This comparison could take place

later in the same run of the program, during a subsequent run, or even during a

second, simultaneous Prism session.

You can also compare the values with those of another variable, as long as both

variables have the same base type (that is, you can’t compare integers with

floating-point numbers).

● Perform one of the following:

■ From the command line — Type

(prism all) print – varfile (“filename”)

or

(prism all) display – varfile (“filename”)

This performs a comparison between two versions of a variable or expression.

For example, if you saved x in the file x.var :

(prism all) varsave ”x.var” x

then the command

(prism all) prin t x – varfile (”x.var”)
 Chapter 5 Visualizing Data 147

prints the difference between the current and saved values of x .

If an element is printed as 0, it is the same in both versions. If it is nonzero, its

value is different in the two versions.

■ From a visualizer — Choose the Diff or Diff With selection from a visualizer’s File

menu

This performs a comparison between the visualizer’s values and the values stored

in a file.

Choose Diff With to choose the file containing the values. It displays a dialog box

like the one shown below.

FIGURE 5-16 Diff With Dialog Box

The dialog box has the same format as the Save As dialog box described in “To

Save the Values of a Variable” on page 145. It lists the files found in your current

working directory in the Prism environment. Click on a file name, then click on

OK to choose the file. Or type a file name in the Diff With text-entry box and click

on OK.

Choose Diff to compare the visualizers values to those in the most recently

specified file; if no file has been specified, values are compared to those in the file

noname.var in your current working directory in the Prism environment.

Once you have specified a file via Diff or Diff With, the Prism environment

creates a new visualizer that displays the difference in values between the

visualizer and the file. If an element’s value in the new visualizer is 0, the value is

the same in both versions. If it is nonzero, it is different in the two versions.
148 Prism 6.1 User’s Guide • March 2000

You can work with this visualizer as you would any visualizer. For example, you

can change the representation and display summary statistics.

Visualizing Structures
If you print a pointer or a structure (or a structure-valued expression) in a window,

a structure visualizer appears.

FIGURE 5-17 shows an example of a structure visualizer.

FIGURE 5-17 Structure Visualizer

The structure you specified appears inside a box; this is referred to as a node. The

node shows the fields in the structure and their values. If the structure contains

pointers, small boxes appear next to them; they are referred to as buttons. Left-click

on a node to select it. Use the up and down arrow keys to move between buttons of

a selected node.

You can perform various actions within a structure visualizer, as described below.
 Chapter 5 Visualizing Data 149

Expanding Pointers

You can expand scalar pointers in a structure to generate new nodes. (You cannot

expand a pointer to a parallel variable.)

▼ To Expand a Single Pointer

● Perform one of the following:

■ With a mouse — Left-click on a button to expand the pointer. For example,

clicking on the button next to the nav field in FIGURE 5-17 changes the visualizer as

shown in FIGURE 5-18.

■ From the keyboard — Use the right arrow key to expand and visit the node

pointed to by the current button. If the node is already expanded, pressing the

right arrow key simply visits the node. Use the left arrow key to visit the parent

of a selected node.

FIGURE 5-18 Structure Visualizer, With One Pointer Expanded

▼ To Expand All Pointers in a Node

● Perform one of the following:

■ With the mouse — Double-click or Shift-left-click on the node.

■ From the keyboard — Press the Shift key along with the right arrow key.
150 Prism 6.1 User’s Guide • March 2000

n

■ From the Options menu — Click on Expand. The cursor turns into a target; move

the cursor to the node you are interested in and left-click.

▼ To Expand All Pointers Recursively From the Selected Node o
Down

● Perform one of the following:

■ With the mouse — Triple-click or Control-left-click on the node.

■ From the keyboard — Press the Control key and the right arrow key.

■ From the Options menu — Click on Expand All. The cursor turns into a target;

move the cursor to the node you are interested in and left-click.

▼ To Pan and Zoom

● Perform one of the following:

■ Left-click and drag through the data navigator or the display window to pan

through the data.

■ Left-click on the Zoom arrows to “zoom” in and out on the data.

■ Click on the down arrow to zoom out and see a bird’s-eye view of the structure.

Click on the up arrow to get a closeup.

■ Left-click on a node in a zoomed-out structure visualizer to pop up a window

showing the full contents of the node.

For information about navigating through visualizers, see “Using the Data

Navigator in a Visualizer” on page 131 and “Using the Display Window in a

Visualizer” on page 131.

FIGURE 5-19 shows part of a complicated structure visualizer after zooming out.
 Chapter 5 Visualizing Data 151

FIGURE 5-19 Zooming Out in a Structure Visualizer

The selected node is centered in the display window whenever you zoom in or out.

▼ To Delete Nodes

● To delete a node (except the root node):

■ With the mouse – Middle-click on a node (except the root node).

■ From the Options menu – Click on Delete. The cursor turns into a target; move

the cursor to the node you want to delete and left-click.

Deleting a node also deletes its children (if any).

More About Pointers in Structures

Note the following about pointers in structure visualizers:

■ Null pointers— have “ground” symbols next to them.

■ If you have previously expanded a pointer, it has an arrow next to its button;

you cannot expand the pointer again. (This prevents infinite loops on circular

data structures.)
152 Prism 6.1 User’s Guide • March 2000

■ A pointer containing a bad address has an X drawn over its button.

Augmenting the Information Available for

Display

You can provide a special function for each of your data types that makes additional

information available to the Prism environment. This enables the Prism environment

to more accurately display the contents of structures with that data type.

For C or C++ union types, you can identify which member of the union is valid.

For a pointer within a structure, you can specify that the pointer’s target is an array

of elements, rather than a single element, and you can further specify the length of

the array.

You must embed these specifications within a special function that is compiled and

linked with your program being debugged. The function has the following form:

void prism_define_ typename (typename *ptr);

where typename is the tag name of one of your structure data types. Thus, you can

define one such function for each of your data types. When the Prism environment

displays a variable of this type, it checks whether an augmentation function is

defined in the program. If so, the Prism environment calls the function, passing a

pointer to the instance of the structure being displayed. Your function can then look

at the instance to choose valid union members and to size dynamic arrays.

You communicate this information back to the Prism environment by calling the

following, defined in prism.h in /opt/SUNWhpc/include :

void prism_add_array(char *member_name, int len);

This call specifies that the pointer named member_name points to an array of length

len . The pointer’s name, member_name, is the name of one of the members of the

structure, as found in the structure’s C (or C++) declaration. The results are

undefined if member_name is not a pointer.

void prism_add_union(char *name, char *valid_member);

This call specifies that the member named name is of type union , and of all the

members of this union , only valid_member is to be displayed. Both name and

valid_member are names as found in the C or C++ declarations of structs or

unions .

Note – To augment the information that the structure visualizer displays, using

these function calls, you must link your program with the library libprism.a , in

/opt/SUNWhpc/lib .
 Chapter 5 Visualizing Data 153

Assume that data in the declaration below is a dynamic array:

The function you write looks like this:

Assume that the member type discriminates the union value in this example:

The function you write would look like this:

There are no restrictions on the number or order of calls to prism_add_union and

prism_add_array .

 struct Vector {
 int len;
 int *data;

 };

#include "prism.h"
 void prism_define_Vector(struct Vector *v)

 {
 prism_add_array("data", v->len);

 }

 enum Type {INT, DOUBLE};
 struct Value {

 enum Type type;
union {
 int i;
 double d;

 } value;
 };

#include "prism.h"
 void prism_define_Value(struct Value *val)

 {
 if (val->type == INT)

 prism_add_union("value", "i");
 else
 prism_add_union("value", "d");

 }
154 Prism 6.1 User’s Guide • March 2000

▼ To Update and Close a Structure Visualizer

1. Update the structure visualizer with a left-click on Update in the File menu.

This updates a structure visualizer. When you do this, the root node is re-read; the

Prism environment attempts to expand the same nodes that are currently expanded.

(The same thing happens if you re-print an existing structure visualizer.)

2. Close the structure visualizer with a left-click on Close in the File menu.

Printing the Type of a Variable
The Prism environment provides several methods for finding out the type of a

variable.

▼ To Print the Type of a Variable From the Menu Bar

Perform the following steps:

1. Choose the Whatis selection from the Debug menu.

2. The Whatis dialog box appears; it prompts for the name of a variable.

3. Click on Whatis

This displays the information about the variable in the Command window.

4. Click on Type

The Prism environment treats name as a type name.

▼ To Print the Type of a Variable from the Source
Window

Perform the following steps:

1. Select a variable by double-clicking on it or by dragging over it while pressing the
left mouse button.

2. Hold down the right mouse button.

A pop-up menu appears.
 Chapter 5 Visualizing Data 155

3. Choose Whatis from this menu.

Information about the variable appears in the Command window.

▼ To Print the Type of a Variable from the Command
Window

● Type

(prism all) whatis [type] variable

If you specify a type (struct , class , enum, or union) before the name of the

variable, the Prism environment treats variable as a type name. The type keywords

resolve ambiguities where there are types and variables with the same name.

What Is Displayed

The Prism environment displays the information about the variable in the Command

window. For example,

▼ To Modify Visualizer Data

● Type

(prism all) assign variable = value

This assigns new values to a variable or an array.

For example,

(prism all) assig n x = 0

assigns the value 0 to the variable x . You can put anything on the left-hand side of

the statement that can go on the left-hand side in the language you are using—

for example, a variable or a Fortran array section.

If the right-hand side does not have the same type as the left-hand side, the Prism

environment performs the proper type coercion.

whatis primes
logical primes(1:999)
156 Prism 6.1 User’s Guide • March 2000

Changing the Radix of Data

▼ To Change the Radix of a Value

● Type

(prism all) value = base

This changes the radix of a value in the Prism environment. The value can be a

decimal, hexadecimal, or octal number. Precede hexadecimal numbers with 0x ;

precede octal numbers with 0 (zero). The base can be D (decimal), X (hexadecimal),

or O (octal). The Prism environment prints the converted value in the Command

window.

For example, to convert 100 (hex) to decimal, issue this command:

(prism all) 0x100=D

The Prism environment responds:

256

▼ To Print the Names and Values of Local Variables

● Type

(prism all) dump routine

Specify the name of a function or procedure, to print the names and values of all

local variables in that function or procedure. If you omit the function name, dump
uses the current function. If you specify a period, dump prints the names and values

of all local variables in the functions in the stack.
 Chapter 5 Visualizing Data 157

Printing Pointers as Array Sections
The Prism environment allows you to print simple arrays by section. The following

examples assume these declarations and code,

▼ To Print an Array by Section

● Type

(prism all) print arrayname[section_specifier]

For example,

double da[]={0.1,1.1,2.1,3.1,4.1,5.1,6.1,7.1,8.1,9.1,10.1};
double *pd=da;
int a[]={0,1,2,3,4,5,6,7,8,9,10};
int *pa=a;

int *par[10];
int **ppi=par;
void *ptr=(void*)da;
...

for(i=0;i<10;i++)
 par[i]=&a[9-i];

<------ assume that the program is stopped here ------

...

(prism) print a[1:5:2]
a[1:5:2] =
(1:3) 1 3 5
158 Prism 6.1 User’s Guide • March 2000

▼ To View a Pointer as a One-Dimensional Array

● Type

(prism all) print pointer[section_specifier]

Specify a section when printing the pointer.

For example:

▼ To Dereference an Array of Pointers

● Type

(prism all) * pointer[section_specifer]

If the array element is a pointer, then the Prism environment allows you to the

dereference the section.

For example,

▼ To Cast Pointers

● Type

(prism all) print ((type*) pointer)[section _specifier]

For example,

Currently, the Prism environment supports only one level of dereferencing.

Assuming this declaration:

(prism all) print pa[1:5:2]
pa[1:5:2] =
(1:3) 1 3 5

(prism all) *par[1:5:2] =
(1:3) 8 6 4

(prism all) print ((double*)ptr)[1:4:2]
((double*)ptr)[1:4:2] =
(1:2) 1.100000000000000 3.100000000000000
 Chapter 5 Visualizing Data 159

int **appi[2];

The Prism environment does not support:

(prism all) print **(appi[0:1])

Although the Prism environment allows one level of dereference for sections, the

Prism environment does not support indexing. Thus, the Prism environment allows:

(prism all) print *par[1:5:2]

but the Prism environment does not allow:

(prism all) print par[1:5:2][0]

Visualizing Multiple Processes
When you print or display an object in the Prism environment, the data is shown for

all processes in the pset you specify (in the current pset, if you do not include a

pset qualifier). Choosing the Print or Display selection from the Debug menu prints

or displays data for processes in the current pset.

If there is only one process in the pset, the visualizer that is displayed is no different

from the visualizer you would see in the scalar mode of the Prism environment.

If there is more than one process in the pset, the Prism environment adds a

dimension to the visualizer. The extra dimension represents the processes in the set.

For example, if the variable is scalar, the Prism environment displays a one-

dimensional array that represents the value of the variable in each process. If you are

printing a one-dimensional array, the Prism environment uses a two-dimensional

visualizer.

For C programs, axis 0 represents the processes. For Fortran 77 programs, the

highest-numbered axis represents the processes.

The Prism environment can aggregate data from multiple processes only if the

expression has the same size and number of dimensions in each process; if it doesn’t,

the Prism environment prints an error message.

In the example shown in FIGURE 5-20, the variable board is an 8x8 array

(representing a chess board); the current pset contains four processes. Therefore, the

Prism environment displays a three-dimensional visualizer. Axis 0 represents the

processes. The figure shows the values of board in the first process in the set. You

would drag the white bar in the slider portion of the data navigator to display the

values in the other processes in the set. (Note that, for a two-dimensional Fortran
160 Prism 6.1 User’s Guide • March 2000

array, where axis 3 would represent the processes, you might want to rearrange the

display axes so that axis 3 is on the slider. You can do this by clicking in the box to

the left of the slider and changing the number to a 3.)

FIGURE 5-20 Visualizer in the Prism Environment (Threshold Representation)
 Chapter 5 Visualizing Data 161

▼ To Find Out the Value and Process Number for an
Element

● Shift-click on the element.

Printing to the history region, or in the commands-only mode of the Prism

environment, works the same way. Axis 0 represents the processes. Here is some of

the history-region output for the data shown below:

The elements of axis 0 do not necessarily correspond to the numbers of the processes

they represent. For example, if you were visualizing a variable in pset

(1, 3, 5, 7), element 0 of axis 0 would represent process 1, element 1 would represent

process 3, and so forth.

The Prism environment provides a Cycle visualizer window you can use to display

the values of a variable in the cycle pset; see “The cycle Pset” on page 73.

(prism all) print board
 board =

 process 0

 (0,0,0:4) 4 1 0 3 0

 (0,0,5:7) –1 0 –4

 (0,1,0:4) 2 1 0 0 0

 (0,1,5:7) 0 –1 0

 (0,2,0:4) 3 1 0 0 0

 (0,2,5:7) 2 –1 –3

 (0,3,0:4) 5 0 0 0 –1

 (0,3,5:7) 0 0 –5

 (0,4,0:4) 4 0 0 –2 0

 (0,4,5:7) 0 0 –6

 (0,5,0:4) 0 1 0 0 0

 (0,5,5:7) 0 –1 0

 (0,6,0:4) 0 1 0 0 0

 (0,6,5:7) 0 –1 0

 (0,7,0:4) 6 –1 0 0 0

 (0,7,5:7) 0 –1 –4

 process 1

 (1,0,0:4) 4 1 0 3 0

 (1,0,5:7) –1 0 –4

 (1,1,0:4) 2 1 0 1 0 ...
162 Prism 6.1 User’s Guide • March 2000

▼ To Open acycle Visualizer Window

● Type

(prism all) print variable on cycle

The Prism environment displays a window containing the value of variable in the

current process of the current pset. If you then issue the cycle command or

otherwise cycle through the members of the cycle pset, this window automatically

updates to display the value of x in the next member of the set. This provides a

convenient way of examining a variable in a series of processes.

Visualizing MPI Message Queues
The Prism MPI queue visualizer allows you to examine the message queues created

by your Sun MPI program. The visualizer shows you the status of messages

generated by nonblocking send and receive routines that have not been reaped by a

call to MPI_Test or MPI_Wait .

By showing you the state of the queue, detailing the messages that have not

completed, the Prism environment gives you clues regarding where your program’s

logic can be tuned.

The Prism queue visualizer also shows you unexpected receive routines, indicating

performance or correctness problems:

■ Performance — An unexpected receive indicates the receipt of a message before a

posted matching receive; You may receive an extra copy of the message.

■ Correctness — An unexpected receive can arise due to an intended receive not

having been posted or having been posted incorrectly, such as with the wrong

tag. The program could deadlock due to errors.

In addition to viewing the status of messages, you can also view the contents of the

messages themselves to ensure that the correct data was transmitted.

Note – The Prism environment does not display blocking sends and receives on

message queues. If a blocking routine such as an MPI_Send hangs your program,

you can use the Prism environment to display a stack backtrace to find the problem,

showing the MPI_Send present on the stack. The Prism environment also does not

display MPI generalized requests.
 Chapter 5 Visualizing Data 163

▼ To Launch the MPI Queue Visualizer

● Choose the MPI Msgs selection under the Prism Debug menu.

This selection is available only when a program linked to the Sun MPI library has

been loaded into the Prism environment. See FIGURE 5-23 for an example.

Each row of messages displayed in the message queue window corresponds to a

process rank, numbered from zero. The following sections describe how each part of

the MPI queue visualizer window affects the display of messages.

▼ To Select the Queue to Visualize

● Choose an item from the View menu.

This selects the queues to visualize. You can view three classes of MPI queues for

each rank:

■ Posted Sends

■ Posted Receives

■ Unexpected Receives

You can view queues only when a rank has stopped. Otherwise, the visualizer

displays the label running for that rank. Prism re-evaluates the queue every time

the rank stops.

▼ To Zoom Through Levels of Message Detail

● Click the Zoom buttons to navigate through four levels of message detail.

The MPI queue visualizer opens, by default at zoom level three. The levels are:

Examples of the zoom levels are:
164 Prism 6.1 User’s Guide • March 2000

1. FIGURE 5-21 shows a single pixel per message. This zoom level is useful when

examining very large MPI jobs.

FIGURE 5-21 Queue Visualizer at Zoom Level One
 Chapter 5 Visualizing Data 165

2. FIGURE 5-22 shows a simple box per message (the size of the box increases with the

size of the message).

FIGURE 5-22 Queue Visualizer at Zoom Level Two
166 Prism 6.1 User’s Guide • March 2000

3. FIGURE 5-23 shows a single label on message. Clicking the buttons on the Show

menu toggles the labels. Label choices are Source/Destination and Tag.

FIGURE 5-23 Queue Visualizer at Zoom Level Three
 Chapter 5 Visualizing Data 167

4. FIGURE 5-24 shows the entire message.

FIGURE 5-24 Queue Visualizer at Zoom Level Four

▼ To Control the Values of Message Labels

● Perform one of the following:

■ Click the toggle buttons under Show on the MPI queue visualizer.

This controls the value of the message labels.

■ Select Source/Dest to show the source or destination rank for the message.

■ Select Tag to show the MPI tag of the message.

Clicking the Show toggle affects the display of messages at zoom level three only.
168 Prism 6.1 User’s Guide • March 2000

▼ To Sort Messages

● Choose selections from the Sort Rows By and Sort Columns By option menus.

This sorts messages by row or by column according to several criteria, Choose

selections from the Sort Rows By and Sort Columns By option menus.

The MPI queue visualizer displays messages without scaling the message labels to

the exact size of the message lengths (measured in bytes). Collections of labels of

small messages can appear disproportionately large when compared to the label of a

single very large message (measuring more total bytes).

TABLE 5-1 Column Sort Criteria

Sort Criteria Description

Order posted Sort messages by the order in which messages are posted by the

MPI program, with the earliest posted on the left. This is the

default.

The implementation of MPI Sends of large messages may queue and

dequeue the message several times once the rendezvous begins, at

which point the posted order seen in the visualizer no longer

matches the programmatic order. At present there is no way to

distinguish such messages.

Source/Destination Sort by the source rank for receives and the destination rank for

sends.

Tag Sort by the messages’ tag values.

Size Sort by size in bytes, from small to large.

Communicator Sort by communicator address.

Protocol Group together messages sent with the same transport protocol.

Protocols are loopback, shared memory, RSM, and TCP.

TABLE 5-2 Row Sort Criteria

Sort Criteria Description

Rank Sort rows from the smallest to the largest process rank (the default).

Message Count Sort by the number of messages posted.

Message Volume Sort by the sum of the sizes, in bytes, of all messages for each rank.
 Chapter 5 Visualizing Data 169

▼ To Display Message Fields

● Click individual messages.

This open the Message dialog box, shown in FIGURE 5-25.

FIGURE 5-25 Message Dialog Box

Interpreting Message Dialog Fields

The fields in the Message dialog box are described in TABLE 5-3.

TABLE 5-3 Message Dialog Box Fields

Label Description

Buffer The address of the message.

Size The length (in bytes) of the message.

Tag The MPI tag argument passed in the call to post the message.

Comm The name of the MPI communicator in which the message belongs,

or the communicator’s address if it is unnamed. Click on the

Communicator View button to display the Communicator dialog

box.

To The rank of the destination of the message. Prism displays this field

only for posted sends.
170 Prism 6.1 User’s Guide • March 2000

When the Message dialog box displays a posted receive, it displays the value of the

buffer address as null (indicating that no buffer has been allocated), and disables the

Contents button.

When the Message dialog box displays an unexpected receive, it shows the delivered

message with no data type. This characteristic is due to MPI design, since a posted

receive declares the data type. Here too, the Contents button is disabled, and the

visualizer displays the value of the buffer address as null.

Displaying Communicator Data

The Prism environment displays MPI Communicators in the Communicators region

of the MPI queue visualizer window. The visualizer does not display all the

communicators that have been created in an MPI program; rather, it displays only

communicators referenced by currently posted messages. Thus, if no messages are

visible, then the visualizer displays no communicators.

The Prism environment displays as many as three distinct communicators. Each

communicator is color coded, and messages are drawn using the color of their

communicator. If more than three communicators are present, then the excess are

grouped together under a single color labeled Others.

▼ To Change Communicator Colors

● Set the following X resources in the Prism application defaults file:

■ Prism.comm1Color

■ Prism.comm2Color

From The rank of the sender of the message. Prism displays this field only

for posted receives or unexpected receives.

Protocol The implementation method by which the message has been sent.

Possible values are: loopback, shared memory, RSM, and TCP.

Data Type The MPI data type of the message, with the size of a single data

type element in bytes. Click on the Data Type View button to

display the Data Type dialog box. See “To Display Data Types” on

page 173 for more information about the Data Type dialog box.The

View button is available only for user-defined data types.

Contents The contents of the message. Click on the triangular button to open

or close the contents area. Click on More repeatedly to scroll

through more of the message, until the whole message has been

displayed.

TABLE 5-3 Message Dialog Box Fields (Continued)

Label Description
 Chapter 5 Visualizing Data 171

■ Prism.comm3Color

■ Prism.commOtherColor

For information about modifying values in the Prism applications defaults file, see

“Changing Prism Environment Defaults” on page 229.

▼ To Display Communicator Data,

● Press any of the Communicator buttons.

This reveals the Communicator dialog box.

FIGURE 5-26 shows the Communicator dialog box. The Communicator dialog box

includes:

■ Name

■ Address — The address of the communicator.

■ Fortran handle – The Fortran identifier for the communicator, if defined. Built in

communicators such as MPI_COMM_WORLDhave predefined Fortran handles.

Other communicators are assigned a Fortran handle only if they are used in a

Fortran subroutine.

■ Topology — The options are:

■ Cartesian — Communicators created using MPI_Cart_create .

■ Graph — Communicators created using MPI_Graph_create .

■ None — All others.

■ Size — The number of ranks.

■ Remote Size — Shown only for intercommunicators; the size of the remote group

(the number of ranks). For information about intercommunicators, see the

MPI_Intercomm_create man page.

■ Ranks — The list of ranks, possibly annotated with job identifiers if the

communicator was created via an MPI client/server rendezvous or an

MPI_Spawn. The ranks displayed for a communicator are relative to

MPI_COMM_WORLD, rather than relative to the communicator’s parent.

FIGURE 5-26 Communicator Dialog Box
172 Prism 6.1 User’s Guide • March 2000

▼ To Display Data Types

● Click on the Datatype View button in a Message dialog box.

FIGURE 5-27 shows the Data Type dialog box.

The fields of this dialog box are:

■ Type — The description of the data type, such as “struct” or “contiguous.”

■ Address — The address of the corresponding MPI_Datatype object in the

MPI program.

■ Size — The size in bytes of a single element of this data type.

■ Contiguous — An indication that the bytes of this data type are contiguous and

may be sent or received without any intermediate packing or unpacking. If the

data type is not contiguous, the label changes to Non-contiguous.

■ Additional information that is specific to the data type, representing arguments

that were passed to MPI to create the data type. This can include offsets, block

sizes, pointers to other data types, and so forth. In this example, Displacement,

Blocklength, and Oldtype refer to arguments the programmer used when creating

the MPI struct data type. Click on buttons that name other data types to display

the Data Type dialog box for that other type.

FIGURE 5-27 Data Type Dialog Box

Displaying and Visualizing Sun S3L
Arrays
In a multiprocess Sun MPI program, a parallel array is an array whose elements may

be distributed among the processes of the program (every process holds only part of

the global array). The Prism environment can extract the global dimensionality and
 Chapter 5 Visualizing Data 173

distribution information from these arrays and manipulate them as single entities.

For the purpose of this discussion, arrays that are not distributed (arrays that belong

in their entirety to a single process) are referred to as regular arrays.

Sun S3L’s parallel array syntax is based on array handles, which define the properties

of the parallel array.

By default, the Prism environment recognizes an array handle as a simple variable.

In Fortran 77 and Fortran 90, the array handle is a variable of type integer*8. In C,

the array handle is type S3L_array_t.

The following examples assume this code:

TABLE 5-4 S3L Array Demonstration Program

c

c Copyright (c) 1998, by Sun Microsystems, Inc.

c All rights reserved

c

program test_prism_s3l

c

include ’s3l/s3l-f.h’

c

c In f77 programs, s3l arrays are integer*8

c

integer*8 a

c

integer*4 ext(2),local(2),ier

c

c Initialize the S3L library and the prism/s3l interface.

c

call s3l_init(ier)

c

c Declare a parallel S3L array of size 2 x 3,

c with the second dimension distributed.

c

ext(1) = 2

ext(2) = 3

local(1) = 1

local(2) = 0

call s3l_declare(a,2,ext,S3L_float,local,

.S3L_USE_MALLOC,ier)

c

c Initialize the array randomly by using S3L_rand_lcg

c

call s3l_rand_lcg(a,123456,ier)
174 Prism 6.1 User’s Guide • March 2000

Note that, before using the type command, the whatis command reports that the

Sun S3L array handle, a, has been declared an integer*8 in the Fortran program in

TABLE 5-4.

▼ To Display the Data Type of an Array Handle

● Type

(prism all) whatis array_handle

This shows that the array handle, a, is a variable of type integer*8 :

▼ To Create an S3L Parallel Array

● Type

(prism all) type data_type array_handle

This identifies array_handle as a Sun S3L parallel array and specifies its basic data

type. Basic data types are int , float , double , complex8 , and complex16 .

The example below executes the type command, associating the Sun S3L handle, a,

with the basic data type float , the same type used to declare the element type of

the Sun S3L array in your program:

w = 1.0

c

c free the resources associated with the parallel S3L array

call s3l_free(a,ier)

c finalize the S3L library.

call s3l_exit(ier)

c

stop

end

(prism all) whatis a
integer*8 a

(prism all) type float a
"a" defined as "float a"

TABLE 5-4 S3L Array Demonstration Program (Continued)
 Chapter 5 Visualizing Data 175

▼ To Display and Visualize Sun S3L Parallel Arrays

● Type

(prism all) print array_handle

or

(prism all) display array_handle

At this point, the Prism environment recognizes a as a Sun S3L array. You could now

use the Prism environment to display the values of a using the print command:

In all respects, you could use a as you would use any array in the Prism

environment. For example, you can use a as an array variable:

Sun S3L arrays are distributed across multiple processes. Since each process has an

identical view of a, the Prism environment prints the values of the array only once.

However, when the Prism environment prints a regular array, larr, it prints the

values of larr separately for each process. For regular arrays such as larr , the

values of the array can differ in each process, since every process has its own copy.

(prism all) print a
a =
(0:1,0) 0.000000 1.000000
(0:1,1) 0.1000000 1.100000
(0:1,2) 0.2000000 1.200000

(prism all) assign a=9
(prism all) print a
a =
(0:1,0) 9.000000 9.000000
(0:1,1) 9.000000 9.000000
(0:1,2) 9.000000 9.000000
176 Prism 6.1 User’s Guide • March 2000

For example:

The Prism environment prints expressions involving Sun S3L parallel arrays (after

having issued the type command) only once, unless they include a variable in the

user program. Their values are the same for all processes:

(prism all) print larr
larr =
Pset 0
(1:2,1,1) 0.000000 1.000000
(1:2,2,1) 0.1000000 1.100000
(1:2,3,1) 0.2000000 1.200000
Pset 1
(1:2,1,2) 0.000000 1.000000
(1:2,2,2) 0.1000000 1.100000
(1:2,3,2) 0.2000000 1.200000
(prism all) assign larr=larr*5 pset 0
(prism all) print larr
larr =
Pset 0
(1:2,1,1) 0.000000 5.000000
(1:2,2,1) 0.5000000 5.500000
(1:2,3,1) 1.000000 6.000000
Pset 1
(1:2,1,2) 0.000000 1.000000
(1:2,2,2) 0.1000000 1.100000
(1:2,3,2) 0.2000000 1.200000

(prism all) print 10* a - 1
10* a - 1 =
(0:1,0) -1.000000000000000 9.000000000000000
(0:1,1) 0.00000000000000000 10.00000023841858
(0:1,2) 1.000000029802322 11.00000047683716
(prism all) print a
a =
(0:1,0) 0.000000 1.000000
(0:1,1) 0.1000000 1.100000
(0:1,2) 0.2000000 1.200000
 Chapter 5 Visualizing Data 177

However, if you use a Sun S3L array in an expression that includes a variable, then

the Prism environment replicates the array on each process and then evaluates the

array separately on each process. This example adds a variable, w, to a. The Prism

environment prints the results for both processes.

▼ To Visualize the Layouts of S3L Parallel Arrays

● Type

(prism all) print layout arrayname

This returns the numbers of the nodes on which the data elements of an S3L array

are located. for example:

where a is an S3L array. You can use the Fortran 90 array-section syntax described in

“Using Array-Section Syntax in C Arrays” on page 36 to specify a range of elements

within an S3L array.

(prism all) print w
w =
(1:2) 0 0
(prism all) print a+w
a+w =
Pset 0
(0:1,0,1) 0.000000000000000 1.000000000000000
(0:1,1,1) 0.1000000014901161 1.100000023841858
(0:1,2,1) 0.2000000029802322 1.200000047683716
Pset 1
(0:1,0,2) 0.000000000000000 1.000000000000000
(0:1,1,2) 0.1000000014901161 1.100000023841858
(0:1,2,2) 0.2000000029802322 1.200000047683716

(prism all) print layout a
layout (a) =
a =
(0:1,0) 0 0
(0:1,1) 0 0
(0:1,2) 1 1
178 Prism 6.1 User’s Guide • March 2000

▼ To Print or Display an S3L Array Using thelayout
Intrinsic

● Type

(prism all) print layout (arrayname) on window as representation

This creates a visualizer that is the same size and shape as S3L array arrayname. The

visualizer displays the rank of the process that is holding each value.

Note that you can specify any visualizer representation—for example, text, dither, or

colormap—to display the layout graphically.
 Chapter 5 Visualizing Data 179

180 Prism 6.1 User’s Guide • March 2000

CHAPTER 6

Obtaining MPI Performance Data

The Prism environment lets you collect and examine performance data on your Sun

MPI program. Collecting and analyzing performance data can help you discover and

tune problem areas in your program.

See the following sections:

■ “Overview of MPI Performance Analysis” on page 181

■ “Getting Started” on page 182

■ “Managing MPI Performance Analysis” on page 183

■ “Collecting Performance Data” on page 188

■ “Displaying Performance Data” on page 191

■ “Controlling the Scale of TNF Data Collection” on page 205

■ “Performance Analysis Tips” on page 207

■ “Additional Information” on page 209

Overview of MPI Performance Analysis
Since a few parts of your program will account for most of the run time, only those

parts need be optimized. Thus, it is important to be able to identify time-consuming

parts of your code, evaluate their performance, and characterize those parts so that

tuning can be effective. The Prism environment helps you to determine how

efficiently the various parts of your Sun MPI program run and where your

program’s performance can be improved. It does this by providing data on MPI

communication events, and on pairs of such events, called intervals.

The Prism environment generates this information when running Sun MPI programs

with a specially instrumented version of the Sun MPI library. The instrumented

library includes macro codes that act as selectively controllable tracepoints (probes).
181

The probes employ Trace Normal Form (TNF), an extensible system for

instrumenting program code. Each API-level routine in the library has been

instrumented with a start probe and an end probe.

You can also add TNF probes directly to your code if your programs are written in C

or C++. TNF does not support the direct insertion of probes into Fortran code. For

information about creating TNF probes, see the Solaris man page TNF_PROBE(3X).

You can use the Prism environment’s TNF analysis features to identify situations in

which the synchronization in your MPI program is poor. For example, a receiver

may wait for data from its corresponding sender—leaving processes idle. You can

use the Prism environment’s MPI performance analysis features to identify which

routines are responsible for performance differences. Then you can use what you’ve

learned about your program to adjust your algorithm and improve your program’s

performance.

For further information about the TNF-instrumented Sun MPI library, see Appendix

C of the Sun MPI Programming and Reference Guide.

For a general discussion of profiling methodology, emphasizing the use of timers, as

well as discussions of profiling utilities not discussed in the current chapter, see the

Sun HPC ClusterTools Performance Guide.

Note – The Prism environment works with both 64-bit or 32-bit binaries on Solaris

7. However, it cannot do performance analysis of 32-bit binaries unless you use the

–32 option when you start the Prism environment on Solaris 7 with the 32-bit

program. For further information see “Use the –32 Option to Load 32-Bit Binaries

For Performance Analysis on Solaris 7” on page 243.

Getting Started
To start using the Prism environment’s TNF performance analysis, load your Sun

MPI program into the Prism environment and issue these three commands:

■ Select Collection, from the Prism environment’s Performance analysis menu, or

issue the tnfcollection on command from the Prism environment’s command

line. For example:

(prism all) tnfcollection on

■ Select the Run command from the Prism environment’s Execute menu or issue the

run command from the Prism environment’s command line. For example:

(prism all) run
182 Prism 6.1 User’s Guide • March 2000

■ Select Display TNF Data from the Prism environment’s Performance analysis

menu, or issue the tnfview command from the Prism environment’s command

line. For example:

(prism all) tnfview

The details that describe the Prism environment’s performance analysis, and how

you can gain greater control of those details, are described in the rest of this chapter.

Managing MPI Performance Analysis
Using the default settings, you can use the Prism environment’s MPI performance

analysis on your Sun MPI program. However, you can gain greater control over the

the collection of profiling data using several additional features:

1. Environment – The Prism environment’s performance analysis features use the

values of three environment variables: PRISM_TNFDIR, LD_LIBRARY_PATH,
and PRISM_TNF_CLOCK_PERIOD.

2. Communications – The Prism environment requires that you enable rsh for TNF

profiling. The Prism environment uses rsh to effect certain communications

during profiling operations. You enable rsh by ensuring that your ~/.rhosts
file is correct.

3. Commands – The Prism environment supplies several TNF commands (see “MPI

Performance Analysis Commands” on page 186), in addition to the commands

listed in “Getting Started” on page 182.

4. Probes – The Prism environment allows you to specify the precise probes to use in

your analysis, identifying probes by name, by wildcard, or by group.

The following sections describe these three categories.

Note – You do not need to compile your program with the –g argument to use the

TNF performance analysis features of the Prism environment.

Environment Variables

The Prism environment uses the values of three environment variables for

performance analysis: PRISM_TNFDIR, LD_LIBRARY_PATH, and

PRISM_TNF_CLOCK_PERIOD. The Prism environment also requires that you ensure

that your ~/.rhosts file is correct.
 Chapter 6 Obtaining MPI Performance Data 183

PRISM_TNFDIR

The Prism environment uses space in a target directory (by default, /usr/tmp) to

store the temporary data generated by the TNF probes. The Prism environment’s

performance analysis generates large volumes of data, particularly for long-running

programs or programs with high process counts. As a result, performance analysis

can fail if insufficient disk space is available in the target directory. By default, the

Prism environment sets aside 128 Kbytes of storage in the target directory for TNF

data. If 128 Kbytes is insufficient for your needs, you can increase the amount of the

storage available by using the size parameter of the tnffile command.

If your trace buffer files are too small, once the buffer fills up your data will begin to

overwrite older data in the trace buffer. If your trace buffer files exceed the size of

your target directory, the data collection process will fail at that stage, before

creating the final data file required by tnfview . When you have limited space

available in your trace buffer directory, you can shorten the collection time using the

tnfcollection command as an event action specifier (for further information

about using the tnfcollection command as an event action specifier, see “Actions

in Events” on page 97) or you can limit the types of events collected using the

tnfenable command (for further information about using the tnfenable command

to selectively control which probes are enabled, see “Enabling Probes Selectively” on

page 208).

You can also define another location for the trace buffer files by setting an

environment variable, PRISM_TNFDIR, to the location you choose. For example,

% setenv PRISM_TNFDIR /home/user/tnfdata/tmp

Note – If you set PRISM_TNFDIR to an NFS-mounted directory, your performance

analysis data will be affected by the extra time required for writing the data to

non-local directories.

LD_LIBRARY_PATH

The Prism environment uses the value of the LD_LIBRARY_PATHenvironment

variable to identify the directory containing the TNF-instrumented Sun MPI library.

You can set this environment variable before launching the Prism environment or

from the Prism environment’s command line. The tnfcollection on command

sets LD_LIBRARY_PATHand adds /opt/SUNWhpc/lib/tnf automatically.

Note – The LD_LIBRARY_PATHenvironment variable must be set before issuing the

Prism environment’s run command.
184 Prism 6.1 User’s Guide • March 2000

You can change the value of this variable using the Prism environment’s setenv
command on the Prism environment’s command line. For example:

(prism all) setenv LD_LIBRARY_PATH directory

Setting LD_LIBRARY_PATH For 32-Bit Programs

The standard location for this library for 32-bit programs, running on either Solaris

2.6 or Solaris 7 environments, is /opt/SUNWhpc/lib/tnf . For example, using the

C shell:

% setenv LD_LIBRARY_PATH /opt/SUNWhpc/lib/tnf

Setting LD_LIBRARY_PATH For 64-Bit Programs

The standard location for this library for 64-bit programs, on the Solaris 7

environment, is /opt/SUNWhpc/lib/tnf/sparcv9 . For example, using the C

shell:

% setenv LD_LIBRARY_PATH /opt/SUNWhpc/lib/tnf/sparcv9

PRISM_TNF_CLOCK_PERIOD

The Prism environment uses the value of PRISM_TNF_CLOCK_PERIODto define the

period between clock samplings to determine the difference between clocks on

different nodes. Units are in seconds. The default is 200.

While running a program under TNF performance analysis, the Prism environment

calculates the difference between clocks on different nodes, and uses this calculation

to adjust TNF timestamps. Since clock frequencies drift over time, the Prism

environment recalculates the difference at regular intervals, defined by

PRISM_TNF_CLOCK_PERIOD. The shorter this period, the more accurate the clock

adjustment will be.

The clock difference calculation adds some overhead to the system, and may perturb

the performance of the program being profiled, so it may sometimes be desirable to

modify the value of PRISM_TNF_CLOCK_PERIODto avoid this perturbation. For

example, to set the clock calculation period to four minutes:

% setenv PRISM_TNF_CLOCK_PERIOD 240
 Chapter 6 Obtaining MPI Performance Data 185

Enabling rsh

For TNF profiling, you must enable rsh for use between all the nodes involved in

the program run. To do this, ensure that the names of the nodes have been added to

your ~/.rhost s file. See the rsh man page for details. If the node names do not

exist in your ~/.rhosts file, you will receive messages such as:

permission denied

MPI Performance Analysis Commands

The Prism environment supplies several commands that allow you to control MPI

performance analysis. Only two commands are essential, as long as you accept their

default behavior. The two essential commands are tnfcollection on and

tnfview , described later in this chapter. If you choose to exercise greater control

over the behavior of the process of MPI performance analysis, you can exercise that

control with the additional performance analysis commands.

The Prism MPI performance analysis commands are listed in TABLE 6-1.

For detailed information about the syntax of the Prism environment’s TNF

commands, see the examples in this chapter and the Prism Reference Manual.

TABLE 6-1 Performance Analysis Commands

Commands Description

tnffile Creates the final target file (and optionally sets the trace buffer’s

size) for TNF probe data.

tnfenable Enables selected TNF probes.

tnfdebug Redirects TNF probe data to stderr . (This command requires that

the Prism run command has been executed.)

tnfdisable Disables selected TNF probes. (This command requires that the

Prism run command has been executed.)

tnfcollection Turns on | off the TNF collection process.

tnflist Displays selected probes and their enabled state. (This command

requires that the Prism run command has been executed.)

tnfview Displays for analysis the probe data contained in the

TNF target file.
186 Prism 6.1 User’s Guide • March 2000

TNF Probes

Several of the Prism environment’s TNF commands (tnflist , tnfdebug ,

tnfenable , and tnfdisable) take arguments specifying probes by name, by

wildcard, and by group name.

The Sun MPI 4.1 Programming and Reference Guide contains a complete list of the

names of the probes in the TNF-instrumented Sun MPI library. The list includes the

fields defined for each probe.

You can specify probes using arguments that include shell pattern matching

wildcards, such as the asterisk (*). These wildcards take the form described in the

fnmatch(5) man page.

You can also specify probes by group name. The TNF probe groups defined in the

TNF-instrumented version of the Sun MPI library are listed in TABLE 6-2.

If you choose to insert TNF probes into your own code, you must define your own

probe group identifiers. Group identifiers are required in order to use the group

name as an argument to the tnfenable , tnfdisable , tnfdebug , and tnflist
commands. To add group identifiers to any probes that you create, use the keys
argument to the TNF_PROBEmacro. For information about the TNF_PROBEmacro,

see the TNF_PROBE(3X) man page.

Note – Neither the names of probes that you define nor the names of probe groups

that you define should start with mpi _.

TABLE 6-2 Sun MPI Library TNF Probe Groups

Probe Group Description

mpi_api All API-level MPI functions

mpi_pt2pt Functions that initiate point-to-point communications

mpi_blkp2p All blocking point-to-point calls

mpi_nblkp2p All nonblocking point-to-point calls

mpi_coll Collective routines

mpi_procmgmt Functions that deal with spawning and connecting to jobs

mpi_comm Functions that create and manipulate communicators

mpi_datatypes Functions that manipulate types or data in respect to types

mpi_request Functions that create or operate on requests

mpi_topo Functions that create and manipulate topology layouts
 Chapter 6 Obtaining MPI Performance Data 187

Collecting Performance Data
The Prism environment’s MPI performance analysis involves several steps. The

tnfcollection and tnfview commands shorten the sequence of steps by

assuming several automatic default values. If you chose not to accept the default

behavior of the tnfcollection and tnfview commands, you can override the

default behavior by issuing the individual performance analysis commands with

values of your own choice before issuing the Prism environment’s run command.

For a complete list of the performance analysis commands, see TABLE 6-1.

▼ To Run Performance Analysis

1. Issue the tnfcollection on command, or select Collection from the Performance
menu:

■ Adds /opt/SUNWhpc/lib/tnf to your LD_LIBRARY_PATH.

■ Establishes a default file name for the TNF data.

If you prefer to control the naming of TNF data files, you can define your own

TNF data file name with the tnffile command before issuing the Prism

environment’s run command. Using tnffile , you can specify the name of the

final trace data file and the size of the trace data collection buffers. The file name

substitutes for the automatically generated file name created by the

tnfcollection on command. The size argument allows you to specify the size

of the data collection buffers used by each process of your program. However, if

you specify a file name that already exists, the Prism environment issues an error

message "file already exists" and ignores the tnffile command

■ Sets the minimum size for data collection buffers (128 Kbytes).

■ Enables all probes

If you issue the tnfcollection on command before issuing the Prism

environment’s run command, all probes will be enabled when your target

program runs unless you then issue specific tnfenable or tnfdisable
commands before issuing the Prism environment’s run command. The probes

specified in any explicit tnfenable commands will be the only probes enabled,

replacing the default set of all probes.

■ Turns on TNF data collection.

2. Issue the run command

At the conclusion of the run, the Prism environment collects the information from

each process and merges the data in the named TNF data file.
188 Prism 6.1 User’s Guide • March 2000

3. Issue the tnfview command after the program completes to display the current

TNF data file

You can also launch the TNF viewer by selecting Display TNF Data from the Prism

environment’s Performance menu.

Note – You can repeat steps two and three as often as you wish. Each time that you

run your program, the Prism environment creates another TNF data file.

Naming TNF Data Files and Controlling Data

Collection Buffer Size

If you use the filename argument of the tnffile command to specify the name of

the TNF data file, such as myfile.tnf. The Prism environment will remember that file

name. If you then issue the tnfview command without specifying a file name

argument, the Prism environment will supply the file named in the prior use of the

tnffile command during the same session.

The second argument to the tnffile command, the size argument, allows you to

control how large the trace data collection buffers will be for each process in your

Sun MPI program. The default size is 128 Kbytes. For further information about the

size of trace data files, see “Controlling the Scale of TNF Data Collection” on page

205.

Specifying Which TNF Probes to Enable

During program execution, only the enabled TNF probes contribute trace data to the

performance analysis process. By default, programs start with TNF probes disabled.

You can enable all probes before issuing the Prism environment’s run command by

issuing the tnfcollection on command, or by issuing the Prism environment’s

tnfenable command with an asterisk (*) argument, before issuing the Prism

environment’s run command. Issuing the tnfenable command with anything

other than an asterisk (*) replaces that specification (tnfenable * is equivalent to

specifying every probe) with a list of the probes or probe groups that you have

explicitly specified.

Once you have explicitly enabled probes (by issuing the tnfenable command, for

example), those probes remain enabled until you explicitly turn them off, exit the

loaded program, or exit the Prism environment.

For example, to enable all point-to-point probes in the TNF-instrumented Sun MPI

library:
 Chapter 6 Obtaining MPI Performance Data 189

(prism all) tnfenable mpi_pt2pt

Turning on the Collection Process in Subsets of

Your Code

You can use the tnfcollection command as an event action specifier, focusing the

effect of TNF data collection on the places in your program that matter most. For

example, set breakpoints before and after an interesting part of your program, a

section that contains collective probes:

The Prism environment collects TNF trace data only where you tell it to. For more

information about event action specifiers, see “Actions in Events” on page 97.

Using a .prisminit File to Start the Collection

of Performance Data

If you use a specific directory to run TNF performance analysis, you can set up a

.prisminit file in that directory containing a typical set of TNF-related startup

commands. For example, you could create a .prisminit file containing these lines:

For further information about .prisminit files, see “Initializing the Prism

Environment” on page 219.

Controlling the Merging of Trace Data

If you want to collect trace data in one session and view the data in another session,

quitting the Prism environment before your program runs to completion and

without invoking tnfview , your trace data may be lost. Before the Prism

(prism all) tnfenable mpi_coll
(prism all) stop at foo {tnfcollection on}
(prism all) stop at bar {tnfcollection off}

tnfcollection on
run
wait
tnfview
190 Prism 6.1 User’s Guide • March 2000

environment saves trace data in the TNF data file — making it available for analysis

in tnfview , the Prism environment merges all of the trace data from multiple data

buffers. The Prism environment merges trace data only when the program has run to

completion or when tnfview has been invoked. Therefore, if you collect trace data

in one session (without letting the program run to completion) and expect to view

that data in a later session, your data will not be merged and saved in your trace

data file.

Displaying Performance Data
The tnfview program supplies several different ways to view TNF probe data. You

start tnfview by selecting Display TNF Data from the Performance menu, or by

issuing the tnfview command from the Prism environment command line. For

example,

(prism all) tnfview myfile.tnf

You do not need to specify a file name as an argument to the tnfview command

unless you want to select an alternative TNF data file, created earlier or in another

session. The Prism environment will remember the TNF data file name created most

recently during the current session.

The main window of tnfview displays a timeline view of the TNF probe trace data.

A secondary window, the plot window, displays several graphical views of datasets

that you can create from the probe trace data. The three views provided by the plot

window are:

■ Scatter plot view

■ Table view

■ Histogram view

FIGURE 6-1 shows the main window of the TNF Viewer with a 16-process MPI

program loaded. It is within this window that you examine the sequences of events,

displayed as colored shapes, that make up your program’s execution. This window

requires you to operate primarily with a mouse.
 Chapter 6 Obtaining MPI Performance Data 191

FIGURE 6-1 Timeline View

Using the tnfview Timeline Window

The main tnfview screen displays the timeline of events generated by your

program. Events of different types are represented by different colored shapes.

Clicking on a single event selects it. Shift-clicking selects additional events.

The main window of tnfview has several control and display areas (in addition to

the timeline graph):

■ Event Table – Selecting an event causes the event’s data fields to be displayed in

the tnfview Event Table below the timeline graph. Shift-click additional events

to add events to the Event Table.

Go to

event

Navigation
menu

Go to

event

Graph
button

Scale Y
axis

Scroll Y
axis

Timeline
view

Event Table Scale X axis Scroll X axis

Print
button

Selected
event

previous

next
192 Prism 6.1 User’s Guide • March 2000

■ Navigation Menu – After you have selected an event, you can browse through the

other events in the timeline, moving to the next or previous event in the same

navigation category.

■ The navigation categories are shown in TABLE 6-3.

■ Next, Previous Buttons – Displays each subsequent event’s data field values in the

tnfview Event Table (or adds the current event’s data field values to the events

already listed in the tnfview Event Table if one or more events are already

listed). Simply clicking on an event empties the Event Table of prior entries, so

that the Event Table contains only the data fields of the most recently selected

event.

■ Scale Sliders – Adjusts the scale of either the X or Y axis (or both) of the timeline,

zooming in or out. Note that the timeline Y axis is scaled by virtual ID, which is

equivalent to processor rank in MPI programs.

■ Graph Button – Opens the plot window, in which you can create, modify, display,

and analyze datasets based on events and event pairs (intervals).

■ Print Button – Opens the Print dialog box, in which you specify the printer; prints

the timeline view

Opening TNF Trace Files

The Open Tracefile selection on the File menu opens the Open File dialog box. Use

this dialog box to select a trace file for performance analysis.

TABLE 6-3 Timeline Navigation Menu Categories

Menu Category Definition

current probe Probe name.

time Strict time sequence, by millisecond.

current tid Solaris thread ID.

current lwpid Solaris lightweight process ID.

current cpu Always zero for user-level traces.

current pid Solaris process ID.

current vid Virtual thread ID – A logical thread ID assigned when trace files

from different nodes are merged. Note that the virtual thread ID is

the same as the MPI rank of each process.
 Chapter 6 Obtaining MPI Performance Data 193

FIGURE 6-2 Open File Dialog Box

Bookmarking Events

You can set a bookmark. in the Timeline window on any selected event. Such

bookmarks enable you to return to a specific view in the Timeline window.

Bookmarks remain only for the duration of the current session. Once a bookmark

has been set, you can select it from the Bookmark menu. Selecting a bookmark will

return you to the event, restoring the contents of the Event Table and the zoom and

scroll factors that were in effect when the bookmark was set.

Navigating and Controlling the tnfview Timeline Window

The tnfview Timeline Window uses a set of mouse commands for each region of its

window. The tnfview mouse commands for each region are shown in TABLE 6-4

through TABLE 6-6.

TABLE 6-4 Timeline Window Mouse Commands

Command Description

Left Click Select an event and clear previous selections

Shift-Left Click Select an additional event and add it to the set of selected events

Middle Drag Select area for zoom
194 Prism 6.1 User’s Guide • March 2000

Exiting tnfview

From the File menu, choose Exit to exit tnfview .

Exiting tnfview eliminates data generated during the current tnfview session.

The tnfview program does not save generated datasets, bookmarks (described in

“Bookmarking Events” on page 194), or any settings chosen during the session. Your

original trace file remains unchanged.

Using the tnfview Plot Window

Clicking on the Graph button of the Timeline window opens the tnfview plot

window with the Plot tab selected. Once you have created and selected a dataset

from the events or intervals in your trace file, tnfview displays a scatter plot of that

dataset.

You can display, in addition to scatter plot graphs, tables and histograms of the

dataset. You can also modify parameters (axis values) of each graph.

Middle Click Center view around point

Scroll Bars Scroll view of graph at current zoom factor

Scale Bars Adjust zoom factor of each axis independently

TABLE 6-5 Navigation Control Mouse Commands

Command Description

Left Arrow Button Select previous event

Right Arrow Button Select next event

Pull-down Menu Select navigation criteria

TABLE 6-6 Event Table Mouse Commands

Command Description

Left Click Select an event

Up/Down Arrows

(Keyboard)

Select next/previous event in table

TABLE 6-4 Timeline Window Mouse Commands

Command Description
 Chapter 6 Obtaining MPI Performance Data 195

FIGURE 6-3 Scatter Plot View

To create a dataset, use the features on the left panel of the plot window. You can:

■ Create a dataset from a single probe.

■ Create a new (blank) interval.

■ Edit the currently selected interval definition.

■ Create a dataset from the currently selected interval definition.

Creating an Event Dataset

Click the “Choose a type of event” button to open the Event Selection window (see

FIGURE 6-4). The window displays a list of the event types (probes) defined in the

current tracefile. Selecting a set of events, such as the set of all MPI_Send_start
events, then clicking on Done causes the plot window to automatically display a

scatter plot of the dataset of all MPI_Send_start events. The plot window also

supplies a histogram (opened using the Histogram tab) of the event set. The table

shows only interval latencies. Nothing is displayed for single events in the table.
196 Prism 6.1 User’s Guide • March 2000

FIGURE 6-4 Event Selection Window

Creating a New Interval

You create new intervals by clicking the “Create a new blank interval” button in the

plot window. You can then proceed to edit the new interval’s definition. By pairing

events in intervals, you can create the tools to measure the parts of your MPI code

that you are most interested in analyzing.

Editing Interval Definitions

If you select an interval and click the “Edit this interval definition” button, the

Interval Editor window opens (see FIGURE 6-5). You can change the displayed events

and data by selecting items from the lists shown by clicking the adjoining Change

buttons.

■ Name – The interval name.

■ First Event – The event that triggers data collection for this interval (when the

interval has been enabled).

■ Second Event – The event that stops data collection for this interval (when the

interval has been enabled).

■ Second Event is on: (same thread) – Toggle whether events can be on different

threads.

■ Optional: Match by Event Data
 Chapter 6 Obtaining MPI Performance Data 197

■ First Event Data – The element of the first event to be matched.

■ Second Event Data – The element of the second event to be matched.

Note – The tnfview interval editor does not permit you to specify the MPI rank

(VID) of events in the composition of intervals.

FIGURE 6-5 Interval Editor

Collecting an Interval Dataset

If you select an interval from the Interval Definitions list, then click the “Create a

dataset from this interval definition” button, a new entry will appear on the “Choose

Dataset” menu. You can then display and manipulate the dataset.

Selecting a Dataset to Plot

If you select an event or interval from the list under “Choose Dataset,” the graph

displays a scatter plot, table (for intervals only), or histogram, depending on which

tab of the Show Dataset pane is currently selected. The “Choose Dataset” menu

distinguishes single-event datasets from double-event (interval) datasets by

displaying [1] after the names of single event datasets, and [2] after the names of

interval datasets. For example, if MPI_Finalize_start is a single event dataset,

and MPI_Send is an interval dataset, the “Choose Dataset” menu displays them:

MPI_Finalize_start [1]
MPI_Send[2]
198 Prism 6.1 User’s Guide • March 2000

Adjusting the Scatter Plot Graph Axes

You can select alternative values for the X and Y axes on the graph. For example,

Latency , the default value for the Y axis in the scatter plot graph, is the difference

in time between the first event in an interval and the second event. You can replace

Latency with other values, such as Time Order, or specific fields in either event of

the selected interval. Define the axis values by choosing from the lists in either the

X axis or Y axis rows below the scatter plot graph. The values in those lists are:

■ Latency

■ Time Order

■ Event 1 – Specify the event field

■ Event 2 – Specify the event field

The data fields of the event become available for selection in the second list of the

same row. This allows you to use a data value of a selected event as an axis of the

graph.

Updating the Graph

To update a scatter plot graph or histogram after changing an axis parameter, press

the Refresh button.

Selecting a Point in the Scatter Plot

Each point in the scatter plot corresponds to a data point in the displayed dataset.

Clicking on any data point in the scatter plot causes the timeline graph to select the

corresponding event or interval, displaying the detailed data of that event or

interval in the Timeline window’s event table.

For datasets with one event, one event will be shown in the Timeline window. If the

dataset comes from an interval definition, then each dot in the scatter plot represents

two events, and two events will be shown in the Timeline window.

For example, clicking on the furthest outlying data point in the scatter plot graph

shown in FIGURE 6-3 navigates the Timeline window to the corresponding event or

interval, as shown in FIGURE 6-6.
 Chapter 6 Obtaining MPI Performance Data 199

FIGURE 6-6 Navigating the Timeline View to the Data Point Selected
in the Scatter Plot View

Then, zooming in to the data points closest to the selected data point displays a finer

grain view of the dataset. (To center the timeline display on the selected data point,

click it with the middle mouse button.) FIGURE 6-7 shows an example.
200 Prism 6.1 User’s Guide • March 2000

FIGURE 6-7 Zooming In for a Finer Grain View of the Dataset

Opening the Table View

Clicking the Table tab on the Plot window opens a tabular presentation of the

selected dataset. See FIGURE 6-8 for an example:
 Chapter 6 Obtaining MPI Performance Data 201

FIGURE 6-8 Table View

The Table view displays four columns:

■ Interval Count – Number of intervals

■ Latency Summation – Time in milliseconds

■ Latency Average – Time in milliseconds

■ Intervals with data_element – You can choose the value for this column using the

list that is revealed when you click the button next to the “Group intervals by this

data element“ label.

Opening the Histogram View

Clicking the Histogram tab on the Plot window opens a histogram presentation of

the selected dataset. For example:
202 Prism 6.1 User’s Guide • March 2000

FIGURE 6-9 Histogram View

Clicking on a Bucket in the Histogram

Click the left mouse button on a bar in the histogram graph to display three sets of

values for the data points represented by that bar. These values are:

■ Statistics for bar – Displays the number of the bar, counting from zero to 29.

■ This bar contains values … – Displays the range of the data in the bar.

■ Any value in this bucket must be greater than or equal to the first value.

■ Any value in this bucket must be less than the second value.

■ Number of values in this bar – Displays the number of values within the bar.

■ Number of values in all bars – Displays the number of values within the entire

dataset.

■ Percent of values in this bar – Displays the values within the bar as a percentage

of the entire dataset.

■ Percent of values up to and including this bar – Displays a cumulative

percentage. The value is the total of the selected bucket and all buckets to the left

of it as a percentage of the complete data set.
 Chapter 6 Obtaining MPI Performance Data 203

These values are displayed in a Histogram Bar Statistics dialog box, as shown in

FIGURE 6-10.

FIGURE 6-10 Histogram Bar Statistics Dialog Box

Specifying the Metric of the Histogram

You can select alternative values for the histogram metric. For example, you could

choose Latency (the default), Time Order, or specific fields in either event of the

selected interval. Define the axis values by choosing from the list located below the

histogram graph. The values in those lists are:

■ Latency

■ Time Order

■ Event 1 – Specify the event field

■ Event 2 – Specify the event field

The data fields of the event become available for selection in the second list of the

same row. This allows you to use a data value of a selected event as a metric of the

histogram graph.
204 Prism 6.1 User’s Guide • March 2000

Controlling the Scale of TNF Data
Collection
During the collection phase of performance analysis, the Prism environment creates

as many trace data files as there are processes in your Sun MPI program. When your

program has completed, the Prism environment merges these files in a final data file.

You can view this merged file in the Prism environment’s TNF data browser,

tnfview .

FIGURE 6-11 TNF Data Collection Phase Diagram

However, the scale of data collection can overwhelm disk storage resources. The

following sections are intended to help you to understand how this can happen, and

how to control the scale of data collection.
 Chapter 6 Obtaining MPI Performance Data 205

Collecting Trace Data

The Prism environment creates one trace collection data file per process in your Sun

MPI program. Sun HPC ClusterTools supports Sun MPI programs with as many as

1024 processes on LSF, or as many as 256 processes on the Cluster Runtime

Environment (CRE).

You can specify the size of the trace data collection files with the size argument of

the tnffile command. The trace data collection files are allocated a fixed size, not a

variable size limit. For example, to increase the size from the default value of 128

Kbytes to two megabytes,

(prism all) tnffile myfile.tnf 2048

Trace data collection files operate as circular buffers. As the file fills up with trace

data records, older records are overwritten. Once the data collection process has

been completed and the data has been merged in the final trace file, the Prism

environment issues a warning message reporting that older records in the trace

buffer have been overwritten, if that is the case. For example:

Maximum file size reached – some events have been lost.

Since the TNF trace data buffer is limited in size, beware of allowing the trace data

from the probes you are interested in to be overwritten by trace data from

subsequent probes. For example, data from interesting events may be lost if those

events occurred just prior to an area of your code that generates a lot of probe data.

To reduce the chance that your probe data buffers are overwhelmed by especially

busy sections of your code, use the tnfcollection command as an event action

specifier (as described in “Collecting Performance Data” on page 188) to focus

attention on the most interesting routines.

You can also set the optional tnffile size argument to as large a value as your

/usr/tmp allows. By enlarging the size of the trace data buffers with this command,

you can reduce some of the probability that interesting data will get overwritten.

It is difficult to predict the precise number of records that will fit in a given buffer

size. Some probes report extra data—probe records vary in length. However, the

average event generates a record roughly 16 bytes in length.

Tips for Controlling the Scale of Data Collection

■ Change (lessen) the number of probes that you enable.

■ Change (shorten) the duration of the time during which collection is active.
206 Prism 6.1 User’s Guide • March 2000

Merging Trace Data Files

The file size of the final, merged trace data file is approximately equal to the number

of processes times the buffer size. However, the final trace data file will be smaller if

the individual trace data buffers are not full.

The loading of the final, merged, trace data file into tnfview can take a length of

time proportionate to the size of the data file.

Managing Disk Space Requirements

As described in “PRISM_TNFDIR” on page 184, the Prism environment uses

/usr/tmp for storing trace data files. Since that directory resides locally on each

machine, the processes that generate trace records can write their TNF probe records

without being delayed by a network connection.

You can use another directory for trace data collection files. To direct the Prism

environment to create trace data files in your chosen directory, set the

PRISM_TNFDIRor TMPDIRenvironment variables to the directory you choose. For

example,

% setenv PRISM_TNFDIR directory

Performance Analysis Tips
The following sections offer cautions and suggestions about using TNF probes to

analyze the performance of your Sun MPI programs.

Reusing Performance Data Files

You can reuse TNF trace files. A few considerations:

■ TNF output files can be saved and viewed, but not updated.

■ You can re-display TNF trace files. You should take the normal precautions to

name your trace files in order to avoid confusing versions of trace data gathered

in different sessions.

■ To display data from multiple TNF files, open multiple instances of tnfview .
 Chapter 6 Obtaining MPI Performance Data 207

Enabling Probes Selectively

Enable probes based on the characteristics of your source code. For example, if you

are interested in the performance of a specific function in your code, and the

routines that precede and follow that function are collective routines, enable the

collective probes.

When examining a trace file from an MPI program in tnfview , look for events in

the Timeline view where synchronization is poor, or where processes are idle. Look

for places where sends, receives, or waits spend too much time idle. Create intervals

of the start and end probes of blocking sends, receives, and waits, then generate a

histogram and look for the taller columns.

In many, if not all, programs, enabling only probes on point-to-point routines and

collectives will provide enough information to initiate performance analysis.

Anticipating Timing Problems

You may change the timing characteristics of your program by adding probes (even

when those probes are disabled). This can be especially significant when your code

includes loops that contain MPI calls.

Changing which probes you have enabled or disabled also changes the timing of

your program. Perturbations can be especially significant when probing MPI

routines that have very fine-grained communications.

The operating overhead incurred when collecting, processing, and viewing

performance analysis trace data has effects on both storage and time.

The volume of trace data can exceed the storage capacity of the target directory. It

may be important to monitor the capacity of /usr/tmp (or an alternative directory,

if you have specified one) to avoid encountering capacity limits.

The activity of generating probe records slows performance by a predictable

amount. Assuming that you run TNF-instrumented code, compiled by version 4.2

compilers, on a 167 mHz SPARC, the operating overhead introduced by TNF probes

is shown below:,

TABLE 6-7 Operating Overhead Introduced by TNF Probes

Probe Status SPARC Instructions Time (in nanoseconds)

Disabled 5 12

Enabled 24 27
208 Prism 6.1 User’s Guide • March 2000

Miscellaneous Suggestions

Highly cyclical code is a good example of code that can benefit from TNF

performance analysis, such as in a program that alternates between broadcasts and

gathers. For example, look for evidence of bad load balancing, such as

barrier:compute cycles where the compute phase in one rank is far shorter than

others, spending more time in barrier than the other ranks.

You can create intervals based on library routines that enable you to measure the

timing of your own code, not just the timing of the library routines themselves.

Create intervals that combine an *_End event that precedes the routines you want to

measure with a corresponding *_Start event following those routines (the reverse of

normal order).

You can use the Prism environment’s TNF performance analysis features with or

without using the –g compiler option. For further information about the effects of

using the –g option, see “Compiling and Linking Your Program” on page 8. For

information on combining the –g option with optimizations, see “Combining Debug

and Optimization Options” on page 115.

Note – Ragged edges can appear in your data. Since message passing activity in

different processes can vary, the earliest time when a trace file contains interesting

data can vary from process to process

Additional Information
For further information about TNF tracing with the Prism environment, see the

Prism Reference Manual and tnfview online help. For information about Sun MPI,

see the Sun MPI Programming and Reference Guide.

For background information about TNF tracing, see the Solaris 2.6 Programming
Utilities Guide, and the man pages prex (1), tnfdump (1), tnfxtract (1),

TNF_DECLARE_RECORD(3X), TNF_PROBE(3X), libtnfctl (3X),

tnf_process_disable (3X), tracing (3X), tnf_kernel_probes (4), and

attributes (5).

For a general discussion of profiling methodology, emphasizing the use of timers, as

well as discussions of profiling utilities not discussed in the current chapter (such as

prex , and tnfdump), see the Sun HPC ClusterTools Performance Guide
 Chapter 6 Obtaining MPI Performance Data 209

210 Prism 6.1 User’s Guide • March 2000

CHAPTER 7

Editing and Compiling Programs

You can edit and compile source code by invoking the appropriate utilities from the

Prism environment. See the following sections:

■ “Editing Source Code” on page 211

■ “Using the make Utility” on page 212

Editing Source Code
The Prism environment provides an interface to the editor of your choice. You can

use this editor to edit source code (or anything else).

▼ To Start the Default Editor on the Current Source
File From Within the Prism Environment

● Perform one of the following:

■ From the menu bar – Choose the Edit selection from the Utilities menu.

■ From the Prism command window – Type

(prism all) edit [file-name | function-name]

You can specify which editor the Prism environment is to call by using the

Customize utility to set a Prism resource; see “Using the Customize Utility” on page

224. If this resource has no setting, Prism uses the setting of your EDITOR
environment variable. Otherwise, the Prism environment uses a default editor, as

listed in the Customize window.
211

The editor is invoked on the current file, as displayed in the source window. If

possible, the editor is also positioned at the current execution point, as seen in the

source window; this depends on the editor.

After the editor has been created, it runs independently. This means that changes

you make in the current file are not reflected in the source window. To update the

source window, you must recompile and reload the program. You can do this using

the Make selection from the Utilities menu, as described below.

Using the make Utility
The Prism environment provides an interface to the standard Solaris tool make. The

make utility lets you automatically recompile and relink a program that is broken up

into different source files. See your Solaris documentation for an explanation of

make and makefiles.

Creating the Makefile

Create the makefile as you normally would. Within the Prism environment, you can

choose the Edit selection from the Utilities menu to bring up a text editor in which

you can create the file; see “Editing Source Code” on page 211.

Using the Makefile

After you have made changes in your program, you can run make to update the

program.

The Prism environment uses the standard Solaris make utility, /usr/ccs/bin/
make, unless you specify otherwise. You do this by using the Customize utility to

change the setting of a Prism resource; see “Using the Customize Utility” on page

224.

▼ To Runmake From the Menu Bar

● Perform the following:
212 Prism 6.1 User’s Guide • March 2000

FIGURE 7-1 The make Window

■ Choose Make from the Utilities menu.

A window appears; FIGURE 7-1 is an example.

■ Edit the fields in the make window, if necessary — The window prompts for the

names of the makefile, the target file(s), the directory in which the makefile is

located, and other arguments to make. If a file is loaded, its name is in the Target

box, and the directory in which it is located is in the Directory box; you can

change these if you like.

If you leave the Makefile or the Target box empty, make uses a default. See your

Solaris documentation for a discussion of these defaults. If you leave the

Directory box empty, make looks for the makefile in the directory from which you

started the Prism environment.

You can specify any standard make arguments in the Other Args box.

The dialog box also asks if you want to reload after the make. Answering Yes (the

default) automatically reloads the newly compiled program into the Prism

environment if the make is successful. If you answer No, the program is not

reloaded.

■ To cancel the make while it is in progress, click on the Cancel button. If a make is

not in progress, clicking on Cancel closes the window.

■ View the output from make. The output is displayed in the box at the bottom of

the Make window. Subsequent makes use the same window, unless you start a

new make while a previous make is still in progress.

▼ To Runmake From the Command Window

● Type

(prism all) make arguments

You can specify any arguments that are valid in the Solaris version of make.
 Chapter 7 Editing and Compiling Programs 213

214 Prism 6.1 User’s Guide • March 2000

CHAPTER 8

Getting Help

This chapter describes how to obtain information about the Prism environment and

other Sun products available at your site.

See the following sections:

■ “The Prism Online Help Systems” on page 215

■ “Obtaining Online Documentation” on page 217

The Prism Online Help Systems

▼ To Get Help in the Prism Environment

● Perform one of the following:

■ Select an entry from the Help menu in the menu bar. The Help menu provides

help on several major topics. See “Choosing Selections From the Help Menu” on

page 216.

■ Select an entry from the Help menus and Help button in windows and dialog

boxes. These Help menus and help button provide instructions for using these

screen areas. Pressing the F1 key in a window or dialog box also displays a help

screen.

■ Use the command-line help. The syntax of command-line help is,

(prism all) help commandname

Command-line help provides information about commands you can issue from

the command window.
215

Using the Browser-based Help System

The Prism environment displays its help files using your World Wide Web browser.

The default browser is Netscape™, although your system administrator can change

this.

To specify the HTML browser you want to use for the graphical mode of the Prism

environment, set the Prism environment resource Prism.helpBrowser to the

executable name of the browser. For detailed information about customizing this

feature of the Prism environment, see “Specifying the Browser to Use for Displaying

Help” on page 239.

If you don’t have a browser running, the Prism environment starts one. If you have

a browser currently running as you use the Prism environment, by default the Prism

environment displays the help information in that browser. You can change this

behavior using the Prism.helpUseExisting resource. For detailed information

about customizing this feature of the Prism environment, see “Specifying the

Browser to Use for Displaying Help” on page 239.

Note – See “Setting Up Your Working Environment” on page 8 for important

information about setting up your environment for the Prism environment’s use of

your default browser to display the Prism environment’s online help files.

Choosing Selections From the Help Menu

The Help menu provides information in a variety of ways:

■ Choose Using Help to display an overview of the Help system.

■ Choose Overview to display an overview of the features of the Prism

environment.

■ Choose Glossary to display a list of terms used in the Prism environment. You can

click on a term to find out more about it.

■ Choose Commands Reference to display a list of Prism commands. You can click

on a command’s link marker to obtain its reference description.

■ Choose Tutorial to display a tutorial that will teach you the basics of the Prism

environment.

Getting Help on Using the Mouse

Some Prism windows include an icon of a mouse,
216 Prism 6.1 User’s Guide • March 2000

Click on this icon to display information about using the mouse in the window.

Obtaining Help From the Command Window

▼ To Obtain Help From the Command Window.

● Type

(prism all) help commands

This displays a list of Prism commands and editing key combinations.

● Type

(prism all) help commandname

This displays help on that command.

● Type

(prism all) help

This displays a brief message about how to use command-line help.

Obtaining Online Documentation
The Prism environment’s documentation is available both in print and Sun

AnswerBook forms. Prism also comes with a Solaris-style manual page.

Viewing Manual Pages

▼ To Obtain a Manual Page

● Choose the Man Pages selection from the Doc menu.

This brings up xman, a standard X program for viewing manual pages; xman
operates independently of the Prism environment.

Help for xman appears in the xman window, as shown in FIGURE 8-1. You can use

xman to view any Solaris manual pages available on your Sun system.
 Chapter 8 Getting Help 217

Note – If xman is not available on your system, you will not be able to use this

feature.

FIGURE 8-1 xman Window
218 Prism 6.1 User’s Guide • March 2000

CHAPTER 9

Customizing the Prism
Programming Environment

This chapter discusses ways in which you can change various aspects of the Prism

environment’s appearance and the way the Prism environment operates.

See the following sections:

■ “Initializing the Prism Environment” on page 219

■ “Using the Tear-Off Region” on page 221

■ “Creating Aliases for Commands and Variables” on page 223

■ “Using the Customize Utility” on page 224

■ “Changing Prism Environment Defaults” on page 229

Initializing the Prism Environment
Use the .prisminit file to initialize the Prism environment when you start it up.

You can put any Prism commands into this file. When the Prism environment starts,

it executes these commands, echoing them in the history region of the command

window.

When starting up, the Prism environment first looks in the current directory for a file

called .prisminit . If the file is there, the Prism environment uses it. If the file isn’t

there, the Prism environment looks for it in your home directory. If the file isn’t in

either place, the Prism environment starts up without executing a .prisminit file.

The .prisminit file is useful if there are commands that you always want to

execute when starting the Prism environment. For example,

■ If you always want to log command output, put a log command in the file; see

Section “Logging Commands and Output” on page 31.
219

■ If you want to use your own aliases for Prism commands, put the appropriate

alias commands in the file; see “Creating Aliases for Commands and Variables”

on page 223.

Note that you don’t need to put pushbutton or tearoff commands into the

.prisminit file, because changes you make to the tear-off region are automatically

saved when you leave the Prism environment; see “Customizing MP Prism Mode”

on page 220.

In the .prisminit file, the Prism environment interprets lines enclosed between C-

style comment characters, /* and */, as comments. If \ is the final character on a

line, the Prism environment interprets it as a continuation character.

Customizing MP Prism Mode

Using the .prisminit file, you can reserve commands in your .prisminit file

exclusively for debugging multiprocess programs by bracketing the commands with

#ifdef MP and #endif. For example,

These commands define c to aliases differently in the scalar and MP (multiprocess)

modes of the Prism environment, and set the initial pset to 0 (zero) in the MP Prism

mode.

To provide this feature, the Prism environment must preprocess the .prisminit
file; by default it does not do this.

▼ To Force the Prism Environment to Preprocess the.prisminit
File

● Change the setting of the Prism resource Prism.cppPath , specifying the path to
your C preprocessor as its setting.

Typically, this setting is /lib . Thus, you would set the resource as follows:

Prism.cppPath: /lib

alias c cont
#ifdef MP
pset 0
alias c ”cont; wait every”
#endif
220 Prism 6.1 User’s Guide • March 2000

See “Changing Prism Environment Defaults” on page 229 for information on setting

the Prism environment’s resources. Note, however, that the commands-only mode of

the Prism environment is not aware of the settings of Prism resources such as

Prism.cppPath , unless the settings are contained in the system-wide Prism

app-defaults file.

Using the Tear-Off Region
You can place frequently used menu selections and commands in the tear-off region

below the menu bar; in the tear-off region, they become buttons that you can click on

to execute functions. FIGURE 9-1 shows the buttons that are there by default.

FIGURE 9-1 The Tear-Off Region

Putting menu selections and commands in the tear-off region lets you access them

without having to pull down a menu or issue a command from the command line.

Changes you make to the tear-off region are saved when you leave the Prism

environment; see “Where the Prism Environment Stores Your Changes” on page 228.

Adding Menu Selections to the Tear-Off Region

You can add menu selections to the tear-off region from either the menu bar or the

command line.

▼ To Add a Menu Selection to the Tear-Off Region

● Perform one of the following:

■ From the menu bar – Enter tear-off mode by choosing Tear-off from the Utilities

menu. A dialog box appears that describes tear-off mode; see FIGURE 9-2.
 Chapter 9 Customizing the Prism Programming Environment 221

FIGURE 9-2 Tear-Off Region Dialog Box

While the dialog box is on the screen, choosing any selection from a menu adds a

button for this selection to the tear-off region. Clicking on a button in the tear-off

region removes that button. If you fill up the region, you can resize it to

accommodate more buttons. To resize the region, drag the small resize box at the

bottom right of the region.

Click on Close or press the Esc key while the mouse pointer is in the dialog box to

close the box and leave tear-off mode.

When you are not in tear-off mode, clicking on a button in the tear-off region has

the same effect as choosing the equivalent selection from a menu.

■ From the command window – Use the tearoff and untearoff commands from

the command window to add menu selections to and remove them from the tear-

off region. Put the selection name in quotation marks; case doesn’t matter, and

you can omit spaces and the ellipsis (...) that indicates the selection displays a

window or dialog box. If the selection name is ambiguous, put the menu name in

parentheses after the selection name. For example,

(prism all) tearoff ”print (events)”

adds a button for the Print selection from the Events menu to the tear-off region.

Adding Prism Commands to the Tear-Off Region

▼ To Add a Command to the Tear-Off Region

● Type

(prism all) pushbutton label command

The label must be a single word. The command can be any valid Prism command,

along with its arguments.

For example,
222 Prism 6.1 User’s Guide • March 2000

(prism all) pushbutton printa print a on dedicated

adds a button labeled printa to the tear-off region. Clicking on it executes the

command print a on dedicated .

To remove a button created via the pushbutton command, you can either click on it

while in tear-off mode, or issue the untearoff command as described above.

Creating Aliases for Commands and
Variables
The Prism environment provides commands that let you create alternative names for

commands, variables, and expressions.

▼ To create an Alias for a Prism Command

● Type

(prism all) alias new-name command

For example,

(prism all) alias ni nexti

makes ni an alias for the nexti command. The Prism environment provides some

default aliases for common commands. Issue alias with no arguments to display a

list of the current aliases.

▼ To Remove an Alias

● Type

(prism all) unalias new-name

For example,

(prism all) unalias ni

removes the alias created above.
 Chapter 9 Customizing the Prism Programming Environment 223

▼ To Set Up an Alternative Name for a Variable or
Expression

● Type

(prism all) set variable = expression

For example,

(prism all) set alan = annoyingly_long_array_name

abbreviates the annoyingly long array name to alan . You can use this abbreviation

subsequently in your program to refer to this variable. Use the unset command to

remove a setting. For example,

(prism all) unset alan

removes the setting created above.

Changes you make via alias and set last for your current Prism session. To make

them permanent, you can add the appropriate commands to your .prisminit file;

see “Initializing the Prism Environment” on page 219.

Using the Customize Utility
Many aspects of the Prism environment’s behavior and appearance—for example,

the colors it displays on color workstations, and the fonts it uses for text—are

controlled by the settings of Prism resources. The default settings for many of these

resources appear in the file Prism in the X11 app-defaults directory for your

system. Your system administrator can change these system-wide defaults. You can

override these defaults in two ways:

■ For many of them, you can use the Customize selection from the Utilities menu to

display a window in which you can change the settings. This section describes

this method.

■ A more general method is to add an entry for a resource to your X resource

database, as described in the next section. Using the Customize utility is much

more convenient, however.
224 Prism 6.1 User’s Guide • March 2000

▼ To Launch the Prism Customize Utility

● Choose Customize from the Utilities menu

This displays the window shown in FIGURE 9-3.

FIGURE 9-3 Customize Window

Changing a Resource Setting

On the left of the Customize window are the names of the resources. Next to each

resource is a text-entry box that contains the resource’s setting (if any). To the right

of the fields are Help buttons. Clicking on a Help button or anywhere in the text-

entry field displays help about the associated resource in the box at the top of the

window.
 Chapter 9 Customizing the Prism Programming Environment 225

▼ To Set a Value for a Prism Resource

● Perform one of the following:

■ For Edit Geometry, Menu Threshold, Text Font, and Visualizer Color File, you

enter the setting in the resource’s text-entry box.

■ For Editor, Error Window, and Make, you can left-click on the button labeled with

the resource’s name. This displays a menu of choices for the resource. Clicking on

one of these choices displays it in the resource’s text-entry box. For Editor and

Make, you can also enter the setting directly in the text-entry box.

■ For Error Bell, Procedure Menu, Mark Stale Data, and Use Xterm, there are only

two possible settings, true and false; clicking on the button labeled with the

resource’s name toggles the current setting.

Whenever you make a change in a text-entry box, Apply and Cancel buttons appear

to the right of it. Click on Apply to save the new setting; it takes effect immediately.

Click on Cancel to cancel it; the setting changes back to its previous value.

▼ To Close the Customize Window

● Click on Close or press the Esc key

Resources

You can customize the X Window System resources that the Prism environment (and

other X applications) uses.

■ Edit Geometry — Use this resource to specify the X geometry string for the

editor created by the Edit and Email selections from the Utilities menu. The

geometry string specifies the number of columns and rows, and optionally the left

and right offsets from the corner of the screen. The Prism environment’s default is

80x24 (that is, 80 rows and 24 columns). See your X documentation for more

information on X geometries.

■ Editor — Use this resource to specify the editor that the Prism environment is to

invoke when you choose the Edit selection from the Utilities menu. Click on the

Editor box to display a menu of possible choices. If you leave this field blank, the

Prism environment uses the setting of your EDITOR environment variable to

determine which editor to use.

■ Error Bell — Use this resource to specify how the Prism environment is to

signal errors. Choosing true tells the Prism environment to ring the bell of your

workstation. Choose false (the Prism environment’s default) to have the Prism

environment flash the screen instead.

■ Error Window — Use this resource to tell the Prism environment where to

display the Prism environment’s error messages. Choose command (the Prism

environment’s default) to display them in the command window. Choose
226 Prism 6.1 User’s Guide • March 2000

dedicated to send the messages to a dedicated window; the window will be

updated each time a new message is received. Choose snapshot to send each

message to a separate window.

■ Make — Use this resource to tell the Prism environment which make utility to use

when you choose the Make selection from the Utilities menu. The Prism

environment’s default is the standard Solaris make utility, /usr/ccs/bin/make .

Click on the Make box to display a menu of possible choices.

■ Mark Stale Data — Use this resource to tell the Prism environment how to

treat the data in a visualizer that is out-of-date (because the program has

continued execution past the point at which the data was displayed). Choose true

(the default) to have the Prism environment draw diagonal lines over the data;

choose false to leave the visualizer’s appearance unchanged.

■ Procedure Menu — Use this resource to specify whether a menu is to be

displayed when you set a breakpoint in a Fortran 90 generic procedure. If you

choose true (the default), a menu of possible procedures is displayed, from

which you can choose the procedure(s) in which the breakpoint is to be set.

Choose false if you want to set the breakpoint automatically in all the generic

procedures.

■ Menu Threshold — Use this resource to specify the maximum number of

procedures that are to be displayed in a menu when you perform an action (for

example, setting a breakpoint) on a Fortran 90 generic procedure. The default is

22. Enter 0 to indicate that there should be no maximum. If the number of

procedures exceeds the specified threshold, you are prompted to either enter the

procedure name or display the menu.

■ Text Font — Use this resource to specify the name of the X font that the Prism

environment is to use in displaying the labels of histogram bars and text in

visualizers. The default, 8x13, is a 12-point fixed-width font. To list the fonts

available on your system, issue the Solaris command xlsfonts . Specifying a font

much larger than the default can cause display problems, because the Prism

environment doesn’t resize windows and buttons to accommodate the larger font.

■ Use Xterm — Use this resource to tell the Prism environment what to do with

the I/O of a program. Specify true (the Prism environment default) to tell the

Prism environment to create an Xterm in which to display the I/O. Specify false
to send the I/O to the Xterm from which you started the Prism environment.

■ Visualizer Color File — Use this resource to tell the Prism environment the

name of a file that specifies the colors to be used in colormap visualizers. If you

leave this field blank, the Prism environment uses gray for elements whose values

are not in the context you specify; for elements whose values are in the context, it

uses black for values below the minimum, white for values above the maximum,

and a smooth spectral map from blue to red for all other values.

■ Default Visualizer — Use this resource to tell the Prism environment which

representation you want to use as your initial representation when you display

data in a visualizer. If you leave this field blank, the Prism environment uses Text

for the initial representation.
 Chapter 9 Customizing the Prism Programming Environment 227

The file must be in ASCII format. Each line of the file must contain three integers

between 0 and 255 that specify the red, green, and blue components of a color.

The first line of the visualizer color file contains the color that is to be displayed for

values that fall below the minimum you specify in creating the visualizer. The next-

to-last line contains the color for values that exceed the maximum. The last line

contains the color used to display the values of elements that are not in the context

specified by the user in a where statement. The Prism environment uses the colors

in between to display the values falling between the minimum and the maximum.

See TABLE 9-1 for an example.

Like the default settings, this file specifies black for values below the minimum,

white for values above the maximum, and gray for values outside the context. But

the file reverses the default spectral map for other values: from lowest to highest,

values are mapped red-yellow-green-cyan-blue-magenta.

Where the Prism Environment Stores Your

Changes

The Prism environment maintains a file called .prism_defaults in your home

directory. In it, the Prism environment keeps:

■ Changes you make to the Prism environment via the Customize utility

■ Changes you make to the tear-off region

■ Changes you make to the size of the panes within the main Prism window

TABLE 9-1 Sample Visualizer Colors

Red Green Blue

0 0 0

255 0 0

255 255 0

0 255 0

0 255 255

0 0 255

255 0 255

255 255 255

100 100 100
228 Prism 6.1 User’s Guide • March 2000

Do not attempt to edit this file; make all changes to it through the Prism

environment itself. If you remove this file, you get the default configuration the next

time you start the Prism environment.

Changing Prism Environment Defaults
As mentioned in the previous section, you can change the settings of many Prism

resources either by using the Customize utility or by adding them to your X

resource database. This section describes how to add a Prism resource to your X

resource database.

An entry is of the form

resource-name: value

where resource-name is the name of the Prism resource, and value is the setting.

TABLE 9-2 lists the Prism resources.

TABLE 9-2 Prism Resources

Resource Use

Prism.comm1Color Specifies the color of the first communicator

displayed in the MPI queue visualizer.

Prism.comm2Color Specifies the color of the second

communicator displayed in the MPI queue

visualizer.

Prism .comm3Color Specifies the color of the third

communicator displayed in the MPI queue

visualizer.

Prism.commOtherColor Specifies the color of the fourth

communicator displayed in the MPI queue

visualizer.

Prism.cppPath Specifies the path to your C preprocessor.

Prism.dialogColor Specifies the color for dialog boxes.

Prism.editGeometry Specifies the size and placement of the

editor window.

Prism.editor Specifies the editor to use.

Prism.errorBell Specifies whether the error bell is to ring.

Prism.errorwin Specifies the window to use for error

messages.
 Chapter 9 Customizing the Prism Programming Environment 229

Prism*fontList Specifies the font for labels, menu

selections, etc.

Prism.graphBGColor Specifies the background color of all

graphics windows, such as the structure

browser, Where graph, and visualizer.

Prism.graphFillColor Specifies the interior fill color for objects in

graphics windows that have 3-D shadow

borders.

Prism.helpBrowser Specifies the browser to use for displaying

help.

Prism.helpUseExisting Specifies whether to use a currently

running browser for displaying help.

Prism.mainColor Specifies the main background color for

Prism.

Prism.make Specifies the make utility to use.

Prism.markStaleData Specifies how Prism is to mark stale data in

visualizers.

Prism.procMenu Specifies whether a menu is displayed

when setting a breakpoint in a Fortran 90

generic procedure.

Prism.procThresh Changes the maximum number of specific

procedures automatically shown when

performing an action on a Fortran 90

generic procedure.

Prism.spectralMapSize Specifies the size of the default spectral

color map for color visualizers.

Prism.textBgColor Specifies the background color for widgets

containing text.

Prism.textFont Specifies the text font to use for certain

labels.

Prism.textManyFieldTranslations Specifies the keyboard translations for

dialog boxes that contain several text fields.

Prism.textMasterColor Specifies the color used to highlight the

master pane in a split source window.

Prism.textOneFieldTranslations Specifies the keyboard translations for

dialog boxes that contain one text field.

Prism.useXterm Specifies whether to use a new Xterm

for I/O.

TABLE 9-2 Prism Resources (Continued)

Resource Use
230 Prism 6.1 User’s Guide • March 2000

Note that the defaults mentioned in the sections below are the defaults for the Prism

environment as shipped; your system administrator can change these in the Prism

environment’s file in your system’s app-defaults directory.

Note also that the commands-only mode of the Prism environment is not aware of

the settings of any Prism resources, unless they are contained in the Prism

environment’s app-defaults file. This matters only for the resource

Prism.cppPath .

Adding Prism Resources to the X Resource

Database

The X resource database keeps track of default settings for programs running under

X. Use the xrdb program to add a Prism resource to this database.

▼ To Add Resource Settings to the X Resource Database

● Perform one of the following:

■ Use the -merge option and to specify the resource and its setting from the

standard input. For example, type the following command to specify a default

editor (the resource is described below):

■ Put resource settings in a file, then merge the file into the database. For example,

if your changes are in prism.defs , you could issue this command:

%xrdb -merge prism.defs

Prism.vizColormap Specifies the colors to be used in colormap

visualizers.

Prism.vizRepresentation Specifies the initial representation to be

used when displaying data in visualizers.

Prism*XmText.fontList Specifies the text font to use for most

running text.

% xrdb - merge
Prism.editor: emacs

TABLE 9-2 Prism Resources (Continued)

Resource Use
 Chapter 9 Customizing the Prism Programming Environment 231

Note – You must include the -merge option; otherwise, what you type replaces the

contents of your database. The new settings take effect the next time you start the

Prism environment.

▼ To Signal That There Is No More Input

● Type

%Ctrl-D

Consult your X documentation for more information about xrdb .

Specifying the Editor and Its Placement

▼ To Specify an Editor and Its Placement

● Change the following:

■ Change the setting of the Prism.editor resource

This resource specifies the editor that the Prism environment is to invoke when

you choose the Edit selection from the Utilities menu (or issue the corresponding

command).

■ Change the setting of the resource Prism.editGeometry

This resource specifies the X geometry string for the editor created by the Edit

selection from the Utilities menu. The geometry string specifies the number of

columns and rows, and the left and right offsets from the corner of the screen.

You can also change the settings of these resources via the Customize utility; see

“Using the Customize Utility” on page 224 for more information.

Specifying the Window for Error Messages

▼ To Specify the Window for Error Messages

● Change the setting of the Prism.errorwin resource.

This resource specifies the window to which the Prism environment is to send error

messages. Predefined values are command, dedicated, and snapshot. You can also

specify your own name for the window.

You can also change the setting of this resource via the Customize utility; see

“Using the Customize Utility” on page 224.
232 Prism 6.1 User’s Guide • March 2000

Changing the Text Fonts

You may need to change the fonts the Prism environment uses if, for example, its

fonts aren’t available on your system. Use the resources described below to do this.

▼ To List the Names of the Fonts Available on Your System

● Type

%xlsfonts

You should try to substitute a font that is about the same size as the default value of

the Prism environment; substituting a font that is much larger can cause display

problems, since the Prism environment does not resize windows and buttons to

accommodate the larger font.

▼ To Specify the Fonts for Prism

● Perform the following:

■ Edit the Prism.textFont resource

This specifies the resource that the Prism environment is to use in displaying the

labels of histograms and text in visualizers. By default, the Prism environment

uses a 12-point fixed-width font for this text.

You can also change the setting of this resource via the Customize utility; see

“Using the Customize Utility” on page 224.

■ Change the setting of the Prism*XmText.fontList resource to change the font

used to display most of the running text in the Prism environment, such as the

source code in the source window. By default, the Prism environment uses a 12-

point fixed-width font for this text.

■ Change the setting of the Prism*fontList resource to change the font used for

everything else (for example, menu selections, pushbuttons, and list items). By

default, the Prism environment uses a 14-point Helvetica font for this text.

Changing Colors

The Prism environment provides several resources for changing the default colors it

uses when it is run on a color workstation.

▼ To Change the Colors Used for Colormap Visualizers

● Perform the following:
 Chapter 9 Customizing the Prism Programming Environment 233

■ Change the setting of the Prism.vizColormap resource to specify a file that

contains the colors to be used in colormap visualizers. You can also change the

setting of this resource via the Customize utility; see “Using the Customize

Utility” on page 224. See “Resources” on page 226 for a discussion of how to

create a visualizer color file.

■ Change the setting of the resource Prism.spectralMapSize to specify how

large the default spectral color map is to be for colormap visualizers. The default

is 100 entries. You would typically use this resource to specify fewer entries, if

this number causes problems on your workstation. To set the default to 50, for

example, set the resource in your X resource database as follows:

Prism.spectralMapSize: 50

▼ To Change the Prism Environment’s Standard Colors

● Perform the following:

■ Change the setting of the Prism.dialogColor resource to change the

background color of dialog boxes.

■ Change the setting of the Prism.textBgColor resource to change the

background color for text in buttons, dialog boxes, etc. Note that this setting

overrides the setting of the X toolkit -bg option.

■ Change the setting of the Prism.textMasterColor resource to change the color

used to highlight the master pane when the source window is split.

■ Change the setting of Prism.graphFillColor to specify the interior fill color

for objects in graphics windows that have 3-D shadow borders.

■ Change the setting of Prism.graphBGColor to specify the background color of

all graphics windows, such as the structure browser, where graph, and visualizer.

■ Change the setting of the Prism.mainColor resource to change the color used

for just about everything else.

The defaults are:

▼ Changing the Colors of MPI Communicators in the MPI Queue
Visualizer

● Perform the following:

■ Change the setting of the Prism.comm2Color resource to change the color of the

second communicator displayed in the MPI queue visualizer.

Prism.dialogColor: Thistle
Prism.textBgColor: snow2
Prism.textMasterColor: black
Prism.graphFillColor: grey
Prism.graphBGColor: light grey
Prism.mainColor: light sea green
234 Prism 6.1 User’s Guide • March 2000

■ Change the setting of the Prism.comm1Color resource to change the color of the

first communicator displayed in the MPI queue visualizer.

■ Change the setting of the Prism.comm3Color resource to change the color of the

third communicator displayed in the MPI queue visualizer.

■ Change the setting of the Prism.commOtherColor resource to change the color of

the fourth communicator displayed in the MPI queue visualizer.

The defaults are:

Changing Keyboard Translations

You can change the keys and key combinations that the Prism environment

translates into various actions. In general, doing this requires an understanding of X

and Motif programming. You may be able to make some changes, however, by

reading this section and studying the defaults in the Prism environment’s file in

your system’s app-defaults directory.

Prism.comm1Color: chartreuse2
Prism.comm2Color: cyan2
Prism.comm3Color: magenta2
Prism.commOtherColor: purple
 Chapter 9 Customizing the Prism Programming Environment 235

al
Changing Keyboard Translations in Text Widgets

▼ To Change Keyboard Translations for Dialog Boxes With a
Single Text Field

● Change the settings of the Prism.textOneFieldTranslations resource

This controls default keyboard translations for dialog boxes that contain only one

text field. Its default definition is:

(The definitions with osf in them are special Motif keyboard symbols.)

▼ To Change Keyboard Translations for Dialog Boxes With Sever
Text Fields

● Change the settings in the Prism.textManyFieldTranslations resource

Its default definition is:

Prism.textOneFieldTranslations:
<Key>osfDelete: delete-previous-character()

 <Key>osfBackSpace: delete-previous-character()
 Ctrl<Key>u: erase_to_beginning()
 Ctrl<Key>k: erase_to_end()
 Ctrl<Key>d: delete_char_at_cursor_position()
 ctrl<Key>f: move_cursor_to_next_char()
 Ctrl<Key>h: move_cursor_to_prev_char()
 Ctrl<Key>b: move_cursor_to_prev_char()
 Ctrl<Key>a: move_cursor_to_beginning_of_text()
 Ctrl<Key>e: move_cursor_to_end_of_text()

Prism.textManyFieldTranslations:
 <Key>osfDelete: delete-previous-character()
 <Key>osfBackSpace: delete-previous-character()
 <Key>Return: next-tab-group()
 <Key>KP_Enter: next-tab-group()

 Ctrl<Key>u: erase_to_beginning()
 Ctrl<Key>k: erase_to_end()
 Ctrl<Key>d: delete_char_at_cursor_position()
 Ctrl<Key>f: move_cursor_to_next_char()
 Ctrl<Key>h: move_cursor_to_prev_char()
 Ctrl<Key>b: move_cursor_to_prev_char()
 Ctrl<Key>a: move_cursor_to_beginning_of_text()
 Ctrl<Key>e: move_cursor_to_end_of_text()
236 Prism 6.1 User’s Guide • March 2000

If you make a change to any field in one of these resources, you must copy all the

definitions.

Changing General Motif Keyboard Translations

The Prism environment uses the standard Motif translations that define the general

mappings of functions to keys. They are shown below.

▼ To Change a General Motif Keyboard Translation

● Change its entry in the *defaultVirtualBindings resource.

For example, if your keyboard doesn’t have an F10 key, you could edit the

osfMenuBar line and substitute another function key.

Note these points in changing this resource:

■ All entries in the resource must be included in your resource database if you want

to change any of them; otherwise the omitted entries are undefined.

■ The entries in this resource apply to all Motif-based applications. If you want

your changes to apply only to the Prism environment, change the first line of the

resource to Prism*defaultVirtualBindings .

*defaultVirtualBindings:
 osfActivate : <Key>Return
 osfAddMode : Shift <Key>F8
 osfBackSpace : <Key>BackSpace
 osfBeginLine : <Key>Home
 osfClear : <Key>Clear
 osfDelete : <Key>Delete
 osfDown : <Key>Down
 osfEndLine : <Key>End
 osfCancel : <Key>Escape
 osfHelp : <Key>F1
 osfInsert : <Key>Insert
 osfLeft : <Key>Left
 osfMenu : <Key>F4
 osfMenuBar : <Key>F10
 osfPageDown : <Key>Next
 osfPageUp : <Key>Prior
 osfRight : <Key>Right
 osfSelect : <Key>Select
 osfUndo: <Key>Undo
 osfUp : <Key>Up
 Chapter 9 Customizing the Prism Programming Environment 237

Changing the Xterm to Use for I/O

By default, the Prism environment creates a new Xterm for input to and output from

a program.

▼ To Force the Prism Environment Not to Create a New I/O
Window

● Set the Prism.useXterm resource to false .

Instead, I/O will go to the Xterm from which you invoked the Prism environment.

You can also change the setting of this resource via the Customize utility; see

“Using the Customize Utility” on page 224.

Changing the Way the Prism Environment Signals

an Error

By default, the Prism environment flashes the command window when there is an

error.

▼ To Force the Prism Environment to Ring the Bell on Errors

● Perform one of the following:

■ Set the resource Prism.errorBell to true

■ Change the setting of the Prism.errorBell resource using the Customize utility;

see “Using the Customize Utility” on page 224.

Changing the make Utility to Use

By default, the Prism environment uses the standard Solaris make utility,

/bin/make .

▼ To Specify an Alternative Make Utility

● Perform one of the following:

■ Change the setting of the resource Prism.make.

This resource specifies the path name of another version of make to use.

■ Change the setting of the Prism.make resource using the Customize utility; see

“Using the Customize Utility” on page 224.
238 Prism 6.1 User’s Guide • March 2000

Changing How the Prism Environment Treats

Stale Data in Visualizers

By default, the Prism environment prints diagonal lines over data in visualizers that

has become “stale” because the program has continued execution from the spot

where the data was collected.

▼ To Force the Prism Environment Not to Depict Stale Data With
Diagonal Lines

● Perform one of the following:

■ Change the setting of the resource Prism.markStaleData to false

■ Change the setting of the Prism.markStaleData resource using the Customize
utility; see “Using the Customize Utility” on page 224.

Specifying the Browser to Use for Displaying

Help

There are several resources you can use to affect the way help is displayed.

By default, graphical mode of the Prism environment uses the Netscape browser to

display help information; see “Using the Browser-based Help System” on page 216.

▼ To Specify an Alternative HTML Browser for Displaying Online
Help

● Set the Prism.helpBrowser resource to the executable name of the other
browser

The name of the browser must be on your path. The graphical mode of the Prism

environment supports Mosaic and Netscape browsers. You can include in the setting

any browser-specific options that you want passed to the browser when the Prism

environment starts it up.

These options do not take effect if the Prism environment uses an existing browser.If

you already have a browser running when you request help from the Prism

environment, by default the Prism environment displays the help information in this

browser.
 Chapter 9 Customizing the Prism Programming Environment 239

ng

c

▼ To Force the Prism Environment to Start a New Help Browser

● Perform the following:

Set the resource Prism.helpUseExisting to false

This forces the Prism environment to start a new browser.

Set Prism.helpUseExisting to true to return to the default behavior.

Changing the Way the Prism Environment

Handles Fortran 90 Generic Procedures

There are two resources you can use to change the way the Prism environment

handles Fortran 90 generic procedures.

By default, the Prism environment displays a menu (in the commands-only mode of

the Prism environment) or a dialog box when you attempt to set a breakpoint in a

Fortran 90 generic procedure.

▼ To Suppress the Display of Menus or Dialog Boxes When Setti
Breakpoints in Fortran 90 Generic Procedures

● Perform one of the following:

■ Change the setting of the Prism resource Prism.procMenu to false .

This setting specifies that the Prism environment is to set the breakpoint in every

one of these procedures, without displaying a menu or dialog box.

■ Change the setting of the resource Prism.procMenu using the Customize
utility; see “Using the Customize Utility” on page 224.

By default, the commands-only interface of the Prism environment displays a

maximum of 22 procedures in a menu when you attempt to perform an action (like

setting a breakpoint) on a Fortran 90 generic procedure. If there are more than this

number of specific procedures, the Prism environment asks you whether you want

to specify the name of a specific procedure or to view a menu.

▼ To Display a Different Maximum Number of Fortran 90 Generi
Procedures

● Change the setting of the Prism.procThresh resource

This specifies a different maximum number of procedures. Set the resource to 0 to

specify that there is to be no maximum.
240 Prism 6.1 User’s Guide • March 2000

CHAPTER 10

Troubleshooting

This chapter discusses ways in which you can recognize and avoid potential

difficulties when using the Prism environment.

Troubleshooting Tips
You can improve the effectiveness of your Prism sessions by using the following

troubleshooting tips.

Launch the Prism Environment Without Invoking

bsub or mprun

Launch the Prism environment the correct way by invoking it directly. For example,

to launch the Prism environment and load four a.out processes:

% prism -n 4 a.out

Do not attempt to launch Prism as an argument to bsub or mprun :

% bsub -n 4 prism a.out

It is unnecessary to launch the Prism environment as an argument to bsub or

mprun , since it invokes bsub and mprun internally. Therefore, using bsub or mprun
to launch the Prism environment is redundant. If you specify a Prism –n argument

larger than one, launching the Prism environment as an argument to bsub or mprun
causes too many instances of the Prism environment to be launched.
241

Avoid Using the –xs Compiler Option

Loading code compiled with the –xs option can require long load times. The Prism

environment does not require that you compile code with the –xs option.

Keep .o Files after Compilation

If you have not used –xs during compiling, do not move or delete the .o files of the

program that you want to load into the Prism environment. If you move or delete .o

files, the Prism environment can find no debugging information for the functions in

those files, even though the final executable was compiled with the -g option.

Expect a Pause After Issuing the First run
Command

The multiprocess mode of the Prism environment (MP Prism) may pause for an

unexpectedly long time after you issue the run command. During this pause the

user interface is unresponsive. This pause is unavoidable. The pause is due to the

delay caused while loading the LSF or CRE environments. The run command will

go to completion.

Monitor Your Use of Color Resources

The Prism environment may issue messages indicating that it needs additional color

resources. For example,

Can’t allocate color for snow2

When that happens, shut down any unnecessary color applications and try again.

To reduce the likelihood of exhausting color resources, you can launch the Prism

environment with the –install argument. This creates a private colormap for the

Prism environment at startup.

Expect Only Stopped Processes to Be Displayed in

the Where Graph

The Prism environment does not show all processes in the Where graph. The Where

graph shows only the stacks of stopped processes.
242 Prism 6.1 User’s Guide • March 2000

Use Only the MP Mode of the Prism Environment

to Load MPI Programs

Attempting to use the scalar mode of the Prism environment to run an MPI program

can cause the Prism environment to abort the process and issue messages such as

these:

To run an MPI program, you must launch the MP mode of the Prism environment.

You launch it by specifying a number of processes to run. Use the –n option to

specify the number of processes. For example,

% prism –n 4 a.out

launches the MP mode of the Prism environment and loads a.out .

Verify That /opt/SUNWlsf/bin Is in Your PATH

If LSF is your default run-time environment, and if the directory containing LSF

executables is not set in your PATH variable, attempting to launch the MP mode of

the Prism environment will fail. For example,

Use the –32 Option to Load 32-Bit Binaries For

Performance Analysis on Solaris 7

The Prism environment works with both 64-bit or 32-bit binaries on Solaris 7.

However, it cannot do performance analysis of 32-bit binaries. To workaround that

problem, use the –32 option. For example,

% prism –32 –n 4 a.out&

[unknown MPI_COMM_WORLD unknown] ERROR in MPI_Init:
unclassified error: RTE_Init_lib:
Job must be submitted to CRE: No such job
Aborting.

hpc-450-3 44 => prism -n 0 &
[1] 26614

hpc-450-3 45 =>/opt/SUNWhpc/bin/prism: bsub: not found
[1] Exit 1 prism -n 0
Chapter 10 Troubleshooting 243

The –32 option ie unnecessary if you are not using the Prism environment to do

performance analysis.
244 Prism 6.1 User’s Guide • March 2000

APPENDIX A

The Commands-Only Mode of the
Prism Environment

You can run the Prism environment in a commands-only mode, without the

graphical interface. This is useful if you don’t have access to a terminal or

workstation running X. All of the functionality of the Prism environment is available

in commands-only mode except features that require graphics (for example,

visualizers). See “Specifying the Commands-Only Option” on page 245.

If you are using an Xterm, you can also run a commands-only mode of the Prism

environment that lets you redirect the output of certain commands to X windows.

This may be preferable to users who are used to a command-line interface for

debugging, but want to take advantage of some of the Prism environment’s

graphical features. See “Running the Commands-Only Mode of the Prism

Environment From an Xterm: The –CXOption” on page 248.

For further information on individual commands, read the sections of the main body

of this guide dealing with the commands, and read the reference descriptions in the

Prism Reference Manual.

Specifying the Commands-Only Option
To enter commands-only mode, specify the -C option on the prism command line.

You can also include other arguments on the command line; for example, you can

specify the name of a program, so that the Prism environment comes up with that

program loaded. X toolkit options are, of course, meaningless. See “Entering the

Prism Environment” on page 10” for more information on command-line options.

When you have issued the command

% prism –C -n 4 a.out
245

you receive this prompt:

(prism all)

You can issue most Prism commands at this prompt, except for commands that

apply specifically to the graphical interface; these include pushbutton , tearoff ,

and untearoff .

Issuing Commands
You operate in the commands-only mode of the Prism environment just as you do

when issuing commands on the command line in the graphical mode of the Prism

environment; output appears below the command you type, instead of in the history

region above the command line. You cannot redirect output using the on window
syntax. You can, however, redirect output to a file using the @ filename syntax.

The commands-only mode of the Prism environment supports the editing key

combinations supported by the graphical mode of the Prism environment, plus some

additional combinations. Here is the entire list:

■ Ctrl-A – Moves to the beginning of the line.

■ Ctrl-B (or Ctrl-H) – Moves back one character.

■ Ctrl-C – Interrupts execution.

■ Ctrl-D – Deletes the character under the cursor.

■ Ctrl-E – Moves to the end of the line.

■ Ctrl-F – Moves forward one character.

■ Ctrl-J – (or Ctrl-M) – Signals done with input (equivalent to pressing the Return

key).

■ Ctrl-K – Deletes to the end of the line.

■ Ctrl-L – Refreshes the screen.

■ Ctrl-N – Displays the next command in the commands buffer.

■ Ctrl-P – Displays the previous command in the commands buffer.

■ Ctrl-U – Deletes to the beginning of the line.

When printing large amounts of output, the commands-only mode of the Prism

environment displays a more? prompt after every screen of text. Answer y or

simply press the Return key to display another screen; answer n or q, followed by

another Return, to stop the display and return to the (prism) prompt.
246 Prism 6.1 User’s Guide • March 2000

You can adjust the number of lines the Prism environment displays before issuing

the more? prompt by issuing the set command with the $page_size variable,

specifying the number of lines you want displayed. For example, issue this

command to display 10 lines at a time:

(prism all) set $page_size = 10

Set the $page_size to 0 to turn the feature off; the Prism environment will not

display a more? prompt.

Useful Commands
This section describes some commands that are especially useful in the

commands-only mode of the Prism environment.

Use the list command to list source lines from the current file. For example,

(prism all) list 10, 20

prints lines 10 through 20 of the current file.

Use the show events command to print the events list. Use the delete command

to delete events from this list.

Use the set command with the $print_width variable to specify the number of

items to be printed on a line. The default is 1.

Leaving the Commands-Only Mode of
the Prism Environment
Issue the quit command to leave the commands-only mode of the Prism

environment and return to your Solaris prompt.
 Appendix A The Commands-Only Mode of the Prism Environment 247

Running the Commands-Only Mode of
the Prism Environment From an Xterm:
The –CXOption
Issue the prism command with the –CXoption from an Xterm to start up an

instance of the commands-only mode of the Prism environment that lets you redirect

the output of certain commands to X windows. The information presented earlier in

this chapter about the commands-only mode of the Prism environment also applies

to this version, except that this version lets you redirect output using the on window
syntax.

You can redirect the following output to X windows:

■ Visualizers (including structure visualizers) – print or display command

■ Where graph (MP Prism environment only) – where command

■ Psets window (MP Prism environment only) – show psets command

To redirect the output, issue the appropriate command with the on dedicated or

on snapshot syntax, just as you would in the graphical mode of the Prism

environment. For example, this command displays a visualizer for x in a dedicated

window:

(prism all) print x on dedicated

You can specify the type of the visualizer as well, by adding as type after the on
window argument. For example:

(prism all) print x on dedicated as colormap

In addition, you can display help windows from within windows that you pop up in

this way.
248 Prism 6.1 User’s Guide • March 2000

APPENDIX B

C++ and Fortran 90 Support

C++ Support in the Prism Environment
The Prism environment provides limited support for debugging C++ programs.

■ “Fully Supported C++ Features” on page 249

■ “Partially Supported C++ Features” on page 251

■ “Unsupported C++ Features” on page 252

Fully Supported C++ Features

With few limitations, you can use the Prism environment to debug C++ programs

containing the features described in this section.

Data Members in Methods

You can simply type print member to print a data member when in a class method.

C++ Linkage Names

You can set breakpoints using the stop in command with functions having either C

or C++ linkage (mangled) names.
249

Methods of a Class

You can use the Prism environment stop in , func and list commands with

methods of a class.

Class Member Variables

The Prism environment supports assignment to class member variables.

Variables of Class Type and Template Classes

You can use the whatis and print commands with variables of class type and

template classes.

this Identifier

The Prism environment recognizes the this identifier in C++ methods. Its value

also appears in stack back-traces.

Overloaded Method Names

The Prism environment allows you to set breakpoints in overloaded method names.

A list pops up, from which you can select the correct method.

Template Functions

The Prism environment allows you to set breakpoints in template functions. A list

pops up, from which you can select the correct function.

(prism all) stop in class_name::method_name
(prism all) func class_name::method_name
(prism all) list class_name::method_name
250 Prism 6.1 User’s Guide • March 2000

Scope Operator in the Prism Environment’s Identifier Syntax

The Prism environment’s identifier syntax recognizes the C++ scope operator, :: .

For example:

Partially Supported C++ Features

With significant limitations, you can use the Prism environment to debug C++

programs containing the features described in this section.

Casts

The Prism environment recognizes casting a class pointer to the class of a base type

only for single inheritance relationships. For example, the Prism environment

recognizes the following cast syntax when printing variable P:

Static Class Members

You can print static class members when the current scope is a class method. You

cannot print static class members when not in class scope. For example, the

following command will fail if you issue it outside of the scope of class_name:

(prism all) print class_name:: var_name

Break Points in Methods

You cannot use a method name that has some forms of non-C identifier syntax to set

a breakpoint. For example, this fails with a syntax error:

(prism all) stop in class_name::operator+

You must instead use stop at line syntax. These method names are correctly

identified in a stack trace, however.

(prism all) whereis dummy
variable: `symbol.x`symbol.cc`Symbol::print:71`dummy

(prism all) print (struct class_name *) P
(prism all) print (class class_name *) P
(prism all) print (class_name *) P
 Appendix B C++ and Fortran 90 Support 251

Unsupported C++ Features

You cannot use the Prism environment to debug C++ programs containing the

features described in this section.

Inlined Methods Used in Multiple Source Files

Using the Prism environment, you cannot set a breakpoint in an inlined method that

is used in multiple source files. Only one of the several debuggable copies of the

inlined function gets the breakpoint.

Calling C++ Methods

The Prism environment does not support calling C++ methods, using any syntax.

Variables of Type Reference

The Prism environment does not support printing variables of type reference, such

as int &xref . Also, variables of type reference appear as (unknown type) in stack

traces.

Fortran 90 Support in the Prism
Environment
The Prism environment provides support for debugging Fortran 90 programs. This

chapter describes the degree of support for Fortran 90 provided by commands of

the Prism environment.

■ “Fully Supported Fortran 90 Features” on page 252

■ “Partially Supported Fortran 90 Features” on page 257

■ “Unsupported Fortran 90 Features” on page 258

Fully Supported Fortran 90 Features

With few limitations, you can use the Prism environment to debug Fortran 90

programs containing the features described in this section.
252 Prism 6.1 User’s Guide • March 2000

Derived Types

With the exception of constructors, the Prism environment supports derived types in

Fortran 90. For example, given these declarations:

you can use Prism commands with these Fortran 90 variables:

Generic Functions

The Prism environment fully supports generic functions in Fortran 90. For example,

given the generic function fadd , declared as follows:

you can use Prism commands with these Fortran 90 generic functions:

type point3
integer x,y,z;

end type point3
type(point3) :: var,var2;

(prism all) print var
(prism all) whatis var
(prism all) whatis point3
(prism all) assign var=var2
(prism all) print var%x
(prism all) assign var%x = 70

interface fadd
 integer function intadd(i, j)
 integer*4, intent(in) :: i, j
 end function intadd
 real function realadd(x, y)
 real, intent(in) :: x, y
 end function realadd
end interface

(prism all) p fadd(1,2)
(prism all) whatis fadd
(prism all) stop in fadd
 Appendix B C++ and Fortran 90 Support 253

In each case, the Prism environment asks you which instance of fadd your

command refers to: For example:

Simple Pointers

In addition to the standard assignment operator (=), the Prism environment

supports the new Fortran 90 pointer assignment operator =>. For example:

The following examples assume that a breakpoint has been set at the last statement,

i = 0 , and show how the Prism environment supports Fortran 90 pointers:

■ print pn1 – Prints the value pointed to by pn1 , in this case n1.

■ print pn1 %x – Prints the value of the member x in the object pointed to by pn1
(in this case n1%x).

■ assign pn1 %x = 3 – Assigns n1%x = 3.

■ assign pn1=n3 – Assigns n3 to the value pointed to by pn1 (this has the same

effect as assign n1=n3).

(prism all) whatis fadd
More than one identifier ‘fadd’.
Select one of the following names:
0) Cancel
1) `f90_user_op_generic.exe`f90_user_op_generic.f90`fadd
! real*4 realadd
2) `f90_user_op_generic.exe`f90_user_op_generic.f90`fadd
! integer*4 intadd
> 1
real*4 function fadd (x, y)
(dummy argument) real*4 x
(dummy argument) real*4 y

program pnode
type node
integer x,y
type(node), pointer :: next
end type node
type(node), target :: n1,n2,n3
type(node), pointer :: pn1, pn2
…
pn1 => n1
pn2 => n2
i = 0
end
254 Prism 6.1 User’s Guide • March 2000

■ assign pn1=>n3 – Makes pn1 point to n3.

■ assign pn1=>pn2 – Makes pn1 point to the same object as pn2.

Interactive Examples of Support for Fortran 90 Pointers

If pn1 does not point to any value, an attempt to access it will result in an error

message:

You can find the state of a pointer using the whatis command. Assume pn1 has not

been associated:

Assume pn1 has been associated with a value:

Pointers to Arrays

The Prism environment supports pointers to arrays in the same way that it supports

simple pointers. The Fortran 90 language constraints apply. For example, Fortran 90

allows pointer assignment between pointers to arrays. Assignment to arrays having

different ranks is not allowed.

For example, given these declarations:

real, dimension(10), target :: r_arr1
real, dimension(20), target :: r_arr2
real, dimension(:), pointer :: p_arr1,p_arr2

(prism all) p pn1
Fortran variable is not allocated/associated.

(prism all) whatis pn1
node pn1 ! unallocated f90 pointer

(prism all) whatis pn1
node pn1 ! f90 pointer
 Appendix B C++ and Fortran 90 Support 255

you can use Prism commands with these Fortran 90 pointers to arrays:

Pointers to Sections of an Array in Fortran 90

The Prism environment does not handle Fortran 90 pointers to array sections

correctly. For example,

array_ptr => some_array(1:10:3)

The Prism environment will print some elements of the array, although it will not

print the correct elements or the correct number of elements.

Allocatable Arrays:

The Prism environment supports allocatable arrays in the same way that it supports

pointers to arrays. Fortran 90 support includes the Prism commands print and

whatis . The Prism environment also supports slicing and striding Fortran 90

allocatable arrays. For example, to print a section of allocatable array alloc_array :

(prism all) print alloc_array(1:30:2)

Fortran 90 language constraints apply. For example, Fortran 90 allows allocating or

deallocating memory for an allocatable array but does not allow making an

allocatable array point to another object. Therefore, the Prism environment does not

recognize pointer assignment, =>, to allocatable arrays.

Array Sections and Operations on Arrays

The Prism environment supports Fortran 90 operations on arrays or array sections,

and assignment to continuous sections of arrays.

(prism all) print p_arr1
(prism all) whatis p_arr2
(prism all) assign p_arr1 => r_arr1
(prism all) assign p_arr1(1:2) = 7

(prism all) assign a=b+c
(prism all) assign a(3:7)=b(2:10:2)+c(8:8)
256 Prism 6.1 User’s Guide • March 2000

Masked Array Operations

The Prism environment supports Fortran 90 masked print statements:

(prism all) where (arr>0) print arr

Variable Attributes

The Prism whatis command shows variable attributes. These attributes include

allocated and associated attributes for pointers, or the (function variable) attribute

displayed for a RESULTvariable in Fortran 90.

For example, given this declaration:

the whatis command displays the function variable attribute of j :

Partially Supported Fortran 90 Features

With significant limitations, you can use the Prism environment to debug Fortran 90

programs containing the features described in this section.

User-Defined Operators

The Prism environment views user-defined operators as functions. If a new operator

.my_op. appears in a Fortran 90 program, then the Prism environment cannot deal

with the operator .my_op. as an operator, but it can deal with the function my_op,

function inc(i) result(j)
 integer i;
 integer k;
 integer j;
 k = i+1 j = k
end function inc

(prism all) whatis j
(function variable) integer*4 j
 Appendix B C++ and Fortran 90 Support 257

viewed as a generic function. You cannot use operators named * (or +, or any other

keyword operator.), but you can stop in functions that are used to define such

operators. For example:

In this example, the Prism environment does not support debugging the user

defined function .add_op.

(prism all) print 1 .add_op. 2

However, the Prism environment supports the function add_op :

(prism all) print add_op(1,2)

A list pops up, allowing you to choose which add_op to apply.

Internal Procedures

The following commands can take internal procedure names as arguments:

■ stop in

■ whatis

If there are several procedures with the same name, a list pops up from which to

select the desired procedure.

Supported Intrinsics

The Prism environment supports the same intrinsics in Fortran 90 that it supports in

Fortran 77. See “Using Fortran Intrinsic Functions in Expressions” on page 34.

Unsupported Fortran 90 Features

You cannot use the Prism environment to debug Fortran 90 programs containing the

features described in this section.

interface operator(.add_op.)
 integer function int_add(i, j)
 integer*4, intent(in) :: i, j
 end function int_add
 real function real_add(x, y)
 real, intent(in) :: x, y
 end function real_add
end interface
258 Prism 6.1 User’s Guide • March 2000

Derived Type Constructors.

The Prism environment does not support constructors for derived types.

The Prism environment does support assignment to derived types, however. For

example:

(prism all) assign var = var2

Although Fortran 90 allows the use of constructors, the Prism environment does not

support them. The following example is not supported:

(prism all) assign var = point3(1,2,3)

Generic Functions

If the generic function is defined in the current module, such as:

then only references to the fadd are supported, but references to specific functions

that define fadd are not. For example:

type point3
 integer x,y,z;end
type point3
type(point3) :: var,var2;

interface fadd
 integer function intadd(i, j)
 integer*4, intent(in) :: i, j
 end function intadd
 real function realadd(x, y)
 real, intent(in) :: x, y
 end function realadd
end interface

(prism all) whatis intadd
prism: "intadd" is not defined in the scope
`f90_user_op_generic.exe`f90_user_op_generic.f90`main`
 Appendix B C++ and Fortran 90 Support 259

Pointer Assignment Error Checking

The error checking involved by the semantics of the => operator is not fully

supported. If your program causes an illegal pointer assignment, the Prism

environment might not issue any error, and the behavior of the program will be

undefined.

Printing Array Valued Functions

The Prism environment does not print the result of an array-valued function.
260 Prism 6.1 User’s Guide • March 2000

APPENDIX C

Scalar Mode

When viewing serial programs, the Prism environment behaves differently than it

does when viewing multiprocess programs. In this situation, the Prism environment

operates in scalar mode.

The scalar mode of the Prism environment does not support psets, since pset-related

features require multiple processes or threads. This appendix provides descriptions

of other differences between the MP mode and the scalar mode of the Prism

environment.

Note – You can use the Prism environment’s pset features with threaded single-

process programs, if you use the –n 1 argument (thereby specifying that you are

using the Prism multiprocess mode) when you launch the Prism environment to load

the threaded single-process program.

Starting the Prism Environment

▼ To Launch the Prism Environment in Scalar

Mode

● Type

%prism program

This starts the Prism environment for a nonthreaded single-process program, using

the scalar mode of the Prism environment. By default, the prism command invokes

the scalar mode unless you specify the –n, –-np , –bsubargs , or –mprunargs
arguments.
261

Do not launch the Prism environment as an argument to the bsub command (LSF)

or the mprun command (CRE). It creates redundant instances of the Prism

environment. For information on bsub , see the LSF Batch User’s Guide. For

information about mprun , see the Sun MPI User’s Guide.

You can specify other options on the prism command line. For example, you can

specify the -C option to bring up the Prism environment with the commands-only

interface, or the -CX option (from an Xterminal) to bring it up with the commands-

only interface, but be able to send the output of certain commands to X windows.

Stepping and Continuing Through a
Serial Program
When operating on a serial program, the scalar mode of the Prism environment (like

most other debuggers) waits for a step , next , or cont command to finish executing

before letting you issue most other commands.

Execution Pointer

In the scalar mode of the Prism environment, the > symbol in the line-number region

points to the next line to be executed; see “Using the Line-Number Region” on page

26. In a message-passing program, there can be multiple execution points within the

program. The MP mode of the Prism environment marks all the execution points for

the processes in the current set by a > in the line-number region (or a * if the current

source position is the same as the current execution point). Shift-click on this symbol

to display a pop-up window that shows the process(es) for which the symbol is the

execution pointer.

Attaching to a Running Serial Process

As described in “Attaching to a Process” on page 13, you can load a running process

into the Prism environment by specifying the name of the executable program and

the process ID of the corresponding running process on the command line of the

Prism environment.

You can also attach to a running process from within the Prism environment.
262 Prism 6.1 User’s Guide • March 2000

Note – To attach to the running process of a serial program, the process must be

running on the same node as the Prism environment.

▼ To Attach To a Running Process From Within the

Prism Environment

1. Find out the process’s ID by issuing the Solaris command ps .

2. Load the executable program for the process into the Prism environment.

3. Issue the attach command on the command line of the Prism environment, using
the process’s process ID as the argument.

With either method of attaching to the process, the process is interrupted; a message

is displayed in the command window giving its current location, and its status is

stopped. You can then work with the program in the Prism environment as you

normally would. The only difference in behavior is that it does not display its I/O in

a special Xterm window; see “Program I/O” on page 49.

To detach from a running process, issue the command detach from the command

line of the Prism environment. The process continues to run in the background from

the point at which it was stopped in the Prism environment; it is no longer under the

control of the Prism environment. Note that you can detach any process in the Prism

environment via the detach command, not just processes that you have explicitly

attached.

Note – Use the kill command to terminate the process or job (rather than releasing

it to run in the background) currently running within the Prism environment.

Viewing the Call Stack
In the scalar mode of the Prism environment, choosing Where from the Debug menu

displays the call stack for the program; see “To Display the Call Stack” on page 106.

Note that a multiprocess or multithreaded program can have multiple call stacks,

one for each process or thread. To show the relationships among these call stacks,

the MP mode of the Prism environment provides a Where graph. For information

about the Where graph in the MP mode of the Prism environment, see “Displaying

the Where Graph” on page 108.
 Appendix C Scalar Mode 263

264 Prism 6.1 User’s Guide • March 2000

Index
SYMBOLS
', 220

* , 52, 262

.prism_defaults , 228

.prisminit , 15, 31, 32, 190, 219, 220

/ command, 23

/* */, 220

/bin/make , 212, 227

>, 52, 262

? command, 23

A
accessibility of variables, 116

commands, 117

adjustable arrays

printing, 123

alias command, 220, 223

aliases

creating, 223

ALL intrinsic function, 35

all pset, 65

ANY intrinsic function, 35

app-defaults file, 224, 235

arrow keys, 20

using to scroll through source window, 23

assembly code

displaying in split source window, 25

assign command, 117, 156

not available when examining node core files, 47

attach command, 263

can’t be used in actions field, 91

augmenting data type information, 153

B
base

changing for a specific value, 157

changing the default, 123

changing via the Options menu, 144

specifying in print or display command, 129

bjobs command, 47

break pset, 58, 96

breakpoints

deleting, 100, 101, 104

setting, 99

using commands to set, 102

using the event table and Events menu to

set, 100

browser

default for displaying help, 239

C
C++ support, 249

calling C++ methods, 252

cast syntax, 251

class member variables, 250

class methods, 249

class scope, 251

inlined methods, 252
265

linkage (mangled) names, 249

method names, 251

methods of a class, 250

overloaded method names, 250

template classes, 250

template functions, 250

variables of class type, 250

variables of type reference, 252

call command, 117

call stack

displaying, 106

moving through, 107

cd command, 40

CDE, 8

changes

where Prism stores, 228

CMPLX intrinsic function, 35, 138

colormap visualizers, 5, 136

changing the colors for, 234

changing the size of the default spectral color

map for, 234

minimum and maximum values of, 141

colors

changing Prism’s standard, 234

command line, 27

using, 28

command options

quotation marks, 17

command window, 4

using, 27

commands

adding to the tear-off region, 222

issuing, 21

issuing multiple, 28

logging, 31

setting up alternative names for, 223

Commands Reference selection, 216

commands-only mode, 245

Common Events buttons, 92, 126

compiler options, combining, 8

compilers

supported, 8

compiling and linking, 8

from within Prism, 212

complex numbers, 134, 143

cont command

in MP Prism, 262

context

setting via print or display command, 128

contw command, 52

cannot be used in event actions, 98

core command, 46

can’t be used in actions field, 91

not available in MP Prism, 47

core files

associating with loaded programs, 46

working with, 13

COUNT intrinsic function, 35

Ctrl-A, 21, 246

Ctrl-B, 21, 246

Ctrl-C, 20, 28, 246

ending a wait in MP Prism, 52

Ctrl-D, 21, 246

Ctrl-E, 21, 246

Ctrl-F, 21, 246

Ctrl-H, 246

Ctrl-J, 246

Ctrl-K, 21, 246

Ctrl-L, 246

Ctrl-M, 246

Ctrl-N, 28, 246

Ctrl-P, 28, 246

Ctrl-U, 21, 246

Ctrl-X, 23

Ctrl-Z, 54

current execution point

returning to, 23

current file, 82

changing, 83

current function, 82

changing, 84

changing via the Where graph, 115

current process, 71, 72

current pset, 68

and dynamic psets, 70

and variable psets, 71

changing via the Where graph, 115

setting, 68

current working directory

changing and printing, 40

Customize selection, 224
266 Prism 6.1 User’s Guide • March 2000

Customize utility

using, 224

cycle command, 74, 163

cycle pset, 73, 163

Cycle window, 75, 162

D
data navigator, 5

using, 131

data type indormation, augmenting, 153

dbx , 21

dedicated window, 30, 126

define pset command, 62

cannot be used in event actions, 98

delete command, 106, 247

delete pset command, 68

cannot be used in event actions, 98

Delete selection, 93, 105

detach command, 48, 263

can’t be used in actions field, 91

disable command, 94

display command, 117, 127

redirecting output to X window, 248

specifying the radix in, 129

with varfile intrinsic, 147

Display dialog box, 126

DISPLAY environment variable, 9

Display selection (Debug menu), 124

in MP Prism, 160

display window

using, 131

displaying

difference from printing, 122

from the command window, 127

from the event table, 126

dither visualizers, 134

done pset, 58

down command, 108

Down selection, 108

dump command, 117, 157, 158

E
eachinst keyword, 91

eachline keyword, 91

edit geometry, 226

Edit selection, 226, 232

editing source code, 211

editor

specifying default, 232

EDITOR environment variable, 211, 226

effects of optimization, 116

enable command, 94

environment variables

setting and displaying, 40

error bell, 226

error messages

specifying window for, 232

error pset, 58

error window, 226

errors

Prism’s behavior after, 238

eval pset command, 63, 71, 97

event list, 90, 104

Event Table

description of, 89

using, 89

Event Table selection, 89

events

adding, 92

and deleted psets, 98

deleting, 93

disabling, 94

editing, 93

enabling, 94

maintaining across reloads, 94

saving, 94

triggering conditions for, 88

Events menu, 92

execution pointer, 26

in MP Prism, 52, 262

expressions

writing in Prism, 32

F
F1 key, 20, 215
Index 267

file command, 83

File menu in visualizers

Diff and Diff With selections, 148

Save and Save as selections, 146

using, 132

File selection, 23, 83, 84, 99

focus, 20

fonts

changing the default, 233

Fortran 90 generic procedures

changing the way Prism handles, 240

using, 37

Fortran 90 support

allocatable arrays, 256

print command, 256

whatis command, 256

array sections, 256

array valued functions, 260

derived types, 253, 259

Fortran 77 intrinsics, 258

generic functions, 253, 259

internal procedures, 258

masked array operations, 257

pointer assignment, 254

allocatable arrays, 256

pointer assignment error checking, 260

pointers to arrays, 255

slicing and striding arrays, 256

user defined operators, 257

variable attributes, 257

whatis command, 255

Fortran intrinsic functions, 34

func command, 84

Func selection, 23, 24, 84, 99

function definition

displaying in the source window, 24

functions

choosing the correct, 32

G
–g compiler option, 8

Glossary selection, 216

graph visualizers, 136

minimum and maximum of, 141

H
help system

overview of, 6

using, 216

histogram visualizers, 133

parameters for, 141

history region, 27

changing the default length of, 29

using, 29

Host Prism, 11

I
I/O, 49

specifying the Xterm for, 227, 238

ILEN intrinsic function, 35

IMAG intrinsic function, 35

infinities

detecting, 37

initialization file, 15, 31

interrupt command, 51

Interrupt selection, 28

ending a wait in MP Prism, 52

in MP Prism, 51

interrupted pset, 51, 58, 64

isactive intrinsic, 62, 63

K
keyboard accelerators, 22

keyboard alternatives to the mouse, 19

L
languages supported in Prism, 8

layout intrinsic, 178, 179

layouts

visualizing, 178

layouts, visualizing, 178

LD_LIBRARY_PATH, 184

leaving Prism, 41

line-number region, 4, 26

list command, 247
268 Prism 6.1 User’s Guide • March 2000

load command, 45

can’t be used in actions field, 91

Load selection, 44

loading a program, 43

local variables

printing names and values of, 157

location cursor, 20

log command, 219

logging commands and output, 31

M
make command, 213

make utility, 212, 227

makefile

creating, 212

using, 212

Man Pages selection, 217

manual pages

viewing, 217

Mark Stale Data, 227

MAXLOC intrinsic function, 128

MAXVAL intrinsic function, 35

memory

examining the contents of, 117

menu bar, 3

using, 21

menu threshold

for Sun HPF generic procedures, 227

message queues, visualizing, 163 to 173

communicator colors, 171

communicator data, 171

communicator dialog box, 172

Data Type dialog box, 173

label values, 168

Message dialog box, 170

nonblocking sends and receives, 163

sort critieria, 169

stopped ranks, 164

unexpected receives

correctness problems, 163

performance problems, 163

zoom levels, 164

Meta key, 20

MINVAL intrinsic function, 35

Motif keyboard translations

changing, 237

mouse

getting help on using, 216

using, 19

MP Prism

attaching in, 47, 262

commands-only version, 53

customizing, 220

executing a program in, 48

prompt in, 69

shortening, 70

scope in, 73

visualizing data in, 160

MPI Performance Analysis requirements, 183

MPI queues. See message queues

MPI SPMD style requirement, 82

MPI_Comm_accept , 82

MPI_Comm_connect , 82

MPI_Comm_spawn_multiple , 82

N
names

resolving, 32

NaNs

detecting, 37

Netscape, 239

next command

in MP Prism, 262

–nothreads argument, 11

O
online documentation, 217

obtaining in commands-only Prism, 247

optimization, effects of, 116

Options menu in visualizers

using, 132

output

logging, 31

redirecting

in –CX version of Prism, 248

Overview selection, 216
Index 269

P
parallel array, 173

PATH environment variable, 9

Performance Analysis Commands, 186

arguments, 187

print command, 117, 127, 249, 250, 256

redirecting output to X window, 248

specifying the radix in, 129

with varfile intrinsic, 147

Print dialog box, 124

Print selection (Debug menu), 124

in MP Prism, 160

Print selection (Events menu), 125

printenv command, 41

printing

changing the default precision for, 140

difference from displaying, 122

from the command window, 127

from the event table, 126

from the source window, 24, 125

specifying the number of items to be printed on a

line, 247

Prism

commands-only, 13, 245 to 248

entering, 10

initializing, 219

languages supported in, 8

leaving, 41

look and feel of, 2

overview of, 1

prism command

–bsubargs argument, 16

–C option, 14, 245

–CX option, 248

–W argument, 16

Prism defaults

changing, 229

Prism resources

table of, 229

Prism*defaultVirtualBindings
resource, 237

Prism*fontList resource, 230, 233

Prism*XmText.fontList resource, 231, 233

Prism.comm1Color resource, 229

Prism.comm2Color resource, 229

Prism.comm3Color resource, 229

Prism.commOtherColor resource, 229

Prism.cppPath , 220

Prism.cppPath resource, 229

Prism.dialogColor resource, 229, 234

Prism.editGeometry resource, 229, 232

Prism.editor resource, 229, 232

Prism.errorBell resource, 229, 238

Prism.errorwin resource, 229, 232

Prism.graphBGColor resource, 230, 234

Prism.graphFillColor resource, 230, 234

Prism.helpBrowser resource, 230, 239

Prism.helpUseExisting resource, 230, 240

Prism.mainColor Resource, 234

Prism.mainColor resource, 230

Prism.make resource, 230

Prism.markStaleData resource, 230, 239

Prism.procMenu resource, 230, 240

Prism.procThresh resource, 230, 240

Prism.spectralMapSize resource, 230, 234

Prism.textBgColor resource, 230, 234

Prism.textFont resource, 230, 233

Prism.textManyFieldTranslations
resource, 230, 236

Prism.textMasterColor resource, 230, 234

Prism.textOneFieldTranslations
resource, 230, 236

Prism.useXterm resource, 230, 238

Prism.vizColormap resource, 231

Prism.vizcolormap resource, 234

prism_add_array function, 153

prism_define_typename function, 153

probes,TNF, 181

procedure menu

for Sun HPF generic procedures, 227

process

attaching to running, 13

process command, 72, 73

cannot be used in event actions, 98

process, running

loading, 13

processes

interrupting, 51

waiting for, 51

PRODUCT intrinsic function, 35
270 Prism 6.1 User’s Guide • March 2000

programs

loading into Prism, 43

reloading into Prism, 45

rerunning, 49

pset command, 69, 70, 73

cannot be used in event actions, 98

–hide option, 75

–unhide option, 75

pset keyword, 59

pset qualifier, 77

cannot be used in event actions, 98

psets

bounded

creating from an unbounded pset, 80

cycling through the members of, 74

defining, 59

syntax for, 59

deleting, 68

dynamic, 58

and events, 97

and the current pset, 70

contrasted with variable psets, 64

naming, 62

predefined, 58

threads, 54

unbounded, 78

snapshots, 79

using, 54

using in commands, 77

variable, 62, 78

and events, 97

and the current pset, 71

contrasted with dynamic psets, 64

evaluating membership in, 63

viewing the contents of, 65

Psets selection, 56

Psets window, 65

changing the current pset via, 68

using, 56

zooming in, 66

pstatus command, 53

pushbutton command, 220, 222, 246

pwd command, 40

Q
qualified names, 33

using, 33

quit command, 42, 247

Quit selection, 41

quotation marks, 17

R
radix

changing for a specific value, 157

changing the default, 123

changing via the Options menu, 144

specifying in print or display command, 129

RANK intrinsic function, 35

REAL intrinsic function, 35

registers

examining the contents of, 117, 128

reload command, 45

requirements, MPI Performance Analysis, 183

rerun command, 49

resize box, 28

resolving names, 32

return command

can’t be used in actions field, 91

Run (args) selection, 49

Run button, 49

run command, 49

can’t be used in actions field, 91

Run selection, 48

running pset, 58

S
S3L arrays

visualizing layouts of, 178

S3L parallel array, 173

array handle, 174

data types, 174

scope

in MP Prism, 73

scope pointer, 27

set command, 224

$d_precision and $f_precision
variables, 140

$history variable, 29
Index 271

$page_size variable, 247

$print_width variable, 247

$prompt_length variable, 70

$radix variable, 106

setenv command, 41

sh command, 40

Shell selection, 39

shell syntax

quotation marks, 17

show events command, 94, 95, 98, 102, 104, 106,

247

show pset command, 66, 68, 70

show psets command, 56, 63, 67

redirecting output to X window, 248

SIZE intrinsic function, 35

snapshot window, 30, 126

snapshots

unbounded psets, 79

source code

editing, 211

moving through, 23

source command, 95, 96

source files

creating a directory list for, 84

source window, 4

scrolling, 23

splitting, 24

using, 22

special function

prism_define_typename , 153

status messages, 50

status region, 4

step command

can’t be used in actions field, 91

in MP Prism, 50, 262

Stop <cond>, 101

Stop <loc>, 101

Stop <var>, 101

stop command, 249, 250

stopi command, 102, 103

stopped keyword, 91

stopped pset, 58, 61, 64

structures

visualizing, 149

augmenting data type information, 153

in commands-only Prism, 248

SUM intrinsic function, 35

Sun MPI Client/Server programs

using MP Prism with, 82

surface visualizers, 137

minimum and maximum of, 141

T
Tab, 20

task ID, 47

tearoff command, 220, 246

Tear-off dialog box, 222

tear-off region, 3, 221, 222

Tear-off selection, 221

tearoff command, 222

text

selecting in source window, 24

text font, 227

text visualizers, 5, 133

precision of, 140

text widgets

changing keyboard translations in, 236

this identifier, 250

thread identifiers

referring to nonexistent, 81

threads, 54

hidden, 75

libmpi_mt library, 11

libthread library, 11

unbounded psets, 78

–threads argument, 11

threshold visualizers, 5, 135

threshold of, 141

Timeline window, 192

TNF probes, 181

TNF_PROBE macro, 187

tnfcollection command, 186

event action specifier, 190, 206

tnfdebug command, 186

tnfdisable command, 186

tnfenable command, 184, 186, 190

tnffile command, 186

size argument, 206
272 Prism 6.1 User’s Guide • March 2000

tnflist command, 186

tnfview command

Plot window

creating intervals, 196

event datasets, 196

histogram bar statistics, 204

histogram metric, 203

histogram view, 202

scatter plot view, 195

table view, 201

Timeline window

Bookmark selection, 194

Event Table, 192

Graph button, 193

Navigation menu, 193

Next, Previous buttons, 193

Print button, 193

Scale sliders, 193

tnfview command, 186

Trace <cond>, 105

Trace <loc>, 104

Trace <var>, 105

trace command, 102, 105, 117

Trace Normal Form (TNF), 182

event intervals, 181

Sun MPI Library, 187

TNF probe groups, 187

Trace selection, 104

tracei command, 102, 117

traces

deleting, 106

in MP Prism

requirement that processes synchronize, 97

tracing program execution, 104

triggering conditions for events, 88

Tutorial selection, 216

U
unalias command, 223

UNIX commands

issuing, 39

unset command, 224

unsetenv command, 41

untearoff command, 222, 246

up command, 108

Up selection, 108

use command, 85

Use selection, 45, 85

Using Help selection, 216

V
variables

choosing the correct, 32

comparing values of, 147

printing the type of, 155

restoring the values of from a file, 146

saving the values of to a file, 145

setting up alternative names for, 223

variables, accessibility of, 116

varsave command, 117, 145

vector visualizers, 138

minimum and maximum of, 141

visualization parameters, 139

Visualizer Color File, 227

visualizer color file

creating, 228

visualizers, 5, 129

closing, 144

comparing values in, 147

displaying a ruler for, 142

displaying from the source window, 24

field width of, 140

in MP Prism, 160

saving, restoring, and comparing, 145

setting the context for, 143

statistics for, 142

structure, 149

treatment of stale data in, 227

types of, 133

updating, 144

working with, 129

visualizing layouts, 178

W
Wait Any selection, 52

wait command, 51

any argument, 52
Index 273

every argument, 51

Wait Every selection, 52

watchpoint, 88

whatis command, 156, 255, 256, 257

Whatis selection, 155

when command, 117

where command

in MP Prism

redirecting output to X window, 248

where command, 107, 117

Where graph, 108, 263

and the current process, 71

moving through, 115

panning and zooming in, 110

shrinking portions of, 114

view information about threads, 114

visualizing in commands-only Prism, 248

Where selection, 107

in MP Prism, 108, 263

Where window, 107, 108

whereis command, 34

which command, 33

windowing environments

supported

Common Desktop Environment (CDE), 8

OpenWindows, 8

X
X resource database

adding Prism resources to, 231

X toolkit command-line options, 14

X Window System, 1

xman, 217

xrdb , 231

Xterm

specifying for I/O, 238
274 Prism 6.1 User’s Guide • March 2000

	Prism™ 6.1 User’s Guide
	Prism™ 6.1 User’s Guide
	Prism™ 6.1 User’s Guide
	Part No. 806-3736-10
	March 2000, Revision A
	Sun Microsystems, Inc.
	Sun Microsystems, Inc.
	901 San Antonio Road
	901 San Antonio Road
	Palo Alto,
	CA
	94303-4900
	USA
	650 960-1300 Fax 650 969-9131

	Copyright 2000
	Copyright 2000
	Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights ...

	This product or document is protected by copyright and distributed under licenses restricting its...
	This product or document is protected by copyright and distributed under licenses restricting its...
	Parts of the product may be derived from Berkeley BSD systems, licensed from the University of Ca...
	Sun, Sun Microsystems, the Sun logo, SunStore, AnswerBook2, docs.sun.com, Solaris, Sun HPC Cluste...
	The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its u...
	RESTRICTED RIGHTS:
	RESTRICTED RIGHTS:

	DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARR...
	Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303-4900 U.S...
	Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restrei...
	Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Univer...
	Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, Solaris , Sun HPC ClusterTools, Pr...
	L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc....
	CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORD...

	Contents
	Preface
	Preface
	The
	These instructions are intended for application programmers developing serial or parallel program...
	Using UNIX Commands
	Using UNIX Commands
	This document may not contain information on basic UNIX® commands and procedures such as shutting...
	See one or more of the following for this information:
	AnswerBook2™ online documentation for the Solaris operating environment
	AnswerBook2™ online documentation for the Solaris operating environment
	AnswerBook2™ online documentation for the Solaris operating environment

	Other software documentation that you received with your system
	Other software documentation that you received with your system

	Typographic Conventions
	Typographic Conventions
	<TABLE>
	TABLE�P�1 Typographic Conventions
	<TABLE HEADING>
	<TABLE ROW>
	Typeface or Symbol
	Typeface or Symbol

	Meaning
	Meaning

	Examples
	Examples

	<TABLE BODY>
	<TABLE ROW>
	AaBbCc123
	AaBbCc123
	AaBbCc123

	The names of commands, files, and directories; on�screen computer output.
	The names of commands, files, and directories; on�screen computer output.

	Edit your .login file.
	Edit your
	Use
	% You have mail
	% You have mail

	<TABLE ROW>
	AaBbCc123
	AaBbCc123
	AaBbCc123

	What you type, when contrasted with on-screen computer output.
	What you type, when contrasted with on-screen computer output.

	% su
	%
	%
	su

	Password:
	Password:

	<TABLE ROW>
	AaBbCc123
	AaBbCc123
	AaBbCc123

	Book titles, new words or terms, words to be emphasized.
	Book titles, new words or terms, words to be emphasized.
	Command-line variable; replace with a real name or value.

	Read Chapter 6 in the User’s Guide.
	Read Chapter 6 in the
	These are called
	You
	To delete a file, type

	Shell Prompts
	Shell Prompts
	<TABLE>
	TABLE�P�2 Shell Prompts
	<TABLE HEADING>
	<TABLE ROW>
	Shell
	Shell

	Prompt
	Prompt

	<TABLE BODY>
	<TABLE ROW>
	C shell
	C shell

	machine_name%
	machine_name
	machine_name
	%

	<TABLE ROW>
	C shell superuser
	C shell superuser

	machine_name#
	machine_name
	machine_name
	#

	<TABLE ROW>
	Bourne shell and Korn shell
	Bourne shell and Korn shell

	$
	$
	$

	<TABLE ROW>
	Bourne shell and Korn shell superuser
	Bourne shell and Korn shell superuser

	#
	#
	#

	Related Documentation
	Related Documentation
	<TABLE>
	TABLE�P�3 Related Documentation
	<TABLE HEADING>
	<TABLE ROW>
	Application
	Application

	Title
	Title

	Part Number
	Part Number

	<TABLE BODY>
	<TABLE ROW>
	All
	All

	Sun HPC ClusterTools 3.1 Administrator’s Guide
	Sun HPC ClusterTools 3.1 Administrator’s Guide
	Sun HPC ClusterTools 3.1 Administrator’s Guide

	806-3731-10
	806-3731-10

	<TABLE ROW>
	All
	All

	Sun HPC ClusterTools 3.1 User’s Guide
	Sun HPC ClusterTools 3.1 User’s Guide
	Sun HPC ClusterTools 3.1 User’s Guide

	806-3733-10
	806-3733-10

	<TABLE ROW>
	All
	All

	Sun HPC ClusterTools 3.1 Product Notes
	Sun HPC ClusterTools 3.1 Product Notes
	Sun HPC ClusterTools 3.1 Product Notes

	906-4182-10
	906-4182-10

	<TABLE ROW>
	Sun MPI Programming
	Sun MPI Programming

	Sun MPI 4.1 Programming and Reference Guide
	Sun MPI 4.1 Programming and Reference Guide
	Sun MPI 4.1 Programming and Reference Guide

	806-3734-10
	806-3734-10

	<TABLE ROW>
	S3L
	S3L

	Sun S3L 3.1 Programming and Reference Guide
	Sun S3L 3.1 Programming and Reference Guide

	806-3735-10
	806-3735-10

	<TABLE ROW>
	Prism
	Prism

	Prism 6.1 Reference Manual
	Prism 6.1 Reference Manual
	Prism 6.1 Reference Manual

	806-3737-10
	806-3737-10

	Ordering Sun Documentation
	Ordering Sun Documentation
	Fatbrain.com, an Internet professional bookstore, stocks select product documentation from Sun Mi...
	For a list of documents and how to order them, visit the Sun Documentation Center on Fatbrain.com...
	http://www1.fatbrain.com/documentation/sun
	http://www1.fatbrain.com/documentation/sun

	Accessing Sun Documentation Online
	Accessing Sun Documentation Online
	The
	http://docs.sun.com
	http://docs.sun.com
	http://docs.sun.com

	Sun Welcomes Your Comments
	Sun Welcomes Your Comments
	We are interested in improving our documentation and welcome your comments and suggestions. You c...
	docfeedback@sun.com
	docfeedback@sun.com

	Please include the part number of your document in the subject line of your email.

	1
	1
	The Prism Environment
	The Prism™ programming environment is an integrated graphical environment within which users can ...
	Overview
	Overview
	You can either load an executable program into the Prism environment, or start from the beginning...
	Once an executable program is loaded into the Prism environment, you can (among other things):
	Execute the program
	Execute the program
	Execute the program

	Debug the program
	Debug the program

	Visualize data from the program
	Visualize data from the program

	Analyze the performance of message-passing programs
	Analyze the performance of message-passing programs

	The Prism environment is primarily a debugger and programming environment for multiprocess progra...

	The Look and Feel of the Prism Programming Environment
	The Look and Feel of the Prism Programming Environment
	FIGURE�1�1
	FIGURE�1�1

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�1�1 The Prism Programming Environment’s Main Window

	Clicking on items in the
	You can add frequently used menu items and commands to the
	The
	The
	The
	The
	General aspects of using these areas are discussed in

	Loading and Executing Programs
	Loading and Executing Programs
	You can load an executable program into the Prism environment when you start it up, or any time a...
	You can also attach to a running program or associate a core file with a program.
	See

	Debugging
	Debugging
	The Prism environment allows you to perform standard debugging operations such as setting breakpo...

	Visualizing Data
	Visualizing Data
	It is often important to obtain a visual representation of the data elements that make up an arra...
	In the
	In the
	In the

	In the
	In the
	In the

	In the
	In the
	In the

	A
	See

	Analyzing Program Performance
	Analyzing Program Performance
	The Prism environment provides support for Trace Normal Form (TNF) performance analysis for Sun M...
	See

	Editing and Compiling
	Editing and Compiling
	You can call up the editor of your choice within the Prism environment to edit source code (or an...

	Obtaining Online Help and Documentation
	Obtaining Online Help and Documentation
	The Prism environment features a comprehensive online help system. Help is available for each men...
	In addition to help on the Prism environment itself, the Prism programming environment online doc...
	Online help and documentation are described in more detail in

	Customizing the Prism Programming Environment
	Customizing the Prism Programming Environment
	You can change aspects of the way the Prism environment operates. You can create customized comma...

	2
	2
	Using the Prism Environment
	This chapter describes general aspects of using the Prism environment. Succeeding chapters descri...
	The best way to learn how to use the Prism environment is to try it out for yourself as you read ...
	“Before Entering the Prism Environment” on page 7
	“Before Entering the Prism Environment” on page 7
	“Before Entering the Prism Environment” on page 7
	“Before Entering the Prism Environment” on page 7

	“Entering the Prism Environment” on page 10
	“Entering the Prism Environment” on page 10
	“Entering the Prism Environment” on page 10
	“Entering the Prism Environment” on page 10

	“Executing Commands Within the Prism Environment” on page 19
	“Executing Commands Within the Prism Environment” on page 19
	“Executing Commands Within the Prism Environment” on page 19
	“Executing Commands Within the Prism Environment” on page 19

	“Using the Menu Bar” on page 21
	“Using the Menu Bar” on page 21
	“Using the Menu Bar” on page 21
	“Using the Menu Bar” on page 21

	“Using the Source Window” on page 22
	“Using the Source Window” on page 22
	“Using the Source Window” on page 22
	“Using the Source Window” on page 22

	“Using the Line-Number Region” on page 26
	“Using the Line-Number Region” on page 26
	“Using the Line-Number Region” on page 26
	“Using the Line-Number Region” on page 26

	“Using the Command Window” on page 27
	“Using the Command Window” on page 27
	“Using the Command Window” on page 27
	“Using the Command Window” on page 27

	“Writing Expressions in the Prism Environment” on page 32
	“Writing Expressions in the Prism Environment” on page 32
	“Writing Expressions in the Prism Environment” on page 32
	“Writing Expressions in the Prism Environment” on page 32

	“Using Fortran 90 Generic Procedures” on page 37
	“Using Fortran 90 Generic Procedures” on page 37
	“Using Fortran 90 Generic Procedures” on page 37
	“Using Fortran 90 Generic Procedures” on page 37

	“Issuing Solaris Commands” on page 39
	“Issuing Solaris Commands” on page 39
	“Issuing Solaris Commands” on page 39
	“Issuing Solaris Commands” on page 39

	“Leaving the Prism Environment” on page 41
	“Leaving the Prism Environment” on page 41
	“Leaving the Prism Environment” on page 41
	“Leaving the Prism Environment” on page 41

	Before Entering the Prism Environment
	Before Entering the Prism Environment
	This section describes the programming conditions under which you can make use of the Prism envir...
	Supported Languages and Compilers
	Supported Languages and Compilers
	You can work on Sun Fortran, C, and C++ programs within the Prism environment. However, support f...
	The Prism environment supports these compilers in Sun HPC ClusterTools™ 3.1:
	SPARCompiler Fortran 77 4.2, and 5.0
	SPARCompiler Fortran 77 4.2, and 5.0
	SPARCompiler Fortran 77 4.2, and 5.0

	SPARCompiler Fortran 90 4.2, and 5.0
	SPARCompiler Fortran 90 4.2, and 5.0

	SPARCompiler C 4.0, 4.2, and 5.0
	SPARCompiler C 4.0, 4.2, and 5.0

	SPARCompiler C++ 4.2, and 5.0
	SPARCompiler C++ 4.2, and 5.0

	Compiling and Linking Your Program
	Compiling and Linking Your Program
	To use the Prism environment’s debugging features, compile and link each program module with the
	Note – The –
	Note – The –

	Combining Compiler Options
	Combining Compiler Options
	If you compile programs with both the debugging option

	Setting Up Your Working Environment
	Setting Up Your Working Environment
	To enter the Prism environment, you must be logged in to a terminal or workstation running
	DISPLAY
	DISPLAY
	DISPLAY

	Make sure that your
	%
	%

	PATH
	PATH
	PATH

	Sun HPC ClusterTools requires that two directories be set in your
	/opt/SUNWhpc/bin /opt/SUNWlsf/bin
	/opt/SUNWhpc/bin /opt/SUNWlsf/bin

	PRISM_BROWSER_SCRIPT
	PRISM_BROWSER_SCRIPT
	PRISM_BROWSER_SCRIPT

	The Prism environment uses the default HTML browser on your system to display Prism online help. ...
	%
	%

	If you do not set this variable in this situation, once the Prism help system responds the browse...
	For information about the configuration of Sun HPC ClusterTools at your location, see your Sun HP...

	MPI_INIT_TIMEOUT
	MPI_INIT_TIMEOUT
	MPI_INIT_TIMEOUT

	Sun MPI has timeouts built into the software to help detect when there are problems starting an M...
	To Set Sun MPI Timeouts
	To Set Sun MPI Timeouts
	Type
	Type
	%
	%

	to lengthen or disable the timeout time.
	When you set
	For example, to disable timeouts (in a C shell):
	%
	%

	Again in a C shell, to set timeouts to 5 minutes:
	%
	%

	Entering the Prism Environment
	Entering the Prism Environment
	The Prism environment supports both multiprocess and single-process programs. Use the multiproces...
	Launching the Prism Environment
	Launching the Prism Environment
	The Prism environment offers many features (such as process sets or
	When you specify the multiprocess mode of the Prism environment, the Prism environment starts dis...
	Note – Do not launch the Prism environment as an argument to the
	To Launch the Prism Environment in Multiprocess Mode
	To Launch the Prism Environment in Multiprocess Mode
	Type
	Type
	%
	%

	The –
	N
	N
	N
	N

	One process (specifying a
	One process (specifying a

	Zero (specifying the
	Zero (specifying the

	The multiprocess mode supports debugging message-passing programs or multithreaded single-process...
	There is one client Prism process for each process in the program. The Prism process attaches its...
	There is one client Prism process for each process in the program. The Prism process attaches its...
	There is one client Prism process for each process in the program. The Prism process attaches its...

	There is a single server Prism process that communicates with the Prism processes and provides th...
	There is a single server Prism process that communicates with the Prism processes and provides th...
	There is a single server Prism process that communicates with the Prism processes and provides th...

	The multiple Prism processes run on the same node as the program’s processes.
	The multiple Prism processes run on the same node as the program’s processes.
	The multiple Prism processes run on the same node as the program’s processes.

	Specifying a Threaded or Nonthreaded View of Programs
	Specifying a Threaded or Nonthreaded View of Programs
	The multiprocess mode of the Prism environment identifies programs as threaded if they have been ...
	Viewing a program as nonthreaded means viewing only the main stream of execution in that program....
	To Specify a Threaded View of Programs
	To Specify a Threaded View of Programs
	Type
	Type
	%
	%

	For example,
	%
	%

	This starts the Prism environment with a program,

	Issuing the
	Using the –
	To Specify an Nonthreaded View of Programs
	To Specify an Nonthreaded View of Programs
	Type
	Type
	%
	%

	For example,
	%
	%

	This loads a message-passing program (threaded or nonthreaded) with a program, a.out, compiled wi...

	By default, the Prism environment treats loaded Sun MPI programs as though they are nonthreaded. ...
	To Load a Threaded Single-Process Program
	To Load a Threaded Single-Process Program
	Type
	Type
	%
	%

	For example,
	%
	%

	Specify the process number (one), even though the program runs on a single process.

	See

	Attaching to a Process
	Attaching to a Process
	process, running:loading
	process, running:loading

	See

	Associating a Program or Process With a Core File
	Associating a Program or Process With a Core File
	You can associate a core file with a single-process program, or a process of a multiprocess program.
	To Associate a Program or Process With a Core File at Startup
	To Associate a Program or Process With a Core File at Startup
	1. Type
	1. Type
	%
	%

	or (if you have launched the Prism environment and loaded a single-process program),

	2. Type
	2. Type
	(prism)
	(prism)

	See
	Note – In the multiprocess (MP) mode of the Prism environment, the Prism prompt includes the curr...

	Starting With the Commands-Only
	Starting With the Commands-Only
	The Prism environment supports both a graphic user interface and a command-line interface, called...
	To Start With the Commands-Only Interface
	To Start With the Commands-Only Interface
	Type
	Type
	%
	%

	This allows you to bring up the Prism environment with the commands-only interface on a terminal ...

	To Start With the Commands-Only Interface, Redirecting Output
	To Start With the Commands-Only Interface, Redirecting Output
	Type
	Type
	%
	%

	This allows you to bring up the Prism environment with the commands-only interface, redirecting t...

	See

	Specifying X Toolkit Options
	Specifying X Toolkit Options
	You can include most standard
	The
	The
	The

	The
	The
	The

	X toolkit options are ignored if you use

	Specifying Input and Output Files
	Specifying Input and Output Files
	To Specify an Input File
	To Specify an Input File
	Type
	Type
	%
	%

	This specifies a file from which the Prism environment is to read and execute commands upon startup.

	To Specify an Output File
	To Specify an Output File
	Type
	Type
	%
	%

	This specifies a file to which the Prism environment commands and their output are to be logged.

	If you have created a

	Specifying the Host Environment
	Specifying the Host Environment
	To Specify Where the Host Prism Environment Is To Run
	To Specify Where the Host Prism Environment Is To Run
	Type
	Type
	%
	%

	For example,
	%
	%

	The number 4 specifies the number of processes to run.

	The Prism environment starts Host Prism on the node to which you are logged in.
	See

	Specifying a Number of Processes Greater Than the Number of Processors
	Specifying a Number of Processes Greater Than the Number of Processors
	To Start More Processes Than You Have Processors
	To Start More Processes Than You Have Processors
	Type
	Type
	%
	%

	The Prism environment can start the number of processes you specify, even when that number exceed...
	%
	%

	starts four processes, regardless of the number of processors.

	Specifying Runtime Environment Options
	Specifying Runtime Environment Options
	To Supply
	To Supply
	Type
	Type
	%
	%

	This provides the Prism environment (when using the LSF environment) with
	%
	%

	Here, you requested four processes to be launched on host

	To Supply
	To Supply
	Type
	Type
	%
	%

	This provides the Prism environment (when using the CRE environment) with
	%
	%

	Here, you requested four processes to be launched on partition

	Note – If the
	Note – If the

	Specifying Runtime Environment-Specific Options After Launching the Prism Environment
	Specifying Runtime Environment-Specific Options After Launching the Prism Environment
	Sun HPC ClusterTools supports two run-time environments, Platform Computing’s Load Sharing Facili...
	To Specify Runtime Environment-Specific Options After Startup
	To Specify Runtime Environment-Specific Options After Startup
	1. Identify the current environment by executing
	1. Identify the current environment by executing
	For example,
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	% hpc_rte
	%
	lsf

	2. Return to the Prism environment.
	2. Return to the Prism environment.

	3. Issue environment-specific commands
	3. Issue environment-specific commands
	Specify any
	The Prism environment stores these options, then applies them when you start up a multiprocess pr...
	Note – The strings given to
	Note – The strings given to

	To Specify a Preferred Host by Name (Running LSF),
	To Specify a Preferred Host by Name (Running LSF),
	1. Enter the Prism environment in the LSF environment.
	1. Enter the Prism environment in the LSF environment.

	2. Type
	2. Type
	(
	For example,
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) bsubargs -m argos
	(prism all)
	(prism all)
	bsubargs -m argos

	3. Remove any existing
	3. Remove any existing
	(prism all)
	(prism all)
	(prism all)

	This removes options you have set via the shell command line.
	Issuing the
	Note – The
	Note – The

	To Specify a Preferred Partition by Name (Running CRE)
	To Specify a Preferred Partition by Name (Running CRE)
	1. Start the Prism environment in the CRE environment.
	1. Start the Prism environment in the CRE environment.

	2. Type
	2. Type
	(prism all)
	For example,
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) mprunargs -p delos
	(prism all)
	(prism all)
	mprunargs -p delos

	3. Remove any existing
	3. Remove any existing
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) mprunargs off
	(prism all)
	(prism all)

	Within the Prism environment, this removes options you have set via the command line.
	Issuing the
	Note – The
	Note – The

	Executing Commands Within the Prism Environment
	Executing Commands Within the Prism Environment
	Within the Prism environment, you can perform most actions in one of three ways:
	By using a mouse; see
	By using a mouse; see
	By using a mouse; see

	By using keyboard alternatives to the mouse; see
	By using keyboard alternatives to the mouse; see

	By issuing commands from the keyboard; see
	By issuing commands from the keyboard; see

	Using the Mouse
	Using the Mouse
	You can point and click with a mouse in the Prism environment to choose menu items and to perform...
	In any window where you see this mouse icon:
	<GRAPHIC>
	<GRAPHIC>

	you can left-click on the icon to obtain information about using the mouse in the window.

	Using Keyboard Alternatives to the Mouse
	Using Keyboard Alternatives to the Mouse
	You can use the keyboard to perform many of the same functions you can perform with a mouse. This...
	In general, to use a keyboard alternative, the
	General keyboard alternatives to mouse control are listed below.
	<TABLE>
	TABLE�2�1 General Keyboard Alternatives to Mouse Control�
	<TABLE HEADING>
	<TABLE ROW>
	Key Name
	Key Name

	Description
	Description

	<TABLE BODY>
	<TABLE ROW>
	Tab
	Tab

	Use the Tab key to move the location cursor from field to field within a window or dialog box. Th...
	Tab
	Tab

	<TABLE ROW>
	Shift-Tab
	Shift-Tab

	Use the Shift-Tab keys to perform the same function as Tab, but move through the fields in the op...
	Use the Shift-Tab keys to perform the same function as Tab, but move through the fields in the op...

	<TABLE ROW>
	Return
	Return

	Use the Return key to choose a highlighted choice in a menu, or to perform the action associated ...
	Use the Return key to choose a highlighted choice in a menu, or to perform the action associated ...

	<TABLE ROW>
	Arrow keys
	Arrow keys

	Use the up, down, left, and right arrow keys to move within a field. For example, when the locati...
	arrow keys
	arrow keys

	<TABLE ROW>
	F1
	F1
	F1

	Use the F1 key instead of the Help button to obtain help about a window or dialog box.
	Use the F1 key instead of the

	<TABLE ROW>
	F10
	F10

	Use the F10 key to move the location cursor to the menu bar.
	Use the F10 key to move the location cursor to the menu bar.

	<TABLE ROW>
	Meta
	Meta

	Use the Meta key along with the underlined character in the desired menu item to display a menu o...
	Meta key
	Meta key

	<TABLE ROW>
	Control-C
	Ctrl-C
	Ctrl-C

	Use the Control-C key combination to interrupt command execution.
	Use the Control-C key combination to interrupt command execution.

	<TABLE ROW>
	Esc
	Esc

	Use the Esc key instead of the Close or Cancel button to close the window or dialog box in which ...
	Use the Esc key instead of the Close or Cancel button to close the window or dialog box in which ...

	The keys and key combinations described in
	<TABLE>
	TABLE�2�2 Text-Entry Keyboard Alternatives�
	<TABLE HEADING>
	<TABLE ROW>
	Key Name
	Key Name

	Description
	Description

	<TABLE BODY>
	<TABLE ROW>
	Back Space
	Back Space

	Deletes the character to the left of the I-beam cursor.
	Deletes the character to the left of the I-beam cursor.

	<TABLE ROW>
	Delete
	Delete

	Same as Back Space.
	Same as Back Space.

	<TABLE ROW>
	Control-A
	Ctrl-A
	Ctrl-A

	Moves to the beginning of the line.
	Moves to the beginning of the line.

	<TABLE ROW>
	Control-B
	Ctrl-B
	Ctrl-B

	Moves back one character.
	Moves back one character.

	<TABLE ROW>
	Control-D
	Ctrl-D
	Ctrl-D

	Deletes the character to the right of the I-beam cursor.
	Deletes the character to the right of the I-beam cursor.

	<TABLE ROW>
	Control-E
	Ctrl-E
	Ctrl-E

	Moves to the end of the line.
	Moves to the end of the line.

	<TABLE ROW>
	Control-F
	Ctrl-F
	Ctrl-F

	Moves forward one character.
	Moves forward one character.

	<TABLE ROW>
	Control-K
	Ctrl-K
	Ctrl-K

	Deletes to the end of the line.
	Deletes to the end of the line.

	<TABLE ROW>
	Control-U
	Ctrl-U
	Ctrl-U

	Deletes to the beginning of the line.
	Deletes to the beginning of the line.

	In addition, you can use

	Issuing Commands
	Issuing Commands
	You can issue commands in the Prism environment from the command line in the command window. Most...
	Many commands have the same syntax and perform the same action in both the Prism environment and ...

	Using the Menu Bar
	Using the Menu Bar
	The menu bar is the line of titles across the top of the main window of the Prism environment.
	Each title is associated with a pulldown menu, from which you can perform actions within the Pris...
	Keyboard Accelerators
	Keyboard Accelerators
	A keyboard accelerator is a shortcut that lets you choose a frequently used menu item without dis...
	The keyboard accelerators (on a Sun keyboard) are listed in
	<TABLE>
	TABLE�2�3 Keyboard Accelerators�for Main Menu Selections
	<TABLE HEADING>
	<TABLE ROW>
	Accelerator
	Accelerator

	Function
	Function

	<TABLE BODY>
	<TABLE ROW>
	Control-F1
	Control-F1

	Run
	Run

	<TABLE ROW>
	Control-F2
	Control-F2

	Continue
	Continue

	<TABLE ROW>
	Control-F3
	Control-F3

	Interrupt
	Interrupt

	<TABLE ROW>
	Control-F4
	Control-F4

	Step
	Step

	<TABLE ROW>
	Control-F5
	Control-F5

	Next
	Next

	<TABLE ROW>
	Control-F6
	Control-F6

	Where
	Where

	<TABLE ROW>
	Control-F7
	Control-F7

	Up
	Up

	<TABLE ROW>
	Control-F8
	Control-F8

	Down
	Down

	Using the Source Window
	Using the Source Window
	The source window displays the source code for the executable program loaded into the Prism envir...
	The source window is a separate pane within the main window of the Prism environment. You can res...
	You cannot edit the source code displayed in the source window. To edit source code within the Pr...
	Moving Through the Source Code
	Moving Through the Source Code
	As mentioned above, you can move through a source file displayed in the source window by using th...
	To Search for Text in a String or Regular Expression
	To Search for Text in a String or Regular Expression
	Type
	Type
	(prism)
	(prism)
	<Filename | Command>/<Default Para Font> command

	or
	(prism)
	(prism)
	<Filename | Command>/<Default Para Font> command

	The

	To Display Different Files
	To Display Different Files
	Choose the
	Choose the
	See

	The Prism environment keeps a list of the files you have displayed. With the mouse pointer in the...
	1. To display the previous file in the list, click the middle mouse button while pressing the lef...
	1. To display the previous file in the list, click the middle mouse button while pressing the lef...
	1. To display the previous file in the list, click the middle mouse button while pressing the lef...

	2. To display the next file in the list, click the right mouse button while pressing the left but...
	2. To display the next file in the list, click the right mouse button while pressing the left but...

	Selecting Text
	Selecting Text
	You can select text in the source window by dragging over it with the mouse; the text is then hig...
	visualizers:displaying from the source window
	visualizers:displaying from the source window

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�2�1 Pop-up Menu in Source Window

	You can display the definition of a function

	Splitting the Source Window
	Splitting the Source Window
	You can split the source window to simultaneously display the source code and assembly code of th...
	To Split the Source Window
	To Split the Source Window
	1. Load a program.
	1. Load a program.

	2. Right-click in the source window to display the pop-up menu.
	2. Right-click in the source window to display the pop-up menu.

	3. Click on the Show source pane selection in the pop-up menu.
	3. Click on the Show source pane selection in the pop-up menu.
	This displays another menu.

	4. Choose the Show .s source selection from the menu.
	4. Choose the Show .s source selection from the menu.
	This causes the assembly code

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�2�2 Split Source Window

	To Return to a Single Source Window
	To Return to a Single Source Window
	1. Right-click in the pane you want to get rid of.
	1. Right-click in the pane you want to get rid of.

	2. Choose “Hide this source pane” from the pop-up menu.
	2. Choose “Hide this source pane” from the pop-up menu.

	Using the Line-Number Region
	Using the Line-Number Region
	The line-number region shows the line numbers associated with the source code displayed in the so...
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�2�3 Line Number Region

	You will see the following symbols in the line-number region:
	The
	The
	The

	A
	A

	A
	A

	Shift-click on
	The – symbol is the
	The – symbol is the
	The – symbol is the

	The
	The
	When a message-passing program is loaded, the Prism environment displays additional information a...

	Displays a
	Displays a
	Displays a

	Displays a
	Displays a

	Displays a
	Displays a

	Displays a
	Displays a
	If there is a mixture of breakpoints and tracepoints set on the line, the Prism environment uses the

	You can shift-click on the letter in the line-number region to display the complete event (or eve...
	If you right-click in the line-number window, you display the source-window pop-up menu discussed...

	Using the Command Window
	Using the Command Window
	The command window is the area at the bottom of the main window in which you type commands and re...
	The command window consists of two boxes: the
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�2�4 Command Window With History Region

	The command window is a separate pane within the main window. You can resize this window (using the
	Using the Command Line
	Using the Command Line
	You type commands on the command line at the bottom of the command window. You can type in this b...
	You can issue multiple commands
	The Prism environment keeps the commands that you issue in a buffer. Type
	During long-running commands (for example, when you have issued the

	Using the History Region
	Using the History Region
	Commands that you issue on the command line are echoed in the history region, above the command l...
	To Specify the Maximum Number of Lines in the History Region
	To Specify the Maximum Number of Lines in the History Region
	Type
	Type
	(prism)
	The default is 10,000. For example,
	set $history = 2000
	set $history = 2000
	set $history = 2000

	reduces the number of lines to 2000.
	The Prism environment uses up memory in maintaining a large history region. A smaller history reg...

	To Select Text in the History Region
	To Select Text in the History Region
	1. Select text using one of these methods:
	1. Select text using one of these methods:
	Double-click to select the word to which the mouse pointer is pointing.
	Double-click to select the word to which the mouse pointer is pointing.
	Double-click to select the word to which the mouse pointer is pointing.

	Triple-click to select the line on which the mouse pointer is located.
	Triple-click to select the line on which the mouse pointer is located.

	Press the left mouse button and drag the mouse over the text to select it.
	Press the left mouse button and drag the mouse over the text to select it.

	2. Click the middle mouse button to paste the selected text into other text areas.
	2. Click the middle mouse button to paste the selected text into other text areas.

	To Re-Execute a Command
	To Re-Execute a Command
	1. Triple-click on a line in the history region to select it.
	1. Triple-click on a line in the history region to select it.

	2. Click the middle mouse button with the mouse pointer still in the history region.
	2. Click the middle mouse button with the mouse pointer still in the history region.

	3. Middle-click with the mouse pointer on the command line.
	3. Middle-click with the mouse pointer on the command line.
	The selected text appears on the command line but is not executed. This gives you a way to edit t...

	Redirecting Output
	Redirecting Output
	The commands whose output you cannot redirect are
	Note – Although the
	Note – Although the

	To Redirect Output to a File
	To Redirect Output to a File
	Type
	Type
	(prism)
	For example,
	where @ where.output
	where @ where.output

	puts the output of a

	To Redirect Output to a Window
	To Redirect Output to a Window
	Type
	Type
	(prism)
	where
	list on ded
	list on ded

	displays the output of the
	windowname
	windowname
	windowname
	windowname

	where on line22
	where on line22
	where on line22

	to label the window with the location of the stack trace.

	Logging Commands and Output
	Logging Commands and Output
	You can use the
	Use the log file for logging commands and output from within the Prism environment.
	Type
	Type
	Type
	(prism)
	(prism)

	This specifies the name of a log file.
	The log file
	log @ prism.log
	log @ prism.log
	log @ prism.log

	logs output to the file

	Type
	Type
	Type
	(prism)
	This appends the log to an existing file.

	Type
	Type
	Type
	(prism)
	(prism)

	This turns off logging.

	Use one of the following methods to execute Prism commands from a file
	Use one of the following methods to execute Prism commands from a file
	Use one of the following methods to execute Prism commands from a file
	Type
	Type
	Type
	%
	%

	The

	Save the commands permanently in a
	Save the commands permanently in a
	If you have created a

	Type
	Type
	(
	Using the
	For example,
	(prism)
	(prism)

	reads in the commands in the file
	The

	Writing Expressions in the Prism Environment
	Writing Expressions in the Prism Environment
	While working in the Prism environment, there are circumstances in which you may want to write ex...
	How the Prism Environment Chooses the Correct Variable or Procedure
	How the Prism Environment Chooses the Correct Variable or Procedure
	Multiple variables and procedures can have the same name in a program. This can be a problem when...
	1. It first tries to resolve the name using the scope of the current function. For example, if yo...
	1. It first tries to resolve the name using the scope of the current function. For example, if yo...
	1. It first tries to resolve the name using the scope of the current function. For example, if yo...

	2. If this fails to resolve the name, the Prism environment goes up the call stack and tries to f...
	2. If this fails to resolve the name, the Prism environment goes up the call stack and tries to f...

	3. If no match is found in any routine active on the stack, the Prism environment searches the st...
	3. If no match is found in any routine active on the stack, the Prism environment searches the st...

	4. If the name is not found in the call stack, the Prism environment arbitrarily chooses one of t...
	4. If the name is not found in the call stack, the Prism environment arbitrarily chooses one of t...

	To Display the Fully Qualified Name of a Variable
	To Display the Fully Qualified Name of a Variable
	Type
	Type
	(prism all)
	This command displays the fully qualified name, as described in

	Using Qualified Names
	Using Qualified Names
	You can override the way that the Prism environment resolves names by
	A fully qualified name starts with a back-quotation mark (`). The symbol farthest to the left in ...
	<TABLE>
	TABLE�2�4 Prism Identifier Syntax�
	<TABLE HEADING>
	<TABLE ROW>
	Syntax�
	Syntax�

	Description
	Description

	<TABLE BODY>
	<TABLE ROW>
	a
	a
	a

	Specifies the variable a in the current scope. An error will be reported if no variable a exists ...
	Specifies the variable

	<TABLE ROW>
	`a
	`a
	`a

	Specifies the variable a in the global scope.
	Specifies the variable

	<TABLE ROW>
	``a
	``a
	``a

	Specifies the variable a in the global or file-static scope.
	Specifies the variable

	<TABLE ROW>
	`foo.c`a
	`foo.c`a
	`foo.c`a

	Specifies the variable a in file foo.c.
	Specifies the variable

	<TABLE ROW>
	`foo.c`foo`a
	`foo.c`foo`a
	`foo.c`foo`a

	Specifies the a in the procedure foo in the file foo.
	Specifies the

	<TABLE ROW>
	`foo`a
	`foo`a
	`foo`a

	Specifies the variable a in function foo (if foo is active).
	Specifies the variable a in function

	<TABLE ROW>
	`a.out`foo.c`foo`a
	`a.out`foo.c`foo`a
	`a.out`foo.c`foo`a

	Specifies the variable a in function foo in file foo.c in load object a.out.
	Specifies the variable

	<TABLE ROW>
	`a.out`foo.c`foo:line`a
	`a.out`foo.c`foo:line`a
	`a.out`foo.c`foo:line`a

	Specifies the variable a in function foo at line number line in file foo.c in load object a.out.
	Specifies the variable

	<TABLE ROW>
	`foo.x`foo.cc`Bar::print:71`dummy
	`foo.x`foo.cc`Bar::print:71`dummy
	`foo.x`foo.cc`Bar::print:71`dummy

	Specifies the variable dummy in member function print of class Symbol at line number 71 in file f...
	Specifies the variable

	<TABLE ROW>
	"foo.c":line
	"foo.c":line
	"foo.c":line

	Specifies the line number line in the file foo.c. Note the use of double quotes.
	Specifies the line number

	Partially qualified names do not begin with
	foo`a
	foo`a
	foo`a

	In this case, the Prism environment looks up the function name on the left first and picks the in...
	Use the
	The Prism environment assigns its own names (using the
	When debugging Fortran, the Prism environment attempts to be case-insensitive in interpreting nam...

	Using Fortran Intrinsic Functions in Expressions
	Using Fortran Intrinsic Functions in Expressions
	The Prism environment supports the use of a subset of Fortran intrinsic functions in writing expr...
	The intrinsics, along with the supported arguments, are
	The intrinsics can be either upper- or lowercase.

	Using C Arrays in Expressions
	Using C Arrays in Expressions
	The Prism environment handles arrays slightly differently from the way C handles them.
	In a C program, if you have the declaration
	int a[10];
	int a[10];
	int a[10];

	and you use
	(prism all)
	(prism all)
	(prism all)

	should print a hexadecimal pointer value. Instead, it prints two more than each element of
	To get the C behavior, issue the command as follows:
	(prism all)
	(prism all)
	(prism all)

	Using Array-Section Syntax in C Arrays
	Using Array-Section Syntax in C Arrays
	You can use Fortran 90 array-section syntax when specifying C arrays. This syntax is useful, for ...
	(
	(

	where
	lower-bound
	lower-bound
	lower-bound
	lower-bound

	upper-bound
	upper-bound
	upper-bound
	upper-bound

	stride
	stride
	stride
	stride

	You must enclose the values in parentheses (rather than brackets), as in Fortran. If your array i...
	For example, if you have this array:
	int a[10][20];
	int a[10][20];

	then you can issue this command in the Prism environment to print the values of elements 2-4 of t...
	(prism all)
	(prism all)
	(prism all)
	(prism all)

	print a(2:4,2:10)

	Hints for Detecting NaNs and Infinities
	Hints for Detecting NaNs and Infinities
	The Prism environment provides expressions that you can use to detect NaNs (values that are “not ...
	To Find Out if
	To Find Out if
	Use the expression
	Use the expression
	(x .ne. x)
	(x .ne. x)

	For example, if
	(prism all)
	(prism all)
	(prism all)

	to print only the elements of
	Also, note that if there are NaNs in an array, the mean of the values in the array will be a NaN....

	To Find Out if
	To Find Out if
	Type
	Type
	(

	Using Fortran 90 Generic Procedures
	Using Fortran 90 Generic Procedures
	You can use Fortran 90 generic procedures in any Prism command or dialog box that asks for a proc...
	For example, you use the syntax
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�2�5 Generic Procedure Dialog Box

	The commands-only interface of the Prism environment prompts you as in this example:
	If you press the Return key, you would see a menu like this:
	If you choose 0 or press Return, the command is cancelled. If you choose other numbers, the Prism...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	Select one of the following names:
	Select one of the following names:
	0) Cancel
	1) ‘f90_user_op_generic.x‘f90_user_op_generic.f90‘fadd
	! real*4 realadd
	2) ‘f90_user_op_generic.x‘f90_user_op_generic.f90‘fadd
	! integer*4 intadd
	>
	(1) stop in fadd
	(prism)

	Issuing Solaris Commands
	Issuing Solaris Commands
	You can issue Solaris commands from within the Prism environment.
	To Issue Solaris Commands From Within the Prism Environment
	To Issue Solaris Commands From Within the Prism Environment
	Perform one of the following
	Perform one of the following
	From the menu bar — Choose the
	From the menu bar — Choose the
	From the menu bar — Choose the

	From the command window — Issue the
	From the command window — Issue the

	Some Solaris commands have equivalents in the Prism environment, as described below.

	Changing the Current Working Directory
	Changing the Current Working Directory
	By default your current working directory within the Prism environment is the directory from whic...
	Type
	Type
	Type
	(prism all)

	This finds the current working directory.

	Type
	Type
	Type
	(prism all)
	This changes the current working directory.
	For example,
	(prism all) cd /sistare/bin
	(prism all) cd /sistare/bin
	(prism all) cd /sistare/bin

	changes your working directory to
	(prism all)cd ..
	(prism all)cd ..
	(prism all)cd ..

	changes your working directory to the parent of the current working directory. Issue

	The Prism environment interprets all relative file names with respect to the current working dire...

	Setting and Displaying Environment Variables
	Setting and Displaying Environment Variables
	You can set, unset, and display the settings of environment variables from within the Prism envir...
	Type
	Type
	Type
	(prism all)
	(prism all)

	This sets environment variable,
	For example,
	setenv EDITOR emacs
	setenv EDITOR emacs
	setenv EDITOR emacs

	sets your

	Type
	Type
	Type
	(prism all)
	(prism all)

	This removes the setting of environment variable, VARIABLE.
	For example,
	unsetenv EDITOR
	unsetenv EDITOR
	unsetenv EDITOR

	removes the setting of the

	Type
	Type
	Type
	(prism all)
	(prism all)

	This prints the setting of environment variable, VARIABLE.
	For example,
	(prism all)
	(prism all)
	(prism all)

	prints the current setting of the

	Leaving the Prism Environment
	Leaving the Prism Environment
	To Quit the Prism Environment
	To Quit the Prism Environment
	1. Perform one of the following
	1. Perform one of the following
	From the menu bar — Choose the Quit
	From the menu bar — Choose the Quit
	From the menu bar — Choose the Quit

	From the command window — Type the
	From the command window — Type the
	From the command window — Type the

	If you have created subprocesses while in the Prism environment (for example, a Solaris shell), T...
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�2�6 Sub-process Warning

	2. Take one of the following actions:
	2. Take one of the following actions:
	Choose Yes (the default) to leave the Prism environment and terminate the subprocesses.
	Choose Yes (the default) to leave the Prism environment and terminate the subprocesses.
	Choose Yes (the default) to leave the Prism environment and terminate the subprocesses.

	Choose No to leave the Prism environment without terminating the subprocesses.
	Choose No to leave the Prism environment without terminating the subprocesses.

	Choose Cancel to stay in the Prism environment.
	Choose Cancel to stay in the Prism environment.

	3
	3
	Loading and Executing a Program
	This chapter describes how to load and run programs within the Prism environment.
	For this chapter, you should already have an executable program that you want to run within the P...
	“Loading a Program” on page 43
	“Loading a Program” on page 43
	“Loading a Program” on page 43
	“Loading a Program” on page 43

	“Associating a Core File With a Loaded Program” on page 46
	“Associating a Core File With a Loaded Program” on page 46
	“Associating a Core File With a Loaded Program” on page 46
	“Associating a Core File With a Loaded Program” on page 46

	“Attaching to a Running Message-Passing Process” on page 47
	“Attaching to a Running Message-Passing Process” on page 47
	“Attaching to a Running Message-Passing Process” on page 47
	“Attaching to a Running Message-Passing Process” on page 47

	“Executing a Program in the Prism Environment” on page 48
	“Executing a Program in the Prism Environment” on page 48
	“Executing a Program in the Prism Environment” on page 48
	“Executing a Program in the Prism Environment” on page 48

	“Using Psets in the Prism Environment” on page 54
	“Using Psets in the Prism Environment” on page 54
	“Using Psets in the Prism Environment” on page 54
	“Using Psets in the Prism Environment” on page 54

	“Using the Prism Environment With Sun MPI Client/Server Programs” on page 82
	“Using the Prism Environment With Sun MPI Client/Server Programs” on page 82
	“Using the Prism Environment With Sun MPI Client/Server Programs” on page 82
	“Using the Prism Environment With Sun MPI Client/Server Programs” on page 82

	“Choosing the Current File and Function” on page 82
	“Choosing the Current File and Function” on page 82
	“Choosing the Current File and Function” on page 82
	“Choosing the Current File and Function” on page 82

	“Creating a Directory List for Source Files” on page 84
	“Creating a Directory List for Source Files” on page 84
	“Creating a Directory List for Source Files” on page 84
	“Creating a Directory List for Source Files” on page 84

	Loading a Program
	Loading a Program
	Before you can execute or debug a program in the Prism environment, you must first load the progr...
	As described in
	To Load a Program From the Menu Bar
	To Load a Program From the Menu Bar
	1. Choose the
	1. Choose the
	(It is also by default in the tear-off region.) A dialog box appears, as shown in
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�3�1 Load Program Filter

	2. Double-click on the program name, if the name appears in the Programs scrollable list.
	2. Double-click on the program name, if the name appears in the Programs scrollable list.
	Or, you can put its path name into the Selection box, then click on Load. To put the file’s path ...
	Use the Load-Program Filter box to control the display of file names in the Programs list; the bo...
	If you want to use a different filter, you can edit the Load-Program Filter box directly. For exa...

	3. Click on Cancel or press the Esc key if you decide not to load a program.
	3. Click on Cancel or press the Esc key if you decide not to load a program.

	To Load a Program From the Command Window
	To Load a Program From the Command Window
	Type
	Type
	(
	Use the name of the executable program as its argument. For example,
	(
	(

	The program you specify is loaded.

	What Happens When You Load a Program
	What Happens When You Load a Program
	Once a program is successfully loaded:
	The program’s name appears in the Program field in the main window.
	The program’s name appears in the Program field in the main window.
	The program’s name appears in the Program field in the main window.

	The source file containing the program’s main function appears in the source window.
	The source file containing the program’s main function appears in the source window.
	The source file containing the program’s main function appears in the source window.

	The Load dialog box disappears (if you loaded the program using this box).
	The Load dialog box disappears (if you loaded the program using this box).
	The Load dialog box disappears (if you loaded the program using this box).

	The status region displays the message
	The status region displays the message
	The status region displays the message

	You can now issue commands to execute and debug this program.
	If the Prism environment can’t find the source file, it displays a warning message in the command...
	To Load Subsequent Programs
	To Load Subsequent Programs
	Perform one of the following:
	Perform one of the following:
	If you have a program loaded and you want to switch to a new program, simply load the new program...
	If you have a program loaded and you want to switch to a new program, simply load the new program...
	If you have a program loaded and you want to switch to a new program, simply load the new program...

	If you want to start fresh with the current program, issue the
	If you want to start fresh with the current program, issue the

	Note – You can load only one program at a time.

	Associating a Core File
	Associating a Core File
	As mentioned in
	To Associate a Core File With a Loaded Program
	To Associate a Core File With a Loaded Program
	Type
	Type
	(
	Where
	The Prism environment’s
	In either case, the Prism environment reports the error that caused the core dump and loads the p...

	To Examine a Core File of a Local Process
	To Examine a Core File of a Local Process
	You can use the Prism environment to examine a core file created by a message- passing program.
	1. Type
	1. Type
	%
	%

	2. Type
	2. Type
	(
	This produces a stack trace.
	(
	This lets you inspect the state of your process at the time the core dump was taken.
	Note these restrictions:
	You actually start the Prism environment in scalar mode rather than in multiprocess mode (MP Pris...
	You actually start the Prism environment in scalar mode rather than in multiprocess mode (MP Pris...
	You actually start the Prism environment in scalar mode rather than in multiprocess mode (MP Pris...

	You cannot issue any execution commands (for example,
	You cannot issue any execution commands (for example,

	You cannot change the values of variables via the
	You cannot change the values of variables via the

	You cannot use the
	You cannot use the

	Attaching
	Attaching
	You can load the processes of a message-passing job into the Prism environment.
	To Attach to a Running Message-Passing Program
	To Attach to a Running Message-Passing Program
	1. Obtain the job ID of the processes.
	1. Obtain the job ID of the processes.
	If you are using the LSF environment, by issuing the
	If you are using the LSF environment, by issuing the
	If you are using the LSF environment, by issuing the

	If you are using the CRE environment, by issuing the
	If you are using the CRE environment, by issuing the

	For example, using the LSF environment:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	host4-0 54 =>bjobs
	host4-0 54 =>
	JOBID�USER�STAT�QUEUE�FROM_HOST�EXEC_HOST�JOB_NAME�SUBMIT_TIME
	15232�jay��RUN��hpc���host4-0���host4-0���chess ���Sep 24 13:35 host4-1

	2. Type
	2. Type
	%
	%
	%

	Note that job_ID ias the ID of the processes (not an individual process ID).

	3. Use the
	3. Use the
	Without one of these options, the Prism environment assumes that the ID number is a process ID ra...

	For example,
	%
	%

	This starts the Prism environment and attaches to the running processes in job 15232. See the
	You attach to a single process of a message-passing program by specifying its process ID. If you ...
	If you attach to a program under the Prism environment, your job will be automatically detached f...
	The Prism environment only lets you detach when all the processes in the job are stopped. The det...

	Executing a Program in the Prism Environment
	Executing a Program in the Prism Environment
	You start execution of a program in the Prism environment by issuing the
	Note the key advantage of using the Prism environment with a Sun MPI program: The Sun MPI program...
	To Run a Program
	To Run a Program
	Perform one of the following:
	Perform one of the following:
	From the menu bar — If you have no command-line arguments you want to specify, choose the
	From the menu bar — If you have no command-line arguments you want to specify, choose the
	From the menu bar — If you have no command-line arguments you want to specify, choose the
	If you have command-line arguments, choose the
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�3�2 Run (args) Dialog Box

	From the command window — Type the
	From the command window — Type the

	When the program starts executing, the status region displays the message
	You can continue to interact with the Prism environment while a program is running, but many feat...

	Program I/O
	Program I/O
	By default, the Prism environment creates a new window for a program’s I/O. This window persists ...

	Status Messages
	Status Messages
	The Prism environment displays the status messages before, during, and after the execution of a p...
	<TABLE>
	TABLE�3�1 Status Messages�
	<TABLE HEADING>
	<TABLE ROW>
	Message
	Message

	Meaning
	Meaning

	<TABLE BODY>
	<TABLE ROW>
	error
	error
	error

	Prism has encountered an internal error.
	Prism has encountered an internal error.

	<TABLE ROW>
	connected
	connected
	connected

	Prism has connected to other nodes to work on a message-passing program.
	Prism has connected to other nodes to work on a message-passing program.

	<TABLE ROW>
	connecting
	connecting
	connecting

	Prism is connecting to other nodes in order to work on a message- passing program.
	Prism is connecting to other nodes in order to work on a message- passing program.

	<TABLE ROW>
	initial
	initial
	initial

	Prism is starting up without a program loaded.
	Prism is starting up without a program loaded.

	<TABLE ROW>
	interrupted
	interrupted
	interrupted

	The program has been interrupted.
	The program has been interrupted.

	<TABLE ROW>
	loading
	loading
	loading

	Prism is loading a program.
	Prism is loading a program.

	<TABLE ROW>
	not started
	not started
	not started

	The program is loaded but not yet started.
	The program is loaded but not yet started.

	<TABLE ROW>
	running
	running
	running

	The program is running.
	The program is running.

	<TABLE ROW>
	stopped
	stopped
	stopped

	The program has stopped at a breakpoint or signal.
	The program has stopped at a breakpoint or signal.

	<TABLE ROW>
	terminated
	terminated
	terminated

	The program has run to completion and the process has gone away.
	The program has run to completion and the process has gone away.

	Stepping and Continuing Through a Program
	Stepping and Continuing Through a Program
	When using the Prism environment to debug a multiprocess program (such as a Sun MPI program), men...
	The Prism environment supports several kinds of predefined psets as well as user- defined psets. ...

	Interrupting and Waiting for Processes
	Interrupting and Waiting for Processes
	It is useful in debugging multiprocess programs to wait for a specific process or set of processe...
	To Interrupt the Execution of a Process or Set of Processes
	To Interrupt the Execution of a Process or Set of Processes
	Perform one of the following
	Perform one of the following
	Type
	Type
	Type
	(
	The Prism term for a set of processes is pset. For information about psets, see
	For example,
	(
	interrupts execution of process 0.
	(
	interrupts all processes in the predefined process set (pset)
	Using the

	Select Interrupt
	Select Interrupt
	This will interrupt processes in the current pset that are running.

	To Wait for a Specified Process or Set of Processes to Stop Execution
	To Wait for a Specified Process or Set of Processes to Stop Execution
	Type
	Type
	(
	A process is considered to have stopped if it has entered the
	There are two versions of the

	Use the syntax
	Use the syntax
	Use the syntax
	(prism
	(prism

	waits for every process in the pset

	Use the syntax
	Use the syntax
	Use the syntax
	(
	waits for the first process in pset

	There are corresponding Wait Any
	Note that, if you prefer that
	(
	(

	This executes the next line, then waits for all processes in the current pset to finish execution.
	If you use this command sequence frequently, you can provide an alias for it via the
	(
	(

	To End the Wait
	To End the Wait
	Perform one of the following:
	Perform one of the following:

	Type Control-C
	Type Control-C
	Type Control-C

	Choose the Interrupt selection
	Choose the Interrupt selection

	Execution Pointer
	Execution Pointer
	When using the Prism environment to debug a scalar program, the
	To Display a Pop-Up Window Showing the Executing Process(es)
	To Display a Pop-Up Window Showing the Executing Process(es)
	Shift-click on the execution pointer symbol.
	Shift-click on the execution pointer symbol.
	This shows the process(es) for which the symbol is the execution pointer.

	To Find out Execution Status
	To Find out Execution Status
	Perform one of the following:
	Perform one of the following:
	Type
	Type
	Type
	(
	This finds out the execution status of processes in the current pset.
	For example,
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) pstatus
	(prism all)
	process 0: running
	process 1: stopped in procedure ”pawn_moves” at ”chess.c”:49
	process 2: interrupted in procedure ”construct_move” at ”chess.c”:1187
	process 3: interrupted in procedure ”rook_check” at ”chess.c”:746

	Type
	Type
	(
	This finds out the execution status of the specified pset. For information about psets, see

	Executing Programs With the Commands-Only Interface
	Executing Programs With the Commands-Only Interface
	Type
	Type
	Type
	(
	This starts a program using the commands-only interface. The program starts up in the background.

	Type
	Type
	Type
	(
	This brings the running into the foreground. You cannot execute Prism commands while the program ...

	Type
	Type
	Type
	Control-Z
	This returns a running program to the background. This key sequence sends the running program to ...

	Type
	Type
	Type
	(
	This command terminates the debugging session. Before quitting, the Prism environment kills the d...

	Using Psets
	Using Psets
	The Prism environment allows you to you view your program at the level of an individual process o...
	Note – To view a program at the process level means to view the program at the level of the
	You can use the Prism environment to view groups of such processes or threads, or all processes a...
	These groups of
	If you don’t need to view your program at the level of an individual thread or a subset of thread...
	You can view psets in the Psets window, as described in
	Note – The Prism environment assigns a logical ID number to each process that makes up a message-...
	Note – The Prism environment assigns a logical ID number to each process that makes up a message-...

	As described in
	If you don’t specify a pset as a qualifier to a command (that can take a pset qualifier), the com...
	Note – In threaded programs, the Prism environment extends the notion of current process to refer...
	“The cycle Pset” on page 73
	“The cycle Pset” on page 73

	Using the Psets Navigator
	Using the Psets Navigator
	You can navigate to any defined pset using the pull-down menu and arrow keys on the main MP Prism...
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�3�3 Pset Navigator Controls

	Using the Psets Window
	Using the Psets Window
	You can use the Psets window to view the current status of the processes in your program and to p...
	To Display the Psets Window
	To Display the Psets Window
	Perform One of the Following:
	Perform One of the Following:

	From the menu bar — Choose the Psets
	From the menu bar — Choose the Psets
	From the menu bar — Choose the Psets

	From the command window — Type
	From the command window — Type
	(

	FIGURE�3�4
	FIGURE�3�4

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�3�4 Psets Window (nonthreaded)

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�3�5 Psets Window (threaded)

	The various components of the window are described in detail in later sections. Here is a brief o...
	The main area of the window shows psets and their members. In nonthreaded psets, processes that a...
	The main area of the window shows psets and their members. In nonthreaded psets, processes that a...
	The main area of the window shows psets and their members. In nonthreaded psets, processes that a...

	The current process or thread (see
	The current process or thread (see
	The current process or thread (see

	You can cycle through the
	You can cycle through the
	You can cycle through the

	If you have many psets and a large number of processes or threads, you can use the Zoom arrows to...
	If you have many psets and a large number of processes or threads, you can use the Zoom arrows to...
	If you have many psets and a large number of processes or threads, you can use the Zoom arrows to...

	You can view and change the
	You can view and change the
	You can view and change the

	The Options menu at the top left of the window lets you hide, display, create, and delete psets. ...
	The Options menu at the top left of the window lets you hide, display, create, and delete psets. ...
	The Options menu at the top left of the window lets you hide, display, create, and delete psets. ...

	The File menu lets you close the
	The File menu lets you close the
	The File menu lets you close the

	Predefined Psets
	Predefined Psets
	The Prism environment provides these predefined psets:
	all
	all
	all
	all

	running
	running
	running
	running

	error
	error
	error
	error

	interrupted
	interrupted
	interrupted
	interrupted

	break
	break
	break
	break

	stopped
	stopped
	stopped
	stopped

	done
	done
	done
	done

	These sets are
	In addition, there are two set names that have special meaning:

	Defining Psets
	Defining Psets
	You can create psets in the Prism environment. This section describes the syntax of pset creation.
	Syntax for Defining a Pset
	Syntax for Defining a Pset
	This section describes the syntax you can use to specify a pset. As described below, you can assi...
	Psets can be composed from any of the following:
	To Specify a Pset as an Argument to a Command
	To Specify a Pset as an Argument to a Command
	Type
	Type
	(prism all)
	(prism all)

	Put the
	(prism all)
	(prism all)

	prints the values of the variable

	To Specify a Pset as a Subset of a Pset Clause
	To Specify a Pset as a Subset of a Pset Clause
	Perform one of the following:
	Perform one of the following:

	Specify an individual process number. An individual process can constitute a pset. Thus,
	Specify an individual process number. An individual process can constitute a pset. Thus,
	Specify an individual process number. An individual process can constitute a pset. Thus,
	(
	(

	prints the value of

	Specify an individual thread number. An individual thread can constitute a pset. Thus,
	Specify an individual thread number. An individual thread can constitute a pset. Thus,
	(
	(

	prints the value of

	Specify the name of a pset. Name a pset using the
	Specify the name of a pset. Name a pset using the
	(
	(

	prints

	Specify a list of process numbers. Separate the numbers with commas. Thus,
	Specify a list of process numbers. Separate the numbers with commas. Thus,
	(
	(

	prints
	Ranges and strides are allowed. Use a colon between two process numbers to indicate a range. Use ...
	(
	(

	prints
	(
	(

	prints
	You can also combine comma-separated process numbers and range specifications. For example,
	(
	(

	prints

	Specify a union, difference, or intersection of psets. To specify the union of two psets, use the...
	Specify a union, difference, or intersection of psets. To specify the union of two psets, use the...
	(
	(

	prints
	(
	(

	prints
	The Prism environment evaluates the pset expression from left to right. If a process is a member ...

	Specify the difference of two psets by using a minus sign. For example,
	Specify the difference of two psets by using a minus sign. For example,
	(
	(

	prints
	Note that you can use predefined psets to define new psets. Except for pset
	To specify the intersection of two psets, use the
	(
	(

	prints
	The Prism environment must evaluate a pset expression in each process at the time the command is ...
	Thus,
	print x pset stopped & foo
	print x pset stopped & foo
	print x pset stopped & foo

	prints

	Specify a condition to be met. Put braces around an expression that evaluates to true or false in...
	Specify a condition to be met. Put braces around an expression that evaluates to true or false in...
	Thus,
	(
	(

	prints
	(
	(

	prints

	Membership in a some psets can change based on the current state of your program; such a pset is ...
	Membership in a some psets can change based on the current state of your program; such a pset is ...
	For this syntax to work, the variable must be active in all processes in which the expression is ...
	Thus, you could use this syntax to ensure that
	(
	(

	Naming Psets
	Naming Psets
	You can assign a name to a pset. This is convenient if you plan to use the set frequently in your...
	Use the syntax described above in
	From the Psets window — Choose
	From the Psets window — Choose
	From the Psets window — Choose

	From the command line — Issue the
	From the command line — Issue the
	From the command line — Issue the

	For example,
	(
	(

	creates a pset called
	(
	creates a pset from the first thread in process one.
	(
	(

	creates a pset from the second thread in process one.
	(
	(

	creates a pset from an expression that takes the intersection of all ranks and all threads, subtr...
	(
	(

	defines a pset consisting of those processes in which
	(
	(

	Both versions create a variable pset whose contents will change based on the value of
	(
	(

	Dynamic user-defined psets are deleted when you reload a program. To get a list of these psets be...
	The Prism environment evaluates the membership of a variable pset when it is defined. If no proce...
	To Evaluate Variable Psets
	To Evaluate Variable Psets
	Type
	Type
	(
	For example,
	(
	(

	evaluates the membership of the pset
	Note that this evaluation will fail if:
	Processes are running that need to be polled in evaluating the pset; or
	Processes are running that need to be polled in evaluating the pset; or
	Processes are running that need to be polled in evaluating the pset; or

	The pset’s definition contains a variable that is not active in any of the processes being polled
	The pset’s definition contains a variable that is not active in any of the processes being polled

	For example, if you type this command:
	(
	(

	you must make sure that all processes are stopped, and
	(
	(

	To ensure that the evaluation succeeds, use the more complicated syntax:
	(
	(

	This ensures that the evaluation takes place only in processes that are stopped and in which
	If an evaluation fails, the membership of the pset remains what it was before you issued the
	You can use the
	Note the difference between

	Combining Named Psets and Pset Expressions
	Combining Named Psets and Pset Expressions
	You can use combinations of named psets and pset expressions to isolate the threads of interest. ...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	pset 1.3
	pset 1.3

	Thread 3 in process 1
	Thread 3 in process 1

	<TABLE ROW>
	pset 1:10.3
	pset 1:10.3

	Thread 3 in processes 1 to 10
	Thread 3 in processes 1 to 10

	<TABLE ROW>
	pset 1.1, 2.2:5
	pset 1.1, 2.2:5

	Process 1, thread 1 and process 2, threads 2, 3, 4 and 5
	Process 1, thread 1 and process 2, threads 2, 3, 4 and 5

	<TABLE ROW>
	pset 1.all
	pset 1.all

	All threads in process 1
	All threads in process 1

	<TABLE ROW>
	pset 1
	pset 1

	All threads in process 1
	All threads in process 1

	<TABLE ROW>
	pset .4
	pset .4

	Thread 4 in all processes. Same as all.4
	Thread 4 in all processes. Same as all.4

	<TABLE ROW>
	pset 1,2.(3,4)
	pset 1,2.(3,4)

	All threads in process 1, threads 3 and 4 in process 2
	All threads in process 1, threads 3 and 4 in process 2

	<TABLE ROW>
	pset 1,2.3,4
	pset 1,2.3,4

	All threads in processes 1 and 4, thread 3 in process 2
	All threads in processes 1 and 4, thread 3 in process 2

	<TABLE ROW>
	pset {isactive(var) && var == 1}
	pset {isactive(var) && var == 1}

	All threads in which the variable var is on the stack for a process (or is a global) and has value 1
	All threads in which the variable var is on the stack for a process (or is a global) and has value 1

	Each of the following specify the same pset:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	pset {var_i == 3} . { var_j == 4}
	pset {var_i == 3} . { var_j == 4}
	pset {var_i == 3} & { var_j == 4}
	pset {var_i == 3 && var_j == 4}

	Viewing Psets Contents
	Viewing Psets Contents
	The easiest way to view the contents of psets is to use the Psets window
	By default, the window displays the current pset (which starts out being the predefined pset
	The processes within a pset are numbered starting at the upper left, increasing from left to righ...
	Shift-click on a cell to view the Prism ID number of the process it represents.
	Shift-click on a cell to view the Prism ID number of the process it represents.
	Shift-click on a cell to view the Prism ID number of the process it represents.

	Shift-click elsewhere in the pset rectangle (for example, on a border) to display all the ID numb...
	Shift-click elsewhere in the pset rectangle (for example, on a border) to display all the ID numb...
	Shift-click elsewhere in the pset rectangle (for example, on a border) to display all the ID numb...

	Shift-middle-click on a cell to view the process’s Solaris pid and the hostname of the node on wh...
	Shift-middle-click on a cell to view the process’s Solaris pid and the hostname of the node on wh...
	Shift-middle-click on a cell to view the process’s Solaris pid and the hostname of the node on wh...

	Shift-middle click elsewhere in the rectangle to display the entire list of pids and hostnames fo...
	Shift-middle click elsewhere in the rectangle to display the entire list of pids and hostnames fo...
	Shift-middle click elsewhere in the rectangle to display the entire list of pids and hostnames fo...

	To Display a Pset
	To Display a Pset
	Choose the Show selection from the Options menu in the Psets window.
	Choose the Show selection from the Options menu in the Psets window.
	This displays a list of psets; the predefined psets are at the top, followed by any user-defined ...

	To Hide a Pset
	To Hide a Pset
	1. Choose the Hide selection from the Options menu.
	1. Choose the Hide selection from the Options menu.
	This displays the list of predefined and user-defined psets.

	2. Click on a set name to remove that set from the display.
	2. Click on a set name to remove that set from the display.

	Note that hiding a pset doesn’t otherwise affect its status; it still exists and can be used in c...
	Note also that there are choices All Sets and all in the Show and Hide submenus. The All Sets cho...
	To View Psets Not Shown in the Display Window
	To View Psets Not Shown in the Display Window
	1. Use the navigator rectangle to the right of the Cycle arrows to pan through the psets.
	1. Use the navigator rectangle to the right of the Cycle arrows to pan through the psets.
	The white box in the rectangle shows the position of the display area relative to all the psets t...
	<GRAPHIC>
	<GRAPHIC>

	2. Either drag the box or click at a spot in the rectangle.
	2. Either drag the box or click at a spot in the rectangle.

	The box moves to that spot, and the display window shows the psets in this area of the total disp...
	To display more psets at the same time, click on the Zoom

	Viewing Pset Contents From the Command Line
	Viewing Pset Contents From the Command Line
	To Print the Contents of the Specified Pset
	To Print the Contents of the Specified Pset
	Type
	Type
	(
	For example, the command
	(
	(

	might produce this response:
	The�set�contains�the�following�processes:�0:3.
	The�set�contains�the�following�processes:�0:3.

	The

	The
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) show psets
	(prism all)
	foo:
	definition = 0:31:2
	members = 0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30
	current process = 0
	break:
	definition = break
	members = nil
	current process = (none)
	done:
	definition = done
	members = 0:31
	current process = 0
	interrupted:
	definition = interrupted
	members = nil
	current process = (none)
	error:
	definition = error
	members = nil
	current process = (none)
	running:
	definition = running
	members = nil
	current process = (none)
	stopped:
	definition = stopped
	members = nil
	current process = (none)
	current:
	definition = 6, 9, 12
	members = 6,9,12
	current process = 6
	cycle:
	definition = 6, 9, 12
	members = 6,9,12
	current process = 6
	all:
	definition = all
	members = 0:31
	current process = 12

	Deleting Psets
	Deleting Psets
	To Delete Psets
	To Delete Psets
	You can delete named psets that you have defined. You cannot delete any predefined pset except
	Perform one of the following:
	Perform one of the following:
	From the Psets window — Choose the Delete selection from the Options menu. This displays a list o...
	From the Psets window — Choose the Delete selection from the Options menu. This displays a list o...
	From the Psets window — Choose the Delete selection from the Options menu. This displays a list o...

	From the command line — Issue the
	From the command line — Issue the
	(
	deletes the pset named

	See

	The Current Pset
	The Current Pset
	The command syntax described in
	You cannot change the current pset to one that has no members. If you try to do so, nothing happe...
	Cannot�set�current�pset�to�running�
	Cannot�set�current�pset�to�running�

	When a program is first loaded, the current pset is the default pset,
	To Change the Current Pset
	To Change the Current Pset
	Perform one of the following:
	Perform one of the following:

	From the Psets window — There are several ways of changing the current pset via the Psets window
	From the Psets window — There are several ways of changing the current pset via the Psets window
	From the Psets window — There are several ways of changing the current pset via the Psets window
	If the set is displayed in the Psets window, simply double-click anywhere in its display (for exa...
	If the set is displayed in the Psets window, simply double-click anywhere in its display (for exa...
	If the set is displayed in the Psets window, simply double-click anywhere in its display (for exa...

	Choose the Set Pset selection from the Options menu. This displays a list of psets. Click on the ...
	Choose the Set Pset selection from the Options menu. This displays a list of psets. Click on the ...
	Choose the Set Pset selection from the Options menu. This displays a list of psets. Click on the ...

	Edit the name of the pset in the box below Current Set at the top right of the Psets window, then...
	Edit the name of the pset in the box below Current Set at the top right of the Psets window, then...
	Edit the name of the pset in the box below Current Set at the top right of the Psets window, then...
	When you change the current set, the new name appears in the Current Set box in the Psets window,...

	From the command line — Type
	From the command line — Type
	From the command line — Type
	(
	(
	changes the current pset to
	You can also use the
	(
	(

	To Find Out the Current Pset
	To Find Out the Current Pset
	Perform one of the following:
	Perform one of the following:

	Look for the name in the Current Set box at the top right of the Psets window.
	Look for the name in the Current Set box at the top right of the Psets window.
	Look for the name in the Current Set box at the top right of the Psets window.

	Look in the status region in the Prism environment’s main window.
	Look in the status region in the Prism environment’s main window.
	Look in the status region in the Prism environment’s main window.

	Type
	Type
	Type
	(
	This displays the current set.

	Examine the
	Examine the
	Examine the
	For example, the Prism environment’s response to the
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) pset foo
	(prism all)
	(prism foo)

	Note – In giving examples of Prism commands, the (
	Note – In giving examples of Prism commands, the (

	To List the Processes in the Current Pset
	To List the Processes in the Current Pset
	Type
	Type
	(
	For example,
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism foo) show pset
	(prism foo)
	pset ’current’ is defined as ’foo’.
	The set contains the following processes: 1,2.

	The Psets window also displays the processes in the current pset.

	Current Pset and Dynamic Psets
	Current Pset and Dynamic Psets
	“Predefined Psets” on page 58
	“Predefined Psets” on page 58

	If you specify a dynamic pset as the current pset, you create a
	Output of the
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) pset stopped
	(prism all)
	(prism 0:1. 13) show pset
	The current set was created by evaluating the pset
	’stopped’ once at the time when it became the current set.
	The set contains the following processes: 0:1, 13.

	Issuing the
	Note that the
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism long_pset_name) set $prompt_length=9
	(prism long_pset_name)
	(prism long_pset)

	Current Pset and Variable Psets
	Current Pset and Variable Psets
	“Defining Psets” on page 59
	“Defining Psets” on page 59

	To Update the Membership of a Variable Pset
	To Update the Membership of a Variable Pset
	Type
	Type
	(
	If you make a variable pset your current set, its membership is determined by the most recent

	The Current Process
	The Current Process
	Each pset has a current process, which serves as the scoping point for Prism commands. By default...
	The current process has a variety of uses in the Prism environment:
	The source window displays the source code executing in the current process of the current pset.
	The source window displays the source code executing in the current process of the current pset.
	The source window displays the source code executing in the current process of the current pset.

	The Where graph
	The Where graph
	The Where graph

	The current process determines the scope used in interpreting the names of variables; see
	The current process determines the scope used in interpreting the names of variables; see
	The current process determines the scope used in interpreting the names of variables; see

	To Change the Current Process
	To Change the Current Process
	When you change a current process, by any of the methods described below, the pset keeps this new...
	Perform one of the following:
	Perform one of the following:

	From the Psets window — Use one of these methods to change the current process via the Psets window:
	From the Psets window — Use one of these methods to change the current process via the Psets window:
	From the Psets window — Use one of these methods to change the current process via the Psets window:
	Click on the cell representing the process in the displayed pset. The cell turns a darker shade o...
	Click on the cell representing the process in the displayed pset. The cell turns a darker shade o...
	Click on the cell representing the process in the displayed pset. The cell turns a darker shade o...

	To change the current process in the current pset, you can also edit the number in the box under ...
	To change the current process in the current pset, you can also edit the number in the box under ...
	To change the current process in the current pset, you can also edit the number in the box under ...

	From the command line — Issue the
	From the command line — Issue the
	From the command line — Issue the
	The syntax of the
	(
	where
	pset 1:4:2.2:3
	In this case, the current pset is: 1.2 (the current process), 1.3, 3.2, and 3.3 Then, if you issu...
	(
	(
	(

	the current process changes from 1.2 to 3.2
	By default, the lowest numbered thread from the lowest numbered process in the pset is the curren...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism 1.4) process 1.3
	(prism 1.4)
	(prism 1.3)

	As shown in this example, when operating on a multiprocess or multithreaded program, the Prism co...
	The Prism environment uses the current process and current thread in several ways:
	The Prism environment’s source window displays the source executing in the current process or cur...
	The Prism environment’s source window displays the source executing in the current process or cur...
	The Prism environment’s source window displays the source executing in the current process or cur...

	The Prism environment centers the where graph around the call stack of the current process or cur...
	The Prism environment centers the where graph around the call stack of the current process or cur...

	The Prism environment uses the current process or current thread to resolve (look up) variable na...
	The Prism environment uses the current process or current thread to resolve (look up) variable na...

	To Print the Current Process of the
	To Print the Current Process of the
	Type
	Type
	(

	Scope in the Prism Environment
	Scope in the Prism Environment
	When using the Prism environment to debug a message-passing program, the scope of the current pro...
	If a command applies to a pset other than the current set, the Prism environment uses the scope o...
	It is possible that other members of the pset will have different scopes from that of the current...
	Restrict your pset so that it contains only members with the same scope.
	Restrict your pset so that it contains only members with the same scope.
	Restrict your pset so that it contains only members with the same scope.

	If the current process’s scope level does not exist in other processes in the set, you can use the
	If the current process’s scope level does not exist in other processes in the set, you can use the
	If the current process’s scope level does not exist in other processes in the set, you can use the

	If different processes in the set have different scopes, you can issue the
	If different processes in the set have different scopes, you can issue the
	If different processes in the set have different scopes, you can issue the

	Commands such as

	The
	The
	In debugging a message-passing program, you may often want to look in turn at each process within...
	To Create a
	To Create a
	Type
	Type
	(
	If
	By default, the
	For example,
	(
	copies

	Note that changing the
	1. Make
	1. Make
	1. Make

	2. Make
	2. Make

	3. Once again make
	3. Once again make
	Then you start at the beginning again when you cycle through the members of

	To Cycle Through the Processes in the
	To Cycle Through the Processes in the
	1. Use the Cycle arrows at the top left of the window to cycle through the members of the
	1. Use the Cycle arrows at the top left of the window to cycle through the members of the

	2. Click on the right arrow to cycle up through the members of the set; click on the left arrow t...
	2. Click on the right arrow to cycle up through the members of the set; click on the left arrow t...

	Clicking on a Cycle arrow:
	Makes the current pset consist of only this process.
	Makes the current pset consist of only this process.
	Makes the current pset consist of only this process.

	To Cycle Through the Processes in a Pset from the Command Line
	To Cycle Through the Processes in a Pset from the Command Line
	Type
	Type
	(
	This has the same effect as clicking on the right cycle arrow in the Psets window.

	In a nonthreaded program, the
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) define pset foo 0:3
	(prism all)
	(prism all)
	(prism foo)
	(prism 1)
	(prism 2)
	(prism 3)
	(prism 0)

	To Cycle Through the Processes in a Pset From the Source- Window Pop-Up Menu
	To Cycle Through the Processes in a Pset From the Source- Window Pop-Up Menu
	Choose Cycle from this menu
	Choose Cycle from this menu
	This advances to the next member of the

	Cycle Visualizer Window
	Cycle Visualizer Window
	The Prism environment includes a Cycle window type for visualizing data. When you print a variabl...

	Hiding Threads From Psets
	Hiding Threads From Psets
	The
	Threads in the set of hidden threads never appear in any pset, and debugging commands are never s...
	These procedures are valid only when debugging a multithreaded program.
	To Hide Threads From Psets
	To Hide Threads From Psets
	Type
	Type
	(
	The Prism environment evaluates

	To Make Hidden Threads Available to Psets Again
	To Make Hidden Threads Available to Psets Again
	Type
	Type
	(
	The Prism environment evaluates

	To Show Currently Hidden Threads
	To Show Currently Hidden Threads
	Type
	Type
	(

	Using Psets in Commands
	Using Psets in Commands
	As mentioned at the beginning of
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	address/
	address
	address

	assign
	assign

	call
	call

	catch
	catch

	cont, contw
	cont, contw

	display
	display

	ignore
	ignore

	interrupt
	interrupt

	lwps
	lwps

	next, nexti
	next, nexti

	print
	print

	pstatus
	pstatus

	return, stepout
	return, stepout

	step, stepi
	step, stepi

	stop, stopi
	stop, stopi

	sync, syncs
	sync, syncs

	thread, threads
	thread, threads

	trace, tracei
	trace, tracei

	wait
	wait

	whatis
	whatis

	where
	where

	To Use a Pset Qualifier
	To Use a Pset Qualifier
	Type
	Type
	(
	A command with a pset qualifier
	For example,
	(prism all)
	(prism all)
	(prism all)

	sets a breakpoint at line 12 for the processes in pset
	(
	(

	displays the Where graph for processes 0 through 10. See
	(
	(

	This creates a trace event for the members of the current pset.
	Note that this last command applies only to the members of the current pset. To apply it to all p...
	(
	(

	Many commands, of course, cannot logically take a pset qualifier. You get an error message if you...

	Using Unbounded Psets in Commands
	Using Unbounded Psets in Commands
	When running threaded programs in the Prism environment, you can encounter
	For example,
	pset 3.all
	pset 3.all
	pset 3.all

	The size of such an unbounded pset is not constant, since it contains all threads created during ...
	Pset expressions that omit specifying the thread-part implicitly mean all threads, so that pset
	Pset expressions that are composed of one or more unbounded psets are also unbounded.
	Note – The use of
	For example, pset
	The Prism environment places several restrictions on the use of unbounded psets. You cannot use a...
	For example, both of these examples of the
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) wait every pset all
	(prism all)
	...
	(prism all)
	(prism all)

	Similarly, you may not use unbounded sets as the context for the
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) stop in foo { print x} pset all�����;�illegal
	(prism all)
	(prism all)

	You make a pset current using the
	The Prism environment handles the psets that apply to the
	(prism all)
	(prism all)
	(prism all)

	Using Snapshots of Unbounded Psets in Commands
	Using Snapshots of Unbounded Psets in Commands
	The Prism environment allows you to control the contents of psets derived from unbounded sets of ...
	Here is an example of how the contents of unbound psets can vary:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) pset
	(prism all)
	The current set was created by evaluating the Pset ’all’ once at the time when it became the curr...

	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) define pset all1 all - 1.1
	(prism all)
	(prism all)
	Pset ’all1’ is defined as ’all - 1.1’.
	The set contains the following threads: (0,2).1.

	Then, after running the program for a while, the membership of all and all1 both change:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) show pset all
	(prism all)
	The set contains the following threads: 0:2.(1,5,6).
	(prism all)
	Pset ’all1’ is defined as ’all - 1.1’.
	The set contains the following threads: (0,2).(1,5,6), 1.(5,6).

	To Create a Bounded Pset from an Unbounded Pset
	To Create a Bounded Pset from an Unbounded Pset
	You can specify a
	Type
	Type
	(prism all)

	For example
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) pset
	(prism all)
	The current set was created by evaluating the Pset
	’all’ once at the time when it became the current set.
	The set contains threads: 0:2.1.
	(prism all)
	(prism all)
	Pset ’snap1’ is defined as ’snapshot (all - 1.1)’.
	The set contains the following threads: (0,2).1.

	Then, after running the program for a while, the membership of (
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) show pset all
	(prism all)
	The set contains the following threads: 0:2.(1,5,6).
	(prism all)
	Pset ’snap1’ is defined as ’snapshot (all - 1.1)’.
	The set contains the following threads: (0,2).1.

	However, you can force the update of the membership of pset
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) eval pset snap1
	(prism all)
	(prism all)
	Pset ’snap1’ is defined as ’snapshot (all - 1.1)’.
	The set contains the following threads: (0,2).(1,5,6), 1.(5,6)

	The following example shows a situation in which using an unbounded pset,
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all - 1.1) stop in func {print 1 } pset all
	(prism all - 1.1)
	Currently, dynamic psets are not allowed in events.
	Action is dropped from event 3 because of dynamic pset all
	(3) stop in func pset all
	(prism all - 1.1)
	(4) stop in func { print 2 } pset snapshot(all)

	Referring to Nonexistent Thread Identifiers
	Referring to Nonexistent Thread Identifiers
	Pset expressions may refer to
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) show pset all
	(prism all)
	The set contains the following threads: (0:3).1
	(prism all)

	However, you may use a pset qualifier containing non-existent threads when setting a breakpoint. ...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) stop in foo pset all.5
	(prism all)
	(prism all)

	Using the Prism Environment With Sun MPI Client/Server Programs
	Using the Prism Environment With Sun MPI Client/Server Programs
	You can use a Prism session to debug only one Sun MPI job at a time. Therefore, if an MPI job spa...
	To use the Prism environment to debug a Sun MPI program, the program must be written in the
	<Filename | Command>MPI_Comm_spawn_multiple<Default Para Font>
	<Filename | Command>MPI_Comm_spawn_multiple<Default Para Font>
	<Filename | Command>MPI_Comm_spawn_multiple<Default Para Font>
	<Filename | Command>MPI_Comm_spawn_multiple<Default Para Font>

	Choosing the Current File and Function
	Choosing the Current File and Function
	The Prism environment uses the concepts of
	The
	In addition, changing the current file and current function changes the scope used by the Prism e...
	To Change the Current File
	To Change the Current File
	Perform one of the following:
	Perform one of the following:
	Note – The
	Note – The

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�3�6 File Window

	From the command window – Issue the
	From the command window – Issue the
	From the command window – Issue the

	To Change the Current Function or Procedure
	To Change the Current Function or Procedure
	Perform one of the following:
	Perform one of the following:
	By default, the Func window displays only functions in files compiled with the

	From the command window — Issue the
	From the command window — Issue the
	From the command window — Issue the

	From the source window — Select the name of the function in the source window by dragging the mou...
	From the source window — Select the name of the function in the source window by dragging the mou...
	From the source window — Select the name of the function in the source window by dragging the mou...
	Note – Include only the function name, not its arguments.
	Note – Include only the function name, not its arguments.

	Note that if the function you choose is in a different source file from the current file, changin...

	Creating a Directory List for Source Files
	Creating a Directory List for Source Files
	If you have moved a source file, or if for some other reason the Prism environment can’t find it,...
	To Add a Directory to the Search Path
	To Add a Directory to the Search Path
	Perform one of the following:
	Perform one of the following:

	From the menu bar — Choose the
	From the menu bar — Choose the
	From the menu bar — Choose the

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�3�7 Use Dialog Box

	From the command window — Issue the
	From the command window — Issue the
	From the command window — Issue the
	Note – No matter what the contents of your directory list are, the Prism environment searches for...
	Note – No matter what the contents of your directory list are, the Prism environment searches for...

	4
	4
	Debugging a Program
	This chapter discusses how to debug programs in the Prism environment. It also describes how to use
	“Overview of Events” on page 87
	“Overview of Events” on page 87
	“Overview of Events” on page 87
	“Overview of Events” on page 87

	“Using the Event Table” on page 89
	“Using the Event Table” on page 89
	“Using the Event Table” on page 89
	“Using the Event Table” on page 89

	“Setting Breakpoints” on page 99
	“Setting Breakpoints” on page 99
	“Setting Breakpoints” on page 99
	“Setting Breakpoints” on page 99

	“Tracing Program Execution” on page 104
	“Tracing Program Execution” on page 104
	“Tracing Program Execution” on page 104
	“Tracing Program Execution” on page 104

	“Displaying and Moving Through the Call Stack” on page 106
	“Displaying and Moving Through the Call Stack” on page 106
	“Displaying and Moving Through the Call Stack” on page 106
	“Displaying and Moving Through the Call Stack” on page 106

	“Combining Debug and Optimization Options” on page 115
	“Combining Debug and Optimization Options” on page 115
	“Combining Debug and Optimization Options” on page 115
	“Combining Debug and Optimization Options” on page 115

	“Examining the Contents of Memory and Registers” on page 117
	“Examining the Contents of Memory and Registers” on page 117
	“Examining the Contents of Memory and Registers” on page 117
	“Examining the Contents of Memory and Registers” on page 117

	Overview of Events
	Overview of Events
	A typical approach to debugging is to stop the execution of a program at different points so that...
	Breakpoints and traces are
	1. The execution pointer moves to the current execution point.
	1. The execution pointer moves to the current execution point.
	1. The execution pointer moves to the current execution point.

	2. A message is printed in the command window.
	2. A message is printed in the command window.

	3. If you specified that an action was to accompany the event (for example, the printing of a var...
	3. If you specified that an action was to accompany the event (for example, the printing of a var...

	4. If the event is a trace, execution then continues. If it is a breakpoint, execution does not r...
	4. If the event is a trace, execution then continues. If it is a breakpoint, execution does not r...

	The Prism environment provides various ways of creating these events�—�for example, by issuing co...
	See
	You can define events so that they occur:
	Such events are referred to as
	In addition, you can qualify an event as follows:
	You can include one or more Prism commands as actions that are to take place as part of the event...

	Using the Event Table
	Using the Event Table
	The Event Table provides a unified method for controlling the execution of a program. Creating an...
	Add new events
	Add new events
	Add new events

	Delete existing events
	Delete existing events

	Edit existing events
	Edit existing events

	You display the Event Table by choosing the Event Table
	This section describes the general process of using the Event Table.
	Description of the Event Table
	Description of the Event Table
	FIGURE�4�1
	FIGURE�4�1

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�4�1 Event Table

	The top area of the Event Table is the
	The middle area of the Event Table is a series of fields that you fill in when editing or adding ...
	ID – This is an identification number associated with the event. You cannot edit this field.
	ID – This is an identification number associated with the event. You cannot edit this field.
	ID – This is an identification number associated with the event. You cannot edit this field.

	Location – Use this field to specify the location in the program at which the event is to take pl...
	Location – Use this field to specify the location in the program at which the event is to take pl...
	Location – Use this field to specify the location in the program at which the event is to take pl...
	Use
	Use
	Use

	Use
	Use
	Use

	Use
	Use
	Use

	Watch — Use this field to specify a variable or expression whose value(s) are to be watched; the ...
	Watch — Use this field to specify a variable or expression whose value(s) are to be watched; the ...
	Watch — Use this field to specify a variable or expression whose value(s) are to be watched; the ...

	Actions — Use this field to specify the action(s) associated with the event. The actions can be m...
	Actions — Use this field to specify the action(s) associated with the event. The actions can be m...
	Actions — Use this field to specify the action(s) associated with the event. The actions can be m...

	Condition — Use this field to specify a logical condition that must be met if the event is to tak...
	Condition — Use this field to specify a logical condition that must be met if the event is to tak...
	Condition — Use this field to specify a logical condition that must be met if the event is to tak...

	After — Use this field to specify how many times a triggering condition is to be met (for example...
	After — Use this field to specify how many times a triggering condition is to be met (for example...
	After — Use this field to specify how many times a triggering condition is to be met (for example...

	Stop — Use this field to specify whether or not the event is to halt execution of the program. Pu...
	Stop — Use this field to specify whether or not the event is to halt execution of the program. Pu...
	Stop — Use this field to specify whether or not the event is to halt execution of the program. Pu...

	Inst — Use this field to specify whether to display a disassembled assembly- language instruction...
	Inst — Use this field to specify whether to display a disassembled assembly- language instruction...
	Inst — Use this field to specify whether to display a disassembled assembly- language instruction...

	Silent — Use this field to specify whether or not the event is to cause a message to appear in th...
	Silent — Use this field to specify whether or not the event is to cause a message to appear in th...
	Silent — Use this field to specify whether or not the event is to cause a message to appear in th...

	Enabled — Use this field to specify whether the event is enabled. Putting an
	Enabled — Use this field to specify whether the event is enabled. Putting an
	Enabled — Use this field to specify whether the event is enabled. Putting an
	Pset — Use this field to specify the intended pset (for events that take pset qualifiers).

	The buttons beneath these fields are for use in creating and deleting events, and are described b...
	The area headed Common Events
	Click on Close or press the Esc key to cancel the Event Table window.

	Adding an Event
	Adding an Event
	You can either add an event, editing field by field, or you can use the Common Events
	To Add an Event, Editing Field by Field
	To Add an Event, Editing Field by Field
	1. Click on the New button.
	1. Click on the New button.
	All values currently in the fields are cleared.

	2. Fill in the relevant fields to create the event.
	2. Fill in the relevant fields to create the event.

	3. Click on the Save button to save the new event.
	3. Click on the Save button to save the new event.
	It appears in the event list.

	To Add an Event, Using Common Events Buttons
	To Add an Event, Using Common Events Buttons
	1. Click on the button for the event you want to add�—�for example, Print.
	1. Click on the button for the event you want to add�—�for example, Print.
	This fills in certain fields (for example, it puts print on dedicated in the Actions field) and h...

	2. Fill in the highlighted field(s).
	2. Fill in the highlighted field(s).
	You can also edit other fields, if you like.

	3. Click on Save to add the event to the event list.
	3. Click on Save to add the event to the event list.

	Most of these Common Events buttons are also available as separate selections in the
	Individual Common Events buttons are discussed throughout the remainder of this guide.
	You can also create a new event by editing an existing event; see

	Deleting an Existing Event
	Deleting an Existing Event
	You can delete events using the Event Table or the Delete selection from the Events menu.
	To Delete an Existing Event, Using the Event Table
	To Delete an Existing Event, Using the Event Table
	1. Click on the line representing the event in the event list, or move to it with the up and down...
	1. Click on the line representing the event in the event list, or move to it with the up and down...
	This causes the components of the event to be displayed in the appropriate fields beneath the list.

	2. Click on the Delete button.
	2. Click on the Delete button.
	You can also choose the Delete
	Deleting a breakpoint at a program location also deletes the

	Editing an Existing Event
	Editing an Existing Event
	You can edit an existing event to change it, or to create a new event similar to it.
	To Edit an Existing Event
	To Edit an Existing Event
	1. Click on the line representing the event in the event list, or move to it with the up and down...
	1. Click on the line representing the event in the event list, or move to it with the up and down...
	This causes the components of the event to be displayed in the appropriate fields beneath the list.

	2. Edit these fields.
	2. Edit these fields.
	For example, you can change the Location field to specify a different location in the program.

	3. Click on Replace to save the newly edited event
	3. Click on Replace to save the newly edited event
	Click on the Save button to save the new event

	Disabling and Enabling Events
	Disabling and Enabling Events
	You can disable and enable events. When you disable an event, the Prism environment keeps it in t...
	To Disable an Event
	To Disable an Event
	Perform one of the following:
	Perform one of the following:
	From the Event Table — The Event Table has an Enabled field. By default, there is a
	From the Event Table — The Event Table has an Enabled field. By default, there is a
	From the Event Table — The Event Table has an Enabled field. By default, there is a

	From the command line — Issue the
	From the command line — Issue the
	From the command line — Issue the

	For example, this sequence of commands displays the event list, then disables an event, then re-d...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) show events(1) trace
	(prism all)
	(2) when stopped { print board }
	(prism all)
	event 1 disabled
	(prism all)
	(1) trace (disabled)
	(2) when stopped { print board }

	To Enable an Event
	To Enable an Event
	Type
	Type
	(
	This re-enables

	Saving Events
	Saving Events
	Events that you create for a program are automatically maintained
	Note these points:
	The Prism environment prints a warning message if it can’t maintain an event�— �for example, beca...
	The Prism environment prints a warning message if it can’t maintain an event�— �for example, beca...
	The Prism environment prints a warning message if it can’t maintain an event�— �for example, beca...

	Disabled events become enabled when a program is reloaded.
	Disabled events become enabled when a program is reloaded.
	Disabled events become enabled when a program is reloaded.

	Events are deleted when you leave the Prism environment.
	Events are deleted when you leave the Prism environment.
	Events are deleted when you leave the Prism environment.

	To Save Events to a File
	To Save Events to a File
	You can use Prism commands to save your events to a file, and then execute them from the file rat...
	1. Type
	1. Type
	(
	This displays the event list.
	Redirect the output to a file. For example,
	(
	(

	2. Edit this file to remove the ID number at the beginning of each event.
	2. Edit this file to remove the ID number at the beginning of each event.
	This leaves you with a list of Prism commands.

	3. Type
	3. Type
	(
	This reads in and executes the commands from
	For example,
	(
	(

	Events Taking Pset Qualifiers
	Events Taking Pset Qualifiers
	Events in the Prism environment can take a pset qualifier.
	To Specify a Pset Qualifier
	To Specify a Pset Qualifier
	Type the pset name in the Pset field in the Event Table, as shown in
	Type the pset name in the Pset field in the Event Table, as shown in

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�4�2 Pset Field in Prism’s Event Table

	If you don’t supply a pset qualifier, the event applies to the current pset. If you create the ev...
	For example,
	(
	(

	sets a breakpoint in the
	Here is another example:
	(
	(

	This command stops execution for any process in the current pset if the process’s value for the v...
	The Prism environment evaluates the expression in the condition locally�—�that is, separately for...
	(
	(
	(

	stops execution for a process in the current set if the sum of the values of
	All processes that are stopped at breakpoints are members of the predefined pset
	To Continue All the Processes in a Pset
	To Continue All the Processes in a Pset
	Type
	Type
	(
	For example,
	(
	(

	Events and Dynamic Psets
	Events and Dynamic Psets
	If you use a dynamic pset as a qualifier for an event, its membership is evaluated when you issue...
	(
	(
	(

	creates a breakpoint only in the processes that are interrupted at the time the command is issued...
	One result of this is that you cannot define events that involve dynamic psets before the program...

	Events and Variable Psets
	Events and Variable Psets
	If you use a user-defined variable pset as a qualifier, its membership is determined by the most ...
	As is the case with dynamic psets, you cannot define events that involve variable psets before th...

	Actions in Events
	Actions in Events
	Events in the Prism environment can take action clauses. For example, in a message- passing progr...
	(
	(

	Note – Associating an action with an event forces a global synchronization at the breakpoint or t...
	Note – Associating an action with an event forces a global synchronization at the breakpoint or t...

	You can include an
	(
	(

	evaluates the pset
	Note these limitations in using event actions:
	You cannot include the following commands that manipulate psets:
	You cannot include the following commands that manipulate psets:
	You cannot include the following commands that manipulate psets:
	define
	define
	define
	define

	delete
	delete
	delete

	process
	process
	process

	pset
	pset
	pset

	You cannot include a pset qualifier
	You cannot include a pset qualifier
	You cannot include a pset qualifier

	You cannot include commands that affect program execution, specifically:
	You cannot include commands that affect program execution, specifically:
	You cannot include commands that affect program execution, specifically:
	cont
	cont
	cont
	cont

	run
	run
	run

	step
	step
	step

	next
	next
	next

	wait
	wait
	wait

	You cannot include the
	You cannot include the
	You cannot include the

	You cannot use an unbounded pset as the context for an event specification. For information about...
	You cannot use an unbounded pset as the context for an event specification. For information about...

	To Display Events by Process
	To Display Events by Process
	Type
	Type
	(
	This displays all events associated with that process.
	Issuing
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) show events
	(prism all)
	(1) trace
	(2) when stopped { print board }
	(prism all)
	event 1 disabled
	(prism all)
	(1) trace (disabled)
	(2) when stopped { print board }

	Events and Deleted Psets
	Events and Deleted Psets
	If you create an event that applies to a particular pset, and subsequently delete the pset, the e...

	Setting Breakpoints
	Setting Breakpoints
	A
	You can set a breakpoint
	By using the line-number region
	By using the line-number region
	By using the line-number region

	By using the Event Table and the Events menu
	By using the Event Table and the Events menu
	By using the Event Table and the Events menu

	From the command window, by issuing the command
	From the command window, by issuing the command
	From the command window, by issuing the command

	You’ll probably find it most convenient to use the line-number region for setting simple breakpoi...
	In all cases, an event is added to the list in the Event Table. If you delete the breakpoint usin...
	Using the Line-Number Region
	Using the Line-Number Region
	To use the line-number region to set a breakpoint, the line at which you want to stop execution m...
	To Set a Breakpoint in the Line-Number Region
	To Set a Breakpoint in the Line-Number Region
	1. Position the mouse pointer to the right of the line numbers.
	1. Position the mouse pointer to the right of the line numbers.
	The pointer turns into a

	2. Move the pointer next to the line at which you want to stop execution.
	2. Move the pointer next to the line at which you want to stop execution.

	3. Left-click the mouse.
	3. Left-click the mouse.
	A
	A message appears in the command window confirming the breakpoint, and an event is added to the e...
	The source line you choose must contain executable code; if it does not, you receive a warning in...

	4. Shift-click on the letter in the line-number region to display the complete event (or events) ...
	4. Shift-click on the letter in the line-number region to display the complete event (or events) ...

	See
	See
	To Delete Breakpoints Using the Line-Number Region
	To Delete Breakpoints Using the Line-Number Region
	Left-click on the
	Left-click on the
	The

	What Happens in a Split Source Window
	What Happens in a Split Source Window
	As described in
	You can set a breakpoint in either pane of the split source window. The
	Deleting a breakpoint from one pane of the split source window deletes it from the other pane as ...

	Using the Event Table and the Events Menu
	Using the Event Table and the Events Menu
	Choose the Stop <loc> or Stop <var> selection from the Events menu. These choices are also availa...
	To Set a Breakpoint Using the Event Table
	To Set a Breakpoint Using the Event Table
	Perform one of the following:
	Perform one of the following:

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�4�3 Stop <loc> Dialog Box

	In addition,
	You can also use the Event Table to create combinations of these breakpoints; for example, you ca...
	To Delete Breakpoints Using the Event Table
	To Delete Breakpoints Using the Event Table
	Perform one of the following:
	Perform one of the following:
	From the Events menu, choose Delete.
	From the Events menu, choose Delete.
	From the Events menu, choose Delete.

	From the Event Table, use the Delete button.
	From the Event Table, use the Delete button.

	For more information about deleting events, see

	Setting a Breakpoint Using Commands
	Setting a Breakpoint Using Commands
	To Set a Breakpoint Using Commands
	To Set a Breakpoint Using Commands
	Type
	Type
	(
	Or
	(
	The

	The syntax of the
	command
	command

	where
	command —
	command —
	command —
	command —

	variable —
	variable —
	variable —
	variable —

	line
	line
	line
	line

	at
	at

	func
	func
	func
	func

	expr
	expr
	expr
	expr

	if a .GT. 1
	if a .GT. 1

	This form of the command slows execution considerably, unless you combine it with the

	cmd
	cmd
	cmd
	cmd

	n
	n
	n
	n

	The first option listed (specifying the location or the name of the variable) must come first on ...
	For the
	When you issue the command, an event is added to the event list. If the command sets a breakpoint...
	Examples of the
	Examples of the
	To stop execution the tenth time in function
	(
	(

	To stop at line 17 of file
	(
	(

	To stop whenever
	(
	(

	To stop the third time
	(
	(

	To print
	(
	(

	To Set a Breakpoint Using Machine Instructions
	To Set a Breakpoint Using Machine Instructions
	Type
	Type
	(
	Use the syntax described above, and specifying a machine address. For example,
	(
	(

	stops execution at address 1000 (hex).
	The history region displays the address and the machine instruction. The source pointer moves to ...

	To Delete Breakpoints
	To Delete Breakpoints
	1. Type
	1. Type
	(
	This prints out the

	2. Type
	2. Type
	(
	List the ID numbers of the events you want to delete; separate multiple IDs with one or more blan...
	delete 1 3
	delete 1 3
	delete 1 3

	deletes the events with IDs 1 and 3. Use the argument

	Tracing Program Execution
	Tracing Program Execution
	You can trace program execution by using the Event Table or Events menu, or by issuing commands. ...
	As described earlier, tracing is essentially the same as setting a breakpoint, except that execut...
	To Trace Program Execution Using the Event Table and the Events Menu
	To Trace Program Execution Using the Event Table and the Events Menu
	Choose the Trace, Trace <loc>, or Trace <var> selection from the Events menu.
	Choose the Trace, Trace <loc>, or Trace <var> selection from the Events menu.
	These choices are also available as Common Events buttons within the Event Table itself.
	Trace (var)
	Trace <

	In addition,
	For variations of these traces, you can create your own event in the Event Table. You can also us...

	To Delete Traces Using the Event Table
	To Delete Traces Using the Event Table
	Choose the
	Choose the
	For more information about deleting existing events, see

	To Trace Program Execution Using Commands
	To Trace Program Execution Using Commands
	Type
	Type
	(
	Issuing
	The
	To trace and print
	(
	To trace line 17 if
	(
	In addition, the Prism environment interprets
	(
	(

	as being the same as
	(
	(

	To Trace Machine Instructions
	To Trace Machine Instructions
	Type
	Type
	(
	When tracing machine instructions, the Prism environment follows all procedure calls down. The
	The history region displays the address and the machine instruction. The execution pointer moves ...

	To Delete Traces Using the Command Window
	To Delete Traces Using the Command Window
	1. Type
	1. Type
	(
	This obtains the ID associated with the trace.

	2. Type
	2. Type
	(
	For further information, see

	Displaying and Moving Through the Call Stack
	Displaying and Moving Through the Call Stack
	The
	See
	To Display the Call Stack
	To Display the Call Stack
	Values of arguments in displayed procedures are shown in the default radix, which is decimal unle...
	Perform one of the following:
	Perform one of the following:
	From the menu bar — Choose the
	From the menu bar — Choose the
	From the menu bar — Choose the

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�4�4 Where Window

	From the command window — Type
	From the command window — Type
	From the command window — Type

	From the command window — Type
	From the command window — Type

	Moving Through the Call Stack
	Moving Through the Call Stack
	Moving
	Moving through the call stack changes the current function and repositions the source window at t...
	To Move Through the Call Stack
	To Move Through the Call Stack
	Perform one of the following:
	Perform one of the following:
	From the menu bar — Choose Up
	From the menu bar — Choose Up
	From the menu bar — Choose Up

	From the command window — Issue the
	From the command window — Issue the
	From the command window — Issue the

	From the Where window — If the
	From the Where window — If the
	From the Where window — If the

	Displaying the Where Graph
	Displaying the Where Graph
	When using the Prism environment to debug a multiprocess program, choosing Where
	To Display the Where Graph
	To Display the Where Graph
	Perform one of the following:
	Perform one of the following:
	From the menu bar — Choose Where from the Debug menu.
	From the menu bar — Choose Where from the Debug menu.
	From the menu bar — Choose Where from the Debug menu.

	From the command line — Type
	From the command line — Type
	From the command line — Type

	A window like the one shown in
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�4�5 Where Graph

	The Where graph centers on the current process of the current pset�—�that is, the processes relat...
	At the bottom of each box are line numbers indicating where processes branch.
	To Display Processes Containing a Specific Function in Their Call Stacks
	To Display Processes Containing a Specific Function in Their Call Stacks
	Shift-click in each function’s box.
	Shift-click in each function’s box.
	This displays a pop-up window showing the numbers of the processes with this function in their ca...

	Panning and Zooming in the Where Graph
	Panning and Zooming in the Where Graph
	As
	The white box in the navigator rectangle at the top of the window shows the position of the displ...
	To Move the Position Displayed in the Where Graph
	To Move the Position Displayed in the Where Graph
	Perform one of the following:
	Perform one of the following:

	Drag the box.
	Drag the box.
	Drag the box.

	Click at a spot in the navigator.
	Click at a spot in the navigator.

	The box moves to that spot, and the window shows the Where graph in this area of the total display.
	To Display More of the Where Graph
	To Display More of the Where Graph
	Click on the Zoom down arrow to the right of the navigator.
	Click on the Zoom down arrow to the right of the navigator.
	This reduces the size of the boxes representing the functions and removes information.

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�4�6 Where Graph, Zoomed Out One Level

	As you zoom further out, the Where graph removes the line numbers, and one more level after that ...
	To Display Additional Information About a Box in the Where Graph
	To Display Additional Information About a Box in the Where Graph
	Shift-click on a box to display information about it.
	Shift-click on a box to display information about it.

	If your program is multithreaded, its call stacks are not rooted at
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�4�7 Where Graph, Zoomed Out to the Maximum

	To Increase the Size of the Where Graph’s Function Boxes
	To Increase the Size of the Where Graph’s Function Boxes
	Click on the Zoom up arrow.
	Click on the Zoom up arrow.
	This increases the size of the function boxes and includes more information in them.

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�4�8 Where Graph, Zoomed In

	Zooming in another level shows all arguments for all processes.
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�4�9 Where Graph of a Threaded Program, Zoomed in to Show Thread Stripes

	If your Where graph displays a threaded program, you can zoom in to the level shown in
	To View Information About Individual Threads
	To View Information About Individual Threads
	Shift-click on the individual stripes.
	Shift-click on the individual stripes.
	This

	To Shrink Selected Portions of the Where Graph
	To Shrink Selected Portions of the Where Graph
	You can shrink selected portions of the Where graph. This is useful if you want to see the overal...
	Perform one of the following:
	Perform one of the following:
	Middle-click on a function to iconify it and all of its children. Middle-click on an iconified fu...
	Middle-click on a function to iconify it and all of its children. Middle-click on an iconified fu...
	Middle-click on a function to iconify it and all of its children. Middle-click on an iconified fu...

	Alternatively, you can click on the
	Alternatively, you can click on the

	To Move Through the Where Graph
	To Move Through the Where Graph
	When you first display the Where graph, the
	Left-click on a function to highlight it. Or, move through the Where graph via the keyboard:
	Left-click on a function to highlight it. Or, move through the Where graph via the keyboard:
	Use the up arrow key to move to the parent of the highlighted function.
	Use the up arrow key to move to the parent of the highlighted function.
	Use the up arrow key to move to the parent of the highlighted function.

	If line numbers are visible in the highlighted function, by default the leftmost number is select...
	If line numbers are visible in the highlighted function, by default the leftmost number is select...
	If line numbers are visible in the highlighted function, by default the leftmost number is select...

	To Make a Function the Current Pset
	To Make a Function the Current Pset
	Press the spacebar while in the Where graph
	Press the spacebar while in the Where graph
	The following actions occur:
	The current function
	The current function
	The current function

	The highlighted function in the source window is displayed.
	The highlighted function in the source window is displayed.
	The highlighted function in the source window is displayed.

	A new current pset is created, with the same name as the function, and containing the processes w...
	A new current pset is created, with the same name as the function, and containing the processes w...
	A new current pset is created, with the same name as the function, and containing the processes w...

	Combining Debug and Optimization Options
	Combining Debug and Optimization Options
	When you use the Prism environment on programs that have been compiled with optimization options,...
	Interpreting Interaction Between an Optimized Program and the Prism Environment
	Interpreting Interaction Between an Optimized Program and the Prism Environment
	When the control flow is inside a routine that has been compiled with both –
	next
	next
	next
	next

	step
	step
	step
	step

	You can set breakpoints using the
	Note that the following (related) commands are unaffected:
	nexti
	nexti
	nexti
	nexti

	stepi
	stepi
	stepi

	stopi
	stopi
	stopi

	When the control flow returns to a debuggable optimized routine, as a result of one of the follow...
	return
	return
	return
	return

	stepout
	stepout
	stepout

	then the Prism environment assumes that the current position is at the first line of the current ...

	Accessing Variables in Optimized Routines
	Accessing Variables in Optimized Routines
	Due to the
	The
	The limits of accessibility can be described by the flow of control in an optimized program. When...
	If the control flow is at the first machine instruction of the routine (which has not yet been ex...
	If the control flow is at the first machine instruction of the routine (which has not yet been ex...
	If the control flow is at the first machine instruction of the routine (which has not yet been ex...

	If the first machine instruction of the current routine has already been executed, then only the ...
	If the first machine instruction of the current routine has already been executed, then only the ...
	If the first machine instruction of the current routine has already been executed, then only the ...

	The following commands can
	<Filename | Command>assign<Default Para Font> command
	<Filename | Command>assign<Default Para Font> command
	<Filename | Command>assign<Default Para Font> command
	<Filename | Command>assign<Default Para Font> command
	<Filename | Command>assign<Default Para Font> command

	<Filename | Command>call<Default Para Font> command
	<Filename | Command>call<Default Para Font> command
	<Filename | Command>call<Default Para Font> command
	<Filename | Command>call<Default Para Font> command
	<Filename | Command>call<Default Para Font> command

	<Filename | Command>display<Default Para Font> command
	<Filename | Command>display<Default Para Font> command
	<Filename | Command>display<Default Para Font> command
	<Filename | Command>display<Default Para Font> command
	<Filename | Command>display<Default Para Font> command

	<Filename | Command>dump<Default Para Font> command
	<Filename | Command>dump<Default Para Font> command
	<Filename | Command>dump<Default Para Font> command
	<Filename | Command>dump<Default Para Font> command
	<Filename | Command>dump<Default Para Font> command

	<Filename | Command>print<Default Para Font> command
	<Filename | Command>print<Default Para Font> command
	<Filename | Command>print<Default Para Font> command
	<Filename | Command>print<Default Para Font> command
	<Filename | Command>print<Default Para Font> command

	<Filename | Command>trace<Default Para Font> command
	<Filename | Command>trace<Default Para Font> command
	<Filename | Command>trace<Default Para Font> command
	<Filename | Command>trace<Default Para Font> command
	<Filename | Command>trace<Default Para Font> command

	<Filename | Command>tracei<Default Para Font> command
	<Filename | Command>tracei<Default Para Font> command
	<Filename | Command>tracei<Default Para Font> command
	<Filename | Command>tracei<Default Para Font> command
	<Filename | Command>tracei<Default Para Font> command

	<Filename | Command>varsave<Default Para Font> command
	<Filename | Command>varsave<Default Para Font> command
	<Filename | Command>varsave<Default Para Font> command
	<Filename | Command>varsave<Default Para Font> command
	<Filename | Command>varsave<Default Para Font> command

	<Filename | Command>when<Default Para Font> command
	<Filename | Command>when<Default Para Font> command
	<Filename | Command>when<Default Para Font> command
	<Filename | Command>when<Default Para Font> command
	<Filename | Command>when<Default Para Font> command

	<Filename | Command>where<Default Para Font> command
	<Filename | Command>where<Default Para Font> command
	<Filename | Command>where<Default Para Font> command
	<Filename | Command>where<Default Para Font> command
	<Filename | Command>where<Default Para Font> command

	The

	Examining the Contents of Memory and Registers
	Examining the Contents of Memory and Registers
	You can issue commands in the command window to display the contents of memory addresses and regi...
	To Display Memory
	To Display Memory
	Specify the address on the command line, followed by a slash (
	Specify the address on the command line, followed by a slash (
	For example,
	(
	(

	If you specify the address as a period, the Prism environment displays the contents of the memory...
	Specify a symbolic address by preceding the name with an
	(
	(

	prints the contents of memory for variable
	0x000237f8: 0x3f800000
	0x000237f8: 0x3f800000

	The address you specify can be an expression made up of other addresses and the operators
	(
	(

	prints the contents of the location 100 addresses above address 0x1000.
	After the slash you can specify how memory is to be displayed. Formats that are supported are lis...
	<TABLE>
	TABLE�4�1 Memory Address Formats�
	<TABLE HEADING>
	<TABLE ROW>
	Format
	Format

	Description
	Description

	<TABLE BODY>
	<TABLE ROW>
	d
	d
	d

	Print a short word in decimal
	Print a short word in decimal

	<TABLE ROW>
	D
	D
	D

	Print a long word in decimal
	Print a long word in decimal

	<TABLE ROW>
	o
	o
	o

	Print a short word in octal
	Print a short word in octal

	<TABLE ROW>
	O
	O
	O

	Print a long word in octal
	Print a long word in octal

	<TABLE ROW>
	x
	x
	x

	Print a short word in hexadecimal
	Print a short word in hexadecimal

	<TABLE ROW>
	X
	X
	X

	Print a long word in hexadecimal
	Print a long word in hexadecimal

	<TABLE ROW>
	b
	b
	b

	Print a byte in octal
	Print a byte in octal

	<TABLE ROW>
	c
	c
	c

	Print a byte as a character
	Print a byte as a character

	<TABLE ROW>
	s
	s
	s

	Print a string of characters terminated by a null byte
	Print a string of characters terminated by a null byte

	<TABLE ROW>
	f
	f
	f

	Print a single-precision real number
	Print a single-precision real number

	<TABLE ROW>
	F
	F
	F

	Print a double-precision real number
	Print a double-precision real number

	<TABLE ROW>
	i
	i
	i

	Print the machine instruction
	Print the machine instruction

	The initial format is
	You can print the contents of multiple addresses by specifying a number after the slash (and befo...
	(
	(

	displays the contents of eight memory locations starting at address 0x1000. Contents are displaye...

	To Display the Contents of Registers
	To Display the Contents of Registers
	You can examine the contents of registers in the same way that you examine the contents of memory.
	Specify a register by preceding its name with a dollar sign.
	Specify a register by preceding its name with a dollar sign.
	For example,
	(
	(

	prints the contents of the
	Specify a number after the slash to print the contents of multiple registers. For example,
	(
	(

	prints the contents of registers
	You can also specify a format, as described above. The format specifier controls the display of t...
	$f0/3X
	$f0/3X

	displays three registers; the output is displayed as hexadecimal longwords.
	The registers in the UltraSPARC™ processor are listed in
	<TABLE>
	TABLE�4�2 UltraSPARC Registers�
	<TABLE HEADING>
	<TABLE ROW>
	Name
	Name

	Register
	Register

	<TABLE BODY>
	<TABLE ROW>
	$g0-$g7
	$g0-$g7
	$g0-$g7

	Global registers (64 bits)
	Global registers (64 bits)

	<TABLE ROW>
	$o0-$o7
	$o0-$o7
	$o0-$o7

	Output registers (64 bits)
	Output registers (64 bits)

	<TABLE ROW>
	$l0-$l7
	$l0-$l7
	$l0-$l7

	Local registers
	Local registers

	<TABLE ROW>
	$i0-$i7
	$i0-$i7
	$i0-$i7

	Input registers
	Input registers

	<TABLE ROW>
	$psr
	$psr
	$psr

	Processor state register
	Processor state register

	<TABLE ROW>
	$pc
	$pc
	$pc

	Program counter
	Program counter

	<TABLE ROW>
	$npc
	$npc
	$npc

	Next program counter
	Next program counter

	<TABLE ROW>
	$y
	$y
	$y

	Y register
	Y register

	<TABLE ROW>
	$wim
	$wim
	$wim

	Window invalid mask
	Window invalid mask

	<TABLE ROW>
	$tbr
	$tbr
	$tbr

	Trap base register
	Trap base register

	<TABLE ROW>
	$f0-$f31
	$f0-$f31
	$f0-$f31

	Floating-point registers
	Floating-point registers

	<TABLE ROW>
	$fsr
	$fsr
	$fsr

	Floating status register (64 bits)
	Floating status register (64 bits)

	<TABLE ROW>
	$f0f1-$f62f63
	$f0f1-$f62f63
	$f0f1-$f62f63

	Floating-point registers
	Floating-point registers

	<TABLE ROW>
	$xg0-$xg7
	$xg0-$xg7
	$xg0-$xg7

	Upper 32 bits of $g0-$g7 (SPARC V8 plus only, or higher)
	Upper 32 bits of

	<TABLE ROW>
	$xo0-$xo7
	$xo0-$xo7
	$xo0-$xo7

	Upper 32 bits of $o0-$o7 (SPARC V8 plus only, or higher)
	Upper 32 bits of

	<TABLE ROW>
	$xfsr
	$xfsr
	$xfsr

	Upper 32 bits of $fsr (SPARC V8 plus only, or higher)
	Upper 32 bits of

	<TABLE ROW>
	$fprs
	$fprs
	$fprs

	Floating-point registers state (SPARC V8 plus only, or higher)
	Floating-point registers state (SPARC V8 plus only, or higher)

	<TABLE ROW>
	$tstate
	$tstate
	$tstate

	Trap state register (SPARC V8 plus only, or higher)
	Trap state register (SPARC V8 plus only, or higher)

	<TABLE ROW>
	$fp
	$fp
	$fp

	Frame pointer (synonym for $i6)
	Frame pointer (synonym for

	<TABLE ROW>
	$sp
	$sp
	$sp

	Stack pointer (synonym for $o6)
	Stack pointer (synonym for

	5
	5
	Visualizing Data
	This chapter describes how to examine the values of variables and expressions in your program. Th...
	See the following sections:
	“Overview of Data Visualization” on page 122
	“Overview of Data Visualization” on page 122
	“Overview of Data Visualization” on page 122
	“Overview of Data Visualization” on page 122

	“Choosing the Data to Visualize” on page 124
	“Choosing the Data to Visualize” on page 124
	“Choosing the Data to Visualize” on page 124
	“Choosing the Data to Visualize” on page 124

	“Working With Visualizers” on page 129
	“Working With Visualizers” on page 129
	“Working With Visualizers” on page 129
	“Working With Visualizers” on page 129

	“Saving, Restoring, and Comparing Visualizers” on page 145
	“Saving, Restoring, and Comparing Visualizers” on page 145
	“Saving, Restoring, and Comparing Visualizers” on page 145
	“Saving, Restoring, and Comparing Visualizers” on page 145

	“To Visualize the Layouts of S3L Parallel Arrays” on page 178
	“To Visualize the Layouts of S3L Parallel Arrays” on page 178
	“To Visualize the Layouts of S3L Parallel Arrays” on page 178
	“To Visualize the Layouts of S3L Parallel Arrays” on page 178

	“Visualizing Structures” on page 149
	“Visualizing Structures” on page 149
	“Visualizing Structures” on page 149
	“Visualizing Structures” on page 149

	“Printing the Type of a Variable” on page 155
	“Printing the Type of a Variable” on page 155
	“Printing the Type of a Variable” on page 155
	“Printing the Type of a Variable” on page 155

	“Changing the Radix of Data” on page 157
	“Changing the Radix of Data” on page 157
	“Changing the Radix of Data” on page 157
	“Changing the Radix of Data” on page 157

	“To Print the Names and Values of Local Variables” on page 157
	“To Print the Names and Values of Local Variables” on page 157
	“To Print the Names and Values of Local Variables” on page 157
	“To Print the Names and Values of Local Variables” on page 157

	“Printing Pointers as Array Sections” on page 158
	“Printing Pointers as Array Sections” on page 158
	“Printing Pointers as Array Sections” on page 158
	“Printing Pointers as Array Sections” on page 158

	“Visualizing Multiple Processes” on page 160
	“Visualizing Multiple Processes” on page 160
	“Visualizing Multiple Processes” on page 160
	“Visualizing Multiple Processes” on page 160

	“Visualizing MPI Message Queues” on page 163
	“Visualizing MPI Message Queues” on page 163
	“Visualizing MPI Message Queues” on page 163
	“Visualizing MPI Message Queues” on page 163

	“Displaying and Visualizing Sun S3L Arrays” on page 173
	“Displaying and Visualizing Sun S3L Arrays” on page 173
	“Displaying and Visualizing Sun S3L Arrays” on page 173
	“Displaying and Visualizing Sun S3L Arrays” on page 173

	Overview of Data Visualization
	Overview of Data Visualization
	You can visualize either variables (including arrays, structures, pointers, etc.) or expressions;...
	Printing and Displaying
	Printing and Displaying
	The Prism environment provides two general methods for visualizing data:
	Printing data shows the value(s) of the data at a specified point during program execution.
	Printing data shows the value(s) of the data at a specified point during program execution.
	Printing data shows the value(s) of the data at a specified point during program execution.

	Displaying data causes its value(s) to be updated every time the program stops execution.
	Displaying data causes its value(s) to be updated every time the program stops execution.
	Displaying data causes its value(s) to be updated every time the program stops execution.

	Printing or displaying to the history region of the Command window prints out the numeric or char...
	Printing or displaying to a graphical window creates a

	Visualization Methods
	Visualization Methods
	The Prism environment provides these methods for choosing what to print or display:
	By choosing the Print or Display selection from the Debug menu in the menu bar (see
	By choosing the Print or Display selection from the Debug menu in the menu bar (see
	By choosing the Print or Display selection from the Debug menu in the menu bar (see

	By selecting text within the source window (see
	By selecting text within the source window (see
	By selecting text within the source window (see

	By adding events to the Event Table (see
	By adding events to the Event Table (see
	By adding events to the Event Table (see

	By issuing commands from the Command window (see
	By issuing commands from the Command window (see
	By issuing commands from the Command window (see

	In all cases, choosing Display adds an event to the event list, since displaying data requires an...
	You create print events only via the Event Table and the Events menu.
	To Change the Default Radix
	To Change the Default Radix
	Type
	Type
	(prism all)
	(prism all)
	set
	set

	Specifying as a setting 2 (binary), 8 (octal), or 16 (hexadecimal). For example,
	(prism all)
	(prism all)
	(prism all)

	changes the default representation to hexadecimal. To reset the default to decimal, issue the com...
	(prism all)
	(prism all)
	(prism all)
	set $radix = 10

	By default, the Prism environment prints and displays values as decimal numbers.
	You can override the default for an individual print or display operation. See
	The default setting also affects the display of argument values in procedures in the call stack; see

	Data Visualization Limits
	Data Visualization Limits
	Note these points in visualizing data:
	You cannot print or display any variables after a program finishes execution.
	You cannot print or display any variables after a program finishes execution.
	You cannot print or display any variables after a program finishes execution.

	Visualizers do not deal correctly with Fortran adjustable arrays
	Visualizers do not deal correctly with Fortran adjustable arrays
	Visualizers do not deal correctly with Fortran adjustable arrays

	Choosing the Data to Visualize
	Choosing the Data to Visualize
	This section describes the methods the Prism environment provides for printing and displaying data.
	To Print or Display a Variable or Expression at the Current Program Location
	To Print or Display a Variable or Expression at the Current Program Location
	1. Perform one of the following
	1. Perform one of the following
	To print
	To print
	To print

	To display a variable or expression every time execution stops, starting at the current program l...
	To display a variable or expression every time execution stops, starting at the current program l...
	When you choose Print or Display, a

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�1 Print Dialog Box

	2. In the Expression box, enter the variable or expression whose value(s) you want printed.
	2. In the Expression box, enter the variable or expression whose value(s) you want printed.
	Text selected in the source window appears as the default; you can edit this text.
	The dialog boxes also offer choices as to the window in which the values are to appear:
	You can specify that the values are to be printed or displayed in a standard window dedicated to ...
	You can specify that the values are to be printed or displayed in a standard window dedicated to ...
	You can specify that the values are to be printed or displayed in a standard window dedicated to ...

	You can create a separate
	You can create a separate
	You can create a separate

	You can print out the values in the Command window.
	You can print out the values in the Command window.
	You can print out the values in the Command window.

	Click on Print or Display to print the values of the specified expression at the current program ...
	Click on Print or Display to print the values of the specified expression at the current program ...
	Click on Print or Display to print the values of the specified expression at the current program ...

	Click on Cancel or press the Esc key to close the window without printing or displaying.
	Click on Cancel or press the Esc key to close the window without printing or displaying.

	To Print or Display From the Source Window
	To Print or Display From the Source Window
	1. Select the variable or expression by dragging over it with the mouse or double- clicking on it.
	1. Select the variable or expression by dragging over it with the mouse or double- clicking on it.
	To print without bothering to display the menu, press the Shift key while selecting the variable ...

	2. Right-click the mouse to display a pop-up menu.
	2. Right-click the mouse to display a pop-up menu.

	3. Click on Print in this menu
	3. Click on Print in this menu
	This displays a snapshot visualizer containing the value(s) of the selected variable or expressio...

	4. Click on Display
	4. Click on Display
	This displays a visualizer that is automatically updated whenever execution stops.

	Note – The Prism environment prints the correct variable when you choose it in this way, even if ...
	Note – The Prism environment prints the correct variable when you choose it in this way, even if ...

	To Print or Display From the Events Menu
	To Print or Display From the Events Menu
	1. Select Print on the Events menu.
	1. Select Print on the Events menu.
	You can use the Events menu to define a print or display event that is to take place at a specifi...

	2. Fill out the fields in the
	2. Fill out the fields in the
	The Print dialog box prompts for the variable or expression whose value(s) are to be printed, the...
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�2 Print Dialog Box

	Window names are

	3. Click on OK
	3. Click on OK
	The event is added to the Event Table. When the location is reached in the program, the value(s) ...
	The

	To Print or Display From the Event Table
	To Print or Display From the Event Table
	You can use the Event Table to define a print or display event that is to take place at a specifi...
	Click on Print or Display in the Common
	Click on Print or Display in the Common
	If you click on Print, the Location and Action fields are highlighted. Put a program location in ...
	If you click on Print, the Location and Action fields are highlighted. Put a program location in ...
	If you click on Print, the Location and Action fields are highlighted. Put a program location in ...
	(prism all)
	(prism all)
	(prism all)
	print d2 on dedicated

	If you click on Display, the Location field displays
	If you click on Display, the Location field displays

	To Print or Display From the Command Window
	To Print or Display From the Command Window
	Perform one of the following:
	Perform one of the following:
	Type
	Type
	Type
	(prism all)
	(prism all)
	print

	This prints the value(s) of a variable or expression from the Command window.

	Type
	Type
	(prism all)
	(prism all)
	display

	This display the value(s).

	The
	The commands have this format:
	[
	[

	The optional
	In the syntax,
	Redirection of output to a window via the
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	display x on dedicated as colormap display y/4 on dedicated as histogram display [0:128:2]z on de...
	display x on dedicated as colormap
	display x on dedicated as colormap
	display y/4 on dedicated as histogram
	display [0:128:2]z on dedicated as text

	create three windows, each of which is updated separately.

	To Print or Display the Contents of a
	To Print or Display the Contents of a
	Type
	Type
	(
	or
	(
	For example,
	(
	(

	prints the program counter register. See

	To Set the Context
	To Set the Context
	Type
	Type
	(
	or
	(
	You can precede the
	The expression must evaluate to true or false for every element of the variable or array being pr...
	For example,
	(
	(

	prints (in the Command window) only the values of
	You can use certain Fortran intrinsics in the
	(
	(

	prints the element of
	Note that setting the context affects only the printing or displaying of the variable. It does no...

	To Specify the Radix
	To Specify the Radix
	Type
	Type
	(
	or
	(
	radix

	For example,
	(
	(

	prints the binary representation of
	(
	(

	displays the hexadecimal values of
	The default radix is decimal, unless you have used the

	Working With Visualizers
	Working With Visualizers
	The window that contains the data being printed or displayed is called a
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�3 Visualizer for a Three-Dimensional Array

	The visualizer consists of two parts: the
	The
	The
	The File menu lets you save, update, or cancel the visualizer; see
	Using the Data Navigator in a Visualizer
	Using the Data Navigator in a Visualizer
	The data navigator helps you move through the data being visualized. It has different appearances...
	For one-dimensional arrays and parallel variables, the data navigator is the scroll bar to the ri...
	For two-dimensional data, the data navigator is a rectangle in the shape of the data, with the ax...
	For three-dimensional data, the data navigator consists of a rectangle and a slider, each of whic...
	For data with more than three dimensions, the data navigator adds a slider for each additional di...
	To Change the Axes
	To Change the Axes
	You can change the way the visualizer lays out your data by changing the numbers that label the a...
	1. Click in the box surrounding the number; it is highlighted, and an I-beam appears.
	1. Click in the box surrounding the number; it is highlighted, and an I-beam appears.

	2. Type in the new number of the axis; you don’t have to delete the old number.
	2. Type in the new number of the axis; you don’t have to delete the old number.
	The other axis number automatically changes; for example, if you change axis 1 to 2, axis 2 autom...

	Using the Display Window in a Visualizer
	Using the Display Window in a Visualizer
	The display window shows the data being visualized.
	In addition to using the data navigator to move through the data, you can drag the data itself re...
	To find out the coordinates and value of a specific data element, click on it while pressing the ...
	You can resize the visualizer to display more (or less) data either horizontally or vertically.
	To Use the File Menu
	To Use the File Menu
	1. Click on File to pull down the File menu.
	1. Click on File to pull down the File menu.

	2. Perform one of the following:
	2. Perform one of the following:
	Choose Update from this menu to update the display window for this variable, using the value(s) a...
	Choose Update from this menu to update the display window for this variable, using the value(s) a...
	Choose Update from this menu to update the display window for this variable, using the value(s) a...

	Choose Save or Save As to save the visualizer’s values to a file. See
	Choose Save or Save As to save the visualizer’s values to a file. See

	Choose Diff or Diff With to compare the visualizer’s values with values stored in a file. See
	Choose Diff or Diff With to compare the visualizer’s values with values stored in a file. See

	Choose Snapshot to create a copy of the visualizer, which you can use to compare with later updates.
	Choose Snapshot to create a copy of the visualizer, which you can use to compare with later updates.

	Choose Close to cancel the visualizer.
	Choose Close to cancel the visualizer.

	Using the Options Menu
	Using the Options Menu
	Click on Options to pull down the Options menu. See
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�4 Options Menu in a Visualizer

	To Choose the Representation
	To Choose the Representation
	Choose Representation from the Options menu.
	Choose Representation from the Options menu.
	That displays another menu that gives the choices for how the values are represented in the displ...
	Choose Text
	Choose Text
	Choose Text

	Choose Histogram
	Choose Histogram
	Choose Histogram
	The vertical axis displays the number of data points; the horizontal axis displays the range of v...
	Shift-click on a histogram bar to display the range and number of data points it represents.
	Note that the histogram represents all the values of the variable, not just those shown in the tw...

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�5 Histogram Visualizer

	Choose Dither
	Choose Dither
	Choose Dither

	You can left-click on a histogram visualizer bar to get a pop-up window, showing its contents.
	You can left-click on a histogram visualizer bar to get a pop-up window, showing its contents.
	You can left-click on a histogram visualizer bar to get a pop-up window, showing its contents.
	For

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�6 Dither Visualizer

	Choose
	Choose
	Choose
	For complex numbers, the Prism environment uses the modulus.

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�7 Threshold Visualizer

	Choose Colormap
	Choose Colormap
	Choose Colormap
	For complex numbers, the Prism environment uses the modulus.

	Choose Graph
	Choose Graph
	Choose Graph
	FIGURE�5�8
	FIGURE�5�8

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�8 One-Dimensional Graph Visualizer

	Choose Surface
	Choose Surface
	Choose Surface

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�9 Surface Visualizer

	Note – If there are large values in the top rows of the data, they may be drawn off the top of th...
	Note – If there are large values in the top rows of the data, they may be drawn off the top of th...

	Choose Vector
	Choose Vector
	Choose Vector

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�10 Vector Visualizer

	To Set Parameters
	To Set Parameters
	Choose
	Choose
	In the dialog box you can change various defaults that the Prism environment uses in setting up t...
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�11 Visualization Parameters Dialog Box

	The parameters (for all representations except the histogram representation) are:
	Field Width —
	Field Width —
	Field Width —
	For the text representation, the field width specifies the number of characters in each column. I...
	For dither, threshold, colormap, and vector representations, the field width specifies how wide (...
	For the graph representation, the field width specifies the horizontal spacing between elements.
	For the surface representation, it specifies the spacing of elements along both directions of the...

	Precision —
	Precision —
	Precision —
	(
	sets the default precision for doubles to 11 significant digits.

	Minimum and Maximum — For
	Minimum and Maximum — For
	Minimum and Maximum — For
	vector visualizers:minimum and maximum of
	vector visualizers:minimum and maximum of
	surface visualizers:minimum and maximum of
	graph visualizers:minimum and maximum of

	By default the Prism environment uses the entire range of values for all these representations.

	Threshold — For
	Threshold — For
	Threshold — For
	The parameters for the histogram representation

	Bar Width� — �Specifies the width in pixels of each histogram bar (except for the bars representi...
	Bar Width� — �Specifies the width in pixels of each histogram bar (except for the bars representi...
	Bar Width� — �Specifies the width in pixels of each histogram bar (except for the bars representi...

	Bar Height — �Specifies the height in pixels of the largest histogram bar. The default is 100 pix...
	Bar Height — �Specifies the height in pixels of the largest histogram bar. The default is 100 pix...
	Bar Height — �Specifies the height in pixels of the largest histogram bar. The default is 100 pix...

	Minimum� — Specifies the minimum value to be included in the histogram. By default the actual min...
	Minimum� — Specifies the minimum value to be included in the histogram. By default the actual min...
	Minimum� — Specifies the minimum value to be included in the histogram. By default the actual min...

	Maximum�— �Specifies the maximum value to be included in the histogram. By default the actual max...
	Maximum�— �Specifies the maximum value to be included in the histogram. By default the actual max...
	Maximum�— �Specifies the maximum value to be included in the histogram. By default the actual max...
	If you specify a different minimum or maximum, values below the minimum or above the maximum are ...

	Max Buckets� — Specifies the number of “buckets” into which values are to be poured�—�in other wo...
	Max Buckets� — Specifies the number of “buckets” into which values are to be poured�—�in other wo...
	Max Buckets� — Specifies the number of “buckets” into which values are to be poured�—�in other wo...

	To Display a Ruler
	To Display a Ruler
	Choose Ruler
	Choose Ruler
	This toggles the display of a ruler around the data in the display window.
	The ruler is helpful in showing which elements are being displayed.
	In the surface representation, the ruler cannot indicate the coordinates of elements in the verti...
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�12 Threshold Visualizer With a Ruler

	To Display Statistics
	To Display Statistics
	Choose Statistics
	Choose Statistics
	This displays a window containing statistics and other information about the variable being visua...
	The window contains:
	The name of the variable
	The name of the variable
	The name of the variable

	Its type and number of dimensions
	Its type and number of dimensions
	Its type and number of dimensions

	The total number of elements the variable contains, and the total number of active elements, base...
	The total number of elements the variable contains, and the total number of active elements, base...
	The total number of elements the variable contains, and the total number of active elements, base...

	The variable’s minimum, maximum, and mean; these statistics reflect the context you set for the v...
	The variable’s minimum, maximum, and mean; these statistics reflect the context you set for the v...
	The variable’s minimum, maximum, and mean; these statistics reflect the context you set for the v...

	FIGURE�5�13
	FIGURE�5�13

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�13 Statistics for a Visualizer

	For

	To Use the Set Context Dialog Box
	To Use the Set Context Dialog Box
	Choose Set Context
	Choose Set Context
	In this dialog box you can specify which elements of the variable are to be considered active and...
	In text, graph, surface, and vector visualizers, inactive elements are grayed out.
	In text, graph, surface, and vector visualizers, inactive elements are grayed out.
	In text, graph, surface, and vector visualizers, inactive elements are grayed out.

	In colormap visualizers, inactive elements by default are displayed as gray. You can change this ...
	In colormap visualizers, inactive elements by default are displayed as gray. You can change this ...
	In colormap visualizers, inactive elements by default are displayed as gray. You can change this ...

	Context has no effect on dither and threshold visualizers.
	Context has no effect on dither and threshold visualizers.
	Context has no effect on dither and threshold visualizers.

	FIGURE�5�14
	FIGURE�5�14

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�14 Set Context Dialog Box

	By default, all elements of the variable are active; this is the meaning of the
	Choose everywhere, as mentioned above, to make all elements active.
	Choose everywhere, as mentioned above, to make all elements active.
	Choose everywhere, as mentioned above, to make all elements active.

	Choose other to erase the current contents of the text-entry box. You can then enter an expressio...
	Choose other to erase the current contents of the text-entry box. You can then enter an expressio...
	Choose other to erase the current contents of the text-entry box. You can then enter an expressio...

	In the text-entry box, you can enter any valid expression that will evaluate to true or false for...
	The context you specify for printing does not affect the program’s context; it just affects the w...
	See “Setting the Context” above for more information on context. See
	Click on Apply to set the context you specified. Click on Cancel or press the Esc key to close th...

	To Change the Radix
	To Change the Radix
	1. Choose Radix from the Options menu.
	1. Choose Radix from the Options menu.
	This changes the radix used in the text representation of a value.

	2. Choose one of the items from the submenu: Decimal, Hex, Octal, and Binary.
	2. Choose one of the items from the submenu: Decimal, Hex, Octal, and Binary.
	The value to the specified radix changes. The Prism environment continues to use this radix if th...
	By default, the Prism environment displays values in decimal. You can change this default via the

	Updating and Closing the Visualizer
	Updating and Closing the Visualizer
	If you created a visualizer by issuing a
	If you created the visualizer by issuing a
	To Update Values
	To Update Values
	Choose Update from the visualizer’s File menu.
	Choose Update from the visualizer’s File menu.

	To Close the Visualizer
	To Close the Visualizer
	Choose Close from the File menu, or press the Esc key.
	Choose Close from the File menu, or press the Esc key.

	Saving, Restoring, and Comparing Visualizers
	Saving, Restoring, and Comparing Visualizers
	You can save the values of a variable or expression to a file. You can subsequently visualize the...
	To Save the Values of a Variable
	To Save the Values of a Variable
	You can save the values of a variable or expression to a file for later use.
	Perform one of the following:
	Perform one of the following:
	From the command line — Use the command
	From the command line — Use the command
	From the command line — Use the command
	Its syntax is
	where
	For example,
	saves the values of the variable
	varsave ”/u/kathy/alpha2.data” alpha*2
	varsave ”/u/kathy/alpha2.data” alpha*2

	saves the results of the expression

	From a visualizer — Use the Save or Save As selection from a visualizer’s File menu
	From a visualizer — Use the Save or Save As selection from a visualizer’s File menu
	If you choose Save As, a dialog box appears in which you can specify the name of the file to whic...
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�15 Saving a Visualizer’s Data to a File

	The highlighted directory is the current working directory. If you want to put the file there, si...
	If you want to put the file in another directory, click on the directory. (The parent directories...
	Choose the Save selection to save the values in the file you most recently specified. If you have...

	To Restore the Data
	To Restore the Data
	This intrinsic brings values you have saved to a file back into the Prism environment.
	Type
	Type
	(
	where
	Note – The
	Note – The

	You can use the
	(
	then the command
	(
	is equivalent to
	(
	Note that this allows you to save a variable’s values, then print them during a later Prism sessi...

	To Compare the Data
	To Compare the Data
	You can compare a variable or expression whose values have been saved in a file with another vers...
	You can also compare the values with those of another variable, as long as both variables have th...
	Perform one of the following:
	Perform one of the following:
	From the command line — Type
	From the command line — Type
	From the command line — Type
	(
	or
	(
	This performs a comparison between two versions of a variable or expression.
	For example, if you saved
	(
	then the command
	(
	prints the difference between the current and saved values of
	If an element is printed as 0, it is the same in both versions. If it is nonzero, its value is di...

	From a visualizer — Choose the Diff or Diff With selection from a visualizer’s File menu
	From a visualizer — Choose the Diff or Diff With selection from a visualizer’s File menu
	This performs a comparison between the visualizer’s values and the values stored in a file.
	Choose Diff With to choose the file containing the values. It displays a dialog box like the one ...
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�16 Diff With Dialog Box

	The dialog box has the same format as the Save As dialog box described in
	Choose Diff to compare the visualizers values to those in the most recently specified file; if no...
	Once you have specified a file via Diff or Diff With, the Prism environment creates a new visuali...
	You can work with this visualizer as you would any visualizer. For example, you can change the re...

	Visualizing Structures
	Visualizing Structures
	If you print a pointer or a structure (or a structure-valued expression) in a window, a
	FIGURE�5�17
	FIGURE�5�17

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�17 Structure Visualizer

	The structure you specified appears inside a box; this is referred to as a
	You can perform various actions within a structure visualizer, as described below.
	Expanding Pointers
	Expanding Pointers
	You can expand scalar pointers in a structure to generate new nodes. (You cannot expand a pointer...
	To Expand a Single Pointer
	To Expand a Single Pointer
	Perform one of the following:
	Perform one of the following:
	With a mouse — Left-click on a button to expand the pointer. For example, clicking on the button ...
	With a mouse — Left-click on a button to expand the pointer. For example, clicking on the button ...
	With a mouse — Left-click on a button to expand the pointer. For example, clicking on the button ...

	From the keyboard — Use the right arrow key to expand and visit the node pointed to by the curren...
	From the keyboard — Use the right arrow key to expand and visit the node pointed to by the curren...
	From the keyboard — Use the right arrow key to expand and visit the node pointed to by the curren...

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�18 Structure Visualizer, With One Pointer Expanded

	To Expand All Pointers in a Node
	To Expand All Pointers in a Node
	Perform one of the following:
	Perform one of the following:
	With the mouse — Double-click or Shift-left-click on the node.
	With the mouse — Double-click or Shift-left-click on the node.
	With the mouse — Double-click or Shift-left-click on the node.

	From the keyboard — Press the Shift key along with the right arrow key.
	From the keyboard — Press the Shift key along with the right arrow key.
	From the keyboard — Press the Shift key along with the right arrow key.

	From the Options menu — Click on Expand. The cursor turns into a target; move the cursor to the n...
	From the Options menu — Click on Expand. The cursor turns into a target; move the cursor to the n...
	From the Options menu — Click on Expand. The cursor turns into a target; move the cursor to the n...

	To Expand All Pointers Recursively From the Selected Node on Down
	To Expand All Pointers Recursively From the Selected Node on Down
	Perform one of the following:
	Perform one of the following:
	With the mouse — Triple-click or Control-left-click on the node.
	With the mouse — Triple-click or Control-left-click on the node.
	With the mouse — Triple-click or Control-left-click on the node.

	From the keyboard — Press the Control key and the right arrow key.
	From the keyboard — Press the Control key and the right arrow key.
	From the keyboard — Press the Control key and the right arrow key.

	From the Options menu — Click on Expand All. The cursor turns into a target; move the cursor to t...
	From the Options menu — Click on Expand All. The cursor turns into a target; move the cursor to t...
	From the Options menu — Click on Expand All. The cursor turns into a target; move the cursor to t...

	To Pan and Zoom
	To Pan and Zoom
	Perform one of the following:
	Perform one of the following:
	Left-click and drag through the data navigator or the display window to pan through the data.
	Left-click and drag through the data navigator or the display window to pan through the data.
	Left-click and drag through the data navigator or the display window to pan through the data.

	Left-click on the Zoom arrows to “zoom” in and out on the data.
	Left-click on the Zoom arrows to “zoom” in and out on the data.

	Click on the down arrow to zoom out and see a bird’s-eye view of the structure. Click on the up a...
	Click on the down arrow to zoom out and see a bird’s-eye view of the structure. Click on the up a...

	Left-click on a node in a zoomed-out structure visualizer to pop up a window showing the full con...
	Left-click on a node in a zoomed-out structure visualizer to pop up a window showing the full con...

	For information about navigating through visualizers, see
	FIGURE�5�19
	FIGURE�5�19

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�19 Zooming Out in a Structure Visualizer

	The selected node is centered in the display window whenever you zoom in or out.

	To Delete Nodes
	To Delete Nodes
	To delete a node (except the root node):
	To delete a node (except the root node):
	With the mouse – Middle-click on a node (except the root node).
	With the mouse – Middle-click on a node (except the root node).
	With the mouse – Middle-click on a node (except the root node).

	From the Options menu – Click on Delete. The cursor turns into a target; move the cursor to the n...
	From the Options menu – Click on Delete. The cursor turns into a target; move the cursor to the n...
	From the Options menu – Click on Delete. The cursor turns into a target; move the cursor to the n...

	Deleting a node also deletes its children (if any).

	More About Pointers in Structures
	More About Pointers in Structures
	Note the following about pointers in structure visualizers:
	Null pointers�—��have “ground” symbols next to them.
	Null pointers�—��have “ground” symbols next to them.
	Null pointers�—��have “ground” symbols next to them.

	If you have previously expanded a pointer, it has an arrow next to its button; you cannot expand ...
	If you have previously expanded a pointer, it has an arrow next to its button; you cannot expand ...
	If you have previously expanded a pointer, it has an arrow next to its button; you cannot expand ...

	A pointer containing a bad address has an
	A pointer containing a bad address has an
	A pointer containing a bad address has an

	Augmenting the Information Available for Display
	Augmenting the Information Available for Display
	You can provide a special function for each of your data types
	For C or C++
	You must embed these specifications within a special function that is compiled and linked with yo...
	void prism_define_
	void prism_define_

	where
	You communicate this information back to the Prism environment by calling the following, defined in
	void prism_add_array
	void prism_add_array

	This call specifies that the pointer named
	void prism_add_union(char�*name,�char�*valid_member);
	void prism_add_union(char�*name,�char�*valid_member);

	This call specifies that the member named
	Note – To augment the information that the structure visualizer displays, using these function ca...
	Assume that
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	struct Vector {
	struct Vector {
	 int len;
	 int *data;
	 };

	The function you write looks like this:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	#include "prism.h"
	#include "prism.h"
	 void prism_define_Vector(struct Vector *v)
	 {
	 prism_add_array("data",�v->len);
	 }

	Assume that the member
	The function you write would look like this:
	There are no restrictions on the number or order of calls to
	To Update and Close a Structure Visualizer
	To Update and Close a Structure Visualizer
	1. Update the structure visualizer with a left-click on Update in the File menu.
	1. Update the structure visualizer with a left-click on Update in the File menu.
	This updates a structure visualizer. When you do this, the root node is re-read; the Prism enviro...

	2. Close the structure visualizer with a left-click on Close in the File menu.
	2. Close the structure visualizer with a left-click on Close in the File menu.

	Printing the Type of a Variable
	Printing the Type of a Variable
	The Prism environment provides several methods for finding out the type of a variable.
	To Print the Type of a Variable From the Menu Bar
	To Print the Type of a Variable From the Menu Bar
	Perform the following steps:
	1. Choose the
	1. Choose the

	2. The Whatis dialog box appears; it prompts for the name of a variable.
	2. The Whatis dialog box appears; it prompts for the name of a variable.

	3. Click on Whatis
	3. Click on Whatis
	This displays the information about the variable in the Command window.

	4. Click on Type
	4. Click on Type
	The Prism environment treats

	To Print the Type of a Variable from the Source Window
	To Print the Type of a Variable from the Source Window
	Perform the following steps:
	1. Select a variable by double-clicking on it or by dragging over it while pressing the left mous...
	1. Select a variable by double-clicking on it or by dragging over it while pressing the left mous...

	2. Hold down the right mouse button.
	2. Hold down the right mouse button.
	A pop-up menu appears.

	3. Choose Whatis from this menu.
	3. Choose Whatis from this menu.
	Information about the variable appears in the Command window.

	To Print the Type of a Variable from the Command Window
	To Print the Type of a Variable from the Command Window
	Type
	Type
	(
	If you specify a type (

	What Is Displayed
	What Is Displayed
	The Prism environment displays the information about the variable in the Command window. For exam...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	whatis primes
	whatis primes
	whatis primes

	logical primes(1:999)

	To Modify Visualizer Data
	To Modify Visualizer Data
	Type
	Type
	(
	This assigns new values to a variable or an array.
	For example,
	(
	(

	assigns the value 0 to the variable
	If the right-hand side does not have the same type as the left-hand side, the Prism environment p...

	Changing the Radix of Data
	Changing the Radix of Data
	To Change the Radix of a Value
	To Change the Radix of a Value
	Type
	Type
	(
	This changes the radix of a value in the Prism environment. The value can be a decimal, hexadecim...
	For example, to convert 100 (hex) to decimal, issue this command:
	(
	(

	The Prism environment responds:
	256
	256
	256

	To Print the Names and Values of Local Variables
	To Print the Names and Values of Local Variables
	Type
	Type
	(
	Specify the name of a function or procedure, to print the names and values of all local variables...

	Printing Pointers as Array Sections
	Printing Pointers as Array Sections
	The Prism environment allows you to print simple arrays by section. The following examples assume...
	To Print an Array by Section
	To Print an Array by Section
	Type
	Type
	(
	For example,
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism) print a[1:5:2]
	(
	a[1:5:2] =
	(1:3) 1 3 5

	To View a Pointer as a One-Dimensional Array
	To View a Pointer as a One-Dimensional Array
	Type
	Type
	(
	Specify a section when printing the pointer.
	For example:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) print pa[1:5:2]
	(
	pa[1:5:2] =
	(1:3) 1 3 5

	To Dereference an Array of Pointers
	To Dereference an Array of Pointers
	Type
	Type
	(
	If the array element is a pointer, then the Prism environment allows you to the dereference the s...
	For example,
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) *par[1:5:2] =
	(
	(1:3) 8 6 4

	To Cast Pointers
	To Cast Pointers
	Type
	Type
	(
	For example,
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) print ((double*)ptr)[1:4:2]
	(
	((double*)ptr)[1:4:2] =
	(1:2) 1.100000000000000 3.100000000000000

	Currently, the Prism environment supports only one level of dereferencing. Assuming this declarat...
	int **appi[2];
	int **appi[2];
	int **appi[2];

	The Prism environment does not support:
	(
	(

	Although the Prism environment allows one level of dereference for sections, the Prism environmen...
	(
	(

	but the Prism environment does not allow:
	(
	(

	Visualizing Multiple Processes
	Visualizing Multiple Processes
	When you print or display an object in the Prism environment, the data is shown for all processes...
	If there is only one process in the pset, the visualizer that is displayed is no different from t...
	If there is more than one process in the pset, the Prism environment adds a dimension to the visu...
	For C programs, axis 0 represents the processes. For Fortran 77 programs, the highest-numbered ax...
	The Prism environment can aggregate data from multiple processes only if the expression has the s...
	In the example shown in
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�20 Visualizer in the Prism Environment (Threshold Representation)

	To Find Out the Value and Process Number for an Element
	To Find Out the Value and Process Number for an Element
	Shift-click on the element.
	Shift-click on the element.
	Printing to the history region, or in the commands-only mode of the Prism environment, works the ...

	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) print board
	(prism all)
	board =
	process 0
	(0,0,0:4) 4 1 0 3 0
	(0,0,5:7) –1 0 –4
	(0,1,0:4) 2 1 0 0 0
	(0,1,5:7) 0 –1 0
	(0,2,0:4) 3 1 0 0 0
	(0,2,5:7) 2 –1 –3
	(0,3,0:4) 5 0 0 0 –1
	(0,3,5:7) 0 0 –5
	(0,4,0:4) 4 0 0 –2 0
	(0,4,5:7) 0 0 –6
	(0,5,0:4) 0 1 0 0 0
	(0,5,5:7) 0 –1 0
	(0,6,0:4) 0 1 0 0 0
	(0,6,5:7) 0 –1 0
	(0,7,0:4) 6 –1 0 0 0
	(0,7,5:7) 0 –1 –4
	process 1
	(1,0,0:4) 4 1 0 3 0
	(1,0,5:7) –1 0 –4
	(1,1,0:4) 2 1 0 1 0 ...

	The elements of axis 0� do not necessarily correspond to the numbers of the processes they repres...
	The Prism environment provides a
	To Open a
	To Open a
	Type
	Type
	(
	The Prism environment displays a window containing the value of

	Visualizing MPI Message Queues
	Visualizing MPI Message Queues
	The Prism MPI queue visualizer allows you to examine the message queues created by your Sun MPI p...
	By showing you the state of the queue, detailing the messages that have not completed, the Prism ...
	The Prism queue visualizer also shows you unexpected receive routines
	Performance — An unexpected receive indicates the receipt of a message before a posted matching r...
	Performance — An unexpected receive indicates the receipt of a message before a posted matching r...
	Performance — An unexpected receive indicates the receipt of a message before a posted matching r...

	Correctness — An unexpected receive can arise due to an intended receive not having been posted o...
	Correctness — An unexpected receive can arise due to an intended receive not having been posted o...
	Correctness — An unexpected receive can arise due to an intended receive not having been posted o...

	In addition to viewing the status of messages, you can also view the contents of the messages the...
	Note – The Prism environment does not display blocking sends and receives on message queues. If a...
	Note – The Prism environment does not display blocking sends and receives on message queues. If a...

	To Launch the MPI Queue Visualizer
	To Launch the MPI Queue Visualizer
	Choose the MPI Msgs selection under the Prism Debug menu.
	Choose the MPI Msgs selection under the Prism Debug menu.
	This selection is available only when a program linked to the Sun MPI library has been loaded int...
	Each row of messages displayed in the message queue window corresponds to a process rank, numbere...

	To Select the Queue to Visualize
	To Select the Queue to Visualize
	Choose an item from the View menu.
	Choose an item from the View menu.
	This selects the queues to visualize. You can view three classes of MPI queues for each rank:
	Posted Sends
	Posted Sends
	Posted Sends

	Posted Receives
	Posted Receives

	Unexpected Receives
	Unexpected Receives

	You can view queues only when a rank has stopped. Otherwise, the visualizer displays the label

	To Zoom Through Levels of Message Detail
	To Zoom Through Levels of Message Detail
	Click the Zoom buttons to navigate through four levels of message detail.
	Click the Zoom buttons to navigate through four levels of message detail.
	The MPI queue visualizer opens, by default at zoom level three. The levels are:
	Examples of the zoom levels are:
	1. FIGURE�5�21
	1. FIGURE�5�21
	1. FIGURE�5�21
	1. FIGURE�5�21

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�21 Queue Visualizer at Zoom Level One

	2. FIGURE�5�22
	2. FIGURE�5�22
	2. FIGURE�5�22

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�22 Queue Visualizer at Zoom Level Two

	3. FIGURE�5�23
	3. FIGURE�5�23
	3. FIGURE�5�23

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�23 Queue Visualizer at Zoom Level Three

	4. FIGURE�5�24
	4. FIGURE�5�24
	4. FIGURE�5�24

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�24 Queue Visualizer at Zoom Level Four

	To Control the Values of Message Labels
	To Control the Values of Message Labels
	Perform one of the following:
	Perform one of the following:
	Click the toggle buttons under Show on the MPI queue visualizer.
	Click the toggle buttons under Show on the MPI queue visualizer.
	Click the toggle buttons under Show on the MPI queue visualizer.
	This controls the value of the message labels.

	Select Source/Dest to show the source or destination rank for the message.
	Select Source/Dest to show the source or destination rank for the message.

	Select Tag to show the MPI tag of the message.
	Select Tag to show the MPI tag of the message.

	Clicking the Show toggle affects the display of messages at zoom level three only.

	To Sort Messages
	To Sort Messages
	Choose selections from the Sort Rows By and Sort Columns By option menus.
	Choose selections from the Sort Rows By and Sort Columns By option menus.
	This sorts messages by row or by column according to several criteria, Choose selections from the...
	<TABLE>
	TABLE�5�1 Column Sort Criteria
	<TABLE HEADING>
	<TABLE ROW>
	Sort Criteria
	Sort Criteria

	Description
	Description

	<TABLE BODY>
	<TABLE ROW>
	Order posted
	Order posted

	Sort messages by the order in which messages are posted by the MPI program, with the earliest pos...
	Sort messages by the order in which messages are posted by the MPI program, with the earliest pos...

	<TABLE ROW>
	Source/Destination
	Source/Destination

	Sort by the source rank for receives and the destination rank for sends.
	Sort by the source rank for receives and the destination rank for sends.

	<TABLE ROW>
	Tag
	Tag

	Sort by the messages’ tag values.
	Sort by the messages’ tag values.

	<TABLE ROW>
	Size
	Size

	Sort by size in bytes, from small to large.
	Sort by size in bytes, from small to large.

	<TABLE ROW>
	Communicator
	Communicator

	Sort by communicator address.
	Sort by communicator address.

	<TABLE ROW>
	Protocol
	Protocol

	Group together messages sent with the same transport protocol. Protocols are loopback, shared mem...
	Group together messages sent with the same transport protocol. Protocols are loopback, shared mem...

	<TABLE>
	TABLE�5�2 Row Sort Criteria
	<TABLE HEADING>
	<TABLE ROW>
	Sort Criteria
	Sort Criteria

	Description
	Description

	<TABLE BODY>
	<TABLE ROW>
	Rank
	Rank

	Sort rows from the smallest to the largest process rank (the default).
	Sort rows from the smallest to the largest process rank (the default).

	<TABLE ROW>
	Message Count
	Message Count

	Sort by the number of messages posted.
	Sort by the number of messages posted.

	<TABLE ROW>
	Message Volume
	Message Volume

	Sort by the sum of the sizes, in bytes, of all messages for each rank.
	Sort by the sum of the sizes, in bytes, of all messages for each rank.

	The MPI queue visualizer displays messages without scaling the message labels to the exact size o...

	To Display Message Fields
	To Display Message Fields
	Click individual messages.
	Click individual messages.
	This open the Message dialog box, shown in
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�25 Message Dialog Box

	Interpreting Message Dialog Fields
	Interpreting Message Dialog Fields
	The fields in the Message dialog box are described in
	<TABLE>
	TABLE�5�3 Message Dialog Box Fields�
	<TABLE HEADING>
	<TABLE ROW>
	Label
	Label

	Description
	Description

	<TABLE BODY>
	<TABLE ROW>
	Buffer
	Buffer

	The address of the message.
	The address of the message.

	<TABLE ROW>
	Size
	Size

	The length (in bytes) of the message.
	The length (in bytes) of the message.

	<TABLE ROW>
	Tag
	Tag

	The MPI tag argument passed in the call to post the message.
	The MPI tag argument passed in the call to post the message.

	<TABLE ROW>
	Comm
	Comm

	The name of the MPI communicator in which the message belongs, or the communicator’s address if i...
	The name of the MPI communicator in which the message belongs, or the communicator’s address if i...

	<TABLE ROW>
	To
	To

	The rank of the destination of the message. Prism displays this field only for posted sends.
	The rank of the destination of the message. Prism displays this field only for posted sends.

	<TABLE ROW>
	From
	From

	The rank of the sender of the message. Prism displays this field only for posted receives or unex...
	The rank of the sender of the message. Prism displays this field only for posted receives or unex...

	<TABLE ROW>
	Protocol
	Protocol

	The implementation method by which the message has been sent. Possible values are: loopback, shar...
	The implementation method by which the message has been sent. Possible values are: loopback, shar...

	<TABLE ROW>
	Data Type
	Data Type

	The MPI data type of the message, with the size of a single data type element in bytes. Click on ...
	The MPI data type of the message, with the size of a single data type element in bytes. Click on ...

	<TABLE ROW>
	Contents
	Contents

	The contents of the message. Click on the triangular button to open or close the contents area. C...
	The contents of the message. Click on the triangular button to open or close the contents area. C...

	When the Message dialog box displays a posted receive, it displays the value of the buffer addres...
	When the Message dialog box displays an unexpected receive, it shows the delivered message with n...

	Displaying Communicator Data
	Displaying Communicator Data
	The Prism environment displays MPI Communicators in the Communicators region of the MPI queue vis...
	The Prism environment displays as many as three distinct communicators. Each communicator is colo...
	To Change Communicator Colors
	To Change Communicator Colors
	Set the following X resources in the Prism application defaults file
	Set the following X resources in the Prism application defaults file
	Prism.comm1Color
	Prism.comm1Color
	Prism.comm1Color

	Prism.comm2Color
	Prism.comm2Color

	Prism.comm3Color
	Prism.comm3Color

	Prism.commOtherColor
	Prism.commOtherColor

	For information about modifying values in the Prism applications defaults file, see

	To Display Communicator Data,
	To Display Communicator Data,
	Press any of the Communicator buttons.
	Press any of the Communicator buttons.
	This reveals the Communicator dialog box
	FIGURE�5�26
	FIGURE�5�26

	Name
	Name
	Name

	Address — The address of the communicator.
	Address — The address of the communicator.
	Address — The address of the communicator.

	Fortran handle – The Fortran identifier for the communicator, if defined. Built in communicators ...
	Fortran handle – The Fortran identifier for the communicator, if defined. Built in communicators ...
	Fortran handle – The Fortran identifier for the communicator, if defined. Built in communicators ...

	Topology — The options are:
	Topology — The options are:
	Topology — The options are:
	Cartesian — Communicators created using
	Cartesian — Communicators created using
	Cartesian — Communicators created using

	Graph — Communicators created using
	Graph — Communicators created using
	Graph — Communicators created using

	None — All others.
	None — All others.
	None — All others.

	Size — The number of ranks.
	Size — The number of ranks.
	Size — The number of ranks.

	Remote Size — Shown only for intercommunicators; the size of the remote group (the number of rank...
	Remote Size — Shown only for intercommunicators; the size of the remote group (the number of rank...
	Remote Size — Shown only for intercommunicators; the size of the remote group (the number of rank...

	Ranks — The list of ranks, possibly annotated with job identifiers if the communicator was create...
	Ranks — The list of ranks, possibly annotated with job identifiers if the communicator was create...
	Ranks — The list of ranks, possibly annotated with job identifiers if the communicator was create...

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�26 Communicator Dialog Box

	To Display Data Types
	To Display Data Types
	Click on the Datatype View button in a Message dialog box.
	Click on the Datatype View button in a Message dialog box.
	FIGURE�5�27
	FIGURE�5�27

	The fields of this dialog box are:
	Type — The description of the data type, such as “struct” or “contiguous.”
	Type — The description of the data type, such as “struct” or “contiguous.”
	Type — The description of the data type, such as “struct” or “contiguous.”

	Address — The address of the corresponding
	Address — The address of the corresponding
	Address — The address of the corresponding

	Size — The size in bytes of a single element of this data type.
	Size — The size in bytes of a single element of this data type.
	Size — The size in bytes of a single element of this data type.

	Contiguous — An indication that the bytes of this data type are contiguous and may be sent or rec...
	Contiguous — An indication that the bytes of this data type are contiguous and may be sent or rec...
	Contiguous — An indication that the bytes of this data type are contiguous and may be sent or rec...

	Additional information that is specific to the data type, representing arguments that were passed...
	Additional information that is specific to the data type, representing arguments that were passed...
	Additional information that is specific to the data type, representing arguments that were passed...

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�5�27 Data Type Dialog Box

	Displaying and Visualizing Sun S3L Arrays
	Displaying and Visualizing Sun S3L Arrays
	In a multiprocess Sun MPI program, a parallel array
	Sun S3L’s parallel array
	By default, the Prism environment recognizes an array handle as a simple variable. In Fortran 77 ...
	The following examples assume this code:
	<TABLE>
	TABLE�5�4 S3L Array Demonstration Program�
	<TABLE BODY>
	<TABLE ROW>
	c
	c
	c Copyright (c) 1998, by Sun Microsystems, Inc.
	c All rights reserved
	c

	<TABLE ROW>
	program test_prism_s3l
	program test_prism_s3l

	<TABLE ROW>
	c
	c

	<TABLE ROW>
	include ’s3l/s3l-f.h’
	include ’s3l/s3l-f.h’

	<TABLE ROW>
	c
	c
	c In f77 programs, s3l arrays are integer*8
	c

	<TABLE ROW>
	integer*8 a
	integer*8 a

	<TABLE ROW>
	c
	c

	<TABLE ROW>
	integer*4 ext(2),local(2),ier
	integer*4 ext(2),local(2),ier

	<TABLE ROW>
	c
	c

	<TABLE ROW>
	c Initialize the S3L library and the prism/s3l interface.
	c Initialize the S3L library and the prism/s3l interface.

	<TABLE ROW>
	c
	c

	<TABLE ROW>
	call s3l_init(ier)
	call s3l_init(ier)

	<TABLE ROW>
	<TABLE ROW>
	c
	c
	c Declare a parallel S3L array of size 2 x 3,
	c with the second dimension distributed.

	<TABLE ROW>
	c
	c

	<TABLE ROW>
	ext(1) = 2
	ext(1) = 2

	<TABLE ROW>
	ext(2) = 3
	ext(2) = 3

	<TABLE ROW>
	<TABLE ROW>
	local(1) = 1
	local(1) = 1

	<TABLE ROW>
	local(2) = 0
	local(2) = 0

	<TABLE ROW>
	<TABLE ROW>
	call s3l_declare(a,2,ext,S3L_float,local,
	call s3l_declare(a,2,ext,S3L_float,local,

	<TABLE ROW>
	.S3L_USE_MALLOC,ier)
	.S3L_USE_MALLOC,ier)

	<TABLE ROW>
	<TABLE ROW>
	c
	c
	c Initialize the array randomly by using S3L_rand_lcg
	c

	<TABLE ROW>
	<TABLE ROW>
	call s3l_rand_lcg(a,123456,ier)
	call s3l_rand_lcg(a,123456,ier)

	<TABLE ROW>
	w = 1.0
	w = 1.0

	<TABLE ROW>
	c
	c
	c free the resources associated with the parallel S3L array

	<TABLE ROW>
	call s3l_free(a,ier)
	call s3l_free(a,ier)

	<TABLE ROW>
	<TABLE ROW>
	c finalize the S3L library.
	c finalize the S3L library.

	<TABLE ROW>
	<TABLE ROW>
	call s3l_exit(ier)
	call s3l_exit(ier)

	<TABLE ROW>
	c
	c

	<TABLE ROW>
	stop
	stop
	end

	Note that, before using the
	To Display the Data Type of an Array Handle
	To Display the Data Type of an Array Handle
	Type
	Type
	(
	This shows that the array handle,

	To Create an S3L Parallel Array
	To Create an S3L Parallel Array
	Type
	Type
	(
	This identifies

	The example below executes the
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) type float a
	(prism all)
	"a" defined as "float a"

	To Display and Visualize Sun S3L Parallel Arrays
	To Display and Visualize Sun S3L Parallel Arrays
	Type
	Type

	(
	or
	(
	At this point, the Prism environment recognizes
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) print a
	(prism all)
	a =
	(0:1,0) 0.000000 1.000000
	(0:1,1) 0.1000000 1.100000
	(0:1,2) 0.2000000 1.200000

	In all respects, you could use
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) assign a=9
	(prism all)
	(prism all)

	(prism all)
	(prism all)
	print a

	a =
	(0:1,0) 9.000000 9.000000
	(0:1,1) 9.000000 9.000000
	(0:1,2) 9.000000 9.000000

	Sun S3L arrays are distributed across multiple processes. Since each process has an identical vie...
	However, when the Prism environment prints a regular array,
	For example:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) print larr
	(prism all)
	larr =
	Pset 0
	(1:2,1,1) 0.000000 1.000000
	(1:2,2,1) 0.1000000 1.100000
	(1:2,3,1) 0.2000000 1.200000
	Pset 1
	(1:2,1,2) 0.000000 1.000000
	(1:2,2,2) 0.1000000 1.100000
	(1:2,3,2) 0.2000000 1.200000
	(prism all)
	(prism all)
	larr =
	Pset 0
	(1:2,1,1) 0.000000 5.000000
	(1:2,2,1) 0.5000000 5.500000
	(1:2,3,1) 1.000000 6.000000
	Pset 1
	(1:2,1,2) 0.000000 1.000000
	(1:2,2,2) 0.1000000 1.100000
	(1:2,3,2) 0.2000000 1.200000

	The Prism environment prints expressions involving Sun S3L parallel arrays (after having issued the
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) print 10* a - 1
	(prism all)
	10* a - 1 =
	(0:1,0) -1.000000000000000 9.000000000000000
	(0:1,1) 0.00000000000000000 10.00000023841858
	(0:1,2) 1.000000029802322 11.00000047683716
	(prism all)
	a =
	(0:1,0) 0.000000 1.000000
	(0:1,1) 0.1000000 1.100000
	(0:1,2) 0.2000000 1.200000

	However, if you use a Sun S3L array in an expression that includes a variable, then the Prism env...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) print w
	(prism all)
	w =
	(1:2) 0 0
	(prism all)
	a+w =
	Pset 0
	(0:1,0,1) 0.000000000000000 1.000000000000000
	(0:1,1,1) 0.1000000014901161 1.100000023841858
	(0:1,2,1) 0.2000000029802322 1.200000047683716
	Pset 1
	(0:1,0,2) 0.000000000000000 1.000000000000000
	(0:1,1,2) 0.1000000014901161 1.100000023841858
	(0:1,2,2) 0.2000000029802322 ����1.200000047683716

	To Visualize the Layouts of S3L Parallel Arrays
	To Visualize the Layouts of S3L Parallel Arrays
	Type
	Type
	(
	This returns the numbers of the nodes on which the data elements of an S3L array are located. for...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) print layout a
	(prism all)
	(prism all)

	layout (a) =
	layout (a) =

	a =
	a =

	(0:1,0) 0 0
	(0:1,1) 0 0
	(0:1,2) 1 1

	where

	To Print or Display an S3L Array Using the
	To Print or Display an S3L Array Using the
	Type
	Type
	<Filename | Command>layout<Default Para Font> intrinsic
	<Filename | Command>layout<Default Para Font> intrinsic

	This creates a visualizer that is the same size and shape as S3L array
	Note that you can specify any visualizer representation�—�for example, text, dither, or colormap�...

	6
	6
	Obtaining MPI Performance Data
	The Prism environment lets you collect and examine performance data on your Sun MPI program. Coll...
	See the following sections:
	“Overview of MPI Performance Analysis” on page 181
	“Overview of MPI Performance Analysis” on page 181
	“Overview of MPI Performance Analysis” on page 181
	“Overview of MPI Performance Analysis” on page 181

	“Getting Started” on page 182
	“Getting Started” on page 182
	“Getting Started” on page 182
	“Getting Started” on page 182

	“Managing MPI Performance Analysis” on page 183
	“Managing MPI Performance Analysis” on page 183
	“Managing MPI Performance Analysis” on page 183
	“Managing MPI Performance Analysis” on page 183

	“Collecting Performance Data” on page 188
	“Collecting Performance Data” on page 188
	“Collecting Performance Data” on page 188
	“Collecting Performance Data” on page 188

	“Displaying Performance Data” on page 191
	“Displaying Performance Data” on page 191
	“Displaying Performance Data” on page 191
	“Displaying Performance Data” on page 191

	“Controlling the Scale of TNF Data Collection” on page 205
	“Controlling the Scale of TNF Data Collection” on page 205
	“Controlling the Scale of TNF Data Collection” on page 205
	“Controlling the Scale of TNF Data Collection” on page 205

	“Performance Analysis Tips” on page 207
	“Performance Analysis Tips” on page 207

	“Additional Information” on page 209
	“Additional Information” on page 209

	Overview of MPI Performance Analysis
	Overview of MPI Performance Analysis
	Since a few parts of your program will account for most of the run time, only those parts need be...
	The Prism environment generates this information when running Sun MPI programs with a specially i...
	You can also add TNF probes directly to your code if your programs are written in C or C++. TNF d...
	You can also add TNF probes directly to your code if your programs are written in C or C++. TNF d...

	You can use the Prism environment’s TNF analysis features to identify situations in which the syn...
	For further information about the TNF-instrumented Sun MPI library, see Appendix C of the
	For a general discussion of profiling methodology, emphasizing the use of timers, as well as disc...
	Note – The Prism environment works with both 64-bit or 32-bit binaries on Solaris 7. However, it ...

	Getting Started
	Getting Started
	To start using the Prism environment’s TNF performance analysis, load your Sun MPI program into t...
	Select Collection, from the Prism environment’s Performance analysis menu, or issue the
	Select Collection, from the Prism environment’s Performance analysis menu, or issue the
	Select Collection, from the Prism environment’s Performance analysis menu, or issue the

	(prism all)
	(prism all)
	tnfcollection on

	Select the Run command from the Prism environment’s Execute menu or issue the
	Select the Run command from the Prism environment’s Execute menu or issue the
	Select the Run command from the Prism environment’s Execute menu or issue the

	(prism all)
	(prism all)
	run

	Select Display TNF Data from the Prism environment’s Performance analysis menu, or issue the
	Select Display TNF Data from the Prism environment’s Performance analysis menu, or issue the
	Select Display TNF Data from the Prism environment’s Performance analysis menu, or issue the

	(prism all)
	(prism all)
	tnfview

	The details that describe the Prism environment’s performance analysis, and how you can gain grea...

	Managing MPI Performance Analysis
	Managing MPI Performance Analysis
	Using the default settings, you can use the Prism environment’s MPI performance analysis on your ...
	1. Environment – The Prism environment’s performance analysis features use the values of three en...
	1. Environment – The Prism environment’s performance analysis features use the values of three en...
	1. Environment – The Prism environment’s performance analysis features use the values of three en...

	2. Communications – The Prism environment requires that you enable
	2. Communications – The Prism environment requires that you enable

	3. Commands – The Prism environment supplies several TNF commands (see
	3. Commands – The Prism environment supplies several TNF commands (see

	4. Probes – The Prism environment allows you to specify the precise probes to use in your analysi...
	4. Probes – The Prism environment allows you to specify the precise probes to use in your analysi...

	The following sections describe these three categories.
	Note – You do not need to compile your program with the –
	Note – You do not need to compile your program with the –

	Environment Variables
	Environment Variables
	The Prism environment uses the values of three environment variables for performance analysis:
	PRISM_TNFDIR
	PRISM_TNFDIR
	PRISM_TNFDIR

	The Prism environment uses space in a target directory (by default, /usr/tmp) to store the tempor...
	If your trace buffer files are too small, once the buffer fills up your data will begin to overwr...
	You can also define another location for the trace buffer files by setting an environment variable,
	%
	%

	Note – If you set
	Note – If you set

	LD_LIBRARY_PATH
	LD_LIBRARY_PATH
	LD_LIBRARY_PATH

	The Prism environment uses the value of the
	You can set this environment variable before launching the Prism environment or from the Prism en...
	Note – The
	Note – The

	You can change the value of this variable using the Prism environment’s
	(prism all)
	(prism all)

	Setting
	Setting
	The standard location for this library for 32-bit programs, running on either Solaris 2.6 or Sola...
	%
	%

	Setting
	Setting
	The standard location for this library for 64-bit programs, on the Solaris 7 environment, is
	%
	%

	PRISM_TNF_CLOCK_PERIOD
	PRISM_TNF_CLOCK_PERIOD
	PRISM_TNF_CLOCK_PERIOD

	The Prism environment uses the value of
	While running a program under TNF performance analysis, the Prism environment calculates the diff...
	The clock difference calculation adds some overhead to the system, and may perturb the performanc...
	%
	%
	%

	Enabling
	Enabling
	For TNF profiling, you must enable
	permission denied
	permission denied

	MPI Performance Analysis Commands
	MPI Performance Analysis Commands
	The Prism environment supplies several commands that allow you to control MPI performance analysi...
	The Prism MPI performance analysis commands are listed in
	<TABLE>
	TABLE�6�1 Performance Analysis Commands�
	<TABLE HEADING>
	<TABLE ROW>
	Commands
	Commands

	Description
	Description

	<TABLE BODY>
	<TABLE ROW>
	tnffile
	tnffile
	tnffile

	Creates the final target file (and optionally sets the trace buffer’s size) for TNF probe data.
	Creates the final target file (and optionally sets the trace buffer’s size) for TNF probe data.

	<TABLE ROW>
	tnfenable
	tnfenable
	tnfenable

	Enables selected TNF probes.
	Enables selected TNF probes.

	<TABLE ROW>
	tnfdebug
	tnfdebug
	tnfdebug

	Redirects TNF probe data to stderr. (This command requires that the Prism run command has been ex...
	Redirects TNF probe data to

	<TABLE ROW>
	tnfdisable
	tnfdisable
	tnfdisable

	Disables selected TNF probes. (This command requires that the Prism run command has been executed.)
	Disables selected TNF probes. (This command requires that the Prism

	<TABLE ROW>
	tnfcollection
	tnfcollection
	tnfcollection

	Turns on | off the TNF collection process.
	Turns on | off the TNF collection process.

	<TABLE ROW>
	tnflist
	tnflist
	tnflist

	Displays selected probes and their enabled state. (This command requires that the Prism run comma...
	Displays selected probes and their enabled state. (This command requires that the Prism

	<TABLE ROW>
	tnfview
	tnfview
	tnfview

	Displays for analysis the probe data contained in the TNF target file.
	Displays for analysis the probe data contained in the TNF target file.

	For detailed information about the syntax of the Prism environment’s TNF commands, see the exampl...

	TNF Probes
	TNF Probes
	Several of the Prism environment’s TNF commands (
	The
	You can specify probes using arguments that include shell pattern matching wildcards, such as the...
	You can also specify probes by group name. The TNF probe groups defined in the TNF-instrumented v...
	<TABLE>
	TABLE�6�2 Sun MPI Library TNF Probe Groups�
	Trace Normal Form (TNF):Sun MPI Library:TNF probe groups

	<TABLE HEADING>
	<TABLE ROW>
	Probe Group
	Probe Group

	Description
	Description

	<TABLE BODY>
	<TABLE ROW>
	mpi_api
	mpi_api
	mpi_api

	All API-level MPI functions
	All API-level MPI functions

	<TABLE ROW>
	mpi_pt2pt
	mpi_pt2pt
	mpi_pt2pt

	Functions that initiate point-to-point communications
	Functions that initiate point-to-point communications

	<TABLE ROW>
	mpi_blkp2p
	mpi_blkp2p
	mpi_blkp2p

	All blocking point-to-point calls
	All blocking point-to-point calls

	<TABLE ROW>
	mpi_nblkp2p
	mpi_nblkp2p
	mpi_nblkp2p

	All nonblocking point-to-point calls
	All nonblocking point-to-point calls

	<TABLE ROW>
	mpi_coll
	mpi_coll
	mpi_coll

	Collective routines
	Collective routines

	<TABLE ROW>
	mpi_procmgmt
	mpi_procmgmt
	mpi_procmgmt

	Functions that deal with spawning and connecting to jobs
	Functions that deal with spawning and connecting to jobs

	<TABLE ROW>
	mpi_comm
	mpi_comm
	mpi_comm

	Functions that create and manipulate communicators
	Functions that create and manipulate communicators

	<TABLE ROW>
	mpi_datatypes
	mpi_datatypes
	mpi_datatypes

	Functions that manipulate types or data in respect to types
	Functions that manipulate types or data in respect to types

	<TABLE ROW>
	mpi_request
	mpi_request
	mpi_request

	Functions that create or operate on requests
	Functions that create or operate on requests

	<TABLE ROW>
	mpi_topo
	mpi_topo
	mpi_topo

	Functions that create and manipulate topology layouts
	Functions that create and manipulate topology layouts

	If you choose to insert TNF probes into your own code, you must define your own probe group ident...
	Note – Neither the names of probes that you define nor the names of probe groups that you define ...
	Note – Neither the names of probes that you define nor the names of probe groups that you define ...

	Collecting Performance Data
	Collecting Performance Data
	The Prism environment’s MPI performance analysis involves several steps. The
	To Run Performance Analysis
	To Run Performance Analysis
	1. Issue the
	1. Issue the
	Adds
	Adds
	Adds

	Establishes a default file name for the TNF data.
	Establishes a default file name for the TNF data.
	If you prefer to control the naming of TNF data files, you can define your own TNF data file name...

	Sets the minimum size for data collection buffers (128 Kbytes).
	Sets the minimum size for data collection buffers (128 Kbytes).

	Enables all probes
	Enables all probes
	If you issue the

	Turns on TNF data collection.
	Turns on TNF data collection.

	2. Issue the
	2. Issue the
	At the conclusion of the run, the Prism environment collects the information from each process an...

	3. Issue the
	3. Issue the
	You can also launch the TNF viewer by selecting Display TNF Data from the Prism environment’s Per...
	Note – You can repeat steps two and three as often as you wish. Each time that you
	Note – You can repeat steps two and three as often as you wish. Each time that you

	Naming TNF Data Files and Controlling Data Collection Buffer Size
	Naming TNF Data Files and Controlling Data Collection Buffer Size
	If you use the
	The second argument to the tnffile command, the size argument, allows you to control how large th...

	Specifying Which TNF Probes to Enable
	Specifying Which TNF Probes to Enable
	During program execution, only the enabled TNF probes contribute trace data to the performance an...
	Once you have explicitly enabled probes (by issuing the
	For example, to enable all point-to-point probes in the TNF-instrumented Sun MPI library:
	(
	(

	Turning on the Collection Process in Subsets of Your Code
	Turning on the Collection Process in Subsets of Your Code
	You can use the
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) tnfenable mpi_coll
	(
	(
	(

	The Prism environment collects TNF trace data only where you tell it to. For more information abo...

	Using a
	Using a
	If you use a specific directory to run TNF performance analysis, you can set up a
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	tnfcollection on
	tnfcollection on
	run
	wait
	tnfview

	For further information about

	Controlling the Merging of Trace Data
	Controlling the Merging of Trace Data
	If you want to collect trace data in one session and view the data in another session, quitting t...

	Displaying Performance Data
	Displaying Performance Data
	The
	(prism all) tnfview myfile.tnf
	You do not need to specify a file name as an argument to the
	The main window of
	Scatter plot view
	Scatter plot view
	Scatter plot view

	Table view
	Table view

	Histogram view
	Histogram view

	FIGURE�6�1
	FIGURE�6�1

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�6�1 Timeline View

	Using the
	Using the
	The main
	The main window of
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Event Table
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Event Table
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Event Table
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Event Table

	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Navigation menu
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Navigation menu
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Navigation menu
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Navigation menu

	<TABLE>
	TABLE�6�3 Timeline Navigation Menu Categories
	<TABLE HEADING>
	<TABLE ROW>
	Menu Category
	Menu Category

	Definition
	Definition

	<TABLE BODY>
	<TABLE ROW>
	current probe
	current probe

	Probe name.
	Probe name.

	<TABLE ROW>
	time
	time

	Strict time sequence, by millisecond.
	Strict time sequence, by millisecond.

	<TABLE ROW>
	current tid
	current tid

	Solaris thread ID.
	Solaris thread ID.

	<TABLE ROW>
	current lwpid
	current lwpid

	Solaris lightweight process ID.
	Solaris lightweight process ID.

	<TABLE ROW>
	current cpu
	current cpu

	Always zero for user-level traces.
	Always zero for user-level traces.

	<TABLE ROW>
	current pid
	current pid

	Solaris process ID.
	Solaris process ID.

	<TABLE ROW>
	current vid
	current vid

	Virtual thread ID – A logical thread ID assigned when trace files from different nodes are merged...
	Virtual thread ID – A logical thread ID assigned when trace files from different nodes are merged...

	The navigation categories are shown in
	The navigation categories are shown in
	The navigation categories are shown in

	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Next, Previous buttons
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Next, Previous buttons
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Next, Previous buttons
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Next, Previous buttons

	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Scale sliders
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Scale sliders
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Scale sliders
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Scale sliders

	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Graph button
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Graph button
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Graph button
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Graph button

	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Print button
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Print button
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Print button
	<Filename | Command>tnfview<Default Para Font> command:Timeline window:Print button

	Opening TNF Trace Files
	Opening TNF Trace Files
	The Open Tracefile selection on the File menu opens the Open File dialog box. Use this dialog box...
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�6�2 Open File Dialog Box

	Bookmarking Events
	Bookmarking Events
	You can set a bookmark.

	Navigating and Controlling the
	Navigating and Controlling the
	The
	<TABLE>
	TABLE�6�4 Timeline Window Mouse Commands
	<TABLE HEADING>
	<TABLE ROW>
	Command
	Command

	Description
	Description

	<TABLE BODY>
	<TABLE ROW>
	Left Click
	Left Click

	Select an event and clear previous selections
	Select an event and clear previous selections

	<TABLE ROW>
	Shift-Left Click
	Shift-Left Click

	Select an additional event and add it to the set of selected events
	Select an additional event and add it to the set of selected events

	<TABLE ROW>
	Middle Drag
	Middle Drag

	Select area for zoom
	Select area for zoom

	<TABLE ROW>
	Middle Click
	Middle Click

	Center view around point
	Center view around point

	<TABLE ROW>
	Scroll Bars
	Scroll Bars

	Scroll view of graph at current zoom factor
	Scroll view of graph at current zoom factor

	<TABLE ROW>
	Scale Bars
	Scale Bars

	Adjust zoom factor of each axis independently
	Adjust zoom factor of each axis independently

	<TABLE>
	TABLE�6�5 Navigation Control Mouse Commands
	<TABLE HEADING>
	<TABLE ROW>
	Command
	Command

	Description
	Description

	<TABLE BODY>
	<TABLE ROW>
	Left Arrow Button
	Left Arrow Button

	Select previous event
	Select previous event

	<TABLE ROW>
	Right Arrow Button
	Right Arrow Button

	Select next event
	Select next event

	<TABLE ROW>
	Pull-down Menu
	Pull-down Menu

	Select navigation criteria
	Select navigation criteria

	<TABLE>
	TABLE�6�6 Event Table Mouse Commands
	<TABLE HEADING>
	<TABLE ROW>
	Command
	Command

	Description
	Description

	<TABLE BODY>
	<TABLE ROW>
	Left Click
	Left Click

	Select an event
	Select an event

	<TABLE ROW>
	Up/Down Arrows (Keyboard)
	Up/Down Arrows (Keyboard)

	Select next/previous event in table
	Select next/previous event in table

	Exiting
	Exiting
	From the File menu, choose Exit to exit
	Exiting

	Using the
	Using the
	Clicking on the Graph button of the Timeline window opens the
	You can display, in addition to scatter plot graphs, tables and histograms of the dataset. You ca...
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�6�3 Scatter Plot View

	To create a dataset, use the features on the left panel of the plot window. You can:
	Create a dataset from a single probe.
	Create a dataset from a single probe.
	Create a dataset from a single probe.

	Create a new (blank) interval.
	Create a new (blank) interval.
	Create a new (blank) interval.

	Edit the currently selected interval definition.
	Edit the currently selected interval definition.
	Edit the currently selected interval definition.

	Create a dataset from the currently selected interval definition.
	Create a dataset from the currently selected interval definition.
	Create a dataset from the currently selected interval definition.

	Creating an Event Dataset
	Creating an Event Dataset
	Click the “Choose a type of event” button to open the Event Selection window (see
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�6�4 Event Selection Window

	Creating a New Interval
	Creating a New Interval
	You create new intervals by clicking the “Create a new blank interval” button in the plot window....

	Editing Interval Definitions
	Editing Interval Definitions
	If you select an interval and click the “Edit this interval definition” button, the Interval Edit...
	Name – The interval name.
	Name – The interval name.
	Name – The interval name.

	First Event – The event that triggers data collection for this interval (when the interval has be...
	First Event – The event that triggers data collection for this interval (when the interval has be...
	First Event – The event that triggers data collection for this interval (when the interval has be...

	Second Event – The event that stops data collection for this interval (when the interval has been...
	Second Event – The event that stops data collection for this interval (when the interval has been...
	Second Event – The event that stops data collection for this interval (when the interval has been...

	Second Event is on: (same thread) – Toggle whether events can be on different threads.
	Second Event is on: (same thread) – Toggle whether events can be on different threads.
	Second Event is on: (same thread) – Toggle whether events can be on different threads.

	Optional: Match by Event Data
	Optional: Match by Event Data
	Optional: Match by Event Data
	First Event Data – The element of the first event to be matched.
	First Event Data – The element of the first event to be matched.
	First Event Data – The element of the first event to be matched.

	Second Event Data – The element of the second event to be matched.
	Second Event Data – The element of the second event to be matched.
	Second Event Data – The element of the second event to be matched.
	Note – The
	Note – The

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�6�5 Interval Editor

	Collecting an Interval Dataset
	Collecting an Interval Dataset
	If you select an interval from the Interval Definitions list, then click the “Create a dataset fr...

	Selecting a Dataset to Plot
	Selecting a Dataset to Plot
	If you select an event or interval from the list under “Choose Dataset,” the graph displays a sca...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	MPI_Finalize_start[1]
	MPI_Finalize_start
	MPI_Finalize_start

	MPI_Send
	MPI_Send

	Adjusting the Scatter Plot Graph Axes
	Adjusting the Scatter Plot Graph Axes
	You can select alternative values for the X and Y axes on the graph. For example,
	Latency
	Latency
	Latency

	Time Order
	Time Order

	Event 1 – Specify the event field
	Event 1 – Specify the event field

	Event 2 – Specify the event field
	Event 2 – Specify the event field

	The data fields of the event become available for selection in the second list of the same row. T...

	Updating the Graph
	Updating the Graph
	To update a scatter plot graph or histogram after changing an axis parameter, press the Refresh b...

	Selecting a Point in the Scatter Plot
	Selecting a Point in the Scatter Plot
	Each point in the scatter plot corresponds to a data point in the displayed dataset.
	Clicking on any data point in the scatter plot causes the timeline graph to select the correspond...
	For datasets with one event, one event will be shown in the Timeline window. If the dataset comes...
	For example, clicking on the furthest outlying data point in the scatter plot graph shown in
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�6�6 Navigating the Timeline View to the Data Point Selected in the Scatter Plot View

	Then, zooming in to the data points closest to the selected data point displays a finer grain vie...
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�6�7 Zooming In for a Finer Grain View of the Dataset

	Opening the Table View
	Opening the Table View
	Clicking the Table tab on the Plot window opens a tabular presentation of the selected dataset
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�6�8 Table View

	The Table view displays four columns:
	Interval Count – Number of intervals
	Interval Count – Number of intervals
	Interval Count – Number of intervals

	Latency Summation – Time in milliseconds
	Latency Summation – Time in milliseconds
	Latency Summation – Time in milliseconds

	Latency Average – Time in milliseconds
	Latency Average – Time in milliseconds
	Latency Average – Time in milliseconds

	Intervals with
	Intervals with
	Intervals with

	Opening the Histogram View
	Opening the Histogram View
	Clicking the Histogram tab on the Plot window opens a histogram presentation of the selected dataset
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�6�9 Histogram View

	Clicking on a Bucket in the Histogram
	Clicking on a Bucket in the Histogram
	Click the left mouse button on a bar in the histogram graph to display three sets of values for t...
	Statistics for bar – Displays the number of the bar, counting from zero to 29.
	Statistics for bar – Displays the number of the bar, counting from zero to 29.
	Statistics for bar – Displays the number of the bar, counting from zero to 29.

	This bar contains values … – Displays the range of the data in the bar.
	This bar contains values … – Displays the range of the data in the bar.
	This bar contains values … – Displays the range of the data in the bar.
	Any value in this bucket must be greater than or equal to the first value.
	Any value in this bucket must be greater than or equal to the first value.
	Any value in this bucket must be greater than or equal to the first value.

	Any value in this bucket must be less than the second value.
	Any value in this bucket must be less than the second value.
	Any value in this bucket must be less than the second value.

	Number of values in this bar – Displays the number of values within the bar.
	Number of values in this bar – Displays the number of values within the bar.
	Number of values in this bar – Displays the number of values within the bar.

	Number of values in all bars – Displays the number of values within the entire dataset.
	Number of values in all bars – Displays the number of values within the entire dataset.
	Number of values in all bars – Displays the number of values within the entire dataset.

	Percent of values in this bar – Displays the values within the bar as a percentage of the entire ...
	Percent of values in this bar – Displays the values within the bar as a percentage of the entire ...
	Percent of values in this bar – Displays the values within the bar as a percentage of the entire ...

	Percent of values up to and including this bar – Displays a cumulative percentage. The value is t...
	Percent of values up to and including this bar – Displays a cumulative percentage. The value is t...
	Percent of values up to and including this bar – Displays a cumulative percentage. The value is t...

	These values are displayed in a Histogram Bar Statistics dialog box
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�6�10 Histogram Bar Statistics Dialog Box

	Specifying the Metric of the Histogram
	Specifying the Metric of the Histogram
	You can select alternative values for the histogram metric. For example, you could choose Latency...
	Latency
	Latency
	Latency

	Time Order
	Time Order

	Event 1 – Specify the event field
	Event 1 – Specify the event field

	Event 2 – Specify the event field
	Event 2 – Specify the event field

	The data fields of the event become available for selection in the second list of the same row. T...

	Controlling the Scale of TNF Data Collection
	Controlling the Scale of TNF Data Collection
	During the collection phase of performance analysis, the Prism environment creates as many trace ...
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�6�11 TNF Data Collection Phase Diagram

	However, the scale of data collection can overwhelm disk storage resources. The following section...
	Collecting Trace Data
	Collecting Trace Data
	The Prism environment creates one trace collection data file per process in your Sun MPI program....
	You can specify the size of the trace data collection files with the size argument of the tnffile...
	(prism all)
	(prism all)

	Trace data collection files operate as circular buffers. As the file fills up with trace data rec...
	Maximum file size reached – some events have been lost.
	Maximum file size reached – some events have been lost.

	Since the TNF trace data buffer is limited in size, beware of allowing the trace data from the pr...
	You can also set the optional
	It is difficult to predict the precise number of records that will fit in a given buffer size. So...
	Tips for Controlling the Scale of Data Collection
	Tips for Controlling the Scale of Data Collection
	Change (lessen) the number of probes that you enable.
	Change (lessen) the number of probes that you enable.
	Change (lessen) the number of probes that you enable.

	Change (shorten) the duration of the time during which collection is active.
	Change (shorten) the duration of the time during which collection is active.

	Merging Trace Data Files
	Merging Trace Data Files
	The file size of the final, merged trace data file is approximately equal to the number of proces...
	The loading of the final, merged, trace data file into

	Managing Disk Space Requirements
	Managing Disk Space Requirements
	As described in
	You can use another directory for trace data collection files. To direct the Prism environment to...
	%
	%

	Performance Analysis Tips
	Performance Analysis Tips
	The following sections offer cautions and suggestions about using TNF probes to analyze the perfo...
	Reusing Performance Data Files
	Reusing Performance Data Files
	You can reuse TNF trace files. A few considerations:
	TNF output files can be saved and viewed, but not updated.
	TNF output files can be saved and viewed, but not updated.
	TNF output files can be saved and viewed, but not updated.

	You can re-display TNF trace files. You should take the normal precautions to name your trace fil...
	You can re-display TNF trace files. You should take the normal precautions to name your trace fil...
	You can re-display TNF trace files. You should take the normal precautions to name your trace fil...

	To display data from multiple TNF files, open multiple instances of
	To display data from multiple TNF files, open multiple instances of
	To display data from multiple TNF files, open multiple instances of

	Enabling Probes Selectively
	Enabling Probes Selectively
	Enable probes based on the characteristics of your source code. For example, if you are intereste...
	When examining a trace file from an MPI program in
	In many, if not all, programs, enabling only probes on point-to-point routines and collectives wi...

	Anticipating Timing Problems
	Anticipating Timing Problems
	You may change the timing characteristics of your program by adding probes (even when those probe...
	Changing which probes you have enabled or disabled also changes the timing of your program. Pertu...
	The operating overhead incurred when collecting, processing, and viewing performance analysis tra...
	The volume of trace data can exceed the storage capacity of the target directory. It may be impor...
	The activity of generating probe records slows performance by a predictable amount. Assuming that...
	<TABLE>
	TABLE�6�7 Operating Overhead Introduced by TNF Probes
	<TABLE HEADING>
	<TABLE ROW>
	Probe Status
	Probe Status

	SPARC Instructions
	SPARC Instructions

	Time (in nanoseconds)
	Time (in nanoseconds)

	<TABLE BODY>
	<TABLE ROW>
	Disabled
	Disabled

	5
	5

	12
	12

	<TABLE ROW>
	Enabled
	Enabled

	24
	24

	27
	27

	Miscellaneous Suggestions
	Miscellaneous Suggestions
	Highly cyclical code is a good example of code that can benefit from TNF performance analysis, su...
	You can create intervals based on library routines that enable you to measure the timing of your ...
	You can use the Prism environment’s TNF performance analysis features with or without using the
	Note – Ragged edges
	Note – Ragged edges
	Note – Ragged edges

	Additional Information
	Additional Information
	For further information about TNF tracing with the Prism environment, see the
	For background information about TNF tracing, see the
	For a general discussion of profiling methodology, emphasizing the use of timers, as well as disc...

	7
	7
	Editing and Compiling Programs
	You can edit and compile source code by invoking the appropriate utilities from the Prism environ...
	“Editing Source Code” on page 211
	“Editing Source Code” on page 211
	“Editing Source Code” on page 211
	“Editing Source Code” on page 211

	“Using the make Utility” on page 212
	“Using the make Utility” on page 212
	“Using the make Utility” on page 212
	“Using the make Utility” on page 212

	Editing Source Code
	Editing Source Code
	The Prism environment provides an interface to the editor of your choice. You can use this editor...
	To Start the Default Editor on the Current Source File From Within the Prism Environment
	To Start the Default Editor on the Current Source File From Within the Prism Environment
	Perform one of the following:
	Perform one of the following:
	From the menu bar – Choose the Edit selection from the Utilities menu.
	From the menu bar – Choose the Edit selection from the Utilities menu.
	From the menu bar – Choose the Edit selection from the Utilities menu.

	From the Prism command window – Type
	From the Prism command window – Type
	From the Prism command window – Type
	(

	You can specify which editor the Prism environment is to call by using the Customize utility to s...
	The editor is invoked on the current file, as displayed in the source window. If possible, the ed...
	After the editor has been created, it runs independently. This means that changes you make in the...

	Using the
	Using the
	The Prism environment provides an interface to the standard Solaris tool
	Creating the Makefile
	Creating the Makefile
	Create the makefile as you normally would. Within the Prism environment, you can choose the Edit ...

	Using the Makefile
	Using the Makefile
	After you have made changes in your program, you can run
	The Prism environment uses the standard Solaris
	To Run
	To Run
	Perform the following:
	Perform the following:

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�7�1 The

	Choose Make from the Utilities menu.
	Choose Make from the Utilities menu.
	Choose Make from the Utilities menu.
	A window appears;

	Edit the fields in the
	Edit the fields in the
	If you leave the Makefile or the Target box empty,
	You can specify any standard
	The dialog box also asks if you want to reload after the make. Answering Yes (the default) automa...

	To cancel the make while it is in progress, click on the Cancel button. If a make is not in progr...
	To cancel the make while it is in progress, click on the Cancel button. If a make is not in progr...

	View the output from
	View the output from

	To Run
	To Run
	Type
	Type
	(
	You can specify any arguments that are valid in the Solaris version of

	8
	8
	Getting Help
	This chapter describes how to obtain information about the Prism environment and other Sun produc...
	See the following sections:
	“The Prism Online Help Systems” on page 215
	“The Prism Online Help Systems” on page 215
	“The Prism Online Help Systems” on page 215
	“The Prism Online Help Systems” on page 215

	“Obtaining Online Documentation” on page 217
	“Obtaining Online Documentation” on page 217
	“Obtaining Online Documentation” on page 217
	“Obtaining Online Documentation” on page 217

	The Prism Online Help Systems
	The Prism Online Help Systems
	To Get Help in the Prism Environment
	To Get Help in the Prism Environment
	Perform one of the following:
	Perform one of the following:
	Select an entry from the Help menu in the menu bar. The Help menu provides help on several major ...
	Select an entry from the Help menu in the menu bar. The Help menu provides help on several major ...
	Select an entry from the Help menu in the menu bar. The Help menu provides help on several major ...

	Select an entry from the Help menus and Help button in windows and dialog boxes. These Help menus...
	Select an entry from the Help menus and Help button in windows and dialog boxes. These Help menus...
	Select an entry from the Help menus and Help button in windows and dialog boxes. These Help menus...

	Use the command-line help. The syntax of command-line help is,
	Use the command-line help. The syntax of command-line help is,
	Use the command-line help. The syntax of command-line help is,
	(
	Command-line help provides information about commands you can issue from the command window.

	Using the Browser-based Help System
	Using the Browser-based Help System
	The Prism environment displays its help files using your World Wide Web browser. The default brow...
	To specify the HTML browser you want to use for the graphical mode of the Prism environment, set ...
	If you don’t have a browser running, the Prism environment starts one. If you have a browser curr...
	Note – See

	Choosing Selections From the Help Menu
	Choosing Selections From the Help Menu
	The Help menu provides information in a variety of ways:
	Choose
	Choose
	Choose

	Choose
	Choose
	Choose

	Choose
	Choose
	Choose

	Choose
	Choose
	Choose

	Choose
	Choose
	Choose

	Getting Help on Using the Mouse
	Getting Help on Using the Mouse
	Some Prism windows include an icon of a mouse,
	<GRAPHIC>
	<GRAPHIC>

	Click on this icon to display information about using the mouse in the window.

	Obtaining Help From the Command Window
	Obtaining Help From the Command Window
	To Obtain Help From the Command Window.
	To Obtain Help From the Command Window.
	Type
	Type
	(
	This displays a list of Prism commands and editing key combinations.

	Type
	Type
	Type
	(
	This displays help on that command.

	Type
	Type
	Type
	(
	This displays a brief message about how to use command-line help.

	Obtaining Online Documentation
	Obtaining Online Documentation
	The Prism environment’s documentation is available both in print and Sun AnswerBook forms. Prism ...
	Viewing Manual Pages
	Viewing Manual Pages
	To Obtain a Manual Page
	To Obtain a Manual Page
	Choose the
	Choose the
	This brings up
	Help for

	Note – If
	Note – If

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�8�1 xman Window

	9
	9
	Customizing the Prism Programming Environment
	This chapter discusses ways in which you can change various aspects of the Prism environment’s ap...
	See the following sections:
	“Initializing the Prism Environment” on page 219
	“Initializing the Prism Environment” on page 219
	“Initializing the Prism Environment” on page 219
	“Initializing the Prism Environment” on page 219

	“Using the Tear-Off Region” on page 221
	“Using the Tear-Off Region” on page 221
	“Using the Tear-Off Region” on page 221

	“Creating Aliases for Commands and Variables” on page 223
	“Creating Aliases for Commands and Variables” on page 223
	“Creating Aliases for Commands and Variables” on page 223

	“Using the Customize Utility” on page 224
	“Using the Customize Utility” on page 224
	“Using the Customize Utility” on page 224

	“Changing Prism Environment Defaults” on page 229
	“Changing Prism Environment Defaults” on page 229
	“Changing Prism Environment Defaults” on page 229

	Initializing the Prism Environment
	Initializing the Prism Environment
	Use the
	When starting up, the Prism environment first looks in the current directory for a file called
	The
	If you always want to log command output, put a
	If you always want to log command output, put a
	If you always want to log command output, put a

	If you want to use your own aliases for Prism commands, put the appropriate
	If you want to use your own aliases for Prism commands, put the appropriate
	If you want to use your own aliases for Prism commands, put the appropriate

	Note that you don’t need to put
	In the
	Customizing MP Prism Mode
	Customizing MP Prism Mode
	Using the
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	alias c cont
	alias c cont
	alias c cont

	#ifdef MP
	pset 0
	alias c ”cont; wait every”
	#endif

	These commands define
	To provide this feature, the Prism environment must preprocess the
	To Force the Prism Environment to Preprocess the
	To Force the Prism Environment to Preprocess the
	Change the setting of the Prism resource
	Change the setting of the Prism resource
	Typically, this setting is
	Prism.cppPath: /lib
	Prism.cppPath: /lib
	Prism.cppPath: /lib

	See

	Using the Tear-Off Region
	Using the Tear-Off Region
	You can place frequently used menu selections and commands in the tear-off region below the menu ...
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�9�1 The Tear-Off Region

	Putting menu selections and commands in the tear-off region lets you access them without having t...
	Changes you make to the tear-off region are saved when you leave the Prism environment; see
	Adding Menu Selections to the Tear-Off Region
	Adding Menu Selections to the Tear-Off Region
	You can add menu selections to the tear-off region from either the menu bar or the command line.
	To Add a Menu Selection to the Tear-Off Region
	To Add a Menu Selection to the Tear-Off Region
	Perform one of the following:
	Perform one of the following:

	From the menu bar – Enter tear-off mode by choosing Tear-off
	From the menu bar – Enter tear-off mode by choosing Tear-off
	From the menu bar – Enter tear-off mode by choosing Tear-off
	<GRAPHIC>
	<GRAPHIC>
	FIGURE�9�2 Tear-Off Region Dialog Box

	While the dialog box
	Click on Close or press the Esc key while the mouse pointer is in the dialog box to close the box...
	When you are not in tear-off mode, clicking on a button in the tear-off region has the same effec...

	From the command window – Use the
	From the command window – Use the
	From the command window – Use the
	(
	adds a button for the Print selection from the Events menu to the tear-off region.

	Adding Prism Commands to the Tear-Off Region
	Adding Prism Commands to the Tear-Off Region
	To Add a Command to the Tear-Off Region
	To Add a Command to the Tear-Off Region
	Type
	Type
	(
	The
	For example,
	(
	(

	adds a button labeled
	To remove a button created via the

	Creating Aliases for Commands and Variables
	Creating Aliases for Commands and Variables
	The Prism environment provides commands that let you create alternative names for commands, varia...
	To create an Alias for a Prism Command
	To create an Alias for a Prism Command
	Type
	Type
	(
	For example,
	(
	(

	makes

	To Remove an Alias
	To Remove an Alias
	Type
	Type
	(
	For example,
	(
	(

	removes the alias created above.

	To Set Up an Alternative Name for a Variable or Expression
	To Set Up an Alternative Name for a Variable or Expression
	Type
	Type
	(
	For example,
	(
	(

	abbreviates the annoyingly long array name to
	(
	(

	removes the setting created above.

	Changes you make via

	Using the Customize Utility
	Using the Customize Utility
	Many aspects of the Prism environment’s behavior and appearance�—�for example, the colors it disp...
	For many of them, you can use the
	For many of them, you can use the
	For many of them, you can use the

	A more general method is to add an entry for a resource to your X resource database, as described...
	A more general method is to add an entry for a resource to your X resource database, as described...
	A more general method is to add an entry for a resource to your X resource database, as described...

	To Launch the Prism Customize Utility
	To Launch the Prism Customize Utility
	Choose Customize from the Utilities menu
	Choose Customize from the Utilities menu
	This displays the window shown in

	<GRAPHIC>
	<GRAPHIC>
	FIGURE�9�3 Customize Window

	Changing a Resource Setting
	Changing a Resource Setting
	On the left of the Customize window are the names of the resources. Next to each resource is a te...
	To Set a Value for a Prism Resource
	To Set a Value for a Prism Resource
	Perform one of the following:
	Perform one of the following:

	For Edit Geometry, Menu Threshold, Text Font, and Visualizer Color File, you enter the setting in...
	For Edit Geometry, Menu Threshold, Text Font, and Visualizer Color File, you enter the setting in...
	For Edit Geometry, Menu Threshold, Text Font, and Visualizer Color File, you enter the setting in...

	For Editor, Error Window, and Make, you can left-click on the button labeled with the resource’s ...
	For Editor, Error Window, and Make, you can left-click on the button labeled with the resource’s ...
	For Editor, Error Window, and Make, you can left-click on the button labeled with the resource’s ...

	For Error Bell, Procedure Menu, Mark Stale Data, and Use Xterm, there are only two possible setti...
	For Error Bell, Procedure Menu, Mark Stale Data, and Use Xterm, there are only two possible setti...
	For Error Bell, Procedure Menu, Mark Stale Data, and Use Xterm, there are only two possible setti...

	Whenever you make a change in a text-entry box, Apply and Cancel buttons appear to the right of i...
	To Close the Customize Window
	To Close the Customize Window
	Click on Close or press the Esc key
	Click on Close or press the Esc key

	Resources
	Resources
	You can customize the X Window System resources that the Prism environment (and other X applicati...
	Edit Geometry
	Edit Geometry
	Edit Geometry
	Edit Geometry

	Editor
	Editor
	Editor
	Editor

	Error Bell
	Error Bell
	Error Bell
	Error Bell

	Error Window
	Error Window
	Error Window
	Error Window

	Make
	Make
	Make
	Make

	Mark Stale Data
	Mark Stale Data
	Mark Stale Data
	Mark Stale Data
	Mark Stale Data

	procedure menu:for Sun HPF generic procedures
	procedure menu:for Sun HPF generic procedures
	procedure menu:for Sun HPF generic procedures
	procedure menu:for Sun HPF generic procedures
	procedure menu:for Sun HPF generic procedures

	menu threshold:for Sun HPF generic procedures
	menu threshold:for Sun HPF generic procedures
	menu threshold:for Sun HPF generic procedures
	menu threshold:for Sun HPF generic procedures
	menu threshold:for Sun HPF generic procedures

	Text Font
	Text Font
	Text Font
	Text Font

	Use Xterm
	Use Xterm
	Use Xterm
	Use Xterm

	Visualizer Color File
	Visualizer Color File
	Visualizer Color File
	Visualizer Color File
	Visualizer Color File

	Default Visualizer
	Default Visualizer
	Default Visualizer

	visualizer color file:creating
	visualizer color file:creating

	The first line of the visualizer color file contains the color that is to be displayed for values...
	<TABLE>
	TABLE�9�1 Sample Visualizer Colors
	<TABLE HEADING>
	<TABLE ROW>
	Red
	Red

	Green
	Green

	Blue
	Blue

	<TABLE BODY>
	<TABLE ROW>
	0
	0

	0
	0

	0
	0

	<TABLE ROW>
	255
	255

	0
	0

	0
	0

	<TABLE ROW>
	255
	255

	255
	255

	0
	0

	<TABLE ROW>
	0
	0

	255
	255

	0
	0

	<TABLE ROW>
	0
	0

	255
	255

	255
	255

	<TABLE ROW>
	0
	0

	0
	0

	255
	255

	<TABLE ROW>
	255
	255

	0
	0

	255
	255

	<TABLE ROW>
	255
	255

	255
	255

	255
	255

	<TABLE ROW>
	100
	100

	100
	100

	100
	100

	Like the default settings, this file specifies black for values below the minimum, white for valu...

	Where the Prism Environment Stores Your Changes
	Where the Prism Environment Stores Your Changes
	The Prism environment maintains a file called
	Changes you make to the Prism environment via the
	Changes you make to the Prism environment via the
	Changes you make to the Prism environment via the

	Changes you make to the tear-off region
	Changes you make to the tear-off region

	Changes you make to the size of the panes within the main Prism window
	Changes you make to the size of the panes within the main Prism window

	Do not attempt to edit this file; make all changes to it through the Prism environment itself. If...

	Changing Prism Environment Defaults
	Changing Prism Environment Defaults
	As mentioned in the previous section, you can change the settings of many Prism resources either ...
	An entry is of the form
	resource-name
	resource-name
	resource-name

	where
	<TABLE>
	TABLE�9�2 Prism Resources�
	<TABLE HEADING>
	<TABLE ROW>
	Resource
	Resource

	Use
	Use

	<TABLE BODY>
	<TABLE ROW>
	Prism.comm1Color
	<Filename | Command>Prism.comm1Color<Default Para Font> resource
	<Filename | Command>Prism.comm1Color<Default Para Font> resource
	<Filename | Command>Prism.comm1Color<Default Para Font> resource

	Specifies the color of the first communicator displayed in the MPI queue visualizer.
	Specifies the color of the first communicator displayed in the MPI queue visualizer.

	<TABLE ROW>
	Prism.comm2Color
	<Filename | Command>Prism.comm2Color<Default Para Font> resource
	<Filename | Command>Prism.comm2Color<Default Para Font> resource
	Prism.comm2Color

	Specifies the color of the second communicator displayed in the MPI queue visualizer.
	Specifies the color of the second communicator displayed in the MPI queue visualizer.

	<TABLE ROW>
	Prism.comm3Color
	<Filename | Command>Prism.comm3Color<Default Para Font> resource
	<Filename | Command>Prism.comm3Color<Default Para Font> resource
	Prism

	Specifies the color of the third communicator displayed in the MPI queue visualizer.
	Specifies the color of the third communicator displayed in the MPI queue visualizer.

	<TABLE ROW>
	Prism.commOtherColor
	<Filename | Command>Prism.commOtherColor<Default Para Font> resource
	<Filename | Command>Prism.commOtherColor<Default Para Font> resource
	Prism.commOtherColor

	Specifies the color of the fourth communicator displayed in the MPI queue visualizer.
	Specifies the color of the fourth communicator displayed in the MPI queue visualizer.

	<TABLE ROW>
	Prism.cppPath
	<Filename | Command>Prism.cppPath<Default Para Font> resource
	<Filename | Command>Prism.cppPath<Default Para Font> resource
	<Filename | Command>Prism.cppPath<Default Para Font> resource

	Specifies the path to your C preprocessor.
	Specifies the path to your C preprocessor.

	<TABLE ROW>
	Prism.dialogColor
	<Filename | Command>Prism.dialogColor<Default Para Font> resource
	<Filename | Command>Prism.dialogColor<Default Para Font> resource
	<Filename | Command>Prism.dialogColor<Default Para Font> resource

	Specifies the color for dialog boxes.
	Specifies the color for dialog boxes.

	<TABLE ROW>
	Prism.editGeometry
	<Filename | Command>Prism.editGeometry<Default Para Font> resource
	<Filename | Command>Prism.editGeometry<Default Para Font> resource
	<Filename | Command>Prism.editGeometry<Default Para Font> resource

	Specifies the size and placement of the editor window.
	Specifies the size and placement of the editor window.

	<TABLE ROW>
	Prism.editor
	<Filename | Command>Prism.editor<Default Para Font> resource
	<Filename | Command>Prism.editor<Default Para Font> resource
	<Filename | Command>Prism.editor<Default Para Font> resource

	Specifies the editor to use.
	Specifies the editor to use.

	<TABLE ROW>
	Prism.errorBell
	<Filename | Command>Prism.errorBell<Default Para Font> resource
	<Filename | Command>Prism.errorBell<Default Para Font> resource
	<Filename | Command>Prism.errorBell<Default Para Font> resource

	Specifies whether the error bell is to ring.
	Specifies whether the error bell is to ring.

	<TABLE ROW>
	Prism.errorwin
	<Filename | Command>Prism.errorwin<Default Para Font> resource
	<Filename | Command>Prism.errorwin<Default Para Font> resource
	<Filename | Command>Prism.errorwin<Default Para Font> resource

	Specifies the window to use for error messages.
	Specifies the window to use for error messages.

	<TABLE ROW>
	Prism*fontList
	<Filename | Command>Prism*fontList<Default Para Font> resource
	<Filename | Command>Prism*fontList<Default Para Font> resource
	<Filename | Command>Prism*fontList<Default Para Font> resource

	Specifies the font for labels, menu selections, etc.
	Specifies the font for labels, menu selections, etc.

	<TABLE ROW>
	Prism.graphBGColor
	<Filename | Command>Prism.graphBGColor<Default Para Font> resource
	<Filename | Command>Prism.graphBGColor<Default Para Font> resource
	<Filename | Command>Prism.graphBGColor<Default Para Font> resource

	Specifies the background color of all graphics windows, such as the structure browser, Where grap...
	Specifies the background color of all graphics windows, such as the structure browser, Where grap...

	<TABLE ROW>
	Prism.graphFillColor
	<Filename | Command>Prism.graphFillColor<Default Para Font> resource
	<Filename | Command>Prism.graphFillColor<Default Para Font> resource
	<Filename | Command>Prism.graphFillColor<Default Para Font> resource

	Specifies the interior fill color for objects in graphics windows that have 3-D shadow borders.
	Specifies the interior fill color for objects in graphics windows that have 3-D shadow borders.

	<TABLE ROW>
	Prism.helpBrowser
	<Filename | Command>Prism.helpBrowser<Default Para Font> resource
	<Filename | Command>Prism.helpBrowser<Default Para Font> resource
	<Filename | Command>Prism.helpBrowser<Default Para Font> resource

	Specifies the browser to use for displaying help.
	Specifies the browser to use for displaying help.

	<TABLE ROW>
	Prism.helpUseExisting
	<Filename | Command>Prism.helpUseExisting<Default Para Font> resource
	<Filename | Command>Prism.helpUseExisting<Default Para Font> resource
	<Filename | Command>Prism.helpUseExisting<Default Para Font> resource

	Specifies whether to use a currently running browser for displaying help.
	Specifies whether to use a currently running browser for displaying help.

	<TABLE ROW>
	Prism.mainColor
	<Filename | Command>Prism.mainColor<Default Para Font> resource
	<Filename | Command>Prism.mainColor<Default Para Font> resource
	<Filename | Command>Prism.mainColor<Default Para Font> resource

	Specifies the main background color for Prism.
	Specifies the main background color for Prism.

	<TABLE ROW>
	Prism.make
	<Filename | Command>Prism.make<Default Para Font> resource
	<Filename | Command>Prism.make<Default Para Font> resource
	<Filename | Command>Prism.make<Default Para Font> resource

	Specifies the make utility to use.
	Specifies the

	<TABLE ROW>
	Prism.markStaleData
	<Filename | Command>Prism.markStaleData<Default Para Font> resource
	<Filename | Command>Prism.markStaleData<Default Para Font> resource
	<Filename | Command>Prism.markStaleData<Default Para Font> resource

	Specifies how Prism is to mark stale data in visualizers.
	Specifies how Prism is to mark stale data in visualizers.

	<TABLE ROW>
	Prism.procMenu
	<Filename | Command>Prism.procMenu<Default Para Font> resource
	<Filename | Command>Prism.procMenu<Default Para Font> resource
	<Filename | Command>Prism.procMenu<Default Para Font> resource

	Specifies whether a menu is displayed when setting a breakpoint in a Fortran 90 generic procedure.
	Specifies whether a menu is displayed when setting a breakpoint in a Fortran 90 generic procedure.

	<TABLE ROW>
	Prism.procThresh
	<Filename | Command>Prism.procThresh<Default Para Font> resource
	<Filename | Command>Prism.procThresh<Default Para Font> resource
	<Filename | Command>Prism.procThresh<Default Para Font> resource

	Changes the maximum number of specific procedures automatically shown when performing an action o...
	Changes the maximum number of specific procedures automatically shown when performing an action o...

	<TABLE ROW>
	Prism.spectralMapSize
	<Filename | Command>Prism.spectralMapSize<Default Para Font> resource
	<Filename | Command>Prism.spectralMapSize<Default Para Font> resource
	<Filename | Command>Prism.spectralMapSize<Default Para Font> resource

	Specifies the size of the default spectral color map for color visualizers.
	Specifies the size of the default spectral color map for color visualizers.

	<TABLE ROW>
	Prism.textBgColor
	<Filename | Command>Prism.textBgColor<Default Para Font> resource
	<Filename | Command>Prism.textBgColor<Default Para Font> resource
	<Filename | Command>Prism.textBgColor<Default Para Font> resource

	Specifies the background color for widgets containing text.
	Specifies the background color for widgets containing text.

	<TABLE ROW>
	Prism.textFont
	<Filename | Command>Prism.textFont<Default Para Font> resource
	<Filename | Command>Prism.textFont<Default Para Font> resource
	<Filename | Command>Prism.textFont<Default Para Font> resource

	Specifies the text font to use for certain labels.
	Specifies the text font to use for certain labels.

	<TABLE ROW>
	Prism.textManyFieldTranslations
	<Filename | Command>Prism.textManyFieldTranslations<Default Para Font> resource
	<Filename | Command>Prism.textManyFieldTranslations<Default Para Font> resource
	<Filename | Command>Prism.textManyFieldTranslations<Default Para Font> resource

	Specifies the keyboard translations for dialog boxes that contain several text fields.
	Specifies the keyboard translations for dialog boxes that contain several text fields.

	<TABLE ROW>
	Prism.textMasterColor
	<Filename | Command>Prism.textMasterColor<Default Para Font> resource
	<Filename | Command>Prism.textMasterColor<Default Para Font> resource
	<Filename | Command>Prism.textMasterColor<Default Para Font> resource

	Specifies the color used to highlight the master pane in a split source window.
	Specifies the color used to highlight the master pane in a split source window.

	<TABLE ROW>
	Prism.textOneFieldTranslations
	<Filename | Command>Prism.textOneFieldTranslations<Default Para Font> resource
	<Filename | Command>Prism.textOneFieldTranslations<Default Para Font> resource
	<Filename | Command>Prism.textOneFieldTranslations<Default Para Font> resource

	Specifies the keyboard translations for dialog boxes that contain one text field.
	Specifies the keyboard translations for dialog boxes that contain one text field.

	<TABLE ROW>
	Prism.useXterm
	<Filename | Command>Prism.useXterm<Default Para Font> resource
	<Filename | Command>Prism.useXterm<Default Para Font> resource
	<Filename | Command>Prism.useXterm<Default Para Font> resource

	Specifies whether to use a new Xterm for I/O.
	Specifies whether to use a new Xterm for I/O.

	<TABLE ROW>
	Prism.vizColormap
	<Filename | Command>Prism.vizColormap<Default Para Font> resource
	<Filename | Command>Prism.vizColormap<Default Para Font> resource
	<Filename | Command>Prism.vizColormap<Default Para Font> resource

	Specifies the colors to be used in colormap visualizers.
	Specifies the colors to be used in colormap visualizers.

	<TABLE ROW>
	Prism.vizRepresentation
	<Filename | Command>Prism.vizColormap<Default Para Font> resource
	<Filename | Command>Prism.vizColormap<Default Para Font> resource
	<Filename | Command>Prism.vizColormap<Default Para Font> resource

	Specifies the initial representation to be used when displaying data in visualizers.
	Specifies the initial representation to be used when displaying data in visualizers.

	<TABLE ROW>
	Prism*XmText.fontList
	<Filename | Command>Prism*XmText.fontList<Default Para Font> resource
	<Filename | Command>Prism*XmText.fontList<Default Para Font> resource

	Specifies the text font to use for most running text.
	Specifies the text font to use for most running text.

	Note that the defaults mentioned in the sections below are the defaults for the Prism environment...
	Note also that the commands-only mode of the Prism environment is not aware of the settings of an...
	Adding Prism Resources to the X Resource Database
	Adding Prism Resources to the X Resource Database
	The X resource database keeps track of default settings for programs running under X. Use the
	To Add Resource Settings to the X Resource Database
	To Add Resource Settings to the X Resource Database
	Perform one of the following:
	Perform one of the following:

	Use the
	Use the
	Use the
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	% xrdb -merge
	%
	%

	

	Put resource settings in a file, then merge the file into the database. For example, if your chan...
	Put resource settings in a file, then merge the file into the database. For example, if your chan...
	%
	%

	Note – You must include the
	To Signal That There Is No More Input
	To Signal That There Is No More Input
	Type
	Type
	%
	%

	Consult your X documentation for more information about

	Specifying the Editor
	Specifying the Editor
	To Specify an Editor and Its Placement
	To Specify an Editor and Its Placement
	Change the following:
	Change the following:
	Change the setting of the
	Change the setting of the
	Change the setting of the
	This resource specifies the editor that the Prism environment is to invoke when you choose the

	Change the setting of the resource
	Change the setting of the resource
	This resource specifies the X geometry string for the editor created by the Edit selection from t...

	You can also change the settings of these resources via the

	Specifying the Window for Error Messages
	Specifying the Window for Error Messages
	To Specify the Window for Error Messages
	To Specify the Window for Error Messages
	Change the setting of the
	Change the setting of the
	This resource specifies the window to which the Prism environment is to send error messages. Pred...

	You can also change the setting of this resource via the

	Changing the Text Fonts
	Changing the Text Fonts
	You may need to change the fonts the Prism environment uses if, for example, its fonts aren’t ava...
	To List the Names of the Fonts Available on Your System
	To List the Names of the Fonts Available on Your System
	Type
	Type
	%
	%

	You should try to substitute a font that is about the same size as the default value of the Prism...

	To Specify the Fonts for Prism
	To Specify the Fonts for Prism
	Perform the following:
	Perform the following:
	Edit the
	Edit the
	Edit the
	Edit the
	This specifies the resource that the Prism environment is to use in displaying the labels of hist...
	You can also change the setting of this resource via the

	Change the setting of the
	Change the setting of the

	Change the setting of the
	Change the setting of the

	Changing Colors
	Changing Colors
	The Prism environment provides several resources for changing the default colors it uses when it ...
	To Change the Colors Used for Colormap Visualizers
	To Change the Colors Used for Colormap Visualizers
	Perform the following:
	Perform the following:
	Change the setting of the
	Change the setting of the
	Change the setting of the

	Change the setting of the resource
	Change the setting of the resource
	Prism.spectralMapSize: 50
	Prism.spectralMapSize: 50
	Prism.spectralMapSize: 50

	To Change the Prism Environment’s Standard Colors
	To Change the Prism Environment’s Standard Colors
	Perform the following:
	Perform the following:
	Change the setting of the
	Change the setting of the
	Change the setting of the

	Change the setting of the
	Change the setting of the

	Change the setting of the
	Change the setting of the

	Change the setting of
	Change the setting of

	Change the setting of
	Change the setting of

	Change the setting of the
	Change the setting of the

	The defaults are:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	Prism.dialogColor: Thistle
	Prism.dialogColor: Thistle
	Prism.textBgColor: snow2
	Prism.textMasterColor: black
	Prism.graphFillColor: grey
	Prism.graphBGColor: light grey
	Prism.mainColor: light sea green

	Changing the Colors of MPI Communicators in the MPI Queue Visualizer
	Changing the Colors of MPI Communicators in the MPI Queue Visualizer
	Perform the following:
	Perform the following:
	Change the setting of the Prism.comm2Color resource to change the color of the second communicato...
	Change the setting of the Prism.comm2Color resource to change the color of the second communicato...
	Change the setting of the Prism.comm2Color resource to change the color of the second communicato...

	Change the setting of the Prism.comm1Color resource to change the color of the first communicator...
	Change the setting of the Prism.comm1Color resource to change the color of the first communicator...

	Change the setting of the Prism.comm3Color resource to change the color of the third communicator...
	Change the setting of the Prism.comm3Color resource to change the color of the third communicator...

	Change the setting of the Prism.commOtherColor resource to change the color of the fourth communi...
	Change the setting of the Prism.commOtherColor resource to change the color of the fourth communi...

	The defaults are:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	Prism.comm1Color: chartreuse2
	Prism.comm1Color: chartreuse2
	Prism.comm2Color: cyan2
	Prism.comm3Color: magenta2
	Prism.commOtherColor: purple

	Changing Keyboard Translations
	Changing Keyboard Translations
	You can change the keys and key combinations that the Prism environment translates into various a...
	Changing Keyboard Translations in Text Widgets
	Changing Keyboard Translations in Text Widgets
	To Change Keyboard Translations for Dialog Boxes With a Single Text Field
	To Change Keyboard Translations for Dialog Boxes With a Single Text Field
	Change the settings of the
	Change the settings of the
	This controls default keyboard translations for dialog boxes that contain only one text field. It...

	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	Prism.textOneFieldTranslations:
	Prism.textOneFieldTranslations:
	<Key>osfDelete:�delete
	 <Key>osfBackSpace:�delete
	 Ctrl<Key>u:�erase_to_beginning()
	 Ctrl<Key>k:�erase_to_end()
	 Ctrl<Key>d:�delete_char_at_cursor_position()
	 ctrl<Key>f:�move_cursor_to_next_char()
	 Ctrl<Key>h:�move_cursor_to_prev_char()
	 Ctrl<Key>b:�move_cursor_to_prev_char()
	 Ctrl<Key>a:�move_cursor_to_beginning_of_text()
	 Ctrl<Key>e:�move_cursor_to_end_of_text()

	(The definitions with
	To Change Keyboard Translations for Dialog Boxes With Several Text Fields
	To Change Keyboard Translations for Dialog Boxes With Several Text Fields
	Change the settings in the
	Change the settings in the

	Its default definition is:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	Prism.textManyFieldTranslations:
	Prism.textManyFieldTranslations:
	 <Key>osfDelete: delete
	 <Key>osfBackSpace: delete
	 <Key>Return: next
	 <Key>KP_Enter: next
	 Ctrl<Key>u: erase_to_beginning()
	 Ctrl<Key>k: erase_to_end()
	 Ctrl<Key>d: delete_char_at_cursor_position()
	 Ctrl<Key>f: move_cursor_to_next_char()
	 Ctrl<Key>h: move_cursor_to_prev_char()
	 Ctrl<Key>b: move_cursor_to_prev_char()
	 Ctrl<Key>a: move_cursor_to_beginning_of_text()
	 Ctrl<Key>e: move_cursor_to_end_of_text()

	If you make a change to any field in one of these resources, you must copy all the definitions.

	Changing General Motif Keyboard Translations
	Changing General Motif Keyboard Translations
	The Prism environment uses the standard Motif translations that define the general mappings of fu...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	*defaultVirtualBindings:
	*defaultVirtualBindings:
	 osfActivate : <Key>Return
	 osfAddMode : Shift <Key>F8
	 osfBackSpace : <Key>BackSpace
	 osfBeginLine : <Key>Home
	 osfClear : <Key>Clear
	 osfDelete : <Key>Delete
	 osfDown : <Key>Down
	 osfEndLine : <Key>End
	 osfCancel : <Key>Escape
	 osfHelp : <Key>F1
	 osfInsert : <Key>Insert
	 osfLeft : <Key>Left
	 osfMenu : <Key>F4
	 osfMenuBar : <Key>F10
	 osfPageDown : <Key>Next
	 osfPageUp : <Key>Prior
	 osfRight : <Key>Right
	 osfSelect : <Key>Select
	 osfUndo: <Key>Undo
	 osfUp : <Key>Up

	To Change a General Motif Keyboard Translation
	To Change a General Motif Keyboard Translation
	Change its entry in the *defaultVirtualBindings resource.
	Change its entry in the *defaultVirtualBindings resource.
	For example, if your keyboard doesn’t have an F10 key, you could edit the
	Note these points in changing this resource:
	All entries in the resource must be included in your resource database if you want to change any ...
	All entries in the resource must be included in your resource database if you want to change any ...
	All entries in the resource must be included in your resource database if you want to change any ...

	The entries in this resource apply to all Motif-based applications. If you want your changes to a...
	The entries in this resource apply to all Motif-based applications. If you want your changes to a...
	The entries in this resource apply to all Motif-based applications. If you want your changes to a...

	Changing the Xterm to Use for I/O
	Changing the Xterm to Use for I/O
	Xterm:specifying for I/O
	Xterm:specifying for I/O
	I/O:specifying the Xterm for

	To Force the Prism Environment Not to Create a New I/O Window
	To Force the Prism Environment Not to Create a New I/O Window
	Set the
	Set the

	Instead, I/O will go to the Xterm from which you invoked the Prism environment. You can also chan...

	Changing the Way the Prism Environment Signals an Error
	Changing the Way the Prism Environment Signals an Error
	By default, the Prism environment flashes the command window when there is an error.
	To Force the Prism Environment to Ring the Bell on Errors
	To Force the Prism Environment to Ring the Bell on Errors
	Perform one of the following:
	Perform one of the following:

	Set the resource
	Set the resource
	Set the resource

	Change the setting of the Prism.errorBell resource using the
	Change the setting of the Prism.errorBell resource using the

	Changing the
	Changing the
	By default, the Prism environment uses the standard Solaris
	To Specify an Alternative Make Utility
	To Specify an Alternative Make Utility
	Perform one of the following:
	Perform one of the following:
	Change the setting of the resource
	Change the setting of the resource
	Change the setting of the resource
	This resource specifies the path name of another version of

	Change the setting of the
	Change the setting of the

	Changing How the Prism Environment Treats Stale Data in Visualizers
	Changing How the Prism Environment Treats Stale Data in Visualizers
	By default, the Prism environment prints diagonal lines over data in visualizers that has become ...
	To Force the Prism Environment Not to Depict Stale Data With Diagonal Lines
	To Force the Prism Environment Not to Depict Stale Data With Diagonal Lines
	Perform one of the following:
	Perform one of the following:
	Change the setting of the resource
	Change the setting of the resource
	Change the setting of the resource

	Change the setting of the
	Change the setting of the

	Specifying the Browser to Use for Displaying Help
	Specifying the Browser to Use for Displaying Help
	There are several resources you can use to affect the way help is displayed.
	By default, graphical mode of the Prism environment uses the Netscape
	To Specify an Alternative HTML Browser for Displaying Online Help
	To Specify an Alternative HTML Browser for Displaying Online Help
	Set the
	Set the

	The name of the browser must be on your path. The graphical mode of the Prism environment support...
	These options do not take effect if the Prism environment uses an existing browser.If you already...
	To Force the Prism Environment to Start a New Help Browser
	To Force the Prism Environment to Start a New Help Browser
	Perform the following:
	Perform the following:
	Set the resource
	This forces the Prism environment to start a new browser.
	Set Prism.helpUseExisting to

	Changing the Way the Prism Environment Handles Fortran 90 Generic Procedures
	Changing the Way the Prism Environment Handles Fortran 90 Generic Procedures
	There are two resources you can use to change the way the Prism environment handles Fortran 90 ge...
	By default, the Prism environment displays a menu (in the commands-only mode of the Prism environ...
	To Suppress the Display of Menus or Dialog Boxes When Setting Breakpoints in Fortran 90 Generic P...
	To Suppress the Display of Menus or Dialog Boxes When Setting Breakpoints in Fortran 90 Generic P...
	Perform one of the following:
	Perform one of the following:

	Change the setting of the Prism resource
	Change the setting of the Prism resource
	Change the setting of the Prism resource
	This setting specifies that the Prism environment is to set the breakpoint in every one of these ...

	Change the setting of the resource Prism.procMenu using the
	Change the setting of the resource Prism.procMenu using the

	By default, the commands-only interface of the Prism environment displays a maximum of 22 procedu...
	To Display a Different Maximum Number of Fortran 90 Generic Procedures
	To Display a Different Maximum Number of Fortran 90 Generic Procedures
	Change the setting of the
	Change the setting of the
	This specifies a different maximum number of procedures. Set the resource to 0 to specify that th...

	10
	10
	Troubleshooting
	This chapter discusses ways in which you can recognize and avoid potential difficulties when usin...
	Troubleshooting Tips
	Troubleshooting Tips
	You can improve the effectiveness of your Prism sessions by using the following troubleshooting t...
	Launch the Prism Environment Without Invoking
	Launch the Prism Environment Without Invoking
	Launch the Prism environment the correct way by invoking it directly. For example, to launch the ...
	%
	%

	Do not attempt to launch Prism as an argument to
	%
	%

	It is unnecessary to launch the Prism environment as an argument to

	Avoid Using the
	Avoid Using the
	Loading code compiled with the –xs option can require long load times. The Prism environment does...

	Keep
	Keep
	If you have not used –

	Expect a Pause After Issuing the First
	Expect a Pause After Issuing the First
	The multiprocess mode of the Prism environment (

	Monitor Your Use of Color Resources
	Monitor Your Use of Color Resources
	The Prism environment may issue messages indicating that it needs additional color resources. For...
	Can’t allocate color for snow2
	Can’t allocate color for snow2

	When that happens, shut down any unnecessary color applications and try again.
	To reduce the likelihood of exhausting color resources, you can launch the Prism environment with...

	Expect Only Stopped Processes to Be Displayed in the Where Graph
	Expect Only Stopped Processes to Be Displayed in the Where Graph
	The Prism environment does not show all processes in the Where graph. The Where graph shows only ...

	Use Only the MP Mode of the Prism Environment to Load MPI Programs
	Use Only the MP Mode of the Prism Environment to Load MPI Programs
	Attempting to use the scalar mode of the Prism environment to run an MPI program can cause the Pr...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	[unknown MPI_COMM_WORLD unknown] ERROR in MPI_Init:
	[unknown MPI_COMM_WORLD unknown] ERROR in MPI_Init:
	unclassified error: RTE_Init_lib:
	Job must be submitted to CRE: No such job
	Aborting.

	To run an MPI program, you must launch the MP mode of the Prism environment. You launch it by spe...
	%
	%

	launches the MP mode of the Prism environment and loads

	Verify That
	Verify That
	If LSF is your default run-time environment, and if the directory containing LSF executables is n...

	Use the
	Use the
	The Prism environment works with both 64-bit or 32-bit binaries on Solaris 7. However, it cannot ...
	%
	%

	The –32 option ie unnecessary if you are not using the Prism environment to do performance analysis.

	A
	A
	The Commands-Only Mode of the Prism Environment
	You can run the Prism environment in a
	If you are using an Xterm, you can also run a commands-only mode of the Prism environment that le...
	For further information on individual commands, read the sections of the main body of this guide ...
	Specifying the Commands-Only Option
	Specifying the Commands-Only Option
	To enter commands-only mode, specify the
	When you have issued the command
	%
	%

	you receive this prompt:
	(prism all)
	(prism all)

	You can issue most Prism commands at this prompt, except for commands that apply specifically to ...

	Issuing Commands
	Issuing Commands
	You operate in the commands-only mode of the Prism environment just as you do when issuing comman...
	The commands-only mode of the Prism environment supports the editing key combinations supported b...
	Ctrl-A
	Ctrl-A
	Ctrl-A
	Ctrl-A

	Ctrl-B
	Ctrl-B
	Ctrl-B
	Ctrl-B

	Ctrl-C
	Ctrl-C
	Ctrl-C
	Ctrl-C

	Ctrl-D
	Ctrl-D
	Ctrl-D
	Ctrl-D

	Ctrl-E
	Ctrl-E
	Ctrl-E
	Ctrl-E

	Ctrl-F
	Ctrl-F
	Ctrl-F
	Ctrl-F

	Ctrl-J
	Ctrl-J
	Ctrl-J
	Ctrl-J

	Ctrl-K
	Ctrl-K
	Ctrl-K
	Ctrl-K

	Ctrl-L
	Ctrl-L
	Ctrl-L
	Ctrl-L

	Ctrl-N
	Ctrl-N
	Ctrl-N
	Ctrl-N

	Ctrl-P
	Ctrl-P
	Ctrl-P
	Ctrl-P

	Ctrl-U
	Ctrl-U
	Ctrl-U
	Ctrl-U

	When printing large amounts of output, the commands-only mode of the Prism environment displays a
	You can adjust the number of lines the Prism environment displays before issuing the
	(prism all)
	(prism all)

	Set the

	Useful Commands
	Useful Commands
	This section describes some commands that are especially useful in the commands-only mode of the ...
	Use the
	(prism all)
	(prism all)

	prints lines 10 through 20 of the current file.
	Use the
	Use the

	Leaving the Commands-Only Mode of the Prism Environment
	Leaving the Commands-Only Mode of the Prism Environment
	Issue the

	Running the Commands-Only Mode of the Prism Environment From an Xterm: The –
	Running the Commands-Only Mode of the Prism Environment From an Xterm: The –
	Issue the
	You can redirect the following output to X windows:
	Visualizers (including structure visualizers
	Visualizers (including structure visualizers
	Visualizers (including structure visualizers

	Where graph
	Where graph
	Where graph

	Psets window (MP Prism environment only)� –
	Psets window (MP Prism environment only)� –
	Psets window (MP Prism environment only)� –

	To redirect the output, issue the appropriate command with the
	(
	You can specify the type of the visualizer as well, by adding
	(
	In addition, you can display help windows from within windows that you pop up in this way

	B
	B
	C++ and Fortran 90 Support
	C++ support
	C++ support
	C++ support

	The Prism environment provides limited support for debugging C++ programs.
	“Fully Supported C++ Features” on page 249
	“Fully Supported C++ Features” on page 249
	“Fully Supported C++ Features” on page 249
	“Fully Supported C++ Features” on page 249

	“Partially Supported C++ Features” on page 251
	“Partially Supported C++ Features” on page 251
	“Partially Supported C++ Features” on page 251
	“Partially Supported C++ Features” on page 251

	“Unsupported C++ Features” on page 252
	“Unsupported C++ Features” on page 252
	“Unsupported C++ Features” on page 252
	“Unsupported C++ Features” on page 252

	Fully Supported C++ Features
	Fully Supported C++ Features
	With few limitations, you can use the Prism environment to debug C++ programs containing the feat...
	Data Members in Methods
	Data Members in Methods
	You can simply type

	C++ Linkage Names
	C++ Linkage Names
	You can set breakpoints using the

	Methods of a Class
	Methods of a Class
	You can use the Prism environment
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) stop in class_name::method_name
	(prism all)
	(prism all)
	(prism all)

	Class Member Variables
	Class Member Variables
	The Prism environment supports assignment to

	Variables of Class Type and Template Classes
	Variables of Class Type and Template Classes
	You can use the

	this
	this
	this

	The Prism environment recognizes the

	Overloaded Method Names
	Overloaded Method Names
	The Prism environment allows you to set breakpoints in

	Template Functions
	Template Functions
	The Prism environment allows you to set breakpoints in

	Scope Operator in the Prism Environment’s Identifier Syntax
	Scope Operator in the Prism Environment’s Identifier Syntax
	The Prism environment’s identifier syntax recognizes the C++ scope operator,
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) whereis dummy
	(prism all)
	(prism all)
	whereis dummy

	variable: `symbol.x`symbol.cc`Symbol::print:71`dummy

	Partially Supported C++ Features
	Partially Supported C++ Features
	With significant limitations, you can use the Prism environment to debug C++ programs containing ...
	Casts
	Casts
	The Prism environment recognizes casting a class pointer to the class of a base type only for sin...
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) print (struct class_name *) P
	(prism all)
	(prism all)
	(prism all)

	Static Class Members
	Static Class Members
	You can print static class members when the current scope is a class method. You cannot print sta...
	(prism all)
	(prism all)

	Break Points in Methods
	Break Points in Methods
	You cannot use a
	(prism all)
	(prism all)

	You must instead use

	Unsupported C++ Features
	Unsupported C++ Features
	You cannot use the Prism environment to debug C++ programs containing the features described in t...
	Inlined Methods Used in Multiple Source Files
	Inlined Methods Used in Multiple Source Files
	Using the Prism environment, you cannot set a breakpoint in an

	Calling C++ Methods
	Calling C++ Methods
	The Prism environment does not support

	Variables of Type Reference
	Variables of Type Reference
	The Prism environment does not support printing

	Fortran 90 Support in the Prism Environment
	Fortran 90 Support in the Prism Environment
	The Prism environment provides support for debugging Fortran 90 programs. This chapter describes ...
	“Fully Supported Fortran 90 Features” on page 252
	“Fully Supported Fortran 90 Features” on page 252
	“Fully Supported Fortran 90 Features” on page 252
	“Fully Supported Fortran 90 Features” on page 252

	“Partially Supported Fortran 90 Features” on page 257
	“Partially Supported Fortran 90 Features” on page 257
	“Partially Supported Fortran 90 Features” on page 257
	“Partially Supported Fortran 90 Features” on page 257

	“Unsupported Fortran 90 Features” on page 258
	“Unsupported Fortran 90 Features” on page 258
	“Unsupported Fortran 90 Features” on page 258
	“Unsupported Fortran 90 Features” on page 258

	Fully Supported Fortran 90 Features
	Fully Supported Fortran 90 Features
	With few limitations, you can use the Prism environment to debug Fortran 90 programs containing t...
	Derived Types
	Derived Types
	With the exception of constructors, the Prism environment supports
	you can use Prism commands with these Fortran 90 variables:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) print var
	(prism all)
	(prism all)
	(prism all)
	(prism all)
	(prism all)
	(prism all)

	Generic Functions
	Generic Functions
	The Prism environment fully supports
	you can use Prism commands with these Fortran 90 generic functions:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) p fadd(1,2)
	(prism all)
	(prism all)
	(prism all)

	In each case, the Prism environment asks you which instance of
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) whatis fadd
	(prism all)
	More than one identifier ‘fadd’.
	Select one of the following names:
	0) Cancel
	1) `f90_user_op_generic.exe`f90_user_op_generic.f90`fadd
	! real*4 realadd
	2) `f90_user_op_generic.exe`f90_user_op_generic.f90`fadd
	! integer*4 intadd
	>
	real*4 function fadd (x, y)
	(dummy argument) real*4 x
	(dummy argument) real*4 y

	Simple Pointers
	Simple Pointers
	In addition to the standard assignment operator (
	The following examples assume that a breakpoint has been set at the last statement,
	print
	print
	print
	print

	print
	print
	print
	print

	assign
	assign
	assign
	assign

	assign
	assign
	assign
	assign

	assign
	assign
	assign
	assign

	assign
	assign
	assign
	assign

	Interactive Examples of Support for Fortran 90 Pointers
	Interactive Examples of Support for Fortran 90 Pointers
	If
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) p pn1
	(prism all)
	Fortran variable is not allocated/associated.

	You can find the state of a pointer using the
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) whatis pn1
	(prism all)
	node pn1 ! unallocated f90 pointer

	Assume
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) whatis pn1
	(prism all)
	node pn1 ! f90 pointer

	Pointers to Arrays
	Pointers to Arrays
	The Prism environment supports
	For example, given these declarations:
	real, dimension(10), target :: r_arr1 real, dimension(20), target :: r_arr2 real, dimension(:), p...
	real, dimension(10), target :: r_arr1 real, dimension(20), target :: r_arr2 real, dimension(:), p...

	you can use Prism commands with these Fortran 90 pointers to arrays:
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) print p_arr1
	(prism all)
	(prism all)
	(prism all)
	(prism all)

	Pointers to Sections of an Array in Fortran 90
	Pointers to Sections of an Array in Fortran 90
	The Prism environment does not handle Fortran 90 pointers to array sections correctly. For example,
	array_ptr => some_array(1:10:3)
	array_ptr => some_array(1:10:3)

	The Prism environment will print some elements of the array, although it will not print the corre...

	Allocatable Arrays:
	Allocatable Arrays:
	The Prism environment supports
	(prism
	Fortran 90 language constraints apply. For example, Fortran 90 allows allocating or deallocating ...

	Array Sections and Operations on Arrays
	Array Sections and Operations on Arrays
	The Prism environment supports Fortran 90 operations on arrays or
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) assign a=b+c
	(prism all)
	(prism all)

	Masked Array Operations
	Masked Array Operations
	The Prism environment supports Fortran 90
	(prism all)
	(prism all)

	Variable Attributes
	Variable Attributes
	The Prism
	the
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) whatis j
	(prism all)
	(function variable) integer*4 j

	Partially Supported Fortran 90 Features
	Partially Supported Fortran 90 Features
	With significant limitations, you can use the Prism environment to debug Fortran 90 programs cont...
	User-Defined Operators
	User-Defined Operators
	The Prism environment views
	In this example, the Prism environment does not support debugging the user defined function
	(prism all)
	(prism all)

	However, the Prism environment supports the function
	(prism all)
	(prism all)

	A list pops up, allowing you to choose which

	Internal Procedures
	Internal Procedures
	The following commands can take
	stop
	stop
	stop
	stop

	whatis
	whatis
	whatis
	whatis

	If there are several procedures with the same name, a list pops up from which to select the desir...

	Supported Intrinsics
	Supported Intrinsics
	The Prism environment supports the same

	Unsupported Fortran 90 Features
	Unsupported Fortran 90 Features
	You cannot use the Prism environment to debug Fortran 90 programs containing the features describ...
	Derived Type Constructors.
	Derived Type Constructors.
	The Prism environment does not support constructors for
	The Prism environment does support assignment to derived types, however. For example:
	(prism all)
	(prism all)

	Although Fortran 90 allows the use of constructors, the Prism environment does not support them. ...
	(prism all)
	(prism all)

	Generic Functions
	Generic Functions
	If the
	then only references to the
	<TABLE>
	<TABLE BODY>
	<TABLE ROW>
	(prism all) whatis intadd
	(prism all)
	prism: "intadd" is not defined in the scope
	`f90_user_op_generic.exe`f90_user_op_generic.f90`main`

	Fortran 90 support:pointer assignment error checking
	Fortran 90 support:pointer assignment error checking
	Fortran 90 support:pointer assignment error checking

	The error checking involved by the semantics of the

	Printing Array Valued Functions
	Printing Array Valued Functions
	The Prism environment does not print the result of an

	C
	C
	Scalar Mode
	When viewing serial programs, the Prism environment behaves differently than it does when viewing...
	The scalar mode of the Prism environment does not support psets, since pset-related features requ...
	Note – You can use the Prism environment’s pset features with
	Starting the Prism Environment
	Starting the Prism Environment
	To Launch the Prism Environment in Scalar Mode
	To Launch the Prism Environment in Scalar Mode
	Type
	Type
	%
	%

	This starts the Prism environment for a nonthreaded single-process program, using the scalar mode...
	Do not launch the Prism environment as an argument to the
	You can specify other options on the

	Stepping and Continuing Through a Serial Program
	Stepping and Continuing Through a Serial Program
	When operating on a serial program, the scalar mode of the Prism environment (like most other deb...
	Execution Pointer
	Execution Pointer
	In the scalar mode of the Prism environment, the

	Attaching
	Attaching
	As described in
	You can also attach to a running process from within the Prism environment.
	Note – To attach to the running process of a serial program, the process must be running on the s...
	Note – To attach to the running process of a serial program, the process must be running on the s...

	To Attach To a Running Process From Within the Prism Environment
	To Attach To a Running Process From Within the Prism Environment
	1. Find out the process’s ID by issuing the Solaris command
	1. Find out the process’s ID by issuing the Solaris command

	2. Load the executable program for the process into the Prism environment.
	2. Load the executable program for the process into the Prism environment.

	3. Issue the
	3. Issue the

	With either method of attaching to the process, the process is interrupted; a message is displaye...
	To detach from a running process, issue the command
	Note – Use the
	Note – Use the

	Viewing the Call Stack
	Viewing the Call Stack
	In the scalar mode of the Prism environment, choosing Where

	Index

