
Send comments about this
OpenBoot 2.x Command Reference
Manual
Part No. 806-2906-10
February 2000, Revision A
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto,CA 94303-4900
U.S.A. 650-960-1300
 document to: docfeedback@sun.com



Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. For Netscape Communicator™, the following notice applies:
(c) Copyright 1995 Netscape Communications Corporation. All rights reserved.

Sun, Sun Microsystems, the Sun logo, AnswerBook2, docs.sun.com, OpenBoot, and Solaris are trademarks, registered trademarks, or service
marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture
developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR
52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. La notice suivante est applicable à
Netscape Communicator™: (c) Copyright 1995 Netscape Communications Corporation. Tous droits réservés.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, OpenBoot, et Solaris sont des marques de fabrique ou des marques déposées,
ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et
sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant
les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.
Please
Recycle



Contents

Preface ix

1. Overview 1

OpenBoot Features 1

The User Interface 2

The Restricted Monitor 2

The Forth Monitor 3

The Default Mode 3

The Device Tree 4

Device Path Names, Addresses, and Arguments 4

Device Aliases 6

Displaying the Device Tree 7

Getting Help 10

A Caution About Using Some OpenBoot Commands 11

2. Booting and Testing Your System 13

Booting Your System 13

Running Diagnostics 16

Testing the SCSI Bus 17

Testing Installed Devices 18
iii



Testing the Diskette Drive 18

Testing Memory 19

Testing the Ethernet Controller 19

Testing the Clock 20

Monitoring the Network 20

Displaying System Information 21

Resetting the System 21

3. Setting Configuration Parameters 23

Displaying and Changing Parameter Settings 26

Setting Security Parameters 28

Command Security 29

 Full Security 30

Changing the Power-on Banner 31

Input and Output Control 32

Selecting Input and Output Device Options 33

Setting Serial Port Characteristics 34

Selecting Boot Options 34

Controlling Power-on Self-test 35

Using NVRAMRC 36

Editing the Contents of NVRAMRC 37

Activating an NVRAMRC File 38

4. Using Forth Tools 41

Forth Commands 41

Using Numbers 43

The Stack 44

Displaying Stack Contents 44

The Stack Diagram 45
iv OpenBoot 2.x Command Reference Manual • February 2000



Manipulating the Stack 48

Creating Custom Definitions 49

Using Arithmetic Functions 51

Accessing Memory 53

Mapping An SBus Device 58

Using Defining Words 59

Searching the Dictionary 62

Compiling Data into the Dictionary 63

Displaying Numbers 64

Changing the Number Base 65

Controlling Text Input and Output 66

Redirecting Input and Output 69

Command Line Editor 70

Conditional Flags 73

Control Commands 74

The if-else-then Structure 74

The case Statement 75

The begin Loop 77

The do Loop 78

Additional Control Commands 80

5. Loading and Executing Programs 81

Using dload to Load from Ethernet 82

Forth Programs 82

FCode Programs 82

Binary Executables 83

Using boot to Load from Hard Disk, Floppy Disk, or Ethernet 83

Forth Programs 84
Contents v



FCode Programs 84

Binary Executables 84

Using dl to Load Forth Over a Serial Port 85

Using dlbin to Load FCode or Binary Over a Serial Port 85

6. Debugging 87

Using the Disassembler 87

Displaying Registers 88

Breakpoints 89

The Forth Source-level Debugger 91

Using ftrace 93

A. Testing with a Terminal Emulator 95

Common Problems with tip 97

B. Building A Bootable Floppy Disk 99

Procedure for the Pre-Solaris 2.0 Operating Environment 99

Procedure for the Solaris 2.0 or 2.1 Operating Environment 100

C. Unsupported Commands 103

D. Troubleshooting Guide 107

Power-on Initialization Sequence 107

Emergency Procedures 109

Preserving Data After a System Crash 109

Common Failures 110

Blank Screen - No Output 110

System Boots From the Wrong Device 111

System Will Not Boot From Ethernet 112

System Will Not Boot From Disk 112

SCSI Problems 113
vi OpenBoot 2.x Command Reference Manual • February 2000



Setting the Console to a Specific Monitor 113

E. Forth Word Reference 115
Contents vii



viii OpenBoot 2.x Command Reference Manual • February 2000



Preface

The OpenBoot 2.x Command Reference manual describes the OpenBoot™ 2.x firmware
that is part of the boot PROM in Sun™ systems.

Audience
The features of the OpenBoot firmware allow it to be used by end users as well as by
system administrators and developers. This manual is for all such users who want to
use the OpenBoot 2.x firmware to configure and debug their systems.

Contents
In this manual, you will find information about using the OpenBoot firmware to
perform tasks such as:

■ Booting the operating system

■ Running diagnostics

■ Modifying system start-up configuration parameters

■ Loading and executing programs

■ Troubleshooting

If you want to write Forth programs or use the more advanced features of this
firmware (such as its debugging capabilities), this manual also describes the
commands of the OpenBoot Forth Interpreter.
ix



Assumptions
This manual assumes that you are working on a SPARC® system with a version 2.x
OpenBoot PROM. Some of the tools and capabilities described in this manual do not
exist on the pre-2.x PROM SPARC systems. If you are using a SPARCstation™ 1,
SPARCstation IPC™, or other system with a pre-2.x version PROM, refer to an
earlier version of this manual: Open Boot PROM Toolkit User’s Guide, part number
800-5279-10. Also see Appendix C in this manual for a list of unsupported
commands.

Organization
The OpenBoot 2.x Command Reference is organized as follows:

Chapter 1 “Overview”, describes the user interface and other main features of the
firmware.

Chapter 2 “Booting and Testing Your System”, explains the most common tasks for
which the OpenBoot firmware is used.

Chapter 3 “Setting Configuration Parameters”, details how to perform system
administration tasks with NVRAM parameters.

Chapter 4 “Using Forth Tools”, describes both basic and advanced functions of the
OpenBoot Forth language.

Chapter 5 “Loading and Executing Programs”, describes how to load and execute
programs from various sources (such as Ethernet, disk, or a serial port).

Chapter 6 “Debugging”, describes the firmware’s debugging capabilities, including
the Disassembler, the Forth Source-level Debugger, and breakpoints.

Appendix A “Testing with a Terminal Emulator”, describes how to connect your
system to another Sun™ system using serial ports.

Appendix B “Building A Bootable Floppy Disk”, tells you how to create a bootable
floppy diskette from which you can load programs or files.

Appendix C “Unsupported Commands”, lists commands that may not be available
in earlier OpenBoot systems and possible workarounds for them.

Appendix D “Troubleshooting Guide”, discusses solutions for typical situations
where you cannot boot the operating system.
x OpenBoot 2.x Command Reference Manual • October 1998



Appendix E “Forth Word Reference”, contains all currently-supported OpenBoot
Forth commands.

Related Documentation
Companion documents to this manual:

■ OpenBoot 2.x Quick Reference

This fold-out card is a summary of often-used OpenBoot Forth commands.

■ For information about FCode, the version of Forth implemented in the OpenBoot
2.x firmware for using SBus cards, refer to the Sun manual:

■ Writing FCode 2.x Programs

■ For more information on the Forth language, read:
■ Starting Forth
■ Leo Brodie/Forth, Inc.

Prentice-Hall Software Series
Englewood Cliffs, New Jersey 07632

The second edition of Starting Forth describes the current Forth standard dialect,
Forth 83.

Note – There are several differences between the versions of Forth described in the
above document and the version described in this manual. Specifically, the boot
PROM Forth Monitor uses 32-bit numbers instead of 16-bit numbers. Also, the text
editor described in the referenced book is not the same as the Forth Monitor editor.

Sun Welcomes Your Comments
You can email your comments to us. Please include the part number of your
document in the subject line of your email.

■ Email: docfeedback@sun.com
xi



xii OpenBoot 2.x Command Reference Manual • October 1998



CHAPTER 1

Overview

This chapter introduces the OpenBoot firmware, the standard firmware for Sun
systems.

The OpenBoot Version 1 firmware was introduced on the Sun SPARCstation 1. It also
was the firmware for the SPARCstation 1+, SPARCstation IPC, and SPARCstation
SLC™ systems. This manual describes Version 2 of the firmware, which first
appeared on the SPARCstation 2 system.

The OpenBoot firmware is stored in the boot PROM (programmable read-only
memory) of a system so that it is executed immediately after you turn on your
system. The primary task of the OpenBoot firmware is to boot the operating system
from either a mass storage device or from a network. The firmware also provides
extensive features for testing hardware and software interactively.

OpenBoot Features
The OpenBoot architecture provides a significant increase in functionality over the
boot PROMs in earlier Sun systems. Although this architecture was first
implemented on SPARC systems, its design is processor-independent. Some notable
features of the OpenBoot firmware include:

■ Plug-in device drivers. A plug-in device driver is usually loaded from a plug-in
device such as an SBus card. The plug-in device driver can be used to boot the
operating system from that device or to display text on the device before the
operating system has activated its own drivers. This feature allows the input and
output devices supported by a particular system to evolve without changing the
system PROM.

■ FCode interpreter. Plug-in drivers are written in a machine-independent
interpreted language called FCode. Each OpenBoot system PROM contains an
FCode interpreter. Thus, the same device and driver can be used on machines
with different CPU instruction sets.
1



■ Device tree. The device tree is an OpenBoot data structure describing the devices
(permanently installed and plug-in) attached to a system. Both the user and the
operating system can determine the hardware configuration of the system by
inspecting the device tree.

■ Programmable user interface. The OpenBoot user interface is based on the
interactive programming language Forth. Sequences of user commands can be
combined to form complete programs. This provides a powerful capability for
debugging hardware and software.

The User Interface
You can enter the OpenBoot environment in the following ways:

■ By halting the operating system.

■ By using the Stop-A key sequence from the keyboard. (This abruptly breaks
execution of the operating system and should be used with caution.)

■ By power-cycling the system. (If your system is configured to boot automatically,
you can enter the OpenBoot environment by pressing
Stop-A after the display console banner appears but before the system starts
booting the operating system. If automatic booting is not enabled, the system will
enter the OpenBoot environment on its own instead of booting the operating
system.)

■ When the system hardware detects an error from which it cannot recover. (This is
known as a Watchdog Reset.)

The OpenBoot firmware provides three external interfaces: an interface for the
operating system or other standalone programs, an interface for expansion bus plug-
in boards (for example, SBus), and a command line interface for the user at the
system console. This manual describes the third of these interfaces: the system
console command line interface.

The command line interface has two modes:

■ The Restricted Monitor
■ The Forth Monitor

The Restricted Monitor
The Restricted Monitor provides a simple set of commands to initiate booting of the
system, resume system execution, or enter the Forth Monitor. The Restricted Monitor
is also used to implement system security. (See Chapter 3 “Setting Configuration
Parameters”, for information on system security.)
2 OpenBoot 2.x Command Reference Manual • February 2000



The Restricted Monitor prompt is >. When you enter the Restricted Monitor, the
following screen is displayed:

The Restricted Monitor commands are summarized in the following table.

The Forth Monitor
The Restricted Monitor functions b (for booting the system) and c (for resuming
execution of a halted program) are available as the boot (see Chapter 2 “Booting
and Testing Your System”) and go (see Chapter 5 “Loading and Executing
Programs”) commands, respectively, in the Forth Monitor.

The Forth Monitor is an interactive command interpreter that gives you access to an
extensive set of functions for hardware and software development, fault isolation,
and debugging. A variety of system users, from end-users to system administrators
to system developers, can use these functions.

The Forth Monitor prompt is ok. When you enter the Forth Monitor, the following
screen is displayed:

The Default Mode
The default mode in early OpenBoot systems is the Restricted Monitor. This was
done mainly to provide a default look and feel similar to pre-OpenBoot systems.

Type b (boot), c (continue), or n (new command mode)
>

TABLE 1-1 Restricted Monitor Commands

Command Description

b [specifiers] Boot the operating system.

c Resume the execution of a halted program.

n Enter the Forth Monitor.

Type help for more information
ok
Chapter 1 Overview 3



The SPARCserver™ 690 system was the first to have the Forth Monitor as the default
mode. All systems introduced thereafter also default to this mode. For such systems,
the Restricted Monitor’s only real function is to support system security. (Chapter 3
“Setting Configuration Parameters”, discusses system security.)

If you want to leave the Forth Monitor and get into the Restricted Monitor, type:

The Device Tree
Devices are attached to a SPARC-based system on a set of interconnected buses. The
OpenBoot firmware represents the interconnected buses and their attached devices
as a tree of nodes. Such a tree is called the device tree. A node representing the
whole machine forms the tree’s root node.

Each device node can have:

■ Properties, which are the data structures describing the node and its associated
device

■ Methods, which are the software procedures used to access the device

■ Children, which are other device nodes “attached” to that node, that lie directly
below it in the device tree

■ A parent, which is the node that lies directly above it in the device tree.

Nodes with children usually represent buses and their associated controllers, if any.
Each such node defines a physical address space that distinguishes the devices
connected to the node from one another. Each child of that node is assigned a
physical address within the parent’s address space.

The physical address generally represents a physical characteristic unique to the
device (such as the bus address or the slot number where the device is installed).
This prevents device addresses from changing when another device is installed in
the system.

Device Path Names, Addresses, and Arguments
The firmware deals directly with hardware devices in the system. Each device has a
unique name representing the type of device and where that device is located within
the system addressing structure. The following example shows a full device path
name:

ok old-mode
4 OpenBoot 2.x Command Reference Manual • February 2000



/sbus@1,f8000000/esp@0,40000/sd@3,0:a

A full device path name is a series of node names separated by slashes (/). The root
of the tree is the machine node, which is not named explicitly but is indicated by a
leading slash (/). Each node name has the form:

name@address:arguments

The following table describes each of these parameters.

The full device path name mimics the hardware addressing used by the system to
distinguish between different devices. Thus, you can specify a particular device
without ambiguity.

In general, the address part of a node name represents an address in the address
space of its parent. The exact meaning of a particular address depends on the bus to
which the device is attached. Consider the same example:

/sbus@1,f8000000/esp@0,40000/sd@3,0:a

■ 1,f8000000 represents an address on the main system bus, because the SBus
interface is directly attached to the main system bus.

■ 0,40000 is an SBus slot number and an offset within that slot, because the esp
device is in SBus slot 0 at offset 40000. (In this example, the device is a SCSI host
adapter, although the name does not say so directly.)

■ 3,0 is a SCSI target and logical unit number, because the sd device is attached to
a SCSI bus at target 3, logical unit 0.

TABLE 1-2 Device Path Name Parameters

Path Name Parameter Description

name A text string that, ideally, has some mnemonic value. (For
example, sd represents “SCSI disk”.) Many names, especially
names of plug-in modules, include the name or stock symbol of
the device’s manufacturer (for example, SUNW,esp).

@ Must precede the address parameter.

address A text string representing an address, usually of the form
hex_number,hex_number. (Numbers are given in hexadecimal
format.)

: Must precede the arguments parameter.

arguments A text string, whose format depends on the particular device. It
can be used to pass additional information to the device’s
software.
Chapter 1 Overview 5



When specifying a path name, either the @address or name part of a node name is
optional, in which case the firmware tries to pick the device that best matches the
given name. If more than one equally-good selection exists, the firmware makes a
selection (but it may not be the one you want).

For example, using /sbus/esp@0,40000/sd@3,0 assumes that the system in
question has exactly one SBus interface on the main system bus, making sbus as
unambiguous an address as sbus@1,f8000000. On the same system, however, /
sbus/esp/sd@3,0 might or might not be ambiguous. Since SBus accepts plug-in
cards, there could be more than one esp device on the same SBus. If there were more
than one on the system, using esp alone would not specify which one, and the
firmware might not select the one you intended.

As another example, /sbus/@0,40000/sd@3,0 would normally be acceptable
while /sbus/esp@0,40000/@3,0 usually would not, since both a SCSI disk device
driver (sd) and a SCSI tape device driver (st) can use the SCSI target,logical unit
address 3,0.

The :arguments part of the node name is also optional. Once again, in the example:

/sbus@1,f8000000/esp@0,40000/sd@3,0:a

the argument for the sd device is the string a. The software driver for sd interprets
its argument as a disk partition, so the device path name refers to partition a on that
disk.

Device Aliases
There are two kinds of device names:

■ Full device path names (discussed in the previous section), such as /
sbus@1,f8000000/esp@0,40000/sd@3,0:a

■ Device aliases, such as disk

A device alias, or simply, alias, is a way of representing a device path name. An alias
represents an entire device path name, not a component of it. For example, the alias disk
may represent the device path name:

/sbus@1,f8000000/esp@0,40000/sd@3,0:a

Systems have predefined device aliases for most commonly-used devices, so you
rarely need to type a full device path name.
6 OpenBoot 2.x Command Reference Manual • February 2000



The following table describes the devalias command, which is used to examine,
create, and change aliases.

User-defined aliases are lost after a system reset or power cycle. If you want to create
permanent aliases, you can either manually store the output of the devalias
command in a portion of non-volatile RAM (NVRAM) called NVRAMRC, or use the
nvalias and nvunalias commands. (See Chapter 3 “Setting Configuration
Parameters”, for more details.)

Displaying the Device Tree
You can browse the device tree to examine and modify individual device tree nodes.
The device tree browsing commands are similar to the UNIX® commands for
changing the working directory within the UNIX directory tree. Selecting a device
node makes it the current node.

Examine the device tree with the commands shown in the following table.

TABLE 1-3 Examining and Creating Device Aliases

Command Description

devalias Display all current device aliases.

devalias alias Display the device path name corresponding to
alias.

devalias alias device-path Define an alias representing device path.
If an alias with the same name already exists, the
new value supersedes the old.

TABLE 1-4 Commands for Browsing the Device Tree

Command Description

.attributes Display the names and values of the current node’s
properties.

cd device-path Select the indicated device node, making it the current
node.

cd node-name Search for a node with the given name in the subtree below
the current node, and select the first such node found.

cd .. Select the device node that is the parent of the current
node.

cd / Select the root machine node.
Chapter 1 Overview 7



If you have been browsing the device tree, and want to reset the system, type:

The following example shows the use of .attributes:

device-end De-select the current device node, leaving no node
selected.

ls Display the names of the current node’s children.

pwd Display the device path name that names the current node.

show-devs [device-path] Display all the devices known to the system directly
beneath a given level in the device hierarchy. show-devs
used by itself shows the entire device tree.

words Display the names of the current node’s methods.

ok device-end
ok reset

ok cd /zs@1,f0000000
ok .attributes
address               ffee9000
port-b-ignore-cd
port-a-ignore-cd
keyboard
device_type           serial
slave                 00000001
intr                  0000000c  00000000
interrupts            0000000c
reg                   00000001  f0000000  00000008
name                  zs
ok

TABLE 1-4 Commands for Browsing the Device Tree

Command Description
8 OpenBoot 2.x Command Reference Manual • February 2000



show-devs lists all the devices in the OpenBoot device tree, as shown in the
following example:

The following is an example of the use of words:

ok show-devs
/fd@1,f7200000
/virtual-memory@0,0
/memory@0,0
/sbus@1,f8000000
/auxiliary-io@1,f7400003
/interrupt-enable@1,f5000000
/memory-error@1,f4000000
/counter-timer@1,f3000000
/eeprom@1,f2000000
/audio@1,f7201000
/zs@1,f0000000
/zs@1,f1000000
/openprom
/aliases
/options
/packages
/sbus@1,f8000000/cgsix@3,0
/sbus@1,f8000000/le@0,c00000
/sbus@1,f8000000/esp@0,800000
ok

ok cd /zs
ok words
selftest        ring-bell      read           remove-abort?
install-abort close open abort? restore
clear reset initkbdmouse keyboard-addr mouse
1200baud        setbaud        initport       port-addr
ok
Chapter 1 Overview 9



Getting Help
Whenever you see the ok prompt on the display, you can ask the system for help by
typing one of the help commands shown in the following table.

help, without any specifier, displays instructions about using the help system and
lists the available help categories. Because of the large number of commands, help is
available only for commands that are used frequently.

If you want to see the help messages for all the commands in a selected category, or,
possibly, a list of sub-categories, type:

If you want help for a specific command, type:

For example, when you ask for information on the dump command, you see the
following message:

The above help message first shows that dump is a command from the Memory
access category. The message also shows the format of the command.

TABLE 1-5 Help Commands

Command Description

help List main help categories.

help category Show help for all commands in the category. Use only the
first word of the category description.

help command Show help for individual command (where available).

ok help category

ok help command

ok help dump
Category: Memory access
dump ( addr length -- ) display memory at addr for length bytes
ok
10 OpenBoot 2.x Command Reference Manual • February 2000



Note – In some newer systems, descriptions of additional machine-specific
commands are available with the help command.

A Caution About Using Some OpenBoot
Commands
If you boot the operating system, exit it with either the Stop-A or halt commands,
and then use some OpenBoot commands, the commands might not work as
expected.

For example, suppose you boot the operating system, exit it with Stop-A, then
execute the probe-scsi command. You may find that probe-scsi fails, and you
may not be able to resume the operating system. When this happens, type the
following commands:

To re-execute an OpenBoot command which fails because the operating system has
halted, reset the system, then invoke the command, as shown:

ok sync
ok boot

ok reset
ok probe-scsi
ok
Chapter 1 Overview 11



12 OpenBoot 2.x Command Reference Manual • February 2000



CHAPTER 2

Booting and Testing Your System

This chapter describes the most common tasks that you perform using the OpenBoot
firmware. These tasks let you:

■ Boot your system.

■ Run diagnostics.

■ Display system information.

■ Reset the system.

Booting Your System
The most important function of the OpenBoot firmware is to boot the system.
Booting is the process of loading and executing a standalone program such as the
operating system. Once it is powered on, the system usually boots automatically,
without user intervention. If necessary, you can explicitly initiate the boot process
from the OpenBoot command interpreter. Automatic booting uses the default boot
device specified in non-volatile RAM (NVRAM); user-initiated booting uses either
the default boot device or one specified by the user.

If you want to boot the system from the default boot device, type the following
command at the Forth Monitor prompt:

If you are at the Restricted Monitor prompt, and you want to boot your system, type:

ok boot

> b
13



The boot command has the following format:

boot [device-specifier] [filename] [options]

The optional parameters for the boot command are described in the following table.

Note – Many commands (such as boot and test) that require a device name,
accept either a full device path name or a device alias. In this manual, the term
device-specifier is used to indicate that either a device path name or a device alias is
acceptable for such commands.

To explicitly boot from the internal disk (for diskfull systems), type:

To explicitly boot from Ethernet, type:

TABLE 2-1 Common Options for the boot Command

Parameter Description

[device-specifier] The name (full path name or alias) of the boot device. Typical values
include:
cdrom (CD-ROM drive)
disk (hard disk)
floppy (3-1/2" diskette drive)
net (Ethernet)
tape (SCSI tape)

[filename] The name of the program to be booted (for example, stand/diag).
filename is relative to the root of the selected device and partition (if
specified). If filename is not specified, the boot program uses the value
of the boot-file NVRAM parameter (see Chapter 3).

[options] -a - Prompt interactively for the device and name of the boot file.
-h - Halt after loading the program.
(These options are specific to the operating system, and may differ from
system to system.)

ok boot disk

ok boot net
14 OpenBoot 2.x Command Reference Manual • February 2000



To specify a boot device at the Restricted Monitor prompt, use the b command with
the name of the boot device as shown in the examples below.

Device alias definitions vary from system to system. Use the devalias command,
described in Chapter 1 “Overview”, for definitions of your system’s aliases the
following table is an example of device aliases and their definitions based on
SPARCstation 2 and SPARCstation IPX systems. The heading “Old Path” refers to
the OpenBoot Version 1.x usage for the equivalent SBus device.

> b disk (to explicitly boot from the internal disk for diskfull
systems)
> b net (to explicitly boot from Ethernet)

TABLE 2-2 Typical Device Aliases

Alias Boot Path Old Path Description

disk /sbus/esp/sd@3,0 sd(0,0,0) Default disk (1st internal).

disk0 /sbus/esp/sd@3,0 sd(0,0,0) First internal disk sd0.

disk1 /sbus/esp/sd@1,0 sd(0,1,0) Second internal disk sd1.

disk2 /sbus/esp/sd@2,0 sd(0,2,0) External disk sd2.

disk3 /sbus/esp/sd@0,0 sd(0,3,0) External disk sd3.

tape /sbus/esp/st@4,0 st(0,0,0) First tape drive st0.

tape0 /sbus/esp/st@4,0 st(0,0,0) First tape drive st0.

tape1 /sbus/esp/st@5,0 st(0,1,0) Second tape drive st1.

cdrom /sbus/esp/sd@6,0:c sd(0,6,2) CD-ROM partition c.

cdroma /sbus/esp/sd@6,0:a sd(0,6,0) CD-ROM partition a.

net /sbus/le le(0,0,0) Ethernet.

floppy /fd fd(0,0,0) Floppy drive.
Chapter 2 Booting and Testing Your System 15



Note that in the following table the names sd0, sd1, and so on, are terms used in the
Solaris® 1.x operating environment to describe these devices. The Solaris 2.x
operating environment names are different, as shown in below.

Running Diagnostics
Several diagnostic routines are available from the Forth Monitor. These on-board
tests let you check devices such as the network controller, the floppy disk system,
memory, installed SBus cards and SCSI devices, and the system clock. User-installed
devices can be tested if their firmware includes a self-test feature.

The following table lists diagnostic test commands. Remember: device-specifier refers
to either a device path name or a device alias.

TABLE 2-3 Alias Names in the Solaris Operating Environment

Alias Solaris 1.x Name Solaris 2.x Name

disk and disk0 sd0 c0t3d0s0

disk1 sd1 c0t1d0s0

disk2 sd2 c0t2d0s0

disk3 sd3 c0t0d0s0

TABLE 2-4 Diagnostic Test Commands

Command Description

probe-scsi Identify devices attached to the built-in SCSI bus.

probe-scsi-all [device-path] Perform probe-scsi on all SCSI buses installed in
the system below the specified device tree node. (If
device-path is absent, the root node is used.)

test device-specifier Execute the specified device’s self-test method. For
example:
test floppy - test the floppy drive, if installed
test /memory - test number of megabytes
specified in the selftest-#megs

NVRAM parameter; or test all of memory if
diag-switch? is true
test net - test the network connection
16 OpenBoot 2.x Command Reference Manual • February 2000



Testing the SCSI Bus
To check the built-in SCSI bus for connected devices, type: :

To test all SCSI buses installed in the system, type:

The response depends on the devices on the SCSI bus.

test-all [device-specifier] Test all devices (that have a built-in self-test
method) below the specified device tree node. (If
device-specifier is absent, the root node is used.)

watch-clock Test the clock function.

watch-net Monitor the network connection.

ok probe-scsi
Target 1
  Unit 0  Disk  SEAGATE ST1480  SUN04246266  Copyright (C) 1991 Seagate
All rights reserved
Target 3
  Unit 0  Disk  SEAGATE ST1480  SUN04245826  Copyright (C) 1991 Seagate
All rights reserved

ok

ok probe-scsi-all
/iommu@f,e0000000/sbus@f,e0001000/esp@3,200000
Target 6
  Unit 0  Disk  Removable Read Only device   SONY   CD-ROM CDU-8012 3.1d

/iommu@f,e0000000/sbus@f,e0001000/espdma@f,400000/esp@f,800000
Target 1
  Unit 0  Disk  SEAGATE ST1480  SUN04246266  Copyright (C) 1991 Seagate
All rights reserved
Target 3
  Unit 0  Disk  SEAGATE ST1480  SUN04245826  Copyright (C) 1991 Seagate
All rights reserved

ok

TABLE 2-4 Diagnostic Test Commands (Continued)

Command Description
Chapter 2 Booting and Testing Your System 17



Testing Installed Devices
To test a single installed device, type:

This executes the device method (named selftest) of the specified device node.
Response depends on the self-test of the device node.

To test a group of installed devices, type:

All devices below the root node of the device tree are tested. The response depends
on the devices that have a self-test method. If you use the device-specifier option with
the test-all command, all devices below the specified device tree node are tested.

Testing the Diskette Drive
The diskette drive test determines whether the diskette drive is functioning properly.
A formatted, high-density (HD) disk must be in the diskette drive for this test to be
successful.

To test the diskette drive, type:

If the test fails, you see an error message.

To eject the diskette, type:

If this command fails, you can physically eject the diskette by inserting a
straightened paper clip into the little hole near the diskette slot.

ok test device-specifier

ok test-all

ok test floppy
Testing floppy disk system. A formatted
disk should be in the drive.
Test succeeded.
ok

ok eject-floppy
ok
18 OpenBoot 2.x Command Reference Manual • February 2000



Testing Memory
When you use the memory testing routine, the system tests the number of
megabytes of memory specified in the NVRAM parameter selftest-#megs. (See
Chapter 3 “Setting Configuration Parameters”, for information about NVRAM
parameters.) One megabyte of memory is tested as the default. If either the
hardware diagnostic switch (if the system has one) or the NVRAM parameter diag-
switch? is enabled, all the memory is tested.

To test memory, type:

In the preceding example, the first number (4000000) is the base address of the
testing, and the following number (11) is the number of megabytes to go.

There will be a delay while the PROM tests the system. If the system fails this test,
you see an error message.

Testing the Ethernet Controller
To test the on-board Ethernet controller, type:

The system responds with a message indicating the result of the test.

Note – The external loopback portion of this test will fail unless the system is
connected to Ethernet.

ok test /memory
Testing 16 megs of memory at addr 4000000 11
ok

ok test net
Internal Loopback test - (result)
External Loopback test - (result)
ok
Chapter 2 Booting and Testing Your System 19



Testing the Clock
To test the clock function, type:

The system responds by incrementing a number once a second. Press any key to stop
the test.

Monitoring the Network
To monitor the network connection, type:

The system monitors network traffic, displaying “ .”each time it receives an error-
free packet and “X” each time it receives a packet with an error that can be detected
by the network hardware interface.

Note – Not all OpenBoot 2.x systems include this test word.

ok watch-clock
Watching the’seconds’ register of the real time clock chip.
It should be ticking once a second.
Type any key to stop.
1
ok

ok watch-net
Internal Loopback test - succeeded
External Loopback test - succeeded
Looking for Ethernet packets.
’.’ is a good packet. ’X’ is a bad packet.
Type any key to stop
....................X.....X...............
ok
20 OpenBoot 2.x Command Reference Manual • February 2000



Displaying System Information
The Forth Monitor provides several commands to display system information. These
commands, listed in the following table, let you display the system banner, the
Ethernet address for the Ethernet controller, the contents of the ID PROM, and the
version number of the OpenBoot firmware. (The ID PROM contains information
specific to each machine, including the serial number, date of manufacture, and
Ethernet address assigned to the machine.)

Also see the device tree browsing commands.

Note – If you halt the operating system, type banner, then resume the system, you
may find that your color tables have been altered. To restore these tables on pre-
Solaris 2.0 operating environments, type clear_colormap, then select Refresh
from the Utilities menu. To restore these tables on Solaris 2.0 or 2.1 operating
environments, select Color Chooser from the Properties... menu.

Resetting the System
Occasionally, you may need to reset your system. The reset command resets the
entire system and is similar to performing a power cycle.

To reset the system, type:

TABLE 2-5 System Information Display Commands

Command Description

banner Display power-on banner.

show-sbus Display list of installed and probed SBus devices.

.enet-addr Display current Ethernet address.

.idprom Display formatted ID PROM contents.

.traps Display a list of SPARC trap types.

.version Display version and date of the boot PROM.

ok reset
Chapter 2 Booting and Testing Your System 21



If your system is set up to run the power-on self-test (POST) and initialization
procedures on reset, these procedures begin executing when you initiate this
command. (On some systems, POST is only executed after power-on.) Once POST
completes, the system either boots automatically or enters the Forth Monitor, just as
it would have after a power cycle.

Note – If you were browsing the device tree, you may need to use the device-end
command before you reset the system.
22 OpenBoot 2.x Command Reference Manual • February 2000



CHAPTER 3

Setting Configuration Parameters

This chapter describes how to access and modify non-volatile RAM (NVRAM)
configuration parameters.

System configuration parameters are stored in the system NVRAM. These
parameters determine the start-up machine configuration and related
communication characteristics. You can modify the default values of the
configuration parameters, and any changes you make remain in effect even after a
power cycle. Configuration parameters should always be adjusted cautiously. When
correctly used, these parameters give you flexibility in working with your system’s
hardware.

The procedures described in this chapter assume that the ok prompt is displayed on
your screen. See Chapter 1 “Overview”, for information about entering the Forth
Monitor.

TABLE 3-1 lists current NVRAM configuration parameters.

TABLE 3-1 NVRAM Configuration Parameters

Parameter Typical Default Description

auto-boot? true If true, boot automatically after power on or
reset.

boot-device disk Device from which to boot.

boot-file empty string File to boot (an empty string lets secondary
booter choose default).

boot-from vmunix Boot device and file (1.x only).

boot-from-diag le()vmunix Diagnostic boot device and file (1.x only).

diag-device net Diagnostic boot source device.

diag-file empty string File from which to boot in diagnostic mode.

diag-switch? false If true, run in diagnostic mode.
23



fcode-debug? false If true, include name fields for plug-in device
FCodes.

hardware-revision no default System version information.

input-device keyboard Power-on input device (usually keyboard,
ttya, or ttyb).

keyboard-click? false If true, enable keyboard click.

keymap no default Keymap for custom keyboard.

last-hardware-
update

no default System update information.

local-mac-
address?

false If true, network drivers use their own MAC
address, not system’s.

mfg-switch? false If true, repeat system self-tests until
interrupted with Stop-A.

nvramrc empty Contents of NVRAMRC.

oem-banner empty string Custom OEM banner (enabled by oem-
banner? true).

oem-banner? false If true, use custom OEM banner.

oem-logo no default Byte array custom OEM logo (enabled by
oem-logo? true).
Displayed in hexadecimal.

oem-logo? false If true, use custom OEM logo (else, use Sun
logo).

output-device screen Power-on output device (usually screen,
ttya, or ttyb).

sbus-probe-list 0123 Which SBus slots are probed and in what
order.

screen-#columns 80 Number of on-screen columns (characters/
line).

screen-#rows 34 Number of on-screen rows (lines).

scsi-initiator-id 7 SCSI bus address of host adapter, range 0-7.

sd-targets 31204567 Map SCSI disk units (1.x only).

security-
#badlogins

no default Number of incorrect security password
attempts.

security-mode none Firmware security level (options: none,
command, or full).

TABLE 3-1 NVRAM Configuration Parameters (Continued)

Parameter Typical Default Description
24 OpenBoot 2.x Command Reference Manual • February 2000



Note – Not all OpenBoot systems support all parameters. Defaults may vary
depending on the type of system and the PROM revision.

security-password no default Firmware security password (never
displayed). Do not set this directly.

selftest-#megs 1 Megabytes of RAM to test. Ignored if diag-
switch? is true.

skip-vme-
loopback?

false If true, POST does not do VMEbus loopback
tests.

st-targets 45670123 Map SCSI tape units (1.x only).

sunmon-compat? false If true, display Restricted Monitor prompt (>).

testarea 0 One-byte scratch field, available for read/
write test.

tpe-link-test? true Enable 10baseT link test for built-in twisted
pair Ethernet.

ttya-mode 9600,8,n,1,- TTYA (baud rate, #bits, parity, #stop,
handshake).

ttyb-mode 9600,8,n,1,- TTYB (baud rate, #bits, parity, #stop,
handshake).

ttya-ignore-cd true If true, operating system ignores carrier-
detect on TTYA.

ttyb-ignore-cd true If true, operating system ignores carrier-
detect on TTYB.

ttya-rts-dtr-off false If true, operating system does not assert DTR
and RTS on TTYA.

ttyb-rts-dtr-off false If true, operating system does not assert DTR
and RTS on TTYB.

use-nvramrc? false If true, execute commands in NVRAMRC
during system start-up.

version2? true If true, hybrid (1.x/2.x) PROM comes up in
version 2.x.

watchdog-reboot? false If true, reboot after watchdog reset.

TABLE 3-1 NVRAM Configuration Parameters (Continued)

Parameter Typical Default Description
Chapter 3 Setting Configuration Parameters 25



Displaying and Changing Parameter
Settings
NVRAM configuration parameters can be viewed and changed using the commands
listed in TABLE 3-2.

The following pages show how these commands can be used.

TABLE 3-2 Viewing/Changing Configuration Parameters

Command Description

printenv Display all current parameters and current default values.
(Numbers are usually shown as decimal values.)
printenv parameter shows the current value of the named
parameter.

setenv parameter value Set parameter to the given decimal or text value.
(Changes are permanent, but usually only take effect after a
reset.)

set-default parameter Reset the value of the named parameter to the factory default.

set-defaults Reset parameter values to the factory defaults.
26 OpenBoot 2.x Command Reference Manual • February 2000



To display a list of the current parameter settings on your system, type:

In the displayed, formatted list of the current settings, numeric parameters are
shown in decimal, except where otherwise noted.

ok printenv
Parameter Name Value Default Value

oem-logo              2c 31 2c 2d 00 00 00 00 ...
oem-logo?             false                          false
oem-banner
oem-banner?           false                          false
output-device         ttya                           screen
input-device          ttya                           keyboard
sbus-probe-list       03                             0123
keyboard-click?       false                          false
keymap
ttyb-rts-dtr-off      false                          false
ttyb-ignore-cd        true                           true
ttya-rts-dtr-off      false                          false
ttya-ignore-cd        true                           true
ttyb-mode 9600,8,n,1,- 9600,8,n,1,-
ttya-mode 9600,8,n,1,- 9600,8,n,1,-
diag-file
diag-device           net                            net
boot-file
boot-device           disk                           disk
auto-boot?            false                          true
watchdog-reboot?      false                          false
fcode-debug?          true                           false
local-mac-address?    false                          false
use-nvramrc?          false                          false
nvramrc
screen-#columns       80                             80
screen-#rows          34                             34
sunmon-compat?        false                          true
security-mode         none                           none
security-password
security-#badlogins   0
scsi-initiator-id     7                              7
version2?             true                           true
hardware-revision
last-hardware-update
testarea              0                              0
mfg-switch?           false                          false
diag-switch?          true                           false
ok
Chapter 3 Setting Configuration Parameters 27



To change a parameter setting, type:

parameter is the name of the parameter. value is a numeric value or text string
appropriate to the named parameter. A numeric value is typed as a decimal number,
unless preceded by 0x, which is the qualifier for a hexadecimal number. Most
parameter changes do not take effect until the next power cycle or system reset.

For example, to change the setting of the auto-boot? parameter from true to false,
type:

You can reset one or most of the parameters to the original defaults using the set-
default parameter and set-defaults commands.

For example, to reset the auto-boot? parameter to its original default setting (true),
type:

To reset most parameters to their default settings, type:

Setting Security Parameters
The NVRAM system security parameters are:

■ security-mode

■ security-password

■ security-#badlogins

security-mode can restrict the set of actions that unauthorized users are allowed
to perform from the Forth Monitor. The three security modes, listed in order of least
to most secure, are:

setenv parameter value

ok setenv auto-boot? false
ok

ok set-default auto-boot?
ok

ok set-defaults
ok
28 OpenBoot 2.x Command Reference Manual • February 2000



■ none

■ command

■ full

The Restricted Monitor is used to implement the command and full modes. When
security is set to command or full mode, the OpenBoot firmware will come up in
the Restricted Monitor. In none security mode, it will come up in either the Forth
Monitor or the Restricted Monitor, depending on which one is the default.

In none security mode, any command can be typed in the Restricted Monitor, and
no password is required. In command and full security modes, passwords are
required to execute certain commands. For example, a password is required to get to
the Forth Monitor. Once you enter the Forth Monitor, however, a password is never
required.

security-mode can be changed with the operating system eeprom utility.

Command Security
With security-mode set to command, the system comes up in the Restricted
Monitor. In this monitor mode,

■ A password is not required if you type the b command, unless you use the
command with a parameter.

■ The c command never asks for a password.

■ A password is required to execute the n command.

Examples are shown in the following screen.

To set the security password and command security mode, type the following at the
ok prompt:

> b (no password required)
> c (no password required)
> b filename (password required)
PROM Password:(password is not echoed as it is typed)
> n (password required)
PROM Password:(password is not echoed as it is typed)

ok password
ok New password (only first 8 chars are used):
ok Retype new password:
ok setenv security-mode command
ok
Chapter 3 Setting Configuration Parameters 29



Note – Although this example works, you should normally set the two security
parameters with the eeprom command from the operating system.

The security password you assign follows the same rules as the root password: a
combination of six to eight letters and numbers. The security password can be the
same as the root password, or different from it. You do not have to reset the system;
the security feature takes effect as soon as you type the command.

Caution – It is important to remember your security password. If you forget this
password, you cannot use your system; you will have to call Sun’s customer support
service to make your machine bootable again.

If you enter an incorrect security password, there will be a delay of about 10 seconds
before the next boot prompt appears. The number of times that an incorrect security
password is typed is stored in the security-#badlogins parameter. This
parameter is a 32-bit signed number (680 years worth of attempts at 10 seconds per
attempt).

Full Security
The full security mode is the most restrictive. With security-mode set to full, the
system comes up in the Restricted Monitor. In this mode:

■ A password is required when you type the b command.

■ The c command never asks for a password.

■ A password is required to execute the n command.

Examples are shown below.

> c (no password required)
> b (password required)
PROM Password:(password is not echoed as it is typed)
> b filename (password required)
PROM Password:(password is not echoed as it is typed)
> n (password required)
PROM Password:(password is not echoed as it is typed)
30 OpenBoot 2.x Command Reference Manual • February 2000



To set the security password and full security, type the following at the ok prompt:

Changing the Power-on Banner
The banner configuration parameters are:

■ oem-banner

■ oem-banner?

■ oem-logo

■ oem-logo?

To view the power-on banner, type:.

The PROM displays the system banner. The preceding example shows a
SPARCstation 2 banner. The banner for your SPARC system may be different.

The banner consists of two parts: the text field and the logo (over serial ports, only
the text field is displayed). You can replace the existing text field with a custom text
message using the oem-banner and oem-banner? configuration parameters.

To insert a custom text field in the power-on banner, type:

ok password
ok New password (only first 8 chars are used):
ok Retype new password:
ok setenv security-mode full
ok

ok banner
            SPARCstation 2, Type 4 Keyboard
            ROM Rev. 2.0, 16MB memory installed, Serial # 289
            Ethernet address 8:0:20:d:e2:7b, Host ID: 55000121
ok

ok setenv oem-banner Hello Mom and Dad
ok setenv oem-banner? true
ok banner

             Hello Mom and Dad

ok
Chapter 3 Setting Configuration Parameters 31



The system displays the banner with your new message, as shown in the preceding
screen.

However, the graphic logo must be handled somewhat differently. oem-logo is a
512-byte array, containing a total of 4096 bits arranged in a 64 x 64 array. Each bit
controls one pixel. The most significant bit (MSB) of the first byte controls the upper-
left corner pixel. The next bit controls the pixel to the right of it, and so on.

To create a new logo, first create a Forth array containing the correct data; then copy
this array into oem-logo. In the following example, the array is created using Forth
commands. (It could also be done under the operating system using the eeprom
command.) The array is then copied using the to command. The example below fills
the top half of oem-logo with an ascending pattern.

To restore the original Sun power-on banner, set the oem-logo? and oem-banner?
parameters to false.

Because the oem-logo array is so large, printenv displays approximately the first
8 bytes (in hexadecimal). Use the oem-logo dump command to display the entire
array. The oem-logo array is not erased by set-defaults, since it might be
difficult to restore the data. However, oem-logo? is set to false when set-
defaults executes, so the custom logo is no longer displayed.

Input and Output Control
The configuration parameters related to the control of system input and output are:

■ input-device

■ output-device

■ screen-#columns

■ screen-#rows

ok create logoarray d# 512 allot
ok logoarray d# 256 0 do i over i + c! loop drop
ok logoarray d# 256 to oem-logo
ok setenv oem-logo? true
ok banner

ok setenv oem-logo? false
ok setenv oem-banner? false
ok
32 OpenBoot 2.x Command Reference Manual • February 2000



■ ttya-mode

■ ttyb-mode

You can use these parameters to assign the power-on defaults for input and output
and adjust the communication characteristics of the TTYA and TTYB serial ports.
Except for the ttya-mode and ttyb-mode results, these values do not take effect
until the next power cycle or system reset.

Selecting Input and Output Device Options
The input-device and output-device parameters control the system’s selection
of input and output devices after a power-on reset. The default input-device
value is keyboard and the default output-device value is screen. Input and
output can be set to the values in TABLE 3-3.

When the system is reset, the named device becomes the default input or output
device. (If you want to temporarily change the input or output device, use the
input or output commands described in Chapter 4 “Using Forth Tools”.)

To set TTYA as the power-on default input device, type:

If you select keyboard for input-device, and the device is not plugged in, input
is accepted from ttya after the next power cycle or system reset. If you select
screen for output-device, but no frame buffer is available, output is sent to ttya
after the next power cycle or system reset.

TABLE 3-3 I/O Device Parameters

Options Description

device-specifier Device identified by that device path name or alias.

keyboard (Input only) Default system keyboard.

screen (Output only) Default graphics display.

ttya Serial port A.

ttyb Serial port B.

ok setenv input-device ttya
ok
Chapter 3 Setting Configuration Parameters 33



To specify an SBus bwtwo frame buffer as the default output device (especially if
there are multiple frame buffers in the system), type:

Setting Serial Port Characteristics
The default settings for both TTYA and TTYB for most Sun systems are:

9600 baud, 8 data bits, no parity, 1 stop bit, no handshake

The communications characteristics for the two serial ports, TTYA and TTYB, are set
using the following values for the ttya-mode and ttyb-mode parameters:

■ baud = 110, 300, 1200, 2400, 4800, 9600, 19200, or 38400 bits/second
■ #bits = 5, 6, 7, or 8 (data bits)
■ parity = n (none), e (even), or o (odd), parity bit
■ #stop = 1 (1), . (1.5), or 2 (2) stop bits
■ handshake = - (none), h (hardware (rts/cts)), or s (software (xon/xoff)).

For example, to set TTYA to 1200 baud, seven data bits, even parity, one stop bit, and
no handshake, type:

Changes to these parameter values take effect immediately.

Note – rts/cts and xon/xoff handshaking are not implemented on some systems.
When a selected protocol is not implemented, the handshake parameter is accepted
but ignored; no messages are displayed.

Selecting Boot Options
You can use the following configuration parameters to determine whether or not the
system will boot automatically after a power cycle or system reset.

■ auto-boot?

ok setenv output-device /sbus/bwtwo
ok

ok setenv ttya-mode 1200,7,e,1,-
ok
34 OpenBoot 2.x Command Reference Manual • February 2000



■ boot-device

■ boot-file

If auto-boot? is true, then the system boots automatically (using the
boot-device and boot-file values).

These parameters can also be used during manual booting to select the boot device
and the program to be booted. For example, to specify auto-booting from the
Ethernet server, type:

Specified booting usually begins immediately.

Note – boot-device and boot-file are specified differently with
diag-switch? set to true. See the next section for more information.

Controlling Power-on Self-test
The power-on testing parameters are:

■ diag-device

■ diag-file

■ diag-switch?

■ mfg-switch?

■ selftest-#megs

Most systems have a factory default of false for the diag-switch? parameter. To
set diag-switch? to true, type:

Enabling diag-switch? causes the system to perform more thorough self-tests
during any subsequent power-on process. Once diag-switch? is enabled,
additional status messages are sent out (some to TTYA and some to the specified
output device), all of memory is tested, and different default boot options are used.
The boot PROM tries to boot the program specified by the diag-file parameter,
from the device specified by diag-device.

ok setenv boot-device net
ok boot

ok setenv diag-switch? true
ok
Chapter 3 Setting Configuration Parameters 35



Note – Some SPARC systems have a hardware diagnostic switch. The system runs
the full tests on power-on if either the hardware switch or diag-switch? is set.

You can also force diag-switch? to true by using the Stop-D key sequence during
power-on.

To set diag-switch? to false, type:

When diag-switch? is false, the system does not call out the diagnostic tests as
they are run (unless a test fails) and runs a reduced set of diagnostics.

Using NVRAMRC
A portion of NVRAM, whose size depends on the particular SPARC system, is called
NVRAMRC. It is reserved to store user-defined commands that are executed during
start-up.

Typically, NVRAMRC would be used by a device driver to save start-up
configuration parameters, to patch device driver code, or to define installation-
specific device configuration and device aliases. It also could be used for bug
patches or for user-installed extensions. Commands are stored in ASCII, just as the
user would type them at the console.

There are two NVRAMRC-related configuration parameters:

■ nvramrc

■ use-nvramrc?

Commands in NVRAMRC are executed during system start-up if use-nvramrc? is
set to true. Almost all Forth Monitor commands can be used here. The following are
exceptions:

■ banner (use with caution)
■ boot

■ go

■ nvedit

■ password

■ reset

■ setenv security-mode

ok setenv diag-switch? false
ok
36 OpenBoot 2.x Command Reference Manual • February 2000



Editing the Contents of NVRAMRC
The NVRAMRC editor, nvedit, lets you create and modify the contents of
NVRAMRC using the commands listed in TABLE 3-4.

Note – Not all OpenBoot 2.x systems include the nvalias and nvunalias
commands.

TABLE 3-4 NVRAMRC Editor Commands

Command Description

nvalias alias device-path Store the command "devalias alias device-path" in
NVRAMRC. The alias persists until the nvunalias or
set-defaults commands are executed.

nvedit Enter the NVRAMRC editor. If data remains in the
temporary buffer from a previous nvedit session, resume
editing those previous contents. If not, read the contents of
NVRAMRC into the temporary buffer and begin editing
them.

nvquit Discard the contents of the temporary buffer, without
writing it to NVRAMRC. Prompt for confirmation.

nvrecover Recover the contents of NVRAMRC if they have been lost
as a result of the execution of set-defaults; then enter
the editor as with nvedit. nvrecover fails if nvedit is
executed between the time that the NVRAMRC contents
were lost and the time that nvrecover is executed.

nvrun Execute the contents of the temporary buffer.

nvstore Copy the contents of the temporary buffer to NVRAMRC;
discard the contents of the temporary buffer.

nvunalias alias Delete the corresponding alias from NVRAMRC.
Chapter 3 Setting Configuration Parameters 37



The editing commands shown in TABLE 3-5 are used within the NVRAM

Other standard line editor commands are described in Chapter 4 “Using Forth
Tools”.

Activating an NVRAMRC File
Use the following steps to activate an NVRAMRC command file:

1. At the ok prompt, type nvedit

Edit the contents of NVRAMRC using editor commands.

2. Type Control-C to get out of the editor and back to the ok prompt.

3. Type nvstore to save your changes.

4. Enable the interpretation of NVRAMRC by typing:
setenv use-nvramrc? true

5. Type reset to reset the system and execute the NVRAM contents, or type nvramrc
eval to execute the contents directly. If you have not yet typed nvstore to save
your changes, type nvrun to execute the contents of the temporary edit buffer.

TABLE 3-5 nvedit Keystroke Commands

Keystroke Description

Control-B Move backward one character.

Control-C Exit the editor and return to the OpenBoot command interpreter. The
temporary buffer is preserved but is not written back to NVRAMRC. (Use
nvstore afterwards to write back the temporary buffer.)

Control-F Move forward one character.

Control-K If at the end of a line, join the next line to the current line (that is, delete the
new line).

Control-L List all lines.

Control-N Move to the next line of the NVRAMRC editing buffer.

Control-O Insert a new line at the cursor position and stay on the current line.

Control-P Move to the previous line of the NVRAMRC editing buffer.

Delete Delete the previous character.

Return Insert a new line at the cursor position and advance to the next line.
38 OpenBoot 2.x Command Reference Manual • February 2000



The following example shows you how to create a simple colon definition in
NVRAMRC.

Notice the nvedit line number prompts (0:, 1:, 2:, 3:) in the above example. These
prompts may be different on some systems.

ok nvedit
0: : hello ( -- )
1: ." Hello, world. " cr
2: ;
3: ^-C
ok nvstore
ok setenv use-nvramrc? true
ok reset
....
ok hello
Hello, world.
ok
Chapter 3 Setting Configuration Parameters 39



40 OpenBoot 2.x Command Reference Manual • February 2000



CHAPTER 4

Using Forth Tools

This chapter introduces Forth as it is implemented in OpenBoot. Even if you are
familiar with the Forth programming language, work through the examples shown
in this chapter; they provide specific, OpenBoot-related information.

The version of Forth contained in OpenBoot is based on ANS Forth. Appendix E
“Forth Word Reference” lists the complete set of available commands. Words that are
specifically used for writing OpenBoot FCode programs for SBus devices are
described in the manual, Writing FCode 2.x Programs.

Note – This chapter assumes that you know how to enter and leave the User
Interface. At the ok prompt, if you type commands that hang the system and you
cannot recover using a key sequence, you may need to perform a power cycle to
return the system to normal operation.

Forth Commands
Forth has a very simple command structure. Forth commands, also called Forth
words, consist of any combination of characters that can be printed—for example,
letters, digits, or punctuation marks. Examples of legitimate words are shown below:

@

dump

.

0<

+

41



probe-pci

To be recognized as commands, Forth words must be separated by one or more spaces
(blanks). Pressing Return at the end of any command line executes the typed
commands. (In all the examples shown, a Return at the end of the line is assumed.)

A command line can have more than one word. Multiple words on a line are
executed one at a time, from left to right, in the order in which they were typed. For
example:

is equivalent to:

In OpenBoot, uppercase and lowercase letters are equivalent. Therefore, testa,
TESTA, and TesTa all invoke the same command. However, words are
conventionally written in lowercase.

Some commands generate large amounts of output (for example, dump or words).
You can interrupt such a command by pressing any key except q. (If you press q, the
output is aborted, not suspended.) Once a command is interrupted, output is
suspended and the following message appears:

Press the space bar (<space>) to continue, press Return (<cr>) to output one more
line and pause again, or type q to abort the command. When you are generating
more than one page of output, the system automatically displays this prompt at the
end of each page.

ok testa testb testc
ok

ok testa
ok testb
ok testc
ok

More [<space>,<cr>,q] ?
42 OpenBoot 2.x Command Reference Manual • February 2000



Using Numbers
Enter a number by typing its value, for example, 55 or -123. Forth accepts only
integers (whole numbers); fractional values (for example, 2/3) are not allowed. A
period at the end of a number signifies a double number. Periods or commas
embedded in a number are ignored, so 5.77 is understood as 577. By convention,
such punctuation usually appears every four digits. Use one or more spaces to
separate a number from a word or from another number.

OpenBoot performs 32-bit integer arithmetic, and all numbers are 32-bit values
unless otherwise specified.

Although OpenBoot implementations are encouraged to provide a hexadecimal
conversion radix, they are not required to do so. So, you must establish such a radix
if your code depends on a given base for proper operation.

You can change the operating number base with the commands octal, decimal
and hex which cause all subsequent numeric input and output to be performed in
base 8, 10 or 16, respectively.

For example, to operate in decimal, type:

To change to hexadecimal type:

Two simple techniques for identifying the active number base are:

The 16 and the f on the display show that you are operating in hexadecimal. If 10
and 9 showed on the display, it would mean that you are in decimal base. 8 and 7
would indicate octal.

ok decimal
ok

ok hex
ok

ok 10 .d
16
ok 10 1- .
f
ok
Chapter 4 Using Forth Tools 43



The Stack
The Forth stack is a last-in, first-out buffer used for temporarily holding numeric
information. Think of it as a stack of books: the last one you put on the top of the
stack is the first one you take off. Understanding the stack is essential to using Forth.

To place a number on the stack, simply type its value.

Displaying Stack Contents
The contents of the stack are normally invisible. However, properly visualizing the
current stack contents is important for achieving the desired result. To show the
stack contents with every ok prompt, type:

The topmost stack item is always shown as the last item in the list, immediately
before the ok prompt. In the above example, the topmost stack item is 8.

If showstack has been previously executed, noshowstack will remove the stack
display prior to each prompt.

Note – In some of the examples in this chapter, showstack is enabled. In those
examples, each ok prompt is immediately preceded by a display of the current
contents of the stack. The examples work the same if showstack is not enabled,
except that the stack contents are not displayed.

ok 44  (The value 44 is now on top of the stack)
ok 7     (The value 7 is now on top, with 44 just underneath)
ok

ok showstack
44 7 ok 8
47 7 8 ok showstack
ok
44 OpenBoot 2.x Command Reference Manual • February 2000



Nearly all words that require numeric parameters fetch those parameters from the
top of the stack. Any values returned are generally left on top of the stack, where
they can be viewed or consumed by another command. For example, the Forth word
+ removes two numbers from the stack, adds them together, and leaves the result on
the stack. In the example below, all arithmetic is in hexadecimal.

Once the two values are added together, the result is put onto the top of the stack.
The Forth word . removes the top stack item and displays that value on the screen.
For example:

The Stack Diagram
To aid understanding, conventional coding style requires that a stack diagram of the
form ( -- ) appears on the first line of every definition of a Forth word. The stack
diagram specifies what happens to the stack with the execution of the word.

Entries to the left of -- show stack items that are consumed (i.e. removed) from the
stack and used by the operation of that word. Entries to the right of -- show stack
items that are left on the stack after the word finishes execution. For example, the
stack diagram for the word + is: ( nu1 nu2 -- sum ), and the stack diagram for
the word. is: ( nu -- ). Therefore, + removes two numbers (nu1 and nu2), then
leaves their sum (sum) on the stack. The word . removes the number on the top of
the stack (nu) and displays it.

Words that have no effect on the contents of the stack (such as showstack or
decimal), have a ( -- ) stack diagram.

44 7 8 ok +
44 f ok +
53 ok

53 ok 12
53 12 ok .
12
53 ok .
53
ok   (The stack is now empty)
ok 3 5 + .
8
ok   (The stack is now empty)
ok .
Stack Underflow
ok
Chapter 4 Using Forth Tools 45



Occasionally, a word will require another word or other text immediately following
it. For example, the word see, used in the form see thisword ( -- ).

Stack items are generally written using descriptive names to help clarify correct
usage. See TABLE 4-1 for stack item abbreviations used in this manual.

TABLE 4-1 Stack Item Notation

Notation Description

| Alternate stack results shown with space, e.g. ( input -- addr len false |
result true ).

| Alternate stack items shown without space, e.g. ( input -- addr len|0
result ).

??? Unknown stack item(s).

… Unknown stack item(s). If used on both sides of a stack comment, means
the same stack items are present on both sides.

< > <space> Space delimiter. Leading spaces are ignored.

a-addr Variable-aligned address.

addr Memory address (generally a virtual address).

addr len Address and length for memory region

byte bxxx 8-bit value (low order byte in a 32-bit word).

char 7-bit value (low order byte), high bit unspecified.

cnt len
size

Count or length.

dxxx Double (extended-precision) numbers. 2 stack items, hi quadlet on top of
stack.

<eol> End-of-line delimiter.

false 0 (false flag).

ihandle Pointer for an instance of a package.

n n1 n2 n3 Normal signed values (32-bit).

nu nu1 Signed or unsigned values (32-bit).

<nothing> Zero stack items.

phandle Pointer for a package.

phys Physical address (actual hardware address).

phys.lo
phys.hi

Lower / upper cell of physical address

pstr Packed string.
46 OpenBoot 2.x Command Reference Manual • February 2000



quad qxxx Quadlet (32-bit value).

qaddr Quadlet (32-bit) aligned address

{text} Optional text. Causes default behavior if omitted.

"text<delim>” Input buffer text, parsed when command is executed. Text delimiter is
enclosed in <>.

[text<delim>] Text immediately following on the same line as the command, parsed
immediately. Text delimiter is enclosed in <>.

true -1 (true flag).

uxxx Unsigned value, positive values (32-bit).

virt Virtual address (address used by software).

waddr Doublet (16-bit) aligned address

word wxxx Doublet (16-bit value, low order two bytes in a 32-bit word).

x x1 Arbitrary stack item.

x.lo x.hi Low/high significant bits of a data item

xt Execution token.

xxx? Flag. Name indicates usage (e.g. done? ok? error?).

xyz-str
xyz-len

Address and length for unpacked string.

xyz-sys Control-flow stack items, implementation-dependent.

( C: -- ) Compilation stack diagram

( -- ) ( E:
-- )

Execution stack diagram

( R: -- ) Return stack diagram

TABLE 4-1 Stack Item Notation (Continued)

Notation Description
Chapter 4 Using Forth Tools 47



Manipulating the Stack
Stack manipulation commands (described in TABLE 4-2) allow you to add, delete,
and reorder items on the stack.

TABLE 4-2 Stack Manipulation Commands

Command Stack Diagram Description

-rot ( x1 x2 x3 -- x3 x1 x2 ) Inversely rotate 3 stack items.

>r ( x -- ) (R: -- x ) Move a stack item to the return
stack. (Use with caution.)

?dup ( x -- x x | 0 ) Duplicate the top stack item if it
is non-zero.

2drop ( x1 x2 -- ) Remove 2 items from the stack.

2dup ( x1 x2 -- x1 x2 x1 x2 ) Duplicate 2 stack items.

2over ( x1 x2 x3 x4 -- x1 x2 x3 x4 x1 x2 ) Copy second 2 stack items.

2rot ( x1 x2 x3 x4 x5 x6 -- x3 x4 x5 x6 x1 x2 ) Rotate 3 pairs of stack items.

2swap ( x1 x2 x3 x4 -- x3 x4 x1 x2 ) Exchange 2 pairs of stack items.

3drop ( x1 x2 x3 -- ) Remove 3 items from the stack.

3dup ( x1 x2 x3 -- x1 x2 x3 x1 x2 x3 ) Duplicate 3 stack items.

clear ( ??? -- ) Empty the stack.

depth ( -- u ) Return the number of items on
the stack.

drop ( x -- ) Remove top item from the stack.

dup ( x -- x x ) Duplicate the top stack item.

nip ( x1 x2 -- x2 ) Discard the second stack item.

over ( x1 x2 -- x1 x2 x1 ) Copy second stack item to top of
stack.

pick ( xu … x1 x0 u -- xu … x1 x0 xu ) Copy u-th stack item (1 pick =
over).

r> ( -- x ) ( R: x -- ) Move a return stack item to the
stack. (Use with caution.)

r@ ( -- x ) ( R: x -- x ) Copy the top of the return stack
to the stack.

roll ( xu … x1 x0 u -- xu-1 … x1 x0 xu ) Rotate u stack items (2 roll =
rot).
48 OpenBoot 2.x Command Reference Manual • February 2000



A typical use of stack manipulation might be to display the top stack item while
preserving all stack items, as shown in this example:

Creating Custom Definitions
Forth provides an easy way to create custom definitions for new command words.
TABLE 4-3 shows the Forth words used to create custom definitions.

Definitions for new commands are called colon definitions, named after the word:
that is used to create them. For example, suppose you want to create a new word,
add4 , that will add any four numbers together and display the result. You could
create the definition as follows:

rot ( x1 x2 x3 -- x2 x3 x1 ) Rotate 3 stack items.

swap ( x1 x2 -- x2 x1 ) Exchange the top 2 stack items.

tuck ( x1 x2 -- x2 x1 x2 ) Copy top stack item below
second item.

5 77 ok dup (Duplicates the top item on the stack)
5 77 77 ok .   (Removes and displays the top stack item)
77
5 77 ok

TABLE 4-3 Color Definition Words

Command Stack Diagram Description

: new-name ( -- ) Start a new colon definition of the
word new-name.

; ( -- ) End a colon definition.

ok : add4  + + + .  ;
ok

TABLE 4-2 Stack Manipulation Commands (Continued)

Command Stack Diagram Description
Chapter 4 Using Forth Tools 49



The ; (semicolon) marks the end of the definition that defines add4 to have the
behavior (+ + + .). The three addition operators (+) reduce the four stack items to
a single sum on the stack; then . removes and displays that result. An example
follows.

Definitions are stored in local memory, which means they are erased when a system
resets. To keep useful definitions, put them into a text file (using a text editor under
your operating system or using the NVRAMRC editor). This text file can then be
loaded as needed. (See Chapter 5 “Loading and Executing Programs”, for more
information on loading files.)

When you type a definition from the User Interface, the ok prompt becomes a ]
(right square bracket) prompt after you type the : (colon) and before you type the ;
(semicolon). For example, you could type the definition for add4 like this:

Every definition you create (in a text file) should have a stack effect diagram shown
with that definition, even if the stack effect is nil ( -- ). This is vital because the stack
diagram shows the proper use of that word. Also, use generous stack comments
within complex definitions; this helps trace the flow of execution. For example,
when creating add4, you could define it as:

Or you could define add4 as follows:

ok 1 2 3 3 + + + .
9
ok 1 2 3 3 add4
9
ok

ok : add4
]  + + +
]  .
]  ;
ok

: add4  ( n1 n2 n3 n4 -- )  + + + .  ;

: add4  ( n1 n2 n3 n4 -- )
   + + +  ( sum )
   .
;

50 OpenBoot 2.x Command Reference Manual • February 2000



Note – The ( (open parenthesis) is a Forth word meaning to ignore the following
text up to ) (the closing parenthesis). Like any other Forth word, the open
parenthesis must have one or more spaces following it.

Using Arithmetic Functions
The commands listed in TABLE 4-4 perform basic arithmetic with items on the data
stack.

TABLE 4-4 Arithmetic Functions

Command Stack Diagram Description

+ ( nu1 nu2 -- sum ) Add nu1 + nu2.

- ( nu1 nu2 -- diff ) Subtract nu1 - nu2.

* ( nu1 nu2 -- prod ) Multiply nu1 * nu2.

/ ( n1 n2 -- quot ) Divide n1 by n2; remainder is
discarded.

/mod ( n1 n2 -- rem quot ) Remainder, quotient of n1 / n2.

<< ( x1 u -- x2 ) Synonym for lshift.

>> ( x1 u -- x2 ) Synonym for rshift.

>>a ( x1 u -- x2 ) Arithmetic right-shift x1 by u
bits.

*/ ( n1 n2 n3 -- quot ) n1 * n2 / n3.

*/mod ( n1 n2 n3 -- rem quot ) Remainder, quotient of n1 * n2 /
n3.

1+ ( nu1 -- nu2 ) Add 1.

1- ( nu1 -- nu2 ) Subtract 1.

2* ( nu1 -- nu2 ) Multiply by 2.

2+ ( nu1 -- nu2 ) Add 2.

2- ( nu1 -- nu2 ) Subtract 2.

2/ ( nu1 -- nu2 ) Divide by 2.

abs ( n -- u ) Absolute value.
Chapter 4 Using Forth Tools 51



aligned ( n1 -- n1 | a-addr) Round n1 up to the next
multiple of 4.

and ( n1 n2 -- n3 ) Bitwise logical AND.

bounds ( startaddr len -- endaddr startaddr ) Convert startaddr len to endaddr
startaddr for do loop.

bljoin ( b.low b2 b3 b.hi -- quad ) Join four bytes to form a 32-bit
quadword.

bwjoin ( b.low b.hi -- word ) Join two bytes to form a 16-bit
word.

d+ (d1 d2 -- d.sum ) Add two 64-bit numbers.

d- (d1 d2 --d.diff ) Subtract two 64-bit numbers.

even ( n -- n | n+1 ) Round to nearest even integer
>= n.

fm/mod ( d n -- rem quot ) Divide d by n.

invert ( x1 -- x2 ) Invert all bits of x1.

lbflip ( quad1 -- quad2 ) Swap the bytes within a 32-bit
quadword

lbsplit ( quad -- b.low b2 b3 b.hi ) Split a 32-bit quadword into four
bytes.

lwflip ( quad1 -- quad2 ) Swap halves of a 32-bit
quadword.

lwsplit ( quad -- w.low w.hi ) Split a 32-bit quadword into two
16-bit words.

lshift ( x1 u -- x2 ) Left-shift x1 by u bits. Zero-fill
low bits.

max ( n1 n2 -- n3 ) n3 is maximum of n1 and n2.

min ( n1 n2 -- n3 ) n3 is minimum of n1 and n2.

mod ( n1 n2 -- rem ) Remainder of n1 / n2.

negate ( n1 -- n2 ) Change the sign of n1.

not ( x1 -- x2 ) Synonym for invert.

or ( n1 n2 -- n3 ) Bitwise logical OR.

rshift ( x1 u -- x2 ) Right-shift x1 by u bits. Zero-fill
high bits.

s>d ( n1 -- d1 ) Convert a number to a double
number.

TABLE 4-4 Arithmetic Functions (Continued)

Command Stack Diagram Description
52 OpenBoot 2.x Command Reference Manual • February 2000



Accessing Memory
The User Interface provides interactive commands for examining and setting
memory. Use the User Interface to:

■ Read and write to any virtual address.

■ Map virtual addresses to physical addresses.

Memory operators let you read from and write to any memory location. All memory
addresses shown in the examples that follow are virtual addresses.

A variety of 8-bit, 16-bit, and 32-bit operations are provided. In general,
a c (character) prefix indicates an 8-bit (one byte) operation; a w (word) prefix
indicates a 16-bit (two byte) operation; and an l (longword) prefix indicates a 32-bit
(four byte) operation.

sm/rem ( d n -- rem quot ) Divide d by n, symmetric
division.

u2/ ( x1 -- x2 ) Logical right shift 1 bit; zero
shifted into high bit.

u* (u1 u2 -- uprod ) Multiply 2 unsigned numbers
yielding an unsigned product.

u/mod ( u1 u2 -- urem uquot ) Divide unsigned 32-bit number
by an unsigned 32-bit number;
yield 32-bit remainder and
quotient.

um* ( u1 u2 -- ud ) Multiply 2 unsigned 32-bit
numbers; yield unsigned double
number product.

um/mod ( ud u -- urem uprod ) Divide ud by u.

wbflip ( word1 -- word2 ) Swap the bytes within a 16-bit
word.

wbsplit ( word -- b.low b.hi ) Split 16-bit word into two bytes.

wljoin ( w.low w.hi -- quad ) Join two words to form a
quadword.

xor ( x1 x2 --x3 ) Bitwise exclusive OR.

TABLE 4-4 Arithmetic Functions (Continued)

Command Stack Diagram Description
Chapter 4 Using Forth Tools 53



Note – “l” is sometimes printed in uppercase to avoid confusion with 1 (the number
one).

waddr, qaddr, and addr64 indicate addresses with alignment restrictions. For
example, qaddr indicates 32-bit (4 byte) alignment; so this address must be evenly
divisible by 4, as shown in the following example:

The Forth interpreter implemented in OpenBoot adheres closely to the ANS Forth
Standard. If you explicitly want a 16-bit fetch or a 32-bit fetch, use w@ or L@ instead
of @. Other commands also follow this convention.

TABLE 4-5 lists the commands used to access memory.

ok 4028 L@
ok 4029 L@
Memory address not aligned
ok

TABLE 4-5 Memory Access Commands

Command Stack Diagram Description

! ( x a-addr -- ) Store a number at a-addr.

+! ( nu a-addr -- ) Add nu to the number stored at a-addr.

<w@ ( waddr -- n ) Fetch doublet w from waddr, sign-
extended.

@ ( a-addr --x ) Fetch a number from a-addr.

2! ( x1 x2 a-addr -- ) Store 2 numbers at a-addr, x2 at lower
address.

2@ ( a-addr -- x1 x2 ) Fetch 2 numbers from a-addr, x2 from
lower address.

blank ( addr len -- ) Set len bytes of memory beginning at
addr to space (decimal 32).

c! (byte addr -- ) Store byte at addr.

c@ ( addr -- byte ) Fetch a byte from addr.

cmove ( addr1 addr2 u -- ) Copy u bytes from addr1 to addr2,
starting at low byte.

cmove> ( addr1 addr2 u -- ) Copy u bytes from addr1 to addr2,
starting at high byte.
54 OpenBoot 2.x Command Reference Manual • February 2000



cpeek ( addr -- false | byte true ) Fetch the byte at addr. Return the data
and true if the access was successful.
Return false if a read access error
occurred.

cpoke ( byte addr -- okay? ) Store the byte to addr. Return true if
the access was successful.
Return false if a write access error
occurred.

comp ( addr1 addr2 len -- diff? ) Compare two byte arrays. diff? = 0 if
arrays are identical,
diff? = -1 if first byte that is different is
lesser in string at addr1,
diff? = 1 otherwise.

dump ( addr len -- ) Display len bytes of memory starting
at addr.

erase ( addr len -- ) Set len bytes of memory beginning at
addr to 0.

fill ( addr len byte -- ) Set len bytes of memory beginning at
addr to the value byte.

l! ( n qaddr -- ) Store a quadlet q at qaddr.

l@ ( qaddr -- quad ) Fetch a quadlet q from qaddr.

lbflips ( qaddr len -- ) Reverse the bytes within each quadlet
in the specified region.

lwflips ( qaddr len -- ) Swap the doublets within each quadlet
in specified region.

lpeek ( qaddr -- false | quad true ) Fetch the 32-bit quantity at qaddr.
Return the data and true if the access
was successful. Return false if a read
access error occurred.

lpoke ( quad qaddr -- okay? ) Store the 32-bit quantity at qaddr.
Return true if the access was
successful. Return false if a a write
access error occurred.

move ( src-addr dest-addr len -- ) Copy len bytes from src-addr to dest-
addr.

off ( a-addr -- ) Store false at a-addr.

on ( a-addr -- ) Store true at a-addr.

unaligned-l! ( quad addr -- ) Store a quadlet q, any alignment

TABLE 4-5 Memory Access Commands (Continued)

Command Stack Diagram Description
Chapter 4 Using Forth Tools 55



The dump command is particularly useful. It displays a region of memory as both
bytes and ASCII values. The example below displays the contents of 20 bytes of
memory starting at virtual address 10000. It also shows you how to read from and
write to a memory location.

If you try (with @, for example) to access an invalid memory location, the operation
immediately aborts and the PROM displays an error message, such as Data Access
Exception or Bus Error.

unaligned-l@ ( addr -- quad ) Fetch a quadlet q, any alignment.

unaligned-w! ( w addr -- ) Store a doublet w, any alignment.

unaligned-w@ ( addr -- w ) Fetch a doublet w, any alignment.

w! ( w waddr -- ) Store a doublet w at waddr.

w@ ( waddr -- w) Fetch a doublet w from waddr.

wbflips ( waddr len -- ) Swap the bytes within each doublet in
the specified region.

wpeek ( waddr -- false | w true ) Fetch the 16-bit quantity at waddr.
Return the data and true if the access
was successful. Return false if a read
access error occurred.

wpoke ( w waddr -- okay? ) Store the 16-bit quantity to waddr.
Return true if the access was
successful. Return false if a write
access error occurred.

ok 10000 20 dump (Display 20 bytes of memory starting at virtual address 10000)
      \/ 1  2  3  4  5  6  7   8  9  a  b  c  d  e  f  v123456789abcdef
10000 05 75 6e 74 69 6c 00 40  4e d4 00 00 da 18 00 00 .until.@NT..Z...
10010 ce da 00 00 f4 f4 00 00  fe dc 00 00 d3 0c 00 00 NZ..tt..~\..S...
ok 22 10004 c! (Change 8-bit byte at location 10004 to 22)
ok

TABLE 4-5 Memory Access Commands (Continued)

Command Stack Diagram Description
56 OpenBoot 2.x Command Reference Manual • February 2000



TABLE 4-6 lists memory mapping commands.

The following screen is an example of the use of alloc-mem and free-mem.

■ alloc-mem allocates 4000 bytes of memory, and the starting address (ffef7a48)
of the reserved area is displayed.

■ dump displays the contents of 20 bytes of memory starting at ffef7a48.

■ This region of memory is then filled with the value 55.

■ Finally, free-mem returns the 4000 allocated bytes of memory starting at
ffef7a48.

TABLE 4-6 Memory Mapping Commands

Command Stack Diagram Description

alloc-mem ( size -- virt ) Allocate and map size bytes of available memory;
return the virtual address.

free-mem ( virt size -- ) Free memory allocated by alloc-mem.

free-virtual ( virt size -- ) Undo mappings created with memmap.

ok
ok 4000 alloc-mem .
ffef7a48
ok
ok ffef7a48 constant temp
ok temp 20 dump

0 1 2 3 4 5 6 7 \/ 9 a b c d e f 01234567v9abcdef
ffef7a40  00 00 f5 5f 00 00 40 08  ff ef c4 40 ff ef 03 c8
..u_..@..oD@.o.H
ffef7a50  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
................
ffef7a60  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00
................
ok temp 20 55 fill
ok temp 20 dump

0 1 2 3 4 5 6 7 \/ 9 a b c d e f 01234567v9abcdef
ffef7a40  00 00 f5 5f 00 00 40 08  55 55 55 55 55 55 55 55
..u_..@.UUUUUUUU
ffef7a50  55 55 55 55 55 55 55 55  55 55 55 55 55 55 55 55
UUUUUUUUUUUUUUUU
ffef7a60  55 55 55 55 55 55 55 55  00 00 00 00 00 00 00 00
UUUUUUUU........
ok
ok temp 4000 free-mem
ok
Chapter 4 Using Forth Tools 57



An example of using memmap is shown below.

Mapping An SBus Device
Here is a general method for mapping an SBus device from the ok prompt, without
the necessity of knowing system-dependent device addresses. This method does not
depend on the presence of a valid FCode PROM on the SBus device. The method
will work on any OpenBoot system version 2.0 or higher.

For example, to inspect the FCode PROM for a device in slot #3 of a system, enter:

Here are some variations to the method:

1. On some systems, the pathname for the system SBus may vary. For example, “ /
iommu/sbus” (for Sun4m) or “ /io-unit/sbi” (for Sun4d). The show-devs
command from the ok prompt (which lists all system devices) is one way to
determine the correct path.

2. Direct placement of (offset size) on the stack may or may not work in the most
general cases on future systems. If you encounter problems, try the following,
more general approach:

ok 200.0000 sbus 1000 memmap ( virt )
ok

ok “ /sbus”  select-dev
ok (offset) (slot#) (size) map-in ( virt )
ok

ok “ /sbus”  select-dev
ok 0 3 1000 map-in  .s
ffed3000
ok dup 20 dump
(Dump of first 20 bytes of FCode PROM)
ok

ok “ /sbus” select-dev
ok “ 3,0: decode-unit  ( offset space )
ok 1000 map-in         ( virt )
ok
58 OpenBoot 2.x Command Reference Manual • February 2000



Using Defining Words
The dictionary contains all the available Forth commands. Defining words are used
to create new Forth commands.

Defining words require two stack diagrams. The first diagram shows the stack effect
when the new command is created. The second (or “Usage:”) diagram shows the
stack effect when that command is later executed.

TABLE 4-7 lists the defining words that you can use to create dictionary entries.

TABLE 4-7 Defining Words

Command Stack Diagram Description

: name ( -- )
Usage: ( ??? -- ? )

Start creating a new colon
definition.

; ( -- ) Finish creating a new
colon definition.

alias new-name old-name ( -- )
Usage: ( ??? -- ? )

Create new-name with the
same behavior as
old-name.

buffer: name ( size -- )
Usage: ( -- a-addr )

Create a named array in
temporary storage.

constant name ( n -- )
Usage: ( -- n )

Define a constant (for
example, 3 constant
bar).

2constant name ( n1 n2 -- )
Usage: ( -- n1 n2 )

Define a 2-number
constant.

create name ( -- )
Usage: ( -- waddr )

Generic defining word.

defer name ( -- )
Usage: ( ??? -- ? )

Define a word for forward
references or execution
vectors using execution
token.

does> ( -- waddr ) Start the run-time clause
for defining words.

field name ( offset size -- offset+size )
Usage: ( addr -- addr+offset )

Create a named offset
pointer.
Chapter 4 Using Forth Tools 59



You can use the defining word constant to create a name whose value will not
change. A simple colon definition : foo 22 ; accomplishes a similar result.

value lets you assign a name to any number. Later execution of that name leaves
the assigned value on the stack. The following example assigns a value of 22 to a
word named foo, and then calls foo to use its assigned value in an arithmetic
operation.

The value can be changed with the dictionary compiling word is. For example:

Commands created with value are convenient, because you do not have to use @
every time you want the number.

struct ( -- 0 ) Initialize for field
creation.

value name ( n -- )
Usage: ( -- n )

Create a changeable,
named 32-bit quantity.

variable name ( -- )
Usage: ( -- waddr )

Define a variable.

ok 72 constant red
ok
ok red .
72
ok

ok 22 value foo
ok foo 3 + .
25
ok

ok 43 value thisval
ok thisval .
43
ok 10 to thisval
ok thisval .
10
ok

TABLE 4-7 Defining Words (Continued)

Command Stack Diagram Description
60 OpenBoot 2.x Command Reference Manual • February 2000



The defining word variable assigns a name to a 32-bit region of memory, which
you can use to hold values as needed. Later execution of that name leaves the
address of the memory on the stack. Typically, @ and ! are used to read or write at
that address. For example:

The defining word defer lets you change the execution of previously defined
commands, by creating a slot which can be loaded with different functions at
different times. For example:

ok variable bar
ok 33 bar !
ok bar @ 2 + .
35
ok

ok hex
ok defer printit
ok [’] .d  to  printit
ok ff printit
255
ok : myprint ( n -- ) ." It is " .h
] ." in hex " ;
ok [’] myprint to printit
ok ff printit
It is ff in hex
ok
Chapter 4 Using Forth Tools 61



Searching the Dictionary
The dictionary contains all the available Forth commands. TABLE 4-8 lists tools you
can use to search the dictionary.

see, used in the form see thisword, decompiles the specified command (that is, it
shows the definition used to create thisword). The decompiled definition may
sometimes be confusing, because some internal names may have been omitted from
the PROM’s symbol table to save space.

TABLE 4-8 Dictionary Searching Commands

Command Stack Diagram Description

' name ( -- xt ) Find the named word in the dictionary.
Returns the execution token. Use outside
definitions.

['] name ( -- xt ) Similar to ’ but is used either inside or outside
definitions.

.calls ( xt -- ) Display a list of all words that call the word
whose execution token is xt.

$find ( addr len -- addr len
false | xt n )

Find a word. n = 0 if not found, n = 1 if
immediate,
n = -1 otherwise.

find ( pstr -- pstr false | xt n ) Search for a word in the dictionary. The word
to be found is indicated by pstr. n = 0 if not
found, n = 1 if immediate,
n = -1 otherwise.

see thisword ( -- ) Decompile the named command.

(see) ( xt -- ) Decompile the word indicated by the execution
token.

sift ( pstr -- ) Display names of all dictionary entries
containing the string pointed to by pstr.

sifting ccc ( -- ) Display names of all dictionary entries
containing the sequence of characters. ccc
contains no spaces.

words ( -- ) Display all visible words in the dictionary.
62 OpenBoot 2.x Command Reference Manual • February 2000



The following screen is an example of how to use sifting.

words displays all the word (command) names in the dictionary, starting with the
most recent definitions.

Compiling Data into the Dictionary
The commands listed in TABLE 4-9 control the compilation of data into the
dictionary.

ok sifting input
input-device input restore-input line-input input-line input-file
ok

TABLE 4-9 Dictionary Compilation Commands

Command Stack Diagram Description

, ( n -- ) Place a number in the dictionary.

c, ( byte -- ) Place a byte in the dictionary.

w, ( word -- ) Place a 16-bit number in the dictionary.

l, ( quad -- ) Place a 32-bit number in the dictionary.

[ ( -- ) Begin interpreting.

] ( -- ) End interpreting, resume compilation.

allot ( n -- ) Allocate n bytes in the dictionary.

>body ( xt -- a-addr ) Find the data field address from the
execution token.

body> ( a-addr -- xt ) Find the execution token from the data
field address.

compile ( -- ) Compile next word at run time.

[compile] name ( -- ) Compile the next (immediate) word.

forget namep ( -- ) Remove word from dictionary and all
subsequent words.

here ( -- addr ) Address of top of dictionary.

immediate ( -- ) Mark the last definition as immediate.
Chapter 4 Using Forth Tools 63



Displaying Numbers
TABLE 4-10 shows basic commands to display stack values.

to name ( n -- ) Install a new action in a defer word or
value.

literal ( n -- ) Compile a number.

origin ( -- addr ) Return the address of the start of the
Forth system.

patch new-word old-
word word-to-patch

( -- ) Replace old-word with new-word in
word-to-patch.

(patch ( new-n old-n xt -- ) Replace old-n with new-n in word
indicated
by xt.

recursive ( -- ) Make the name of the colon definition
being compiled visible in the dictionary,
and thus allow the name of the word to
be used recursively in its own
definition.

state ( -- addr ) Variable that is non-zero in compile
state.

TABLE 4-10 Basic Number Display

Command Stack Diagram Description

. ( n -- ) Display a number in the current base.

.r ( n size -- ) Display a number in a fixed width field.

.s ( -- ) Display contents of data stack.

showstack ( ??? -- ??? ) Execute .s automatically before each ok prompt.

noshowstack ( ??? -- ??? ) Turn off automatic display of the stack before each ok
prompt

u. ( u -- ) Display an unsigned number.

u.r ( u size -- ) Display an unsigned number in a fixed width field.

TABLE 4-9 Dictionary Compilation Commands (Continued)

Command Stack Diagram Description
64 OpenBoot 2.x Command Reference Manual • February 2000



The .s command displays the entire stack contents without disturbing them. It can
be safely used at any time for debugging purposes. (This is the function that
showstack performs automatically.)

Changing the Number Base
You can change the operating number base using the commands in TABLE 4-11.

The d# , h# and o# commands are useful when you want to input a specific number
in another base without explicitly changing the current base. For example:

The .d and .h commands act like “.” but display the value in decimal or
hexadecimal, respectively, regardless of the current base setting. For example:

TABLE 4-11 Changing the Number Base

Command Stack Diagram Description

.d ( n -- ) Display n in decimal without changing base.

.h ( n -- ) Display n in hex without changing base.

base ( -- addr ) Variable containing number base.

decimal ( -- ) Set the number base to 10.

d# number ( -- n ) Interpret number in decimal; base is unchanged.

hex ( -- ) Set the number base to 16.

h# number ( -- n ) Interpret number in hex; base is unchanged.

octal ( -- ) Set the number base to 16.

o# number ( -- n ) Interpret number in hex; base is unchanged.

ok decimal       (Changes base to decimal)
ok 4 h# ff 17 2
4 255 17 2 ok

ok hex
ok ff .  ff .d
ff 255
Chapter 4 Using Forth Tools 65



Controlling Text Input and Output
This section describes text input and output commands. These commands control
strings or character arrays, and allow you to enter comments and control keyboard
scanning.

TABLE 4-12 lists commands to control text input.

Comments are used with Forth source code (generally in a text file) to describe the
function of the code. The ( (open parenthesis) is the Forth word that begins a
comment. Any character up to the closing parenthesis ) is ignored by the Forth
interpreter. Stack diagrams are one example of comments using (.

Note – Remember to follow the( with a space, so that it is recognized as
a Forth word.

\ (backslash) indicates a comment terminated by the end of the line of text.

key waits for a key to be pressed, then returns the ASCII value of that key on the
stack.

TABLE 4-12 Controlling Text Input

Command Stack Diagram Description

( ccc ) ( -- ) Begin a comment. Conventionally used for stack
diagrams.

\ rest-of-line ( -- ) Treat the rest of the line as a comment.

ascii ccc ( -- char ) Get numerical value of first ASCII character of next
word.

expect ( addr +n -- ) Get a line of edited input from the assigned input
device’s keyboard; store at addr.

key ( -- char ) Read a character from the assigned input device’s
keyboard.

key? ( -- flag ) True if a key has been typed on the input device’s
keyboard.

span ( -- waddr ) Variable containing the number of characters read by
expect.

word ( char -- pstr ) Collect a string delimited by char from input string and
place in memory at pstr.
66 OpenBoot 2.x Command Reference Manual • February 2000



ascii, used in the form ascii x, returns on the stack the numerical code of the
character x.

key? looks at the keyboard to see if the user has recently pressed any key. It returns
a flag on the stack: true if a key has been pressed and false otherwise. See
“Conditional Flags” on page 73 for a discussion on the use of flags.

TABLE 4-13 lists general-purpose text display commands.

cr sends a carriage-return character to the output. For example:

emit displays the letter whose ASCII value is on the stack.

TABLE 4-13 Displaying Text Output

Command Stack Diagram Description

." ccc" ( -- ) Compile a string for later display.

(cr ( -- ) Move the output cursor back to the beginning of the
current line.

cr ( -- ) Terminate a line on the display and go to the next line.

emit ( char -- ) Display the character.

exit? ( -- flag ) Enable the scrolling control prompt: More
[<space>,<cr>,q] ?
The return flag is true if the user wants the output to be
terminated.

space ( -- ) Display a space character.

spaces ( +n -- ) Display +n spaces.

type ( addr +n -- ) Display the +n characters beginning at addr.

ok 3 . 44 . cr 5 .
3 44
5
ok

ok ascii a
61 ok 42
61 42 ok emit emit
Ba
ok
Chapter 4 Using Forth Tools 67



TABLE 4-14 shows commands used to manipulate text strings.

Some string commands specify an address (the location in memory where the
characters reside) and a length (the number of characters in the string). Other
commands use a packed string or pstr, which is a location in memory containing a
byte for the length, immediately followed by the characters. The stack diagram for
the command indicates which form is used. For example, count converts a packed
string to an address-length string.

The command ." is used in the form: ." string". It outputs text when needed. A "
(double quotation mark) marks the end of the text string. For example:

TABLE 4-14 Manipulating Text Strings

Command Stack Diagram Description

", ( addr len -- ) Compile an array of bytes from
addr of length len, at the top of
the dictionary as a packed string.

" ccc" ( -- addr len ) Collect an input stream string,
either interpreted or compiled.
Within the string, "(00,ff…) can
be used to include arbitrary byte
values.

.( ccc) ( -- ) Display a string immediately.

-trailing ( addr +n1 -- addr +n2 ) Remove trailing spaces.

bl ( -- char ) ASCII code for the space
character; decimal 32.

count ( pstr -- addr +n ) Unpack a packed string.

lcc ( char -- lowercase-char ) Convert a character to lowercase.

left-parse-
string

( addr len char -- addrR lenR
addrL lenL )

Split a string at char (which is
discarded).

pack ( addr len pstr -- pstr ) Make a packed string from addr
len; place it at pstr.

"p" ccc ( -- pstr ) Collect a string from the input
stream; store as a packed string.

upc ( char -- uppercase-char ) Convert a character to uppercase.

ok  : testing 34 .  ." This is a test"  55 . ;
ok
ok testing
34 This is a test55
ok
68 OpenBoot 2.x Command Reference Manual • February 2000



Redirecting Input and Output
Normally, your system uses a keyboard for all user input, and a frame buffer with a
connected display screen for most display output. (Server systems may use an ASCII
terminal connected to a system serial port. For more information on how to connect
a terminal to the system unit, see your system’s installation manual.) You can
redirect the input, the output, or both, to either one of the system’s serial ports. This
may be useful, for example, when debugging a frame buffer.

TABLE 4-15 lists commands you can use to redirect input and output.

The commands input and output temporarily change the current devices for input
and output. The change occurs when you enter a command; you do not have to reset
your system. A system reset or power cycle causes the input and output devices to
revert to the default settings specified in the NVRAM configuration parameters
input-device and output-device. These parameters can be modified, if needed
(see Chapter 3 “Setting Configuration Parameters” for information about changing
defaults).

input must be preceded by one of the following: keyboard, ttya, ttyb, or device-
specifier text string. For example, if input is currently accepted from the keyboard,
and you want to make a change so that input is accepted from a terminal connected
to the serial port TTYA, type:

At this point, the keyboard becomes non-functional (except for Stop-A), but any
text entered from the terminal connected to TTYA is processed as input. All
commands are executed as usual.

TABLE 4-15 I/O Redirection Commands

Command Stack Diagram Description

input ( device -- ) Select device (keyboard, or device-specifier) for input.

io ( device -- ) Select device for input and output.

output ( device -- ) Select device (screen, or device-specifier) for output.

ok ttya input
ok
Chapter 4 Using Forth Tools 69



To resume using the keyboard as the input device, use the terminal keyboard to type:

Similarly, output must be preceded by one of the following: screen, ttya, or
ttyb. For example, if you want to send output to TTYA instead of the normal
display screen, type:

The screen does not show the answering ok prompt, but the terminal connected to
TTYA shows the ok prompt and all further output as well.

io is used in the same way, except that it changes both the input and output to the
specified place.

Generally, input, output, and io take a device-specifier, which can be either a device
path name or a device alias. The device must be specified as a Forth string, using double
quotation marks ("), as shown in the two examples below:

or:

In the preceding examples, ttya, screen, and keyboard are Forth words that put
their corresponding device alias string on the stack.

Command Line Editor
OpenBoot specifies a required command line editor (similar to EMACS, a common
text editor), some optional extensions and an optional history mechanism for the
User Interface. Use these powerful tools to re-execute previous commands without
retyping them, to edit the current command line to fix typing errors, or to recall and
change previous commands.

ok keyboard input
ok

ok ttya output

ok " /sbus/cgsix" output

ok " screen" output
70 OpenBoot 2.x Command Reference Manual • February 2000



TABLE 4-16 lists the required line-editing commands available at the ok prompt.

The OpenBoot standard also describes three groups of extensions of these
capabilities. TABLE 4-17 lists the command line editing extension group.

TABLE 4-16 Required Command Line Editor Keystroke Commands

Keystroke Description

Delete Erases previous character.

Backspace Erases previous character.

Control-U Erases the line.

Return (Enter) Finishes editing of the line and submits the entire visible line to the
interpreter regardless of the current cursor position.

TABLE 4-17 Optional Command Line Editor Keystroke Commands

Keystroke Description

Control-B Moves backward one character.

Escape B Moves backward one word.

Control-F Moves forward one character.

Escape F Moves forward one word.

Control-A Moves backward to beginning of line.

Control-E Moves forward to end of line.

Delete Erases previous character.

Backspace Erases previous character.

Control-H Erases previous character.

Escape H Erases from beginning of word to just before the cursor, storing erased
characters in a save buffer.

Control-W Erases from beginning of word to just before the cursor, storing erased
characters in a save buffer.

Control-D Erases next character.

Escape D Erases from cursor to end of the word, storing erased characters in a save
buffer.

Control-K Erases from cursor to end of line, storing erased characters in a save
buffer.

Control-U Erases entire line, storing erased characters in a save buffer.
Chapter 4 Using Forth Tools 71



The command line history extension enables previously-typed commands to be
saved in an EMACS-like command history ring that contains at least 8 entries.
Commands may be recalled by moving either forward or backward around the ring.
Once recalled, a command may be edited and/or re-submitted (by typing the Return
key). The command line history extension keys are:

The command completion extension enables the system to complete long Forth word
names by searching the dictionary for one or more matches based upon the already-
typed portion of a word. After you type in a portion of a word followed by the
command completion keystroke, Control-Space, the system responds as follows:

■ If the system finds exactly one matching word, the remainder of the word is
automatically displayed.

■ If the system finds several possible matches, it displays all characters common to
all possibilities.

■ If the system cannot find a match for the already-typed characters, it deletes
characters from the right until there is at least one match for the remaining
characters.

■ The system beeps if it cannot determine an unambiguous match.

The command completion extension keys are:

Control-R Retypes the line.

Control-Q Quotes next character (allows you to insert control characters).

Control-Y Inserts the contents of the save buffer before the cursor.

TABLE 4-18 Optional Command Line History Keystroke Commands

Keystroke Description

Control-P Selects and displays the previous command in the command history ring.

Control-N Selects and displays the next command in the command history ring.

Control-L Displays the entire command history ring.

TABLE 4-19 Optional Command Completion Keystroke Commands

Keystroke Description

Control-Space Complete the name of the current word.

Control-? Display all possible matches for the current word.

Control-/ Display all possible matches for the current word.

TABLE 4-17 Optional Command Line Editor Keystroke Commands (Continued)

Keystroke Description
72 OpenBoot 2.x Command Reference Manual • February 2000



Conditional Flags
Forth conditionals use flags to indicate true/false values. A flag can be generated in
several ways, based on testing criteria. The flag can then be displayed from the stack
with the word “.”, or it can be used as input to a conditional control command.
Control commands can cause one response if a flag is true and another if it is false.
Thus, execution can be altered based on the result of a test.

A 0 value indicates that the flag value is false. A -1 or any other non-zero number
indicates that the flag value is true. (In hexadecimal, the value -1 is displayed as
ffffffff.)

TABLE 4-20 lists commands that perform relational tests, and leave a true or false
flag result on the stack.

TABLE 4-20 Comparison Commands

Command Stack Diagram Description

< ( n1 n2 -- flag ) True if n1 < n2.

<= ( n1 n2 -- flag ) True if n1 <= n2.

<> ( n1 n2 -- flag ) True if n1 is not equal to n2.

= ( n1 n2 -- flag ) True if n1 = n2.

> ( n1 n2 -- flag ) True if n1 > n2.

>= ( n1 n2 -- flag ) True if n1 >= n2.

0< ( n -- flag ) True if n < 0.

0<= ( n -- flag ) True if n <= 0.

0<> ( n -- flag ) True if n <> 0.

0= ( n -- flag ) True if n = 0 (also inverts any flag).

0> ( n -- flag ) True if n > 0.

0>= ( n -- flag ) True if n >= 0.

between ( n min max -- flag ) True if min <= n <= max.

false ( -- 0 ) The value FALSE, which is 0.

true ( -- -1 ) The value TRUE, which is -1.

u< ( u1 u2 -- flag ) True if u1 < u2, unsigned.
Chapter 4 Using Forth Tools 73



> takes two numbers from the stack, and returns true (-1) on the stack if the first
number was greater than the second number, or returns false (0) otherwise. An
example follows:

0= takes one item from the stack, and returns true if that item was 0 or returns
false otherwise. This word inverts any flag to its opposite value.

Control Commands
The following sections describe words used within a Forth program to control the
flow of execution.

The if-else-then Structure
The commands if, then and else provide a simple control structure.

The commands listed in TABLE 4-21 control the flow of conditional execution.

u<= ( u1 u2 -- flag ) True if u1 <= u2, unsigned.

u> ( u1 u2 -- flag ) True if u1 > u2, unsigned.

u>= ( u1 u2 -- flag ) True if u1 >= u2, unsigned.

within ( n min max -- flag ) True if min <= n < max.

ok 3 6 > .
0                (3 is not greater than 6)
ok

TABLE 4-21 if..else..then Commands

Command Stack Diagram Description

if ( flag -- ) Execute the following code if flag is true.

else ( -- ) Execute the following code if if failed.

then ( -- ) Terminate if…else…then.

TABLE 4-20 Comparison Commands (Continued)

Command Stack Diagram Description
74 OpenBoot 2.x Command Reference Manual • February 2000



The format for using these commands is:

or

The if command consumes a flag from the stack. If the flag is true (non-zero), the
commands following the if are performed. Otherwise, the commands (if any)
following the else are performed.

Note – The ] prompt reminds you that you are part way through creating a new
colon definition. It reverts to ok after you finish the definition with a semicolon.

The case Statement
A high-level case command is provided for selecting alternatives with multiple
possibilities. This command is easier to read than deeply-nested
if…then commands.

flag if
(do this if true)

else
(do this if false)

then
(continue normally)

flag if
(do this if true)

then
(continue normally)

ok : testit  ( n -- )
] 5 >  if  ." good enough "
] else  ." too small "
] then
] ." Done. "  ;
ok
ok 8 testit
good enough Done.
ok 2 testit
too small Done.
ok
Chapter 4 Using Forth Tools 75



TABLE 4-22 lists the conditional case commands.

Here is a simple example of a case command:

Note – The (optional) default clause can use the test value which is still on the
stack, but should not remove it (use the phrase “dup .” instead of “.”). A
successful of clause automatically removes the test value from the stack.

TABLE 4-22 case Statement Commands

Command Stack Diagram Description

case ( selector -- selector ) Begin a case…endcase
conditional.

endcase ( selector | {empty} -- ) Terminate a
case…endcase
conditional.

endof ( -- ) Terminate an of…endof
clause within a
case…endcase

of ( selector test-value -- selector | {empty} ) Begin an of…endof clause
within a case conditional.

ok : testit  ( testvalue -- )
] case  0  of  ." It was zero "  endof
] 1  of  ." It was one "  endof
] ff of  ." Correct "  endof
] -2 of  ." It was minus-two "  endof
] ( default )  ." It was this value: "  dup .
] endcase   ." All done."  ;
ok
ok 1 testit
It was one All done.
ok ff testit
Correct All done.
ok 4 testit
It was this value: 4 All done.
ok
76 OpenBoot 2.x Command Reference Manual • February 2000



The begin Loop
A begin loop executes the same commands repeatedly until a certain condition is
satisfied. Such a loop is also called a conditional loop.

TABLE 4-23 lists commands to control the execution of conditional loops.

There are two general forms:

and

In both cases, the commands within the loop are executed repeatedly until the
proper flag value causes the loop to be terminated. Then execution continues
normally with the command following the closing command word (until or
repeat).

In the begin…until case, until removes a flag from the top of the stack and
inspects it. If the flag is false, execution continues just after the begin, and the
loop repeats. If the flag is true, the loop is exited.

In the begin…while…repeat case, while removes a flag from the top of the stack
and inspects it. If the flag is true, the loop continues by executing the commands
just after the while. The repeat command automatically sends control back to

TABLE 4-23 begin (Conditional) Loop Commands

Command Stack Diagram Description

again ( -- ) End a begin…again infinite loop.

begin ( -- ) Begin a begin…while…repeat, begin…until, or
begin…again loop.

repeat ( -- ) End a begin…while…repeat loop.

until ( flag -- ) Continue executing a begin…until loop until flag is
true.

while ( flag -- ) Continue executing a begin…while…repeat loop while
flag is true.

begin any commands…flag until

begin any commands…flag while
more commands repeat
Chapter 4 Using Forth Tools 77



begin to continue the loop. If the flag is false when while is encountered, the
loop is exited immediately; control goes to the first command after the closing
repeat.

An easy aid to memory for either of these loops is: If true, fall through.

Here is a simple example:

The loop starts by fetching a byte from location 4000 and displaying the value. Then,
the key? command is called, which leaves a true on the stack if the user has
pressed any key, and false otherwise. This flag is consumed by until and, if the
value is false, then the loop continues. Once a key is pressed, the next call to key?
returns true, and the loop terminates.

Unlike many versions of Forth, the User Interface allows the interactive use of loops
and conditionals — that is, without first creating a definition.

The do Loop
A do loop (also called a counted loop) is used when the number of iterations of the
loop can be calculated in advance. A do loop normally exits just before the specified
ending value is reached.

TABLE 4-24 lists commands to control the execution of counted loops.

ok begin 4000 c@ .  key? until (repeat until any key is pressed)
43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43 43
ok

TABLE 4-24 do (Counted) Loop Commands

Command Stack Diagram Description

+loop ( n -- ) End a do…+loop construct; add n to loop index and
return to do (if n < 0, index goes from start to end
inclusive).

?do ( end start -- ) Begin ?do…loop to be executed 0 or more times. Index
goes from start to end-1 inclusive. If end = start, loop is not
executed.

?leave ( flag -- ) Exit from a do…loop if flag is non-zero.

do ( end start -- ) Begin a do…loop. Index goes from start to end-1
inclusive.
Example: 10 0 do i . loop (prints 0 1 2…d e f).

i ( -- n ) Leaves the loop index on the stack.
78 OpenBoot 2.x Command Reference Manual • February 2000



This screen shows several examples of the ways in which loops are used.

j ( -- n ) Leaves the loop index of the next outer enclosing loop on
the stack.

leave ( -- ) Exit from do…loop.

loop ( -- ) End of do…loop.

ok 10 5 do  i .  loop
5 6 7 8 9 a b c d e f
ok
ok 2000 1000 do i .  i c@ . cr   i c@ ff = if leave then  4 +loop
1000 23
1004 0
1008 fe
100c 0
1010 78
1014 ff
ok : scan ( byte -- )
]    6000 5000     (Scan memory 5000 - 6000 for bytes not equal to the specified byte)
] do dup i c@ <> (  byte error? )
]   if i . then  ( byte )
] loop
]  drop ( the original byte was still on the stack, discard it )
] ;
ok 55 scan
5005 5224 5f99
ok 6000 5000 do i i c! loop     (Fill a region of memory with a stepped pattern)
ok
ok 500 value testloc
ok : test16 ( -- ) 1.0000 0 ( do 0-ffff )     (Write different 16-bit values to a location)
] do i testloc w! testloc w@ i <> ( error? )     (Also check the location)
]   if ." Error - wrote " i . ." read " testloc w@ . cr
] leave ( exit after first error found )     (This line is optional)
]   then
]  loop
]  ;
ok test16
ok 6000 to testloc
ok test16
Error - wrote 200 read 300
ok

TABLE 4-24 do (Counted) Loop Commands

Command Stack Diagram Description
Chapter 4 Using Forth Tools 79



Additional Control Commands
TABLE 4-1 contains descriptions of additional program execution control
commands.

abort causes immediate termination and returns control to the keyboard. abort" is
similar to abort but is different in two respects. abort" removes a flag from the
stack and only aborts if the flag is true. Also, abort" prints any desired message
when the abort takes place.

eval takes a string from the stack (specified as an address and a length). The
characters in that string are then interpreted as if they were entered from the
keyboard. If a Forth text file has been loaded into memory (see Chapter 5 “Loading
and Executing Programs”, then eval can be used to compile the definitions
contained in the file.

TABLE 4-25 Program Execution Control Commands

Command Stack Diagram Description

abort ( -- ) Abort current execution and interpret keyboard
commands.

abort" ccc" ( abort? -- ) If abort? is true, abort and display message.

eval ( addr len -- ) Interpret Forth source from an array.

execute ( xt -- ) Execute the word whose execution token is on the stack.

exit ( -- ) Return from the current word. (Cannot be used in
counted loops.)

quit ( -- ) Same as abort, but leave stack intact.
80 OpenBoot 2.x Command Reference Manual • February 2000



CHAPTER 5

Loading and Executing Programs

The User Interface provides several methods for loading and executing a program.
These methods load a file into memory from Ethernet, a hard disk, a floppy disk,
and serial port A, and support the execution of Forth, FCode and binary executable
programs.

TABLE 5-1 lists commands for loading files from various sources.

TABLE 5-1 File Loading Commands

Command Stack Diagram Description

?go ( -- ) Execute Forth, FCode or binary
programs.

boot [specifiers] -h ( -- ) Load file from specified source.

byte-load ( addr span -- ) Interpret loaded FCode binary file.
span is usually 1.

dl ( -- ) Load a Forth file over a serial line
with a terminal emulator and
interpret. Using tip as an example,
type::
~C cat filename
^-D

dlbin ( -- ) Load a binary file over a serial line
with a terminal emulator. Using
tip as an example, type:
~C cat filename

dload filename ( addr -- ) Load the specified file over Ethernet
at the given address.

eval ( addr len -- ) Interpret loaded Forth text file.

go ( -- ) Begin executing a previously-
loaded binary program, or resume
executing an interrupted program.
81



Using dload to Load from Ethernet
dload loads files over Ethernet at a specified address, as shown below.

In the example above, filename must be relative to the server's root. Use 4000 (hex) as
the address for dload input. dload uses the trivial file transfer protocol (TFTP), so
the server may need to have its permissions adjusted for this to work.

Forth Programs
Forth programs loaded with dload must be ASCII files beginning with the two
characters “\ ” (backslash and blank). To execute the loaded Forth program, type:

In the above example, file-size contains the size of the loaded image.

FCode Programs
FCode programs loaded with dload must be a.out files. To execute the loaded
FCode program, type:

init-program ( -- ) Initialize to execute a binary file.

load device-specifier argument ( -- ) Load data from specified device
into memory at the address given
by load-base.

load-base ( -- addr ) Address at which load places the
data it reads from a device.

ok 4000 dload filename

ok 4000 file-size @ eval

ok 4000 1 byte-load

TABLE 5-1 File Loading Commands (Continued)

Command Stack Diagram Description
82 OpenBoot 2.x Command Reference Manual • February 2000



byte-load is used by OpenBoot to interpret FCode programs on expansion boards
such as SBus. The 1 in the example is a specific value of a parameter that specifies
the separation between FCode bytes in the general case. Since dload loads into
system memory, 1 is the correct spacing.

Binary Executables
Executable binary programs loaded with dload are a.out files and must be linked
to run dload's input address (4000) or be position independent. To execute the
binary program, type:

To run the program again, type:

dload does not use intermediate booters (unlike the boot command). Thus, any
symbol information included in the a.out file is available to the User Interface's
symbolic debugging capability. (See Chapter 6 “Debugging”’’ for more information
on symbolic debugging.)

Using boot to Load from Hard Disk,
Floppy Disk, or Ethernet
You can also load and execute a program with boot, the command normally used to
boot the operating system. boot has the following format:

device-specifier is either a full device path name or a device alias. (See Chapter 1
“Overview” for information on device path names and aliases.)

For a hard disk or floppy partition, filename is relative to the resident file system. (See
Appendix B “Building A Bootable Floppy Disk””, for information on creating a
bootable floppy disk.) For Ethernet, filename is relative to the system's root partition
on its root server. In both cases, the leading / must be omitted from the file path.

ok go

ok init-program go

ok boot [device-specifier] [filename]  -h
Chapter 5 Loading and Executing Programs 83



The -h flag specifies that the program should be loaded, but not executed.

boot uses intermediate booters to accomplish its task. When loading from a hard
disk or floppy disk, OpenBoot first loads the disk's boot block, which in turn loads a
second-level booter. When loading over Ethernet, the firmware uses TFTP to load
the second-level booter. filename and -h are passed to these intermediate booters.

Forth Programs
Forth programs are ASCII source files that must be converted to the file format
required by the secondary boot program. A utility called fakeboot is available from
the SBus Support Group at Sun to perform this conversion. After the file is loaded
into memory, it can be executed using the command eval.

For instance, if the file is loaded to address 0x4010, and runs for 934 bytes, type:

FCode Programs
FCode programs produced by a Tokenizer (which creates FCode programs) may
need to be converted to the file format of the secondary boot program. fakeboot
may be useful in this process. Once the file is in memory, execute it using the byte-
load command.

For example, assuming the file is loaded to address 0x4030, type:

Binary Executables
A binary program other than the operating system can also be loaded and executed
as follows:

go is needed since the boot command includes -h.

ok 4010 d# 934 eval

ok 4030 1 byte-load

ok go
84 OpenBoot 2.x Command Reference Manual • February 2000



Using dl to Load Forth Over a Serial
Port
Forth programs loaded with dl must be ASCII files.

To load the file over the serial line, connect the system-under-test's serial port to a
machine that is able to transfer a file on request, and start a terminal emulator on
that system. The terminal emulator is then used to download the file using dl.

The following example assumes the use of the Unix terminal emulator tip. (See
Appendix A “Testing with a Terminal Emulator””, for information on this
procedure.)

1. At the ok prompt, type:

2. In the tip window of the other system, send the file, and follow it with a
Control-D to signal the end of the file.

The file is automatically interpreted after it is loaded, and the ok prompt re-appears
on the screen of the system to which the file was loaded.

Using dlbin to Load FCode or Binary
Over a Serial Port
FCode and binary programs loaded with dlbin must be a.out files. dlbin loads
the files at the entry point indicated in the a.out header. Link binary files for 4000
(hex). Recent versions of the FCode Tokenizer create an a.out file with entry point
4000.

 ok dl

~C (local command) cat filename
(Away two seconds)
^-D
Chapter 5 Loading and Executing Programs 85



To load the file over the serial line, connect the system's serial port A to a machine
that is able to transfer a file on request. The following example assumes a tip
window setup. (See Appendix A “Testing with a Terminal Emulator””, for
information on this procedure.)

1. At the ok prompt, type:

2. In the TIP window of the other system, send the file:

The ok prompt appears on the screen of the system to which the file is loaded.

To execute an FCode program, type:

To execute a binary program, type:

ok dlbin

~C (local command) cat filename
(Away two seconds)

ok 4000 1 byte-load
ok

ok go
86 OpenBoot 2.x Command Reference Manual • February 2000



CHAPTER 6

Debugging

OpenBoot provides debugging tools that include a disassembler, register display
commands, and breakpoint commands.

Using the Disassembler
The built-in disassembler translates the contents of memory into equivalent SPARC
assembly language.

TABLE 6-1 lists commands that disassemble memory into equivalent op codes.

dis begins to disassemble the data content of any desired location. The system
pauses when:

■ Any key is pressed while disassembly is taking place.
■ The disassembler output fills the display screen.
■ A call or jump op code is encountered.

Disassembly can then be stopped or the +dis command can be used to continue
disassembling at the location where the last disassembly stopped.

Memory addresses are normally shown in hexadecimal. However, if a symbol table
is present, memory addresses are displayed symbolically whenever possible.

TABLE 6-1 Disassembler Commands

Command Stack Diagram Description

+dis ( -- ) Continue disassembling where the last disassembly left
off.

dis ( addr -- ) Begin disassembling at the specified address.
87



Displaying Registers
You can enter the User Interface from the middle of an executing program as a result
of a program crash, a user abort with Stop-A, or an encountered breakpoint.
(Breakpoints are discussed on “Breakpoints” on page 89.) In all these cases, the User
Interface automatically saves all the CPU data register values in a buffer area. You
can then inspect or alter these values for debugging purposes.

TABLE 6-2 lists the SPARC register commands.

TABLE 6-2 SPARC Register Commands

Command Stack Diagram Description

%f0 through %f31 ( -- value ) Return the value in the specified floating point
register.

%fsr ( -- value ) Return the value in the floating point status
register.

%g0 through %g7 ( -- value ) Return the value in the specified global
register.

%i0 through %i7 ( -- value ) Return the value in the specified input register.

%l0 through %l7 ( -- value ) Return the value in the specified local register.

%o0 through %o7 ( -- value ) Return the value in the specified output
register.

%pc %npc %psr
%y %wim %tbr

( -- value ) Return the value in the specified register.

.fregisters ( -- ) Display the values in %f0 through %f31.

.locals ( -- ) Display the values in the i, l and o registers.

.psr ( -- ) Formatted display of the program status
register.

.registers ( -- ) Display values in %g0 through %g7, plus %pc,
%npc, %psr, %y, %wim, %tbr.

.window ( window# -- ) Same as w .locals; display the desired
window.

ctrace ( -- ) Display the return stack showing C
subroutines.
88 OpenBoot 2.x Command Reference Manual • February 2000



After the values have been inspected and/or modified, program execution can be
continued with the go command. The saved (and possibly modified) register values
are copied back into the CPU, and execution resumes at the location specified by the
saved program counter.

If you change %pc with to, you should also change %npc. (It is easier to use set-pc,
which changes both registers automatically.)

For the w and .window commands, a window value of 0 usually specifies the
current window—that is, the active window for the subroutine where the program
was interrupted. A value of 1 specifies the window for the caller of this subroutine,
2 specifies the caller’s caller, and so on, up to the number of active stack frames. The
default starting value is 0.

Breakpoints
The User Interface provides a breakpoint capability to assist in the development and
debugging of stand-alone programs. (Programs that run under the operating system
generally do not use this feature, but use other debuggers designed to run under the
operating system.) The breakpoint feature lets you stop the test program at desired
points. After program execution has stopped, registers or memory can be inspected
or changed, and new breakpoints can be set or cleared. You can resume program
execution with the go command.

set-pc ( new-value -- ) Set %pc to new-value, and set %npc to (new-
value+4).

to regname ( new-value -- ) Change the value stored in any of the registers
above.
Use in the form: new-value to regname.

w ( window# -- ) Set the current window for displaying %ix,
%Lx, or %ox.

TABLE 6-2 SPARC Register Commands (Continued)

Command Stack Diagram Description
Chapter 6 Debugging 89



TABLE 6-3 lists the breakpoint commands that control and monitor program
execution.

TABLE 6-3 Breakpoint Commands

Command Stack Diagram Description

+bp ( addr -- ) Add a breakpoint at the specified address.

-bp ( addr -- ) Remove the breakpoint at the specified address.

--bp ( -- ) Remove the most-recently-set breakpoint.

.bp ( -- ) Display all currently set breakpoints.

.breakpoint ( -- ) Perform a specified action when a breakpoint occurs.
This word can be altered to perform any desired
action. For example, to display registers at every
breakpoint, type: [’] .registers is
.breakpoint. The default behavior is
.instruction. To perform multiple behaviors, create
a single definition which calls all desired behaviors,
then load that word into .breakpoint.

.instruction ( -- ) Display the address, opcode for the last-encountered
breakpoint.

.step ( -- ) Perform a specified action when a single step occurs
(see .breakpoint).

bpoff ( -- ) Remove all breakpoints.

finish-loop ( -- ) Execute until the end of this loop.

go ( -- ) Continue from a breakpoint. This can be used to go to
an arbitrary address by setting up the processor’s
program counter before issuing go.

gos ( n -- ) Execute go n times.

hop ( -- ) (Like the step command.) Treat a subroutine call as a
single instruction.

hops ( n -- ) Execute hop n times.

return ( -- ) Execute until the end of this subroutine.

returnL ( -- ) Execute until the end of this leaf subroutine.

skip ( -- ) Skip (do not execute) the current instruction.

step ( -- ) Single-step one instruction.

steps ( n -- ) Execute step n times.

till ( addr -- ) Execute until the given address is encountered.
Equivalent to +bp go.
90 OpenBoot 2.x Command Reference Manual • February 2000



To debug a program using breakpoints, use the following procedure.

1. Load the test program into memory at location 4000 (hex).

See Chapter 5 “Loading and Executing Programs” for more information. Using
dload is generally best, since the symbol table for the program is preserved. boot
-h also works if the program is not available over Ethernet.

The values for %pc and all other registers are initialized automatically.

2. (Optional) Disassemble the downloaded program to verify a properly-loaded file.

3. Begin single-stepping the test program using the step command.

You can also set a breakpoint, then execute (for example, using the commands 4020
+bp and go) or perform other variations.

The Forth Source-level Debugger
The Forth Source-level Debugger allows single-stepping and tracing of Forth
programs. Each step represents the execution of one Forth word.

The debugger commands are shown in TABLE 6-4.

TABLE 6-4 Forth Source-level Debugger Commands

Command Description

c “Continue”. Switch from stepping to tracing, thus tracing the remainder
of the execution of the word being debugged.

d “Down a level”. Mark for debugging the word whose name was just
displayed, then execute it.

f Start a subordinate Forth interpreter. When that interpreter exits (with
resume), control returns to the debugger at the place where the F
command was executed.

q “Quit”. Abort the execution of the word being debugged and all its callers
and return to the command interpreter.

u “Up a level”. Un-mark the word being debugged, mark its caller for
debugging, and finish executing the word that was previously being
debugged.

debug name Mark the specified Forth word for debugging. Enter the Forth Source-level
Debugger on all subsequent attempts to execute name. After executing
debug, the execution speed of the system may decrease until debugging is
turned off with debug-off. (Do not debug basic Forth words such as “.”.)
Chapter 6 Debugging 91



Every Forth word is defined as a series of one or more words that could be called
“component” words. While debugging a specified word, the debugger displays
information about the contents of the stack while executing each of the word’s
“component” words. Immediately before executing each component word, the
debugger displays the contents of the stack and the name of the component word
that is about to be executed.

In trace mode, that component word is then executed, and the process continues
with the next component word.

In step mode (the default), the user controls the debugger’s execution response.
Before the execution of each component word, the user is prompted for one of the
keystrokes specified in TABLE 6-4.

debug-off Turn off the Forth Source-level Debugger so that no word is being
debugged.

resume Exit from a subordinate interpreter, and go back to the stepper (see the F
command in this table).

stepping Set “step mode” for the Forth Source-level Debugger, allowing the
interactive, step-by-step execution of the word being debugged. Step
mode is the default.

tracing Set “trace mode” for the Forth Source-level Debugger. This traces the
execution of the word being debugged, while showing the name and stack
contents for each word called by that word.

<space-bar> Execute the word just displayed and proceed to the next word.

TABLE 6-4 Forth Source-level Debugger Commands (Continued)

Command Description
92 OpenBoot 2.x Command Reference Manual • February 2000



Using ftrace
The ftrace command shows the sequence of Forth words that were being executed
at the time of the last exception. An example of ftrace follows.

In this example, test2 calls test1, which tries to store a value to an unaligned
address. This results in the exception: Memory address not aligned.

The first line of ftrace’s output shows the last command that caused the exception
to occur. The next lines show locations from which the subsequent commands were
being called.

The last thirteen lines are usually the same in any ftrace output, because that is the
calling sequence in effect when the Forth interpreter interprets a word from the
input stream.

ok : test1 1 ! ;
ok : test2 1 test1 ;
ok test2
Memory address not aligned
ok ftrace
! Called from test1 at ffeacc5c
test1 Called from test2 at ffeacc6a
(ffe8b574) Called from (interpret at ffe8b6f8
execute Called from catch at ffe8a8ba

ffefeff0
0
ffefebdc

catch  Called from (fload) at ffe8ced8
0

(fload) Called from interact at ffe8cf74
execute Called from catch at ffe8a8ba

ffefefd4
0
ffefebdc

catch Called from (quit at ffe8cf98
Chapter 6 Debugging 93



94 OpenBoot 2.x Command Reference Manual • February 2000



APPENDIX A

Testing with a Terminal Emulator

You can use the serial port(s) on the system that you are testing to connect to a
second system which will act as a file server. This file server may or may not be the
same type of system provided that:

■ The capabilities of the file server’s serial port are compatible with the system
being tested.

■ The file server has a terminal emulator that is capable of correctly setting the file
server’s output baud rate to match that of the system that you are testing.

By connecting two systems in this way, you can use the terminal emulator on the file
server as a terminal into the system that you are testing. (For UNIX systems, see the
on-line tip manpage for detailed information about terminal connection to a remote
host. For Windows systems, see the documentation for the Terminal accessory. For
Macintosh® systems, see the documentation for MacTerminal®.)

This terminal emulation method is recommended (over simply connecting to a
dumb terminal), since it lets you use your normal editor and operating system
features when working with the boot ROM.

Note – In the following pages, system refers to the system that you are testing, and
server refers to the file server system that you are connecting to the system being
tested.

The procedures given in this chapter assume the use of the UNIX tip terminal
emulator. Other terminal emulators will use similar procedures.

1. Connect a serial port from the server to a serial port on your system with a 3-wire
”null modem” cable (i.e. a cable that connects Pin 3 to Pin 2, Pin 2 to Pin 3, and
Pin 7 to Pin 7). For the following examples, we will assume the use of Port A on
the system and Port B on the server.
95



2. To set up the tip session on the server, type:

Note – On Sun workstations, use a Shell Tool window, not a Command Tool
window; some tip commands may not work properly in a Command Tool window.

3. At your system, enter the User Interface so that the ok prompt is displayed.

If you do not have a video monitor attached to your system, connect the system’s
TTYA to the server’s TTYB and turn on the power to your system. Wait for a few
seconds, and press Stop-A to interrupt the power-on sequence and start the User
Interface. Type n to get to the ok prompt. Unless the system is completely
inoperable, the User Interface is enabled, and you can continue with the next step in
this procedure.

4. If you need to redirect the standard input and output to TTYA, type:

There will be no echoed response.

5. Press Return on the Sun workstation keyboard. The ok prompt appears in the TIP
window.

Typing ~# in the TIP window is equivalent to typing Stop-A at the SPARC system.

Note – Do not type Stop-A from a Sun workstation being used as a server to your
system. Doing so will abort the operating system on the server. (If you accidentally
type Stop-A, you can recover by immediately typing either c at the > prompt or go
at the ok prompt.)

6. When you are finished using the tip window, end your tip session and exit the
window:

a. Redirect the input and output to the screen and keyboard, if needed.

b. In the tip window, type:

hostname% tip -9600 /dev/ttyb
connected

ok ttya io

ok ~.

hostname%
96 OpenBoot 2.x Command Reference Manual • February 2000



Note – When entering ~ (tilde) commands in the tip window,
~ must be the first character entered on the line. To ensure that you are at the start
of a new line, press Return first.

Common Problems with tip
This section describes solutions for tip problems occurring in pre-Solaris 2.0
operating environments.

Problems with tip may occur if:

■ The lock directory is missing or incorrect.

There should be a directory named /usr/spool/uucp. The owner should be uucp
and the mode should be drwxr-sr-x.

■ TTYB is enabled for logins.

The status field for TTYB (or the serial port you are using) must be set to off in /
etc/ttytab. Be sure to execute kill -HUP 1 (see init(8)) as root if you have to
change this entry.

■ /dev/ttyb is inaccessible.

Sometimes, a program will have changed the protection of /dev/ttyb (or the serial
port you are using) so that it is no longer accessible. Make sure that /dev/ttyb has
the mode set to crw-rw-rw-.

■ The serial line is in tandem mode.

If the tip connection is in tandem mode, the operating system sometimes sends
XON (^S) characters (particularly when programs in other windows are generating
lots of output). The XON characters are detected by the Forth word key?, and can
cause confusion. The solution is to turn off tandem mode with the ~s !tandem
tip command.

■ The .cshrc file generates text.

tip opens a sub-shell to run cat, thus causing text to be attached to the beginning
of your loaded file. If you use dl and see any unexpected output, check your
.cshrc file.
Appendix A Testing with a Terminal Emulator 97



98 OpenBoot 2.x Command Reference Manual • February 2000



APPENDIX B

Building A Bootable Floppy Disk

The instructions in this appendix show how to build a floppy diskette from which
you can boot programs. You should use a high density (HD, not DD) diskette. Two
sets of instructions are provided:

■ “Procedure for the Pre-Solaris 2.0 Operating Environment” describes the
procedure for systems using pre-Solaris 2.0 operating environments.

■ “Procedure for the Solaris 2.0 or 2.1 Operating Environment” describes the
procedure for systems using the Solaris 2.0 or 2.1 operating environments.

Procedure for the Pre-Solaris 2.0
Operating Environment
Use the following procedure if you are using a pre-Solaris 2.0 version of the
operating system.

1. Format the diskette.

2. Create the diskette’s file systems.

3. Mount the diskette.

hostname# fdformat

hostname# /usr/etc/newfs  /dev/rfd0a

hostname# mount /dev/fd0a  /mnt
99



4. Copy the second-level disk booter to the diskette.

5. Install a boot block on the floppy.

6. Copy the file you want to boot to /mnt.

7. Unmount the diskette and remove it from the drive.

Procedure for the Solaris 2.0 or 2.1
Operating Environment
Use the following procedure if you are using the Solaris 2.0 or 2.1 operating
environment.

1. Format the diskette.

2. Create the diskette’s file systems.

3. Mount the diskette.

hostname# cp /boot  /mnt

hostname# /usr/mdec/installboot /mnt/boot /usr/mdec/bootfd /dev/
rfd0a

hostname# umount /mnt
hostname# eject floppy

hostname# fdformat

hostname# /usr/sbin/newfs  /dev/rdiskette

hostname# mount /dev/diskette  /mnt
100 OpenBoot 2.x Command Reference Manual • February 2000



4. Copy the second-level disk booter to the diskette.

5. Install a boot block on the floppy.

6. Copy the file you want to boot to /mnt.

7. Unmount the diskette and remove it from the drive.

hostname# cp /ufsboot  /mnt

hostname# /usr/sbin/installboot /usr/lib/fs/ufs/bootblk /dev/
rdiskette

hostname# umount /mnt
hostname# eject floppy
Appendix B Building A Bootable Floppy Disk 101



102 OpenBoot 2.x Command Reference Manual • February 2000



APPENDIX C

Unsupported Commands

Some features of the OpenBoot firmware may not be available in early systems. If
you want to use a documented command that is not available in your system, refer
to this appendix for a possible workaround.

TABLE C-1 Workarounds for Unsupported Commands

Command Availability Workaround

" embedded bytes Not supported in earlier
systems.

Use other array-creation
mechanisms, such as
alloc-mem and c, .

.attributes Not supported until
OpenBoot 2.0.

A loadable showdevs utility,
which provides some of this
functionality, is available from the
Sun SBus Support Group.

alloc-mem See workaround. Pre-2.0, size is restricted to total
remaining FORTH dictionary space.
Using more than several hundred
bytes is dangerous.
Use dma-alloc ( size -- virt )
instead.

boot-device
boot-file

Not supported until
OpenBoot 2.0.

Use boot-from to indicate boot
device and boot file.

cd Not supported until
OpenBoot 2.0.

A loadable showdevs utility,
which provides some of this
functionality, is available from the
Sun SBus Support Group.

Command completion Not supported in early
systems.

Type the entire command name.
103



cpeek
cpoke

Not supported in early
systems.

probe words exist in early systems
to provide a similar functionality, as:
cprobe ( adr -- ok? ) Test for data
exception using c@.

d!
d?
d@

Not supported in early
systems.

Use combinations of 32-bit accesses.

diag-device
diag-file

Not supported until
OpenBoot 2.0.

Use boot-from-diag to indicate
diagnostic boot device and boot file.

lpeek
lpoke

Not supported in early
systems.

probe words exist in early systems
to provide a similar functionality, as:
lprobe ( adr32 -- ok? ) Test for
data exception using l@.

ls Not supported until
OpenBoot 2.0.

A loadable showdevs utility,
which provides some of this
functionality, is available from the
Sun SBus Support Group.

NVRAMRC Not supported until
OpenBoot 2.0.

No workaround. A different version
exists in OpenBoot 1.6; do not use
this version.

nvalias
nvunalias

Not supported until
OpenBoot 2.6.

Manually edit NVRAMRC.

nodefault-bytes Not supported until
OpenBoot 2.0.

No workaround.

patch See workaround. Pre-2.6, patch would patch words
but not numbers within definitions.
To patch numbers, use :
npatch word-to-patch ( new-n old-
n -- ).

probe-scsi-all Not supported until
OpenBoot 2.6.

No workaround.

pwd Not supported until
OpenBoot 2.0.

A loadable showdevs utility,
which provides some of this
functionality, is available from the
Sun SBus Support Group.

show-devs Not supported until
OpenBoot 2.0.

A loadable showdevs utility,
which provides some of this
functionality, is available from the
Sun SBus Support Group.

TABLE C-1 Workarounds for Unsupported Commands (Continued)

Command Availability Workaround
104 OpenBoot 2.x Command Reference Manual • February 2000



show-sbus Not supported until
OpenBoot 2.3.

Use:
ok cd /sbus
ok ls
(Similar information is presented,
but in a different format.)

showstack Does not toggle (turn
off) until OpenBoot 2.6.

To turn off showstack, either reset
the system or type:
[‘] noop is status

spaced? Not supported until
OpenBoot 2.6.

Use spaced@ and “.”

Stop-F
Stop-D
Stop-N

Not supported until
OpenBoot 2.0.

No workaround.

test xxx Not supported until
OpenBoot 2.0.

It is possible to test certain devices
on OpenBoot 1.x systems with:
test-memory ( -- ) (similar to:
test /memory).
Some plug-in devices can also be
tested by directly entering the
appropriate test name (on OpenBoot
1.x only).

User-added device aliases Not supported until
OpenBoot 2.0.

No workaround.

watch-net Not supported in
OpenBoot 1.3 through
2.2.

No workaround.

wpeek
wpoke

Not supported in early
systems.

probe words exist in early systems
to provide a similar functionality, as:
wprobe ( adr16 -- ok? ) Test for
data exception using w@.

TABLE C-1 Workarounds for Unsupported Commands (Continued)

Command Availability Workaround
Appendix C Unsupported Commands 105



106 OpenBoot 2.x Command Reference Manual • February 2000



APPENDIX D

Troubleshooting Guide

What do you do if your system fails to boot properly? This appendix discusses some
common failures and ways to alleviate them.

Power-on Initialization Sequence
Familiarize yourself with the system power-on initialization messages. You can then
identify problems more accurately because these messages show you the types of
functions the system performs at various stages of system start-up. They also show
the transfer of control from POST to the OpenBoot firmware to the Booter to the
kernel.

The example that follows shows the OpenBoot initialization sequence in a
SPARCstation 10 system. The messages before the banner appear on TTYA only if
the diag-switch? parameter is true.

Note – The displayed kernel messages may vary depending on the version of the
operating system you are using

ttya initialized (At this point, POST has finished execution
 and transferred control to the OpenBoot firmware)
107



Before probing the devices, the firmware executes NVRAMRC commands - if use-
nvramrc? is true - and checks for Stop-x commands Keyboard LEDs flash

Cpu #0 TI,TMS390Z50 (Probe CPU module)
Cpu #1 Nothing there
Cpu #2 Nothing there
Cpu #3 Nothing there
Probing Memory Bank #0 16 Megabytes of DRAM(Probe memory)
Probing Memory Bank #1 Nothing there
Probing Memory Bank #2 Nothing there
Probing Memory Bank #3 Nothing there
Probing Memory Bank #4 Nothing there
Probing Memory Bank #5 Nothing there
Probing Memory Bank #6 Nothing there
Probing Memory Bank #7 Nothing there

Probing /iommu@f,e0000000/sbus@f,e0001000 at f,0 (Probe devices)
espdma esp sd st ledma le SUNW,bpp SUNW,DBRIa

Probing /iommu@f,e0000000/sbus@f,e0001000 at 0,0
Nothing there

Probing /iommu@f,e0000000/sbus@f,e0001000 at 1,0
Nothing there

Probing /iommu@f,e0000000/sbus@f,e0001000 at 2,0
Nothing there

Probing /iommu@f,e0000000/sbus@f,e0001000 at 3,0
Nothing there

SPARCstation 10 (1 X 390Z50), Keyboard Present(Display banner)
ROM Rev. 2.10, 16 MB memory installed, Serial #4194577.
Ethernet address 8:0:20:10:61:b5, Host ID: 72400111.

Boot device: /iommu/sbus/espdma@f,400000/esp@f,800000/(The firmware is TFTP-ing
in the boot program)

sd@3,0 File and args: (Control is transferred to Booter after
 this message is displayed)

root on /iommu@f,e0000000/sbus@f,e0001000/espdma@(Booter starts executing)
f,400000/esp@f,800000/sd@3,0:a fstype 4.2

Boot: vmunix
Size: 1425408+436752+176288 bytes(Control is passed to the Kernel after

this message is displayed)
Viking/NE: PAC ENABLED (Kernel starts to execute)... (More kernel messages)
108 OpenBoot 2.x Command Reference Manual • February 2000



Emergency Procedures
TABLE D-1 describes commands that are useful in some failure situations. When
issuing any of these commands, hold down the keys immediately after turning on
the power to your system, until the keyboard LEDs flash.

Note – These commands are disabled if the PROM security is on. Also, if your
system has full security enabled, you cannot apply any of the suggested
commands unless you have the password to get to the ok prompt.

Preserving Data After a System Crash
The sync command forces any information on its way to the hard disk to be written
out immediately. This is useful if the operating system has crashed, or has been
interrupted without preserving all data first.

sync actually returns control to the operating system, which then performs the data
saving operations. After the disk data has been synchronized, the operating system
begins to save a core image of itself. If you do not need this core dump, you can
interrupt the operation with the Stop-A key sequence.

TABLE D-1 Emergency Keyboard Commands

Command Description

Stop Bypass POST. This command does not depend on security-mode. (Note:
some systems bypass POST as a default; in such cases, use Stop-D to start
POST.)

Stop-A Abort.

Stop-D Enter diagnostic mode (set diag-switch? to true).

Stop-F Enter FORTH on TTYA instead of probing. Use fexit to continue with the
initialization sequence. Useful if hardware is broken.

Stop-N Reset NVRAM contents to default values.
Appendix D Troubleshooting Guide 109



Common Failures
This section describes some common failures and how you can fix them.

Blank Screen - No Output
Problem: Your system screen is blank and does not show any output.

Here are possible causes for this problem:

■ Hardware has failed.

Refer to your system documentation.

■ Keyboard is not attached.

If the keyboard is not plugged in, the output goes to TTYA instead. To fix this
problem, power the system down, plug the keyboard in, and power on again.

■ Monitor is not turned on or plugged in.

Check the power cable on the monitor. Make sure the monitor cable is plugged into
the system frame buffer; then turn the monitor on.

■ output-device is set to TTYA or TTYB.

This means the NVRAM parameter output-device is set to ttya or ttyb instead
of being set to screen. You can do one of the following:

■ Power the system down. Then turn it on, and immediately press Stop-N. This
sets all NVRAM parameters to their default values. As a result, the output-
device parameter is set to screen. Be warned that all previous non-default
settings are reset to their default values as well. You must restore them as needed.

■ Connect a terminal to TTYA and reset the system. After getting to the ok prompt
on the terminal, type: screen output to send output to the frame buffer. Use
setenv to change the default display device, if needed.

■ System has multiple frame buffers.

If your system has several plugged-in frame buffers, or it has one built-in frame
buffer and one or more plugged in, then it is possible that the wrong frame buffer is
being used as the console device. See “Setting the Console to a Specific Monitor” on
page 113.
110 OpenBoot 2.x Command Reference Manual • February 2000



System Boots From the Wrong Device
Problem: Your system is supposed to boot from the disk; instead, it boots from the
net.

There are two possible causes for this:

■ The diag-switch? NVRAM parameter is inadvertently set to true.

Interrupt the booting process with Stop-A. Type the following commands at the ok
prompt:

The system should now start booting from the disk.

■ The boot-device NVRAM parameter is set to net instead of disk.

Interrupt the booting process with Stop-A. Type the following commands at the ok
prompt:

Note that the preceding commands cause the system to boot from the disk defined
as disk (target 3) in the device aliases list. If you want to boot from disk1 (target 1),
disk2 (target 2), or disk3 (target 3), set boot-device accordingly.

Problem: Your system is booting from a disk instead of from the net.

■ boot-device is not set to net.

Interrupt the booting process with Stop-A. Type the following commands at the ok
prompt:

Problem: Your system is booting from the wrong disk. (For example, you have more
than one disk in your system. You want the system to boot from disk2, but the
system is booting from disk1 instead.)

■ boot-device is not set to the correct disk.

ok setenv diag-switch? false
ok boot

ok setenv boot-device disk
ok boot

ok setenv boot-device net
ok boot
Appendix D Troubleshooting Guide 111



Interrupt the booting process with Stop-A. Type the following commands at the ok
prompt:

System Will Not Boot From Ethernet
Problem: Your system fails to boot from the net.

The problem could be one of the following:

■ NIS maps are out of date.

Report the problem to your system administrator.

■ Ethernet cable is not plugged in.

Plug in the ethernet cable. The system should continue with the booting process.

■ Server is not responding: no carrier messages.

Report the problem to your system administrator.

■ tpe-link-test is disabled.

Refer to the troubleshooting information in your system documentation. (Note:
systems that do not have Twisted Pair Ethernet will not have the tpe-link-test
parameter.)

System Will Not Boot From Disk
Problem: You are booting from a disk and the system fails with the message: The
file just loaded does not appear to be executable.

■ The boot block is missing or corrupted.

Install a new boot block.

Problem: You are booting from a disk and the system fails with the message: Can’t
open boot device.

■ The disk may be powered down (especially if it is an external disk).

Turn on power to the disk, and make sure the SCSI cable is connected to the disk
and the system.

ok setenv boot-device disk2
ok boot
112 OpenBoot 2.x Command Reference Manual • February 2000



SCSI Problems
Problem: Your system has more than one disk installed, and you get
SCSI-related errors.

■ Your system might have duplicate SCSI target number settings.

Try the following procedure:

1. Unplug all but one of the disks.

2. At the ok prompt, type:

Note the target number and its corresponding unit number.

3. Plug in another disk and perform step b again.

4. If you get an error, change the target number of this disk to be one of the unused
target numbers.

5. Repeat steps b, c, and d until all the disks are plugged back in.

Setting the Console to a Specific Monitor
Problem: You have more than one monitor attached to the system, and the console is
not set to an intended monitor.

■ If you have more than one monitor attached to the system, the OpenBoot
firmware always assigns the console to the frame buffer specified by the
output-device NVRAM parameter. The default value of output-device is
screen, which is an alias for the first frame buffer that the firmware finds in the
system.

A common way to change this default is to change output-device to the
appropriate frame buffer:

ok probe-scsi-all

ok nvalias myscreen /obio/cgfourteen
ok setenv output-device myscreen
ok reset
Appendix D Troubleshooting Guide 113



Another way of setting the console to a specific monitor is to change the
sbus-probe-list NVRAM parameter.

If the frame buffer that you are choosing as the console is in slot 2, change sbus-
probe-list to probe slot 2 first:

ok show sbus-probe-list     (Display the current and default
values)
sbus-probe-list f0123 f0123 (Your system may have a different
number of SBus slots)
ok

ok setenv sbus-probe-list 23f01
ok reset
114 OpenBoot 2.x Command Reference Manual • February 2000



APPENDIX E

Forth Word Reference

This appendix contains the Forth commands supported by the OpenBoot firmware.

For the most part, the commands are listed in the order in which they were
introduced in the chapters. Some of the tables in this appendix show commands not
listed elsewhere in this manual. These additional commands (such as memory
mapping or output display primitives, or machine-specific register commands) are
also part of the set of words in the OpenBoot implementation of Forth; they are
included with relevant groups of commands.

TABLE E-1 Stack Item Notation

Notation Description

| Alternate stack results, for example: ( input -- adr len false | result true
).

? Unknown stack items (changed from ???).

??? Unknown stack items.

acf Code field address.

adr Memory address (generally a virtual address).

adr16 Memory address, must be 16-bit aligned.

adr32 Memory address, must be 32-bit aligned.

adr64 Memory address, must be 64-bit aligned.

byte bxxx 8-bit value (smallest byte in a 32-bit word).

char 7-bit value (smallest byte), high bit unspecified.

cnt
len
size

Count or length.

flag xxx? 0 = false; any other value = true (usually -1).

long Lxxx 32-bit value.
115



n n1 n2 n3 Normal signed values (32-bit).

+n u Unsigned, positive values (32-bit).

n[64]
(n.low n.hi)

Extended-precision (64-bit) numbers (2 stack items).

phys Physical address (actual hardware address).

pstr Packed string (adr len means unpacked string).

virt Virtual address (address used by software).

word wxxx 16-bit value (smallest two bytes in a 32-bit word).

TABLE E-2 Restricted Monitor Commands

Command Description

b [specifiers] Boot the operating system (same as boot at the ok prompt).

c Resume the execution of a halted program (same as go at ok
prompt).

n Enter the Forth Monitor.

TABLE E-3 Examining and Creating Device Aliases

Command Description

devalias Display all current device aliases.

devalias alias Display the device path name corresponding to alias.

devalias alias device-
path

Define an alias representing device-path.
If an alias with the same name exists, the new value supercedes
the old.

TABLE E-4 Commands for Browsing the Device Tree

Command Description

.attributes Display the names and values of the current node’s
properties.

cd device-path Select the indicated device node, making it the current
node.

cd node-name Search for a node with the given name in the subtree below
the current node, and select the first such node found.

TABLE E-1 Stack Item Notation (Continued)

Notation Description
116 OpenBoot 2.x Command Reference Manual • February 2000



cd .. Select the device node that is the parent of the current
node.

cd / Select the root machine node.

device-end De-select the current device node, leaving no node
selected.

ls Display the names of the current node’s children.

pwd Display the device path name that names the current node.

show-devs [device-path] Display all the devices known to the system directly
beneath a given level in the device hierarchy. show-devs
used by itself shows the entire device tree.

words Display the names of the current node’s methods.

TABLE E-5 Help Commands

Command Description

help List main help categories.

help category Show help for all commands in the category. Use only the
first word of the category description.

help command Show help for individual command (where available).

TABLE E-6 Common Options for the boot Command

Parameter Description

boot [device-specifier] [filename] [options]

TABLE E-4 Commands for Browsing the Device Tree

Command Description
Appendix E Forth Word Reference 117



[device-specifier] The name (full path name or alias) of the boot device. Typical values
include:
cdrom (CD-ROM drive)
disk (hard disk)
floppy (3-1/2" diskette drive)
net (Ethernet)
tape (SCSI tape)

[filename] The name of the program to be booted (for example, stand/diag).
filename is relative to the root of the selected device and partition (if
specified). If filename is not specified, the boot program uses the value
of the boot-file NVRAM parameter (see Chapter 3).

[options] -a - Prompt interactively for the device and name of the boot file.
-h - Halt after loading the program.
(These options are specific to the operating system, and may differ from system
to system.)

TABLE E-7 Diagnostic Test Commands

Command Description

probe-scsi Identify devices attached to the built-in SCSI bus.

probe-scsi-all [device-path] Perform probe-scsi on all SCSI buses installed in
the system below the specified device tree node. (If
device-path is absent, the root node is used.)

test device-specifier Execute the specified device’s self-test method. For
example:
test floppy - test the floppy drive, if installed
test /memory - test number of megabytes
specified in the selftest-#megs

NVRAM parameter; or test all of memory if
diag-switch? is true
test net - test the network connection

test-all [device-specifier] Test all devices (that have a built-in self-test
method) below the specified device tree node. (If
device-specifier is absent, the root node is used.)

watch-clock Test the clock function.

watch-net Monitor the network connection.

TABLE E-6 Common Options for the boot Command

Parameter Description
118 OpenBoot 2.x Command Reference Manual • February 2000



TABLE E-8 System Information Display Commands

Command Description

banner Display power-on banner.

show-sbus Display list of installed and probed SBus devices.

.enet-addr Display current Ethernet address.

.idprom Display ID PROM contents, formatted.

.traps Display a list of SPARC trap types.

.version Display version and date of the boot PROM.

TABLE E-9 NVRAM Configuration Parameters

Parameter Typical Default Description

auto-boot? true If true, boot automatically after power-on
or reset.

boot-device disk Device from which to boot.

boot-file empty string File to boot (an empty string lets
secondary booter choose default).

boot-from vmunix Boot device and file (1.x only).

boot-from-diag le()vmunix Diagnostic boot device and file (1.x only).

diag-device net Diagnostic boot source device.

diag-file empty string File from which to boot in diagnostic
mode.

diag-switch? false If true, run in diagnostic mode.

fcode-debug? false If true, include name fields for plug-in
device FCodes.

hardware-revision no default System version information.

input-device keyboard Power-on input device (usually
keyboard, ttya, or ttyb).

keyboard-click? false If true, enable keyboard click.

keymap no default Keymap for custom keyboard.

last-hardware-update no default System update information.

local-mac-address? false If true, network drivers use their own
MAC address, not system’s.

mfg-switch? false If true, repeat system self-tests until
interrupted with Stop-A.

nvramrc empty Contents of NVRAMRC.
Appendix E Forth Word Reference 119



oem-banner empty string Custom OEM banner (enabled by oem-
banner? true).

oem-banner? false If true, use custom OEM banner.

oem-logo no default Byte array custom OEM logo (enabled by
oem-logo? true).
Displayed in hexadecimal.

oem-logo? false If true, use custom OEM logo (else, use
Sun logo).

output-device screen Power-on output device (usually
screen, ttya, or ttyb).

sbus-probe-list 0123 Which SBus slots are probed and in what
order.

screen-#columns 80 Number of on-screen columns
(characters/line).

screen-#rows 34 Number of on-screen rows (lines).

scsi-initiator-id 7 SCSI bus address of host adapter, range
0-7.

sd-targets 31204567 Map SCSI disk units (1.x only).

security-#badlogins no default Number of incorrect security password
attempts.

security-mode none Firmware security level (options: none,
command, or full).

security-password no default Firmware security password (never
displayed). Do not set this directly.

selftest-#megs 1 Megabytes of RAM to test. Ignored if
diag-switch? is true.

skip-vme-loopback? false If true, POST does not do VMEbus
loopback tests.

st-targets 45670123 Map SCSI tape units (1.x only).

sunmon-compat? false If true, display Restricted Monitor
prompt (>).

testarea 0 One-byte scratch field, available for
read/write test.

tpe-link-test? true Enable 10baseT link test for built-in
twisted pair Ethernet.

ttya-mode 9600,8,n,1,- TTYA (baud rate, #bits, parity, #stop,
handshake).

TABLE E-9 NVRAM Configuration Parameters (Continued)

Parameter Typical Default Description
120 OpenBoot 2.x Command Reference Manual • February 2000



ttyb-mode 9600,8,n,1,- TTYB (baud rate, #bits, parity, #stop,
handshake).

ttya-ignore-cd true If true, operating system ignores carrier-
detect on TTYA.

ttyb-ignore-cd true If true, operating system ignores carrier-
detect on TTYB.

ttya-rts-dtr-off false If true, operating system does not assert
DTR and RTS on TTYA.

ttyb-rts-dtr-off false If true, operating system does not assert
DTR and RTS on TTYB.

use-nvramrc? false If true, execute commands in NVRAMRC
during system start-up.

version2? true If true, hybrid (1.x/2.x) PROM comes up
in version 2.x.

watchdog-reboot? false If true, reboot after watchdog reset.

TABLE E-10 Viewing/Changing Configuration Parameters

Command Description

printenv Display all current parameters and current default
values.
(Numbers are usually shown as decimal values.)
printenv parameter shows the current value of the
named parameter.

setenv parameter value Set parameter to the given decimal or text value.
(Changes are permanent, but usually only take effect
after a reset.)

set-default parameter Reset the value of the named parameter to the factory
default.

set-defaults Reset parameter values to the factory defaults.

TABLE E-9 NVRAM Configuration Parameters (Continued)

Parameter Typical Default Description
Appendix E Forth Word Reference 121



TABLE E-11 Configuration Parameter Command Primitives

Command Stack Diagram Description

nodefault-bytes parameter ( len -- )
Usage: ( -- adr len )

Create custom NVRAM
parameter. Use this command
in NVRAMRC to make the
parameter permanent.

parameter ( -- ??? ) Return the (current) field value
(data type is parameter-
dependent).

show parameter ( -- ) Display the (current) field
value (numbers shown in
decimal).

TABLE E-12 NVRAMRC Editor Commands

Command Description

nvalias alias
device-path

Store the command "devalias alias device-path" in NVRAMRC. The
alias persists until the nvunalias or set-defaults commands are
executed.

nvedit Enter the NVRAMRC editor. If data remains in the temporary buffer
from a previous nvedit session, resume editing those previous
contents. If not, read the contents of NVRAMRC into the temporary
buffer and begin editing it.

nvquit Discard the contents of the temporary buffer, without writing it to
NVRAMRC. Prompt for confirmation.

nvrecover Recover the contents of NVRAMRC if they have been lost as a result
of the execution of set-defaults; then enter the editor as with
nvedit. nvrecover fails if nvedit is executed between the time that
the NVRAMRC contents were lost and the time that nvrecover is
executed.

nvrun Execute the contents of the temporary buffer.

nvstore Copy the contents of the temporary buffer to NVRAMRC; discard the
contents of the temporary buffer.

nvunalias alias Delete the corresponding alias from NVRAMRC.
122 OpenBoot 2.x Command Reference Manual • February 2000



TABLE E-13 nvedit Keystroke Commands

Keystroke Description

Control-B Move backward one character.

Control-C Exit the NVRAMRC editor and return to the OpenBoot command
interpreter. The temporary buffer is preserved but is not written
back to NVRAMRC. (Use nvstore afterwards to write back the
temporary buffer.)

Control-F Move forward one character.

Control-K If at the end of a line, join the next line to the current line (that is,
delete the new line).

Control-L List all lines.

Control-N Move to the next line of the NVRAMRC editing buffer.

Control-O Insert a new line at the cursor position and stay on the current line.

Control-P Move to the previous line of the NVRAMRC editing buffer.

Delete Delete the previous character.

Return Insert a new line at the cursor position and advance to the next line.

TABLE E-14 Stack Manipulation Commands

Command Stack Diagram Description

-rot ( n1 n2 n3 -- n3 n1 n2 ) Inversely rotate 3 stack items.

>r ( n -- ) Move a stack item to the
return stack. (Use with
caution.)

?dup ( n -- n n | 0 ) Duplicate the top stack item
if it is non-zero.

2drop ( n1 n2 -- ) Remove 2 items from the
stack.

2dup ( n1 n2 -- n1 n2 n1 n2 ) Duplicate 2 stack items.

2over ( n1 n2 n3 n4 -- n1 n2 n3 n4 n1 n2 ) Copy second 2 stack items.

2rot ( n1 n2 n3 n4 n5 n6 -- n3 n4 n5 n6 n1 n2 ) Rotate 3 pairs of stack items.

2swap ( n1 n2 n3 n4 -- n3 n4 n1 n2 ) Exchange 2 pairs of stack
items.

3drop ( n1 n2 n3 -- ) Remove 3 items from the
stack.
Appendix E Forth Word Reference 123



3dup ( n1 n2 n3 -- n1 n2 n3 n1 n2 n3 ) Duplicate 3 stack items.

clear ( ??? -- ) Empty the stack.

depth ( ??? -- ??? +n ) Return the number of items
on the stack.

drop ( n -- ) Remove top item from the
stack.

dup ( n -- n n ) Duplicate the top stack item.

nip ( n1 n2 -- n2 ) Discard the second stack
item.

over ( n1 n2 -- n1 n2 n1 ) Copy second stack item to
top of stack.

pick ( ??? +n -- ??? n2 ) Copy +n-th stack item (1
pick = over).

r> ( -- n ) Move a return stack item to
the stack. (Use with caution.)

r@ ( -- n ) Copy the top of the return
stack to the stack.

roll ( ??? +n -- ? ) Rotate +n stack items (2 roll
= rot).

rot ( n1 n2 n3 -- n2 n3 n1 ) Rotate 3 stack items.

swap ( n1 n2 -- n2 n1 ) Exchange the top 2 stack
items.

tuck ( n1 n2 -- n2 n1 n2 ) Copy top stack item below
second item.

TABLE E-15 Colon Definition Words

Command Stack Diagram Description

: name ( -- ) Start creating a new definition.

; ( -- ) Finish creating a new definition.

TABLE E-14 Stack Manipulation Commands (Continued)

Command Stack Diagram Description
124 OpenBoot 2.x Command Reference Manual • February 2000



TABLE E-16 Arithmetic Functions

Command Stack Diagram Description

* ( n1 n2 -- n3 ) Multiply n1 * n2.

+ ( n1 n2 -- n3 ) Add n1 + n2.

- ( n1 n2 -- n3 ) Subtract n1 - n2.

/ ( n1 n2 -- quot ) Divide n1 / n2; remainder is discarded.

/mod ( n1 n2 -- rem quot ) Remainder, quotient of n1 / n2.

<< ( n1 +n -- n2 ) Left-shift n1 by +n bits.

>> ( n1 +n -- n2 ) Right-shift n1 by +n bits.

>>a ( n1 +n -- n2 ) Arithmetic right-shift n1 by +n bits.

*/ ( n1 n2 n3 -- n4 ) n1 * n2 / n3.

*/mod ( n1 n2 n3 -- rem quot ) Remainder, quotient of n1 * n2 / n3.

1+ ( n1 -- n2 ) Add 1.

1- ( n1 -- n2 ) Subtract 1.

2* ( n1 -- n2 ) Multiply by 2.

2+ ( n1 -- n2 ) Add 2.

2- ( n1 -- n2 ) Subtract 2.

2/ ( n1 -- n2 ) Divide by 2.

abs ( n -- u ) Absolute value.

aligned ( n1 -- n2 ) Round n1 up to the next multiple of 4.

and ( n1 n2 -- n3 ) Bitwise logical AND.

bounds ( startadr len -- endadr
startadr )

Convert startadr len to endadr
startadr for do loop.

bljoin ( b.low b2 b3 b.hi -- long ) Join four bytes to form a 32-bit longword.

bwjoin ( b.low b.hi -- word ) Join two bytes to form a 16-bit word.

flip ( word1 -- word2 ) Swap the bytes within a 16-bit word.

lbsplit ( long -- b.low b2 b3 b.hi ) Split a 32-bit longword into four bytes.

lwsplit ( long -- w.low w.hi ) Split a 32-bit longword into two 16-bit
words.

max ( n1 n2 -- n3 ) n3 is maximum of n1 and n2.

min ( n1 n2 -- n3 ) n3 is minimum of n1 and n2.
Appendix E Forth Word Reference 125



mod ( n1 n2 -- rem ) Remainder of n1 / n2.

negate ( n1 -- n2 ) Change the sign of n1.

not ( n1 -- n2 ) Bitwise ones complement.

or ( n1 n2 -- n3 ) Bitwise logical OR.

u*x ( u1 u2 -- product[64] ) Multiply 2 unsigned 32-bit numbers; yield
unsigned 64-bit product.

u/mod ( u1 u2 -- un.rem un.quot ) Divide unsigned 32-bit number by an
unsigned 32-bit number; yield 32-bit
remainder and quotient.

u2/ ( u1 -- u2 ) Logical right shift 1 bit; zero shifted into
vacated sign bit.

wbsplit ( word -- b.low b.hi ) Split 16-bit word into two bytes.

wflip ( long1 -- long2 ) Swap halves of 32-bit longword.

wljoin ( w.low w.hi -- long ) Join two words to form a longword.

x+ ( n1[64] n2[64] -- n3[64] ) Add two 64-bit numbers.

x- ( n1[64] n2[64] -- n3[64] ) Subtract two 64-bit numbers.

xor ( n1 n2 -- n3 ) Bitwise exclusive OR.

xu/mod ( u1[64] u2 -- rem quot ) Divide unsigned 64-bit number by
unsigned 32-bit number; yield 32-bit
remainder and quotient.

TABLE E-17 Conversion Operators

Command Stack Diagram Description

/c ( -- n ) The number of bytes in a byte: 1.

/c* ( n1 -- n2 ) Multiply n1 by /c.

ca+ ( adr1 index -- adr2 ) Increment adr1 by index times /c.

ca1+ ( adr1 -- adr2 ) Increment adr1 by /c.

/L ( -- n ) Number of bytes in a longword; 4.

/L* ( n1 -- n2 ) Multiply n1 by /L.

La+ ( adr1 index -- adr2 ) Increment adr1 by index times /L.

La1+ ( adr1 -- adr2 ) Increment adr1 by /L.

/n ( -- n ) Number of bytes in a normal; 4.

TABLE E-16 Arithmetic Functions (Continued)

Command Stack Diagram Description
126 OpenBoot 2.x Command Reference Manual • February 2000



/n* ( n1 -- n2 ) Multiply n1 by /n.

na+ ( adr1 index -- adr2 ) Increment adr1 by index times /n.

na1+ ( adr1 -- adr2 ) Increment adr1 by /n.

/w ( -- n ) Number of bytes in a 16-bit word; 2.

/w* ( n1 -- n2 ) Multiply n1 by /w.

wa+ ( adr1 index -- adr2 ) Increment adr1 by index times /w.

wa1+ ( adr1 -- adr2 ) Increment adr1 by /w.

TABLE E-18 Memory Access Commands

Command Stack Diagram Description

! ( n adr16 -- ) Store a 32-bit number at adr16, must
be 16-bit aligned.

+! ( n adr16 -- ) Add n to the 32-bit number stored at
adr16, must be 16-bit aligned.

<w@ ( adr16 -- n ) Fetch signed 16-bit word at adr16,
must be 16-bit aligned.

? ( adr16 -- ) Display the 32-bit number at adr16,
must be 16-bit aligned.

@ ( adr16 -- n ) Fetch a 32-bit number from adr16,
must be 16-bit aligned.

2! ( n1 n2 adr16 -- ) Store 2 numbers at adr16, n2 at
lower address, must be 16-bit aligned.

2@ ( adr16 -- n1 n2 ) Fetch 2 numbers from adr16, n2 from
lower address, must be 16-bit aligned.

blank ( adr u -- ) Set u bytes of memory to space
(decimal 32).

c! ( n adr -- ) Store low byte of n at adr.

c? ( adr -- ) Display the byte at adr.

c@ ( adr -- byte ) Fetch a byte from adr.

cmove ( adr1 adr2 u -- ) Copy u bytes from adr1 to adr2,
starting at low byte.

cmove> ( adr1 adr2 u -- ) Copy u bytes from adr1 to adr2,
starting at high byte.

TABLE E-17 Conversion Operators (Continued)

Command Stack Diagram Description
Appendix E Forth Word Reference 127



cpeek ( adr -- false | byte true ) Fetch the byte at adr. Return the data
and true if the access was successful.
Return false if a read access error
occurred.

cpoke ( byte adr -- okay? ) Store the byte to adr. Return true if
the access was successful.
Return false if a write access error
occurred.

comp ( adr1 adr2 len -- n ) Compare two byte arrays, n = 0 if
arrays are identical,
n = 1 if first byte that is different is
greater in array#1,
n = -1 otherwise.

d! ( n1 n2 adr64 -- ) Store two 32-bit numbers at adr64,
must be 64-bit aligned.
Order is implementation-dependent.

d? ( adr64 -- ) Display the two 32-bit numbers at
adr64, must be 64-bit aligned.
Order is implementation-dependent.

d@ ( adr64-- n1 n2 ) Fetch two 32-bit numbers from
adr64, must be 64-bit aligned.
Order is implementation-dependent.

dump ( adr len -- ) Display len bytes of memory starting
at adr.

erase ( adr u -- ) Set u bytes of memory to 0.

fill ( adr size byte -- ) Set size bytes of memory to byte.

L! ( n adr32 -- ) Store a 32-bit number at adr32, must
be 32-bit aligned.

L? ( adr32 -- ) Display the 32-bit number at adr32,
must be 32-bit aligned.

L@ ( adr32 -- long ) Fetch a 32-bit number from adr32,
must be 32-bit aligned.

lflips ( adr len -- ) Exchange 16-bit words within 32-bit
longwords in specified region.

lpeek ( adr32 -- false | long true ) Fetch the 32-bit quantity at adr32.
Return the data and true if the access
was successful. Return false if a
read access error occurred.

TABLE E-18 Memory Access Commands (Continued)

Command Stack Diagram Description
128 OpenBoot 2.x Command Reference Manual • February 2000



lpoke ( long adr32 -- okay? ) Store the 32-bit quantity at adr32.
Return true if the access was
successful. Return false if a a write
access error occurred.

move ( adr1 adr2 u -- ) Copy u bytes from adr1 to adr2,
handle overlap properly.

off ( adr16 -- ) Store false (32-bit 0) at adr16.

on ( adr16 -- ) Store true (32-bit -1) at adr16.

unaligned-L! ( long adr -- ) Store a 32-bit number, any alignment

unaligned-L@ ( adr -- long ) Fetch a 32-bit number, any alignment.

unaligned-w! ( word adr -- ) Store a 16-bit number, any alignment.

unaligned-w@ ( adr -- word ) Fetch a 16-bit number, any alignment.

w! ( n adr16 -- ) Store a 16-bit number at adr16, must
be 16-bit aligned.

w? ( adr16 -- ) Display the 16-bit number at adr16,
must be 16-bit aligned.

w@ ( adr16 -- word ) Fetch a 16-bit number from adr16,
must be 16-bit aligned.

wflips ( adr len -- ) Exchange bytes within 16-bit words in
specified region.

wpeek ( adr16 -- false | word true ) Fetch the 16-bit quantity at adr16.
Return the data and true if the access
was successful. Return false if a
read access error occurred.

wpoke ( word adr16 -- okay? ) Store the 16-bit quantity to adr16.
Return true if the access was
successful. Return false if a write
access error occurred.

TABLE E-19 Memory Mapping Commands

Command Stack Diagram Description

alloc-mem ( size -- virt ) Allocate and map size bytes of
available memory; return the virtual
address. Unmap with free-mem.

free-mem ( virt size -- ) Free memory allocated by alloc-mem.

free-virtual ( virt size -- ) Undo mappings created with memmap.

TABLE E-18 Memory Access Commands (Continued)

Command Stack Diagram Description
Appendix E Forth Word Reference 129



map? ( virt -- ) Display memory map information for
the virtual address.

memmap ( phys space size -- virt ) Map a region of physical addresses;
return the allocated virtual address.
Unmap with free-virtual.

obio ( -- space ) Specify the device address space for
mapping.

obmem ( -- space ) Specify the onboard memory address
space for mapping.

sbus ( -- space ) Specify the SBus address space for
mapping.

TABLE E-20 Memory Mapping Primitives

Command Stack Diagram Description

cacheable ( space -- cache-
space )

Modify the address space so that the subsequent
address mapping is made cacheable.

iomap? ( virt -- ) Display IOMMU page map entry for the virtual
address. The stack diagram shown applies to Sun-4m
machines.

iomap-page ( phys space virt --
)

Map physical page given by phys and space to the
virtual address. The stack diagram shown applies to
Sun-4m machines.

iomap-
pages

( phys space virt
size -- )

Perform consecutive iomap-pages to map a region
of memory given by size. The stack diagram shown
applies to Sun-4m machines.

iopgmap@ ( virt -- pte | 0 ) Return IOMMU page map entry for the virtual
address. The stack diagram shown applies to Sun-4m
machines.

iopgmap! ( pte virt -- ) Store a new page map entry for the virtual address.
The stack diagram shown applies to Sun-4m
machines.

map-page ( phys space virt --
)

Map one page of memory starting at address phys
on to virtual address virt in the given address
space. All addresses are truncated to lie on a page
boundary.

map-pages ( phys space virt
size -- )

Perform consecutive map-pages to map a region of
memory to the given size.

map-region ( region# virt -- ) Map a region.

TABLE E-19 Memory Mapping Commands (Continued)

Command Stack Diagram Description
130 OpenBoot 2.x Command Reference Manual • February 2000



map-
regions

( region# virt size -
- )

Map successive regions.

map-
segments

( smentry virt len -
- )

Perform consecutive smap!s to map a region of
memory.

pgmap! ( pmentry virt -- ) Store a new page map entry for the virtual address.

pgmap? ( virt -- ) Display the page map entry (decoded and in English)
corresponding to the virtual address.

pgmap@ ( virt -- pmentry ) Return the page map entry for the virtual address.

pagesize ( -- size ) Return the size of a page, often 4K (hex 1000).

rmap! ( rmentry virt -- ) Store a new region map entry for the virtual address.

rmap@ ( virt -- rmentry ) Return the region map entry for the virtual address.

segmentsiz
e

( -- size ) Return the size of a segment, often 256K (hex 40000).

smap! ( smentry virt -- ) Store a new segment map entry for the virtual
address.

smap? ( virt -- ) Formatted display of the segment map entry for the
virtual address.

smap@ ( virt -- smentry ) Return the segment map entry for the virtual address.

TABLE E-21 Cache Manipulation Commands

Command Stack Diagram Description

clear-
cache

( -- ) Invalidate all cache entries.

cache-off ( -- ) Disable the cache.

cache-on ( -- ) Enable the cache.

cdata! ( data offset -- ) Store the 32-bit data at the cache offset.

cdata@ ( offset -- data ) Fetch (return) data from the cache offset.

ctag! ( value offset -- ) Store the tag value at the cache offset.

ctag@ ( offset -- value ) Return the tag value at the cache offset.

flush-
cache

( -- ) Write back any pending data from the cache.

TABLE E-20 Memory Mapping Primitives (Continued)

Command Stack Diagram Description
Appendix E Forth Word Reference 131



TABLE E-22 Reading/Writing Machine Registers in Sun-4D Machines

Command Stack Diagram Description

SuperSPARC™ Module Register Access

cxr! ( data -- ) Write MMU context register.

mcr! ( data -- ) Write module control register.

cxr@ ( -- data ) Read MMU context register.

mcr@ ( -- data ) Read MMU control register.

sfsr@ ( -- data ) Read synchronous fault status register.

sfar@ ( -- data ) Read synchronous fault address register.

afsr@ ( -- data ) Read asynchronous fault status register.

afar@ ( -- data ) Read asynchronous fault address register.

.mcr ( -- ) Display module control register.

.sfsr ( -- ) Display synchronous fault status register.

MXCC Interrupt Register Access

interrupt-enable! ( data -- ) Write interrupt mask register.

interrupt-enable@ ( -- data ) Read interrupt mask register.

interrupt-
pending@

( -- data ) Read interrupt pending register.

interrupt-clear! ( data -- ) Write interrupt clear register.

BootBus Register Access

control! ( datat -- ) Write BootBus control register.

control@ ( -- datat ) Read BootBus control register.

status1@ ( -- datat ) Read BootBus status1 register.

status2@ ( -- datat ) Read BootBus status2 register.
132 OpenBoot 2.x Command Reference Manual • February 2000



TABLE E-23 Reading/Writing Machine Registers in Sun-4M Machines

Command Stack Diagram Description

.mcr ( -- ) Display module control register.

.mfsr ( -- ) Display memory controller fault status register.

.sfsr ( -- ) Display synchronous fault status register.

.sipr ( -- ) Display system interrupt pending register.

aux! ( data -- ) Write auxiliary register.

aux@ ( -- data ) Read auxiliary register.

cxr! ( data -- ) Write MMU context register.

cxr@ ( -- data ) Read MMU context register.

interrupt-
enable!

( data -- ) Write system interrupt target mask register.

interrupt-
enable@

( -- data ) Read system interrupt target mask register.

iommu-ctl! ( data -- ) Write IOMMU control register.

iommu-ctl@ ( -- data) Read IOMMU control register.

mcr! ( data -- ) Write module control register.

mcr@ ( -- data ) Read module control register.

mfsr! ( data -- ) Write memory controller fault status register.

mfsr@ ( -- data ) Read memory controller fault status register.

msafar@ ( -- data ) Read MBus-to-SBus asynchronous fault address
register.

msafsr! ( data -- ) Write MBus-to-SBus asynchronous fault status
register.

msafsr@ ( -- data ) Read MBus-to-SBus asynchronous fault status
register.

sfsr! ( data -- ) Write synchronous fault status register.

sfsr@ ( -- data ) Read synchronous fault status register.

sfar! ( data -- ) Write synchronous fault address register.

sfar@ ( -- data ) Read synchronous fault address register.
Appendix E Forth Word Reference 133



TABLE E-24 Reading/Writing Machine Registers in Sun-4C Machines

Command Stack Diagram Description

aerr! ( data -- ) Write asynchronous error register.

aerr@ ( -- data ) Read asynchronous error register.

averr! ( data -- ) Write asynchronous error virtual address
register.

averr@ ( -- data ) Read asynchronous error virtual address
register.

aux! ( data -- ) Write auxiliary register.

aux@ ( -- data ) Read auxiliary register.

context! ( data -- ) Write context register.

context@ ( -- data ) Read context register (MMU context).

dcontext@ ( -- data ) Read context register (cache context).

enable! ( data -- ) Write system enable register.

enable@ ( -- data ) Read system enable register.

interrupt-enable! ( data -- ) Write interrupt enable register.

interrupt-enable@ ( -- data ) Read interrupt enable register.

serr! ( data -- ) Write synchronous error register.

serr@ ( -- data ) Read synchronous error register.

sverr! ( data -- ) Write synchronous error virtual address
register.

sverr@ ( -- data ) Read synchronous error virtual address
register.

TABLE E-25 Alternate Address Space Access Commands

Command Stack Diagram Description

spacec! ( byte adr asi -- ) Store the byte at asi and address.

spacec? ( adr asi -- ) Display the byte at asi and address.

spacec@ ( adr asi -- byte ) Fetch the byte from asi and address.

spaced! ( n1 n2 adr asi -- ) Store the two 32-bit words at asi and address.
Order is implementation-dependent.

spaced? ( adr asi -- ) Display the two 32-bit words at asi and address.
Order is implementation-dependent.

spaced@ ( adr asi -- n1 n2 ) Fetch the two 32-bit words from asi and address.
Order is implementation-dependent.
134 OpenBoot 2.x Command Reference Manual • February 2000



spaceL! ( long adr asi -- ) Store the 32-bit word at asi and address.

spaceL? ( adr asi -- ) Display the 32-bit word at asi and address.

spaceL@ ( adr asi -- long ) Fetch the 32-bit word from asi and address.

spacew! ( word adr asi -- ) Store the 16-bit word at asi and address.

spacew? ( adr asi -- ) Display the 16-bit word at asi and address.

spacew@ ( adr asi -- word ) Fetch the 16-bit word from asi and address.

TABLE E-26 Defining Words

Command Stack Diagram Description

: name ( -- )
Usage: ( ??? -- ? )

Start creating a new colon definition.

; ( -- ) Finish creating a new colon definition.

alias new-name
old-name

( -- )
Usage: ( ??? -- ? )

Create new-name with the same
responses as old-name.

buffer: name ( size -- )
Usage: ( -- adr64 )

Create a named array in temporary
storage.

constant name ( n -- )
Usage: ( -- n )

Define a constant (for example, 3
constant bar).

2constant name ( n1 n2 -- )
Usage: ( -- n1 n2 )

Define a 2-number constant.

create name ( -- )
Usage: ( -- adr16 )

Generic defining word.

defer name ( -- )
Usage: ( ??? -- ? )

Define a word for forward references
or execution vectors using code field
address.

does> ( -- adr16 ) Start the run-time clause for defining
words.

field name ( offset size -- offset+size )
Usage: ( adr -- adr+offset )

Create a named offset pointer.

struct ( -- 0 ) Initialize for field creation.

value name ( n -- )
Usage: ( -- n )

Create a changeable, named 32-bit
quantity.

variable name ( -- )
Usage: ( -- adr16 )

Define a variable.

TABLE E-25 Alternate Address Space Access Commands

Command Stack Diagram Description
Appendix E Forth Word Reference 135



TABLE E-27 Dictionary Searching Commands

Command Stack Diagram Description

’ name ( -- acf ) Find the named word in the
dictionary.
Returns the code field address. Use
outside definitions.

[’] name ( -- acf ) Similar to ’ but is used either inside
or outside definitions.

.calls ( acf -- ) Display a list of all words that call
the word whose compilation address
is acf.

$find ( adr len -- adr len false | acf n ) Find a word. n = 0 if not found, n = 1
if immediate,
n = -1 otherwise.

find ( pstr -- pstr false | acf n ) Search for a word in the dictionary.
The word to be found is indicated by
pstr. n = 0 if not found, n = 1 if
immediate,
n = -1 otherwise.

see thisword ( -- ) Decompile the named command.

(see) ( acf -- ) Decompile the word indicated by the
code field address.

sift ( pstr -- ) Display names of all dictionary
entries containing the string pointed
to by pstr.

sifting ccc ( -- ) Display names of all dictionary
entries containing the sequence of
characters. ccc contains no spaces.

words ( -- ) Display all visible words in the
dictionary.
136 OpenBoot 2.x Command Reference Manual • February 2000



TABLE E-28 Dictionary Compilation Commands

Command Stack Diagram Description

, ( n -- ) Place a number in
the dictionary.

c, ( byte -- ) Place a byte in the
dictionary.

w, ( word -- ) Place a 16-bit
number in the
dictionary.

L, ( long -- ) Place a 32-bit
number in the
dictionary.

[ ( -- ) Begin interpreting.

] ( -- ) End interpreting,
resume
compilation.

allot ( n -- ) Allocate n bytes in
the dictionary.

>body ( acf -- apf ) Find parameter
field address from
compilation
address.

body> ( apf -- acf ) Find compilation
address from
parameter field
address.

compile ( -- ) Compile next word
at run time.

[compile] name ( -- ) Compile the next
(immediate) word.

forget name ( -- ) Remove word from
dictionary and all
subsequent words.

here ( -- adr ) Address of top of
dictionary.

immediate ( -- ) Mark the last
definition as
immediate.

is name ( n -- ) Install a new action
in a defer word or
value.
Appendix E Forth Word Reference 137



literal ( n -- ) Compile a number.

origin ( -- adr ) Return the address
of the start of the
Forth system.

patch new-word old-word word-to-patch ( -- ) Replace old-word
with new-word in
word-to-patch.

(patch ( new-n old-n acf -- ) Replace old-n
with new-n in
word indicated
by acf.

recursive ( -- ) Make the name of
the colon definition
being compiled
visible in the
dictionary, and thus
allow the name of
the word to be used
recursively in its
own definition.

state ( -- adr ) Variable that is
non-zero in compile
state.

TABLE E-28 Dictionary Compilation Commands (Continued)

Command Stack Diagram Description
138 OpenBoot 2.x Command Reference Manual • February 2000



TABLE E-29 Assembly Language Programming

Command Stack Diagram Description

code name ( -- )
Usage: ( ??? -- ? )

Begin the creation of an assembly language routine
called name. Commands that follow are interpreted
as assembler mnemonics. Note that if the
assembler is not installed, code is still present,
except that machine code must be entered
numerically (for example, in hex) with “,”.

c; ( -- ) End the creation of an assembly language routine.
Automatically assemble the Forth interpreter
next function so that the created assembly-code
word, when executed, returns control to the calling
routine as usual.

label name ( -- )
Usage: ( -- adr16 )

Begin the creation of an assembly language routine
called name. Words created with label leave the
address of the code on the stack when executed.
The commands that follow are interpreted as
assembler mnemonics. As with code, label is
present even if the assembler is not installed.

end-code ( -- ) End the assembly language patch started with
label.

TABLE E-30 Basic Number Display

Command Stack Diagram Description

. ( n -- ) Display a number in the current base.

.r ( n size -- ) Display a number in a fixed width field.

.s ( -- ) Display contents of data stack.

showstack ( -- ) Execute .s automatically before each ok
prompt.

u. ( u -- ) Display an unsigned number.

u.r ( u size -- ) Display an unsigned number in a fixed width
field.

TABLE E-31 Changing the Number Base

Command
Stack
Diagram Description

base ( -- adr ) Variable containing number base.

binary ( -- ) Set the number base to 2.

decimal ( -- ) Set the number base to 10.
Appendix E Forth Word Reference 139



d# number ( -- n ) Interpret the next number in decimal; base is unchanged.

hex ( -- ) Set the number base to 16.

h# number ( -- n ) Interpret the next number in hex; base is unchanged.

.d ( n -- ) Display n in decimal without changing base.

.h ( n -- ) Display n in hex without changing base.

TABLE E-32 Numeric Output Word Primitives

Command Stack Diagram Description

# ( +L1 -- +L2 ) Convert a digit in pictured
numeric output.

#> ( L -- adr +n ) End pictured numeric output.

<# ( -- ) Initialize pictured numeric
output.

(.) ( n -- ) Convert a number to a string.

(u.) ( -- adr len ) Convert unsigned to string.

digit ( char base -- digit true | char false ) Convert a character to a digit.

hold ( char -- ) Insert the char in the pictured
numeric output string.

$number ( adr len -- true | n false ) Convert a string to a number.

#s ( L -- 0 ) Convert the rest of the digits in
pictured numeric output.

sign ( n -- ) Set sign of pictured output.

TABLE E-33 Controlling Text Input

Command Stack Diagram Description

( ccc ) ( -- ) Begin a comment.

\ rest-of-line ( -- ) Skip the rest of the line.

ascii ccc ( -- char ) Get numerical value of first ASCII character of
next word.

expect ( adr +n -- ) Get a line of edited input from the assigned
input device’s keyboard; store at adr.

TABLE E-31 Changing the Number Base (Continued)

Command
Stack
Diagram Description
140 OpenBoot 2.x Command Reference Manual • February 2000



key ( -- char ) Read a character from the assigned input
device’s keyboard.

key? ( -- flag ) True if a key has been typed on the input
device’s keyboard.

span ( -- adr16 ) Variable containing the number of characters
read by expect.

word ( char -- pstr ) Collect a string delimited by char from input
string and place in memory at pstr.

TABLE E-34 Displaying Text Output

Command Stack Diagram Description

." ccc" ( -- ) Compile a string for later display.

(cr ( -- ) Move the output cursor back to the beginning of the
current line.

cr ( -- ) Terminate a line on the display and go to the next line.

emit ( char -- ) Display the character.

exit? ( -- flag ) Enable the scrolling control prompt: More
[<space>,<cr>,q] ?
The return flag is true if the user wants the output to be
terminated.

space ( -- ) Display a space character.

spaces ( +n -- ) Display +n spaces.

type ( adr +n -- ) Display n characters.

TABLE E-35 Formatted Output

Command Stack Diagram Description

#line ( -- adr16 ) Variable holding the line number on the output
device.

#out ( -- adr16 ) Variable holding the column number on the output
device.

TABLE E-33 Controlling Text Input (Continued)

Command Stack Diagram Description
Appendix E Forth Word Reference 141



TABLE E-36 Manipulating Text Strings

Command Stack Diagram Description

", ( adr len -- ) Compile an array of bytes
from adr of length len, at
the top of the dictionary as
a packed string.

" ccc" ( -- adr len ) Collect an input stream
string, either interpreted or
compiled. Within the string,
"(00,ff...) can be used
to include arbitrary byte
values.

.( ccc) ( -- ) Display a string
immediately.

-trailing ( adr +n1 -- adr +n2 ) Remove trailing spaces.

bl ( -- char ) ASCII code for the space
character; decimal 32.

count ( pstr -- adr +n ) Unpack a packed string.

lcc ( char -- lowercase-char ) Convert a character to
lowercase.

left-parse-
string

( adr len char -- adrR lenR adrL lenL ) Split a string at the given
delimiter (which is
discarded).

pack ( adr len pstr -- pstr ) Make a packed string from
adr len; place it at pstr.

p" ccc" ( -- pstr ) Collect a string from the
input stream; store as a
packed string.

upc ( char -- uppercase-char ) Convert a character to
uppercase.
142 OpenBoot 2.x Command Reference Manual • February 2000



TABLE E-37 I/O Redirection Commands

Command Stack Diagram Description

input ( device -- ) Select device (ttya, ttyb, keyboard, or “ device-
specifier”) for subsequent input.

io ( device -- ) Select device for subsequent input and output.

output ( device -- ) Select device (ttya, ttyb, screen, or “ device-
specifier”) for subsequent output.

TABLE E-38 ASCII Constants

Command Stack Diagram Description

bell ( -- n ) ASCII code for the bell character; decimal 7.

bs ( -- n ) ASCII code for the backspace character; decimal 8.

TABLE E-39 Line Editor Commands

Command Function

Control-A Go to start of line.

Control-B Go backward one character.

Control-D Erase this character.

Control-E Go to end of line.

Control-F Go forward one character.

Control-H Erase previous character (also Delete or Back Space keys).

Control-K Erase forward, from here to end of line.

Control-L Show command history list, then re-type line.

Control-N Recall subsequent command line.

Control-P Recall previous command line.

Control-Q Quote next character (to type a control character).

Control-R Re-type line.

Control-U Erase entire line.

Control-W Erase previous word.
Appendix E Forth Word Reference 143



Control-Y Insert save buffer contents before the cursor.

Control-
space

Complete the current command.

Control-/ Show all possible matches/completions.

Control-? Show all possible matches/completions.

Control-} Show all possible matches/completions.

Esc-B Go backward one word.

Esc-D Erase this portion of word, from here to end of word.

Esc-F Go forward one word.

Esc-H Erase previous portion of word (also Control-W).

TABLE E-40 Comparison Commands

Command Stack Diagram Description

< ( n1 n2 -- flag ) True if n1 < n2.

<= ( n1 n2 -- flag ) True if n1 <= n2.

<> ( n1 n2 -- flag ) True if n1 <> n2.

= ( n1 n2 -- flag ) True if n1 = n2.

> ( n1 n2 -- flag ) True if n1 > n2.

>= ( n1 n2 -- flag ) True if n1 >= n2.

0< ( n -- flag ) True if n < 0.

0<= ( n -- flag ) True if n <= 0.

0<> ( n -- flag ) True if n <> 0.

0= ( n -- flag ) True if n = 0 (also inverts any flag).

0> ( n -- flag ) True if n > 0.

0>= ( n -- flag ) True if n >= 0.

between ( n min max -- flag ) True if min <= n <= max.

false ( -- 0 ) The value FALSE, which is 0.

true ( -- -1 ) The value TRUE, which is -1.

u< ( u1 u2 -- flag ) True if u1 < u2, unsigned.

TABLE E-39 Line Editor Commands (Continued)

Command Function
144 OpenBoot 2.x Command Reference Manual • February 2000



u<= ( u1 u2 -- flag ) True if u1 <= u2, unsigned.

u> ( u1 u2 -- flag ) True if u1 > u2, unsigned.

u>= ( u1 u2 -- flag ) True if u1 >= u2, unsigned.

within ( n min max -- flag ) True if min <= n < max.

TABLE E-41 if-then-else Commands

Command Stack Diagram Description

else ( -- ) Execute the following code if if failed.

if ( flag -- ) Execute following code if flag is true.

then ( -- ) Terminate if...then...else.

TABLE E-42 case Statement Commands

Command Stack Diagram Description

case ( selector -- selector ) Begin a
case...endcase
conditional.

endcase ( selector | {empty} -- ) Terminate a
case...endcase
conditional.

endof ( -- ) Terminate an
of...endof clause
within a case...endcase

of ( selector test-value -- selector | {empty} ) Begin an of...endof
clause within a case
conditional.

TABLE E-43 begin (Conditional) Loop Commands

Command Stack Diagram Description

again ( -- ) End a begin...again infinite loop.

begin ( -- ) Begin a begin...while...repeat, begin...until,
or begin...again loop.

TABLE E-40 Comparison Commands (Continued)

Command Stack Diagram Description
Appendix E Forth Word Reference 145



repeat ( -- ) End a begin...while...repeat loop.

until ( flag -- ) Continue executing a begin...until loop until flag
is true.

while ( flag -- ) Continue executing a begin...while...repeat loop
while
flag is true.

TABLE E-44 do (Counted) Loop Commands

Command Stack Diagram Description

+loop ( n -- ) End a do...+loop construct; add n to loop index and
return to do (if n < 0, index goes from start to end
inclusive).

?do ( end start -- ) Begin ?do...loop to be executed 0 or more times. Index
goes from start to end-1 inclusive. If end = start, loop
is not executed.

?leave ( flag -- ) Exit from a do...loop if flag is non-zero.

do ( end start -- ) Begin a do...loop. Index goes from start to end-1
inclusive.
Example: 10 0 do i . loop (prints 0 1 2...d e f).

i ( -- n ) Loop index.

j ( -- n ) Loop index for next enclosing loop.

leave ( -- ) Exit from do...loop.

loop ( -- ) End of do...loop.

TABLE E-45 Program Execution Control Commands

Command Stack Diagram Description

abort ( -- ) Abort current execution and interpret keyboard
commands.

abort" ccc" ( abort? -- ) If flag is true, abort and display message.

eval ( adr len -- ) Interpret Forth source from an array.

TABLE E-43 begin (Conditional) Loop Commands

Command Stack Diagram Description
146 OpenBoot 2.x Command Reference Manual • February 2000



execute ( acf -- ) Execute the word whose code field address is on the
stack.

exit ( -- ) Return from the current word. (Cannot be used in
counted loops.)

quit ( -- ) Same as abort, but leave stack intact.

TABLE E-46 File Loading Commands

Command Stack Diagram Description

?go ( -- ) Execute Forth, FCode, or binary programs.

boot [specifiers] -h ( -- ) Load file from specified source.

byte-load ( adr span -- ) Interpret loaded FCode binary file. span is
usually 1.

dl ( -- ) Load a Forth file over a serial line with TIP
and interpret. Type:
~C cat filename
^-D

dlbin ( -- ) Load a binary file over a serial line with TIP.
Type: ~C cat filename

dload filename ( adr -- ) Load the specified file over Ethernet at the
given address.

eval ( adr len -- ) Interpret loaded Forth text file.

go ( -- ) Begin executing a previously-loaded binary
program, or resume executing an interrupted
program.

init-program ( -- ) Initialize to execute a binary file.

load device-specifier
argument

( -- ) Load data from specified device into memory
at the address given by load-base.

load-base ( -- adr ) Address at which load places the data it
reads from a device.

TABLE E-45 Program Execution Control Commands

Command Stack Diagram Description
Appendix E Forth Word Reference 147



TABLE E-47 Disassembler Commands

Command Stack Diagram Description

+dis ( -- ) Continue disassembling where the last disassembly left
off.

dis ( adr -- ) Begin disassembling at the given address.

TABLE E-48 SPARC Register Commands

Command Stack Diagram Description

%f0 through %f31 ( -- value ) Return the value in the given floating point
register.

%fsr ( -- value ) Return the value in the given floating point
register.

%g0 through %g7 ( -- value ) Return the value in the given register.

%i0 through %i7 ( -- value ) Return the value in the given register.

%L0 through %L7 ( -- value ) Return the value in the given register.

%o0 through %o7 ( -- value ) Return the value in the given register.

%pc %npc %psr ( -- value ) Return the value in the given register.

%y %wim %tbr ( -- value ) Return the value in the given register.

.fregisters ( -- ) Display values in %f0 through %f31.

.locals ( -- ) Display the values in the i, L and o registers.

.psr ( -- ) Formatted display of the %psr data.

.registers ( -- ) Display values in %g0 through %g7, plus %pc,
%npc, %psr, %y, %wim, %tbr.

.window ( window# -- ) Same as w .locals; display the desired
window.

ctrace ( -- ) Display the return stack showing C
subroutines.

set-pc ( value -- ) Set %pc to the given value, and set %npc to
(value+4).

to regname ( value -- ) Change the value stored in any of the above
registers.
Use in the form: value to regname.

w ( window# -- ) Set the current window for displaying %ix,
%Lx, or %ox.
148 OpenBoot 2.x Command Reference Manual • February 2000



TABLE E-49 Breakpoint Commands

Command Stack Diagram Description

+bp ( adr -- ) Add a breakpoint at the given address.

-bp ( adr -- ) Remove the breakpoint at the given address.

--bp ( -- ) Remove the most-recently-set breakpoint.

.bp ( -- ) Display all currently set breakpoints.

.breakpoint ( -- ) Perform a specified action when a breakpoint
occurs. This word can be altered to perform any
desired action. For example, to display registers at
every breakpoint, type: [’] .registers is
.breakpoint. The default action is
.instruction. To perform multiple actions,
create a single definition which calls all desired
actions, then load that word into .breakpoint.

.instruction ( -- ) Display the address, opcode for the last-
encountered breakpoint.

.step ( -- ) Perform a specified action when a single step
occurs (see .breakpoint).

bpoff ( -- ) Remove all breakpoints.

finish-loop ( -- ) Execute until the end of this loop.

go ( -- ) Continue from a breakpoint. This can be used to go
to an arbitrary address by setting up the
processor’s program counter before issuing go.

gos ( n -- ) Execute go n times.

hop ( -- ) (Like the step command.) Treat a subroutine call
as a single instruction.

hops ( n -- ) Execute hop n times.

return ( -- ) Execute until the end of this subroutine.

returnL ( -- ) Execute until the end of this leaf subroutine.

skip ( -- ) Skip (do not execute) the current instruction.

step ( -- ) Single-step one instruction.

steps ( n -- ) Execute step n times.

till ( adr -- ) Execute until the given address is encountered.
Equivalent to +bp go.
Appendix E Forth Word Reference 149



TABLE E-50 Forth Source-level Debugger Commands

Command Description

C “Continue”. Switch from stepping to tracing, thus tracing the remainder
of the execution of the word being debugged.

D “Down a level”. Mark for debugging the word whose name was just
displayed, then execute it.

F Start a subordinate Forth interpreter. When that interpreter exits (with
resume), control returns to the debugger at the place where the F
command was executed.

Q “Quit”. Abort the execution of the word being debugged and all its
callers and return to the command interpreter.

U “Up a level”. Un-mark the word being debugged, mark its caller for
debugging, and finish executing the word that was previously being
debugged.

debug name Mark the named Forth word for debugging. Enter the Forth Source-level
Debugger with any subsequent attempts to execute that word. After
executing debug, the execution speed of the system may decrease until
debugging is turned off with debug-off. (Do not debug basic Forth
words such as “.”.)

debug-off Turn off the Forth Source-level Debugger so that no word is being
debugged.

resume Exit from a subordinate interpreter, and go back to the stepper (see the F
command in this table).

stepping Set step mode for the Forth Source-level Debugger, allowing the
interactive, step-by-step execution of the word being debugged. Step
mode is the default.

tracing Set trace mode for the Forth Source-level Debugger. This traces the
execution of the word being debugged, while showing the name and
stack contents for each word called by that word.

Space Execute the word just displayed and proceed to the next word.

TABLE E-51 Time Utilities

Command Stack Diagram Description

get-msecs ( -- ms ) Return the approximate current time in milliseconds.

ms ( n -- ) Delay for n milliseconds. Resolution is 1 millisecond.
150 OpenBoot 2.x Command Reference Manual • February 2000



TABLE E-52 Miscellaneous Operations

Command Stack Diagram Description

callback string ( value -- ) Call SunOS™™ with the given
value and string.

catch ( ??? acf -- ? error-code ) Execute acf; return throw error
code or 0 if throw is not called.

eject-floppy ( -- ) Eject the diskette from the floppy
drive.

firmware-version (-- n) Return major/minor CPU
firmware version
(that is, 0x00020001 = firmware
version 2.1).

forth ( -- ) Restore main Forth vocabulary to
top of search order.

ftrace ( -- ) Show calling sequence when
exception occurred.

noop ( -- ) Do nothing.

old-mode ( -- ) Go to Restricted Monitor.

reset ( -- ) Reset the entire system (similar to
a power-cycle).

ramforth ( -- ) Copy Forth dictionary to RAM.
(Speeds up interpretation in some
systems and enables system word
patching.)

romforth ( -- ) Turn off ramforth.

sync ( -- ) Call the operating system to
write any pending information to
the hard disk. Also boot after
sync-ing file systems.

throw ( error-code -- ) Return given error code to
catch.

TABLE E-53 Multiprocessor Commands

Command Stack Diagram Description

module-
info

( -- ) Display type and speed of all CPU modules.

switch-cpu ( cpu# -- ) Switch to indicated CPU.
Appendix E Forth Word Reference 151



TABLE E-54 Emergency Keyboard Commands

Command Description

Stop Bypass POST. This command does not depend on security-mode. (Note: some
systems bypass POST as a default; in such cases, use Stop-D to start POST.)

Stop-A Abort.

Stop-D Enter diagnostic mode (set diag-switch? to true).

Stop-F Enter Forth on TTYA instead of probing. Use fexit to continue with the
initialization sequence. Useful if hardware is broken.

Stop-N Reset NVRAM contents to default values.
152 OpenBoot 2.x Command Reference Manual • February 2000



Index
SYMBOLS
!, 54, 61, 127
" ccc", 68, 142
"‚, 68, 142
#, 140
#>, 140
#line, 141
#out, 141
#s, 140
$find, 62, 136
$number, 140
%f0, 88, 148
%fsr, 88, 148
%g0, 88, 148
%i0, 88, 148
%L0, 88, 148
%npc, 88, 89, 148
%o0, 88, 148
%pc, 88, 89, 91, 148
%psr, 88, 148
%tbr, 88, 148
%wim, 88, 148
%y, 88, 148
(, 51, 66
( ccc ), 66, 140
(.), 140
(cr, 67, 141
(patch, 64, 138
(see), 62, 136

(u.), 140
), 51, 66
*, 51, 125
*/, 51, 125
*/mod, 51, 125
+, 45, 51, 125
+!, 54, 127
+bp, 90, 91, 149
+dis, 87, 148
+loop, 78, 146
+n, 116
,, 63, 137
., 45
.", 61, 67, 141
.(, 68, 142
.attributes, 7, 8, 103
.bp, 90, 149
.breakpoint, 90, 149
.calls, 62, 136
.d, 43, 61, 65, 140
.enet-addr, 21, 119
.fregisters, 88, 148
.h, 61, 65, 140
.idprom, 21, 119
.instruction, 90, 149
.locals, 88, 148
.mcr, 133
.mfsr, 133
.psr, 88, 148
.r, 64, 139
153



.registers, 88, 148

.s, 64, 139

.sfsr, 133

.sipr, 133

.step, 90, 149

.traps, 21, 119

.version, 21, 119

.window, 88, 89, 148
/, 51, 125
/c, 126
/c*, 126
/L, 126
/L*, 126
/mod, 51, 125
/n, 126
/n*, 127
/w, 127
/w*, 127
:, 49, 50, 59, 124, 135
;, 49, 50, 59, 124, 135
<<, 52
<w@, 54
=, 73, 144
>, 73, 74, 144
> =, 73, 144
>>, 51
>>a, 51, 125
>body, 63, 137
>r, 48, 123
?, 115, 127
???, 115
?do, 78, 146
?dup, 48, 123
?go, 81, 147
?leave, 78, 146
@, 54, 60, 61, 127
[, 63, 137
[’], 62, 136
[compile], 63, 137
], 63, 137
|, 115
~., 96
“, 103

’, 61, 62, 136
‚, 63, 137
˙, 64, 139

NUMERICS
0=, 73, 74, 144
0>, 73, 144
0>=, 73, 144
1-, 51, 125
1+, 51, 125
2-, 51, 125
2!, 54, 127
2*, 51, 125
2+, 51, 125
2/, 51, 125
2@, 54, 127
2constant, 59, 135
2drop, 48, 123
2dup, 48, 123
2over, 48, 123
2rot, 48, 123
2swap, 48, 123
3drop, 48, 123
3dup, 48, 124
n, 116

A
abort, 80, 146
abort", 80, 146
abs, 51, 125
acf, 115
adr, 115
adr16, 115
adr32, 115
adr64, 115
aerr!, 134
aerr@, 134
again, 77, 145
alias, 59, 135
aligned, 52, 125
154 OpenBoot 2.x Command Reference Manual • February 2000



alloc-mem, 57, 103, 129
allot, 63, 137
alternate address space commands, 134
and, 52, 125
arithmetic functions, 51, 125
ascii, 66, 67, 140
ASCII constants, 143
assembly language commands, 139
auto-boot?, 23, 34, 119
aux!, 133, 134
aux@, 133, 134
averr!, 134
averr@, 134

B
b (boot), 29, 30
banner, 21, 36, 119
base, 65, 139
baud rate, 25, 34
begin, 77, 145
begin loops, 77
bell, 143
between, 73, 144
binary, 139
binary executable programs, 83, 84, 85
bl, 68, 142
blank, 54, 127
bljoin, 52, 125
body>, 63, 137
boot, 36, 81, 147
boot command options, 14, 117
boot -h, 91
boot-device, 23, 35, 103, 119
boot-file, 23, 35, 103, 119
boot-from, 23, 119
boot-from-diag, 23, 119
booting failures, 110 to 113
bounds, 52, 125
-bp, 90, 149
--bp, 90, 149
bpoff, 90, 149
breakpoint commands, 89, 90, 149

bs, 143
buffer:, 59, 135
building bootable floppy disks, 99
bwjoin, 52, 125
byte b, 115
byte-load, 81, 147

C
c (continue), 29, 30
c!, 54, 56, 127
c,, 63, 137
c;, 139
c?, 127
c@, 54, 78, 127
ca+, 126
ca1+, 126
cache manipulation commands, 131
cacheable, 130
cache-off, 131
cache-on, 131
call opcode, 87
callback, 151
carriage-return, 67
case, 76, 145
catch, 151
cd, 7, 103, 116
cdata!, 131
cdata@, 131
changing the number base, 139
char, 115
clear, 48, 124
clear_colormap, 21
clear-cache, 131
cmove, 54, 127
cmove>, 54, 127
cnt, 115
code, 139
colon definitions, 49
command completion, 103
command line editor, ?? to 73
command security mode, 29
comments in Forth code, 66
Index 155



comp, 55, 128
comparison commands, 144
compile, 63, 137
compiling data into the dictionary, 137
configuration parameter primitives, 122
configuration parameters

displaying, 26
resetting to defaults, 26
setting, 26, 28

constant, 59, 60, 135
context!, 134
context@, 134
conversion operators, 126
count, 68, 142
cpeek, 55, 104, 128
cpoke, 55, 104, 128
CPU data register, 88
cr, 67, 141
create, 59, 135
creating

custom banner, 31
dictionary entries, 59
new commands, 49
new logo, 32

ctag!, 131
ctag@, 131
ctrace, 88, 148
cxr!, 133
cxr@, 133

D
d-, 52, 53
d!, 104, 128
d#, 65
d+, 52
d?, 104, 128
d@, 104, 128
dcontext@, 134
debug, 91, 150
debug-off, 92, 150
decimal, 43, 65, 139
default values, 26

defer, 59, 61, 135
defining words, 59, 135
depth, 48, 124
determining SCSI devices, 16, 118
devalias, 7, 116
device

aliases, 6, 15, 105
node characteristics, 4
path names, 4
tree display/traversal, 7, 116

device-end, 8, 22, 117
device-specifier, 14, 16
diag-device, 35, 104
diag-file, 23, 35, 104, 119
diagnostic

boot from device, 35
boot from file, 35
routines, 16
switch setting, 35

diagnostic test commands, 16, 118
diag-switch?, 23, 35, 119
dictionary of commands, 59
digit, 140
dis, 87, 148
disassembler commands, 148
displaying current parameter settings, 27
displaying registers, 88
dl, 81, 147
dlbin, 81, 147
dload, 91, 147
do, 78, 146
do loops, 78
does>, 59, 135
drop, 48, 124
dump, 42, 55, 56, 128
dup, 48, 49, 124

E
editing NVRAMRC contents, 37
eeprom utility, 29, 32
eject-floppy, 18, 151
else, 74, 145
emergency keyboard commands, 109, 152
156 OpenBoot 2.x Command Reference Manual • February 2000



emit, 67, 141
enable!, 134
enable@, 134
endcase, 76, 145
end-code, 139
endof, 76, 145
erase, 128
Ethernet

displaying the address, 21
testing the controller, 19

eval, 80, 81, 146, 147
execute, 80, 147
exit, 80, 147
exit?, 67, 141
expect, 66, 140

F
fakeboot, 84
false, 73, 144
FCode interpreter, 1
FCode programs, 82, 84, 85
fcode-debug?, 24, 119
field, 59, 135
file loading commands, 81, 147
fill, 128
find, 62, 136
finish-loop, 90, 149
firmware-version, 151
flag, 73, 115
flip, 53, 125
flush-cache, 131
forget, 63, 137
formatted output commands, 141
Forth

command format, 41
programs, 82, 84, 85
reference material, xi
Source-level Debugger, 91, 150

forth, 151
Forth Monitor, 3
frame buffer, 69
free-mem, 57, 129

free-virtual, 57, 129
ftrace, 93, 151
full security mode, 30

G
get-msecs, 150
go, 36, 81, 89, 90, 91, 147, 149
gos, 90, 149

H
h#, 65, 140
hardware-revision, 24, 119
help, 10, 117
here, 63, 137
hex, 43, 65, 140
history mechanism, 70
hold, 140
hop, 90, 149
hops, 90, 149

I
i, 78, 79, 146
ID PROM, 21
if, 74, 145
immediate, 63, 137
init-program, 82, 147
input, 69, 143
input devices, 33
input-device, 24, 32, 69, 119
interrupt-enable!, 133, 134
interrupt-enable@, 133, 134
io, 69, 70, 143
iomap?, 130
iomap-page, 130
iomap-pages, 130
iommu-ctl!, 133
iommu-ctl@, 133
iopgmap!, 130
iopgmap@, 130
Index 157



is, 137

J
j, 79, 146
jmp opcode, 87

K
key, 66, 141
key?, 66, 67, 78, 97, 141
keyboard, 33, 69
keyboard-click?, 24, 119
keymap, 24, 119

L
L!, 128
l!, 55
L,, 137
l,, 63
L?, 128
L@, 128
l@, 54, 55
La+, 126
La1+, 126
label, 139
last-hardware-update, 24, 119
lbsplit, 52, 125
lcc, 68, 142
leave, 79, 146
left-parse-string, 68, 142
len, 115
lflips, 55, 128
line editor commands, 70, 143
literal, 64, 138
load, 82, 147
load-base, 82, 147
loading/executing files

FCode/Binary over serial port A, 85
Forth over serial port A, 85
over Ethernet, 82

over hard disk/floppy/Ethernet, 83
local-mac-address?, 24, 119
long L, 115
loop, 79, 146
loops

conditional, 77
counted, 78

lpeek, 55, 104, 128
lpoke, 55, 104, 129
ls, 8, 104, 117
lwsplit, 52, 125

M
manipulating text strings, 142
map?, 130
map-page, 130
map-pages, 130
map-region, 130
map-regions, 131
map-segments, 131
max, 52, 125
mcr!, 133
mcr@, 133
memmap, 130
memory

accessing, 53, 127
mapping primitives, 130
testing, 35

mfg-switch?, 24, 35, 119
mfsr!, 133
mfsr@, 133
min, 52, 125
miscellaneous operations, 151
mod, 52, 126
module-info, 151
move, 55, 129
ms, 150
msafar@, 133
msafsr!, 133
msafsr@, 133
multiprocessor commands, 151
158 OpenBoot 2.x Command Reference Manual • February 2000



N
n, 116
n (enter Forth Monitor), 29, 30
na+, 127
na1+, 127
negate, 52, 126
nip, 48, 124
nodefault-bytes, 104, 122
noop, 151
noshowstack, 44, 64
not, 52, 126
null modem cable, 95
number display, 139
numeric output primitives, 140
nvalias, 37, 104, 122
nvedit, 36, 37, 39, 122
nvedit keystroke commands, 38, 123
nvquit, 37, 122
NVRAM, 23
NVRAMRC

availability, 104
editor commands, 37, 122
nvramrc command, 24, 36, 119

nvrecover, 37, 122
nvrun, 37, 122
nvstore, 37, 122
nvunalias, 37, 104, 122

O
o#, 65
obio, 130
obmem, 130
octal, 43, 65
oem-banner, 24, 31, 120
oem-banner?, 24, 31, 32, 120
oem-logo, 24, 31, 32, 120
oem-logo?, 24, 31, 32, 120
of, 76, 145
off, 55, 129
old-mode, 4, 151
on, 55, 129
or, 52, 126

origin, 64, 138
output, 69, 143
output devices, 33
output-device, 24, 32, 69, 120
over, 48, 124

P
p", 68, 142
pack, 68, 142
pagesize, 131
parentheses, 66, 140
password, 30, 36
patch, 64, 104, 138
pgmap!, 131
pgmap?, 131
pgmap@, 131
phys, 116
physical address, 53
pick, 48, 124
plug-in device drivers, 1
power cycle, 41, 69
power-on banner, 21, 31
power-on initialization sequence, 107
printenv, 26, 27, 121
probe-scsi, 11, 16, 17, 118
probe-scsi-all, 16, 17, 104, 118
program counter, 89
program execution control commands, 146
PROM version and date, 21
prompt, 75
pstr, 116
pwd, 8, 104, 117

Q
quit, 80, 147

R
r>, 48, 124
r@, 48, 124
Index 159



ramforth, 151
reading/writing registers

Sun-4C machines, 134
Sun-4D machines, 132
Sun-4M machines, 133

recursive, 64, 138
redirecting input/output, 143
repeat, 77, 146
reset, 11, 21, 36, 151
resetting

parameter defaults, 28
the system, 21

restoring color tables, 21
Restricted Monitor commands, 116
resume, 92, 150
return, 90, 149
returnL, 90, 149
rmap!, 131
rmap@, 131
roll, 48, 124
romforth, 151
-rot, 48, 123
rot, 49, 124
running extended diagnostics, 35

S
saving data after a system crash, 109
sbus, 130
sbus-probe-list, 24, 120
screen, 33, 70
screen-#columns, 24, 32, 120
screen-#rows, 24, 32, 120
scsi-initiator-id, 24, 120
sd-targets, 24, 120
searching the dictionary, 136
security

command, 29
full, 30
none, 29
password, 30

security-#badlogins, 24, 28, 120
security-mode, 24, 28, 120
security-password, 25, 28, 120

see, 46, 62, 136
segmentsize, 131
selftest-#megs, 25, 35, 120
serial ports, 33, 34, 69
serr!, 134
serr@, 134
set-default, 26, 28, 121
set-defaults, 26, 28, 121
setenv, 26, 28, 121
setenv security-mode exception, 36
set-pc, 89, 148
setting

default input/output devices, 33
firmware security, 28
security password, 29

sfar!, 133
sfar@, 133
sfsr!, 133
sfsr@, 133
show, 122
show-devs, 8, 9, 104, 117
show-sbus, 21, 105, 119
showstack, 44, 64, 105, 139
sift, 62, 136
sifting, 62, 136
sign, 140
size, 115
skip, 90, 149
skip-vme-loopback?, 25, 120
smap!, 131
smap?, 131
smap@, 131
Space, 92, 150
space, 67, 141
spacec!, 134
spacec?, 134
spacec@, 134
spaced!, 134
spaced?, 105, 134
spaced@, 134
spaceL!, 135
spaceL?, 135
spaceL@, 135
160 OpenBoot 2.x Command Reference Manual • February 2000



spaces, 67, 141
spacew!, 135
spacew?, 135
spacew@, 135
span, 66, 141
SPARC register commands, 88, 148
specifying auto-booting from Ethernet, 35
stack

description, 44
diagram, 45
item notation, 115
manipulation commands, 123

state, 64, 138
step, 90, 149
stepping, 92, 150
steps, 90, 149
Stop, 109, 152
Stop-A, 69, 88, 109, 152
Stop-D, 36, 105, 109, 152
Stop-F, 105, 109, 152
Stop-N, 105, 109, 152
strings, manipulating, 142
struct, 60, 135
st-targets, 25, 120
sunmon-compat?, 25, 120
sverr!, 134
sverr@, 134
swap, 49, 124
switch-cpu, 151
symbol table, 87
sync, 11, 109, 151
system configuration parameters, See configuration

parameters
system information display commands, 119

T
terminal, 69
test, 16, 105, 118
test-all, 17, 118
testarea, 25, 120
testing

clock, 17, 20, 118

diskette drive, 16, 18, 118
memory, 16, 19, 118
network connection, 16, 19, 118
SBus devices, 17, 118

text input commands, 66, 140
text output commands, 67, 141
then, 74, 145
throw, 151
till, 90, 149
time utilities, 150
TIP problems, 97
TIP window, 95
to, 32, 64, 89, 148
Tokenizer, 84
tpe-link-test?, 25, 120
tracing, 92, 150
-trailing, 68, 142
true, 73, 144
ttya, 33, 69
ttya-ignore-cd, 25, 121
ttya-mode, 25, 33, 34, 120
ttya-rts-dtr-off, 25, 121
ttyb, 33, 69
ttyb-ignore-cd, 25, 121
ttyb-mode, 25, 33, 34, 121
ttyb-rts-dtr-off, 25, 121
type, 67, 141

U
u*x, 126
u., 64, 139
u.r, 64, 139
u/mod, 53, 126
u>, 74, 145
u>=, 74, 145
u2/, 53, 126
um*, 53
unaligned-L!, 55, 129
unaligned-L@, 56, 129
unaligned-w!, 56, 129
unaligned-w@, 56, 129
until, 77, 146
Index 161



upc, 68, 142
use-nvramrc?, 25, 36, 121
User Interface

command line editor, 70 to 73

V
value, 60, 135
variable, 60, 61, 135
version2?, 25, 121
virt, 116
virtual address, 53

W
w, 89, 148
w!, 56, 129
w,, 63, 137
w?, 129
w@, 54, 56, 129
wa+, 127
wa1+, 127
watch-clock, 17, 20, 118
watchdog-reboot?, 25, 121
watch-net, 17, 20, 105, 118
ways to enter Forth Monitor, 2
wbflip, 52
wbsplit, 53, 126
wflip, 126
wflips, 56, 129
while, 77, 146
within, 74, 145
wljoin, 53, 126
word, 66, 116, 141
words, 8, 9, 42, 62, 117, 136
wpeek, 56, 105, 129
wpoke, 56, 105, 129

X
x-, 126
x+, 126

xor, 53, 126
xu/mod, 126
162 OpenBoot 2.x Command Reference Manual • February 2000


	Contents
	Preface
	Overview
	OpenBoot Features
	The User Interface
	The Restricted Monitor
	The Forth Monitor
	The Default Mode

	The Device Tree
	Device Path Names, Addresses, and Arguments
	Device Aliases
	Displaying the Device Tree

	Getting Help
	A Caution About Using Some OpenBoot Commands

	Booting and Testing Your System
	Booting Your System
	Running Diagnostics
	Testing the SCSI Bus
	Testing Installed Devices
	Testing the Diskette Drive
	Testing Memory
	Testing the Ethernet Controller
	Testing the Clock
	Monitoring the Network

	Displaying System Information
	Resetting the System

	Setting Configuration Parameters
	Displaying and Changing Parameter Settings
	Setting Security Parameters
	Command Security
	Full Security

	Changing the Power-on Banner
	Input and Output Control
	Selecting Input and Output Device Options
	Setting Serial Port Characteristics

	Selecting Boot Options
	Controlling Power-on Self-test
	Using NVRAMRC
	Editing the Contents of NVRAMRC
	Activating an NVRAMRC File


	Using Forth Tools
	Forth Commands
	Using Numbers
	The Stack
	Displaying Stack Contents
	The Stack Diagram
	Manipulating the Stack

	Creating Custom Definitions
	Using Arithmetic Functions
	Accessing Memory
	Mapping An SBus Device
	Using Defining Words
	Searching the Dictionary
	Compiling Data into the Dictionary
	Displaying Numbers
	Changing the Number Base
	Controlling Text Input and Output
	Redirecting Input and Output
	Command Line Editor
	Conditional Flags
	Control Commands
	The if-else-then Structure
	The case Statement
	The begin Loop
	The do Loop
	Additional Control Commands


	Loading and Executing Programs
	Using dload to Load from Ethernet
	Forth Programs
	FCode Programs
	Binary Executables

	Using boot to Load from Hard Disk, Floppy Disk, or Ethernet
	Forth Programs
	FCode Programs
	Binary Executables

	Using dl to Load Forth Over a Serial Port
	Using dlbin to Load FCode or Binary Over a Serial Port

	Debugging
	Using the Disassembler
	Displaying Registers
	Breakpoints
	The Forth Source-level Debugger
	Using ftrace

	Testing with a Terminal Emulator
	Common Problems with tip

	Building A Bootable Floppy Disk
	Procedure for the Pre-Solaris 2.0 Operating Environment
	Procedure for the Solaris 2.0 or 2.1 Operating Environment

	Unsupported Commands
	Troubleshooting Guide
	Power-on Initialization Sequence
	Emergency Procedures
	Preserving Data After a System Crash
	Common Failures
	Blank Screen - No Output
	System Boots From the Wrong Device
	System Will Not Boot From Ethernet
	System Will Not Boot From Disk
	SCSI Problems
	Setting the Console to a Specific Monitor


	Forth Word Reference
	Index

