
901 San Antonio Road
Palo Alto, CA 94303-4900 USA
650 960-1300 Fax 650 969-9131

Sun StorEdge™ A7000

Online Exerciser

Programmer’s Guide

Part No. 805-6661-10
January 1999, Revision A

Sun Microsystems, Inc.

Send comments about this document to: docfeedback@sun.com



Please
Recycle

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and

decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization

of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook, Java, the Java Coffee Cup, StorEdge, and Solaris are trademarks, registered trademarks, or

service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or

registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an

architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook, Java, le logo Jave Coffee Cup, StorEdge, et Solaris sont des marques de fabrique ou des

marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont

utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres

pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y

COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE

UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE

GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.



Contents

Preface ix

1. Online Exerciser Environment 1-1

Control Process 1-2

Test Process 1-2

Process Communications 1-3

Startup Operations 1-4

2. Test Program Requirements 2-1

Required Structures 2-1

Result Structure 2-2

Test Structure 2-3

Required Functions 2-4

Configuration Function 2-5

Set Parameters Function 2-6

Initialization Function 2-7

Cleanup Function 2-8

Test Function 2-8

Program Messages 2-9

Error Messages 2-10
Contents iii



Milestone Messages 2-10

Debug Messages 2-10

Abort Messages 2-10

3. Library Routines 3-1

Message Routines 3-1

Debug Message Routine 3-2

Milestone Message Routine 3-3

Error Message Routine 3-4

Abort Message Routine 3-4

Configuration Variable Passing Routines 3-5

Passing String Parameters 3-5

Passing Discrete Parameters 3-6

Execute_Test()  Routine 3-7

main()  Routine 3-7

4. Sample Test Program 4-1

Generating an Executable Image 4-1

Adding a Test Program to the File Structure 4-2

Executing the Test Program 4-2

template.c  Test Program 4-3
Contents iv



Figures and Code Samples

FIGURE 1-1 Process Relationships 1-1

CODE EXAMPLE 2-1 Test Structure Functions 2-4

CODE EXAMPLE 2-2 Configuration Function Example 2-6

CODE EXAMPLE 2-3 Set Parameters Function Example 2-7

CODE EXAMPLE 2-4 Network Exerciser Test Function 2-9

CODE EXAMPLE 4-1 Sample Test Program  4-4
Figures and Code Samples v



vi Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



Tables

TABLE P-1 Typographic Conventions x

TABLE P-2 Related Documentation xi
Tables vii



viii Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



er is
00

s.

r,
pter

s

test

ort
Preface

Sun StorEdge A7000 Online Exerciser Programmer’s Guide describes how to write tests to
be executed under the control of the Online Exerciser (OE) program. The Online Exercis
a system exerciser designed to run under the operating system on a Sun StorEdge A70
Intelligent Storage Server system. This manual contains the following information:

■ An overview of the Online Exerciser operating environment.
■ A description of the operations performed during the start up of the Online Exerciser.
■ Descriptions of the structures and functions required in Online Exerciser test program
■ Descriptions of the library routines used to interface the test program to the Online

Exerciser.
■ An Online Exerciser test program example.

How This Book Is Organized
Chapter 1 “Online Exerciser Environment” describes the relationship between the use
the Online Exerciser program, and the subsystem under test. The information in this cha
includes:

■ Descriptions of the Online Exerciser control and test processes and their relationship
with the user and the subsystem under test.

■ A description of the communications between Online Exerciser processes.
■ A description of the operations performed when the Online Exerciser starts.

Chapter 2 “Test Program Requirements” describes the individual functions and
structures that must be present in any test program run under the control of the Online
Exerciser. It also provides descriptions of the types of messages that can be sent by the
program to the Online Exerciser control program to be either logged or displayed.

Chapter 3 “Library Routines” describes the individual functions provided in the Online
Exerciser library (liboe.a ) for use by the test program. These functions are used to rep
messages, pass parameters, and execute code residing outside the test program.
ix



t
user-
s

Chapter 4 “Sample Test Program” describes a sample bare minimum test program tha
can be used by the test developer as a training aid when learning to build and execute
developed test programs under the control of the Online Exerciser. This chapter include
procedures for:

■ Generating executable images.
■ Adding a test program to the Online Exerciser file structure.
■ Executing a user-developed test program.

Typographic Conventions

Note – The pathnames used in this document are the default pathnames established

when the Online Exerciser was installed.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Examples

AaBbCc123 The names of commands,
files, and directories;
on-screen computer
output.

The Online Exerciser library (liboe.a ) contains
individual functions used by the test program.

Determining Local and Remote
Configuration

AaBbCc123 What you type, when
contrasted with on-screen
computer output.

./oe -mb

AaBbCc123 Book titles, new words or
terms, words to be
emphasized.
Variable expressions;
replaced with a real name
or value.

Read Chapter 2 in theSun StorEdge A7000 Online
Exerciser Reference Manual.

hostname Exerciser Template devel template

. . . The horizontal ellipsis
indicates repetition or
omission.

In the following example, one or more groups can be
entered:
oe -mb [ options] group1 [ group2,...]
x Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



the
Related Documentation

Sun Documentation on the Web
The docs.sun.com sm web site enables you to access Sun technical documentation on
Web. You can browse thedocs.sun.com archive or search for a specific book title or
subject at:

http://docs.sun.com

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments and
suggestions. You can email your comments to us at:

docfeedback@sun.com

Please include the part number of your document in the subject line of your email.

TABLE P-2 Related Documentation

Type Title

Diagnostic reference Sun StorEdge A7000 Online Exerciser Reference Manual
xi



xii Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



CHAPTER 1

Online Exerciser Environment

The Online Exerciser is divided into two main functions: the control process and the

test process. FIGURE 1-1 shows the relationship between these processes, the user, and

the system element under test.

FIGURE 1-1 Process Relationships

The control process interfaces between the user and the test process. It provides a

mechanism for performing the following operations:

■ Determining the system configuration

■ Interacting in a friendly way with the user

■ Running a suite of tests

■ Collecting the output data resulting from test execution

The test process receives and processes commands and user-defined parameters

from the control process. It also returns data collected from running its various

routines and test code to the control process. The test process contains:

■ Configuration routines

■ Initialization routines

■ Cleanup routines

■ System element specific test code

User
Control
process

Test
process

System
element
1-1



Note – Before adding test programs to the Online Exerciser, you must become

familiar with the Online Exerciser file system structure described in the Sun StorEdge
A7000 Online Exerciser Reference Manual.

The Online Exerciser control program sees only the contents of the testlib and

remotelib files. When adding a new test to the Online Exerciser, ensure that the

test is listed in the appropriate files.

Control Process

The control portion of the Online Exerciser is the oe program located, by default, in

the /usr/oe directory. It contains the following functions:

■ Configuration manager

■ Group editor

■ Test controller

The configuration manager obtains and stores the configuration or set of parameters

for each test.

The group editor provides a user interface for examining and modifying test groups,

the test library, and the remote library. It also allows you to execute test groups and

rerun the configuration manager.

Note – The configuration manager should be rerun if you modify either the test

library or the remote library.

The test controller is used to run a test group. It is activated either by selecting the

Execute option from the user interface menu or by using the -mb argument to

execute the oe program.

Test Process

The test process contains a test executive program and subsystem specific test code.

The test directory contains subdirectories of tests and related files used for testing

individual subsystem elements. By default, the test directory is /usr/oe/test . The

subdirectory /usr/oe/test/memory , for example, contains memory tests and

related files.
1-2 Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



The test executive manages the communications between the test code and the

control process. It also provides a simple executive to iterate the functions of the test.

The test executive resides in the Online Exerciser library (liboe .a) and provides the

main routine (main() ) for the test code.

The subsystem specific test code contains a minimum set of functions to configure

and test a specific part of the system. The set of functions is defined by the

ose_test structure in the Online Exerciser include file (oe .h). These functions

include:

■ config()
■ param()
■ init()
■ cleanup()
■ At least one test function

The test structure is described in Chapter 2.

The Online Exerciser file system structure is described in the Sun StorEdge A7000
Online Exerciser Reference Manual.

Process Communications

The Online Exerciser program uses the socket interface for communications between

the test process and the control process.

The control process performs the following operations:

1. Uses the ARPA Internet Address format and IP protocol to request a streams

socket. This type of socket interface provides sequenced, reliable, two-way,

connection based byte streams.

2. Executes the bind command to request binding a name to the socket.

3. Sets the socket to listen mode.

4. Starts the test executive in the appropriate test directory.

5. Passes its socket port number and the host name to the test executive as

command line arguments.

The test executive then performs the following operations:

■ Requests a streams socket using the ARPA Internet Address format and IP

protocol. This socket is connected to a specific host.

■ Attempts to establish a connection to the socket used by the control process.
Chapter 1 Online Exerciser Environment 1-3



■ Once the control process accepts the connection, the test executive is ready to

receive commands from and return data and status to the control process.

■ The connection between the control process and the test process is terminated if

either a configuration request is satisfied or a shutdown command is sent to the

test process by the control process.

Startup Operations

The Online Exerciser can run in several different modes. The operation mode is

determined by the command line argument used to start the Online Exerciser. The

following run arguments are available:

If none of these modes are selected, the program defaults to user interface mode

(-me).

Additional command line arguments are provided for performing other operations.

For example, ./oe -l /tmp , indicates that the Online Exerciser test directory is in

/tmp . The command line arguments are described in the Sun StorEdge A7000 Online
Exerciser Reference Manual.

Type ./oe and the desired options to start the Online Exerciser.

Once started, the Online Exerciser performs the following operations:

1. Determines whether any command line arguments were entered. If the version

mode (-v ) was specified, the program displays the version information and exits

immediately. If no argument or the -me argument was specified, the program

displays the following message:

This message is bypassed for the other run mode arguments (-v , -c , -mb).

Argument Mode

-v Version

-c Configuration

-mb Batch

-me User Interface

Determining Local and Remote Configuration

Please Wait
1-4 Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



2. Initializes some global variables to their default values. The default values

include running the exerciser tests in parallel mode and storing all messages

(milestone, error, case, and pass) in the log file. The program also obtains the local

host name.

3. Once initialization is complete, the Online Exerciser verifies that the user has

superuser privileges. If not, the program displays the following message and

exits:

4. If superuser privileges are enabled, the Online Exerciser then checks the path to

the test directory. The default path is /usr/oe . The program next verifies that the

test directory exists. The default directory name is test and the default path is

/usr/oe/test . Finally, the Online Exerciser verifies that it can open the

testlib and remotelib files. These files are typically located in /usr/oe . If

any errors are encountered while performing this confidence check, the program

posts an error message and exits.

Note – The remotelib and testlib files can be empty, but they must exist. If

both of these files are empty, nothing is available to test.

5. If the Online Exerciser is running in configuration mode (-c ), it determines and

displays the current configuration of all the tests on the local and remote nodes,

as defined in the remotelib and testlib files, and then exits.

If you are running in batch mode (-mb), the Online Exerciser program determines

whether a test group was specified. If no test group or an incorrect test group was

specified, the program displays the following error message and exits:

At this time, if the Online Exerciser is running in either user interface or batch mode,

the configuration manager is activated to obtain the complete configuration for all

local and remote nodes based on the information in the remote library and test

library. The configuration manager performs the following operations:

1. Using a semaphore, protects the testlib and remotelib files, allowing

multiple copies of the Online Exerciser to run simultaneously without fear of a

collision when these files are accessed.

2. Connects to each test executive through a sockets interface.

You must be superuser to run the Online Exerciser.

Usage: oe -mb [options] group1 [group2,...]
Chapter 1 Online Exerciser Environment 1-5



3. Once the connection is established, runs the configuration function found in each

test executive and saves the configuration information. This operation is

performed for each test program listed in the testlib file of each selected host

(local and remote).

Note – Typically, each test directory contains one test executive. For example,

rmstest in /usr/oe/test/rms contains the test executive used for interfacing

with the control process.

When the configuration manager is finished, the Online Exerciser either comes up in

user interface mode or starts executing the test group specified with the -mb
argument. In other words, either the group editor takes control to provide the user

interface or the test controller takes control to run the tests.
1-6 Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



CHAPTER 2

Test Program Requirements

You can write new test programs or port existing programs to run under the control

of the Online Exerciser if the programs meet the necessary requirements for

interfacing with the Online Exerciser control program.

The Online Exerciser control program expects the test programs to use certain

structures defined in the include file (oe .h). It also requires test programs to provide

certain functions to be activated by the control program.

Library routines are provided in liboe .a to facilitate interfacing new test programs

with the Online Exerciser. In particular, the library routines enable the control

program to differentiate between the types of messages returned by a test program.

Refer to Chapter 3 for a description of each user callable library function.

Note – A bare minimum sample test program is provided with the Online Exerciser

software. Refer to Chapter 4 for additional information.

Required Structures

The following structures are required in any Online Exerciser test program:

■ Result structure (t_result )

■ Test structure (ose_test )
2-1



Result Structure

The result structure (t_result ) provides the format necessary to pass the results of

the required test functions to the Online Exerciser control program. Each required

test function described in “Required Functions” returns a pointer to this structure. In

the following example, each function specified returns a pointer to a structure of

type t_result :

The t_result structure contains the following elements:

■ Result code (r_code )

■ String pointer (*r_message )

Two result codes are defined in oe.h : PASSEDand FAILED .

A function returns a result code of PASSEDif the function executed normally. In this

case the string pointer (*r_message ) is ignored. It is recommended, however, that a

known value be placed in the string pointer anyway. For example,

where NULL is defined in <stdio.h> .

A function returns a result code of FAILED if the function did not execute normally.

In this case the string pointer (*r_message ) points to the reason for the failure. For

example,

Note – A newline is not required for this string because the message will be

formatted by the Online Exerciser control program.

struct t_result *RMS_Config(), *RMS_Param(), *RMS_Init(),
*RMS_Cleanup(), *RMS_Test();

r_code=PASSED;
*r_message=NULL;

r_code=FAILED;
*r_message=”Unable to open remotelib”;
2-2 Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



Test Structure

The test structure (ose_test ) provides the format for the required functions and

any additional test functions. This structure is used to build an array of functions.

The array is used by the Online Exerciser control program to access the various

functions in the test program. The functions of a test program must be listed in the

test array in a certain order.

Each entry built under the ose_test structure contains three elements:

■ Function pointer

■ String pointer

■ Flags

The function pointer provides the entry point into the test code for the Online

Exerciser control program. Notice that the test name entry in CODE EXAMPLE 2-1

contains a NULL function pointer because no function is associated with this entry.

The last entry in the array must also always contain a NULL function pointer.

The string pointer indicates the purpose of the function. For example, “RMS
Configuration ” describes the operations performed by function RMS_Config .

The string pointer of the last entry is always NULL.

The flags are NULL for all functions except test functions. For test functions, the flags

are either TEST_ENABLEor TEST_SKIP. The value selected is the desired default

setting for a specific test. In CODE EXAMPLE 2-1, the test function RMS_Test is set to

TEST_ENABLEby default. You can change the default setting with the Param option

provided by the user interface.

The Online Exerciser include file, oe.h , defines the order of the first five array

elements as follows:

In CODE EXAMPLE 2-1, the functions are listed in their required order:

#define TEST_NAME 0
#define TEST_CONFIG 1
#define TEST_PARAM 2
#define TEST_INIT 3
#define TEST_CLEAN 4
#define TEST_FIRST 5
Chapter 2 Test Program Requirements 2-3



CODE EXAMPLE 2-1 Test Structure Functions

Required Functions

Each Online Exerciser test program must contain a minimum of five functions. The

following functions are required:

■ Configuration

■ Set Parameters

■ Initialization

■ Cleanup

■ One or more test functions

Any of the functions may be stubs, but each function must exist and must return a

pointer to a structure of type t_result .

The following functions are called once for each pass of the Online Exerciser task:

■ The initialization function, which prepares the Online Exerciser task to run.

■ The cleanup function, which performs any Online Exerciser task cleanup required

before task completion.

■ A least one test function.

The configuration function is called only once when the Online Exerciser control

program is started or when you select the Config option from the user interface

menu. This function returns a list of configuration variables to the control program.

The set parameters function is called during the Online Exerciser test group

initialization process and is used to set any exerciser variable that is not to be left in

its default state. The function is called once for each variable to be set.

struct ose_test test[]={
NULL, “RMS Exerciser”, NULL,
RMS_Config, “RMS Configuration”, NULL,
RMS_Param, “RMS PArameters”, NULL,
RMS_Init, “RMS Initialization”, NULL,
RMS_Cleanup, “RMS Cleanup”, NULL,
RMS_Test, “RMS Test”, TEST_ENABLE,
NULL, NULL, NULL};
2-4 Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



Configuration Function

The configuration function returns a list of variables to the control program. These

are variables that you can modify. This list could include the devices available for

testing, the size of a buffer to be tested, or some other value. Variables are expressed

in two different forms: discrete parameters and string parameters.

Discrete parameters can be set only to certain predetermined values. For example,

only configured devices can be exercised with the disk drive exerciser. In this case,

the configuration function returns a list of the currently configured drives and the

user selects the drives to be tested from this list. The default value is normally the

first item of that type returned to the control program.

String parameters can be set to an unspecified range or name. For example, the disk

drive exerciser defines the blocksize to be tested as a string parameter. The

configuration function returns a maximum string length and a default value for this

parameter.

CODE EXAMPLE 2-2 displays an example of some of the configuration code used for

the memory exerciser. Notice that the Run Test Ganged parameter is a discrete

parameter. This parameter can be enabled and disabled only by the user. In contrast,

the Fill Pattern parameter is a string parameter. The user can enter the desired

pattern up to 16 characters.

Each parameter displayed in CODE EXAMPLE 2-2 has an associated code. The code is

defined as an offset of the TEST_UNIQUEvalue defined in oe.h . Code values

between 0 and TEST_UNIQUE-1 are reserved for the Online Exerciser control

program. The test specific codes are used by the Online Exerciser control program

when it calls the set parameters (param() ) function of the test program.

CODE EXAMPLE 2-2 may be easier to understand if you bring up the Online Exerciser

program. Enter ./oe in the /usr/oe directory to bring up the Online Exerciser in

interactive mode. Select the Group option followed by the Add option. Then select

the Memory Exerciser followed by the Param option.

Note – Functions ose_out_disc_param() and ose_out_string_param() are

described in Chapter 3. These functions are available in liboe.a .
Chapter 2 Test Program Requirements 2-5



CODE EXAMPLE 2-2 Configuration Function Example

Set Parameters Function

The set parameters function is called by the Online Exerciser control program when

a configuration variable is to be set to a value. CODE EXAMPLE 2-3 displays an

example of the code the control program expects to call based on the configuration

function example displayed in CODE EXAMPLE 2-2.

/* Configuration Function Example */

#define Code_Fill_Pattern TEST_UNIQUE
static char Fill_Pattern[17];

#define Code_Gang_Enable TEST_UNIQUE+1
static int Gang_Enable;

struct t_result *test_config()
{
static struct t_result result;
char Buff[100];

/*Specify fill pattern */
strcpy(Fill_Pattern,”0123456789abcdef”);
ose_out_string_param(Code_Fill_Pattern,”Fill Pattern”,16,Fill_Pattern);

/*Specify ganging params*/
if{Gang_Enable)

{
ose_out_disc_param(Code_Gang_Enable,”Run Test Ganged”,1,”Enable”);
ose_out_disc_param(Code_Gang_Enable,”Run Test Ganged”,0,”Disable”);
}

else
{

ose_out_disc_param(Code_Gang_Enable,”Run Test Ganged”,0,”Disable”);
ose_out_disc_param(Code_Gang_Enable,”Run Test Ganged”,1,”Enable”);
}

result.r_code = PASSED;
result.r_message = NULL;
return(&result);
}

2-6 Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



CODE EXAMPLE 2-3 Set Parameters Function Example

The first argument, code , contains the ID of the parameter to be modified.

The second argument, selection , is an integer indicating which value of a discrete

parameter has been selected. This argument is used only to modify discrete

parameters.

The third argument, strptr , contains a pointer to an ASCII string containing the

value to be used by a string parameter.

Initialization Function

The initialization function contains initialization code specific to a test program that

must be executed before the start of each pass of an exerciser test. This function is

called once per pass of the test. The memory exerciser uses this routine to request

the memory space to be tested. If a minimum of Mandatory and Major Milestones is

enabled, the memory exerciser also posts a milestone message in the following

format while in its initialization routine:

/* set parameter */
struct t_result *test_param(code,selection,strptr)
int code;
int selection;
char *strptr;
{
static struct t_result result;
switch(code)

{
case Code_Fill_Pattern:
strcpy(Fill_Pattern,strptr);
break;

case Code_Gang_Enable:
Gang_Enable = selection;
break;

}
result.r_code = PASSED;
result.r_message = NULL;
return(&result);
}

“Allocated n continuous bytes of memory starting at 0x aaaaaaaa”
Chapter 2 Test Program Requirements 2-7



Cleanup Function

The cleanup function contains cleanup code that is specific to the test program and

must be executed at the end of each pass of the test program. For example, the

memory exerciser test program frees the memory space allocated during the

initialization routine.

Test Function

The test functions contain subsystem test code. A test program can have one or more

test functions. A test function can either contain the test code or execute code

outside the test function.

The memtest executable located in /usr/oe/test/memory contains 13 separate

test functions as well as the required config() , param() , init() , cleanup() ,

and test executive main() functions. Each of these test functions, such as Sequential

Fill Test and Increment Test, is displayed in the Param menu and can be configured

to either the Enable or Skip state.

In the network exerciser directory, /usr/oe/test/network , are two executables:

rcptest and nettest . The nettest executable contains the required Online

Exerciser functions as well as the test function that calls rcptest . rcptest is a

script file that can be run either standalone or under the control of nettest . Any

code external to the test executive can be run in this manner. CODE EXAMPLE 2-4

displays the test function for the network exerciser.

Variable Description

n Indicates the number of bytes of memory to be tested.

aaaaaaaa Indicates the physical starting address of the memory area.
2-8 Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



CODE EXAMPLE 2-4 Network Exerciser Test Function

Note – The Execute_Test() function is described in Chapter 3. This function is

available in liboe.a .

Program Messages

The Online Exerciser control program logs the following types of messages to either

a file or stdout :

■ Test Started

■ Test Finished

■ Case Completed

■ Pass Completed

■ Error Milestone

■ Debug

■ Abort

The test code sends Error, Milestone, Debug, and Abort messages to the control

program for posting. All other types of messages are status messages posted by the

control program.

/* Example of executing external test code */

char host[256];
struct t_result *test_1()
{
static struct t_result result;
char Cmd[100];

sprintf(Cmd,”./rcptest %s”,host);
Execute_Test(Cmd);

result.r_code = PASSED;
result.r_message = NULL;
return(&result);
}

Chapter 2 Test Program Requirements 2-9



Error Messages

Error messages are posted when they are received by the control program from

either stderr or the test program. The test program sends an error message by

using the ose_out_error routine available in liboe.a . This routine is described

in Chapter 3.

Milestone Messages

Milestone messages are posted when the control program receives messages from

either stdout or the test program. The test program uses the ose_out_milestone
routine in liboe.a to send milestone messages to the control program. The

ose_out_milestone routine allows the test program to provide multiple levels of

milestones. The level of output is specified when a test group is created. The

milestone reporting routine is described in Chapter 3.

Debug Messages

Debug messages are posted by the control program only when messages sent with

the ose_out_debug routine are received from the test program. This routine is also

located in liboe.a . Like milestone messages, debug messages also provide multiple

levels of output. The level of output is specified when a test group is created. The

default level is No Debug Messages because this type of message is primarily used

by the test code developer for code debug. The debug message reporting routine is

also described in Chapter 3.

Abort Messages

Abort messages are posted by the control program to indicate that the test code is

not completing in a normal manner. The test program uses the

ose_out_abort_notice routine in liboe.a to send this type of message to the

control program. This message routine is described in Chapter 3.
2-10 Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



CHAPTER 3

Library Routines

Library routines are provided in liboe.a to facilitate interfacing user-developed

test programs with the Online Exerciser control program. These routines are

grouped into the following categories:

■ Message routines

■ Configuration variable passing routines

■ Execute_Test() routine

■ main() routine

Message Routines

Routines provided in liboe.a enable a test program to send data to the operator

through the Online Exerciser control program. The following types of message

routines are available:

■ Debug

■ Milestone

■ Error

■ Abort

These routines are valid for functions called directly by the Online Exerciser control

program. If a test program uses the Execute_Test() function to execute test code

external to the test program, the external code must be written to post milestone

messages to stdout and error messages to stderr . The message routines

(ose_out_debug , ose_out_error , ose_out_milestone , and ose_out_abort )

cannot be used in the external test code.
3-1



Debug Message Routine

Use the ose_out_debug() function to send data useful for debugging a test

program run under the control of the Online Exerciser. This function has the

following format:

The first argument, message , is a pointer to a string containing the debug message

to be displayed. Newline characters are not required at the end of the string because

the Online Exerciser control program formats the string into a statement containing

the test program ID, time, and other useful information.

The second argument, level , is an integer from -1 to 2. This value represents the

relative importance of the message. Four options for the Debug Statements
parameter are available from the Param menu. Each option is assigned a value as

follows:

When a message is passed to the Online Exerciser, the control program compares the

message level with the value of the user selected option. If the option value is

greater than the message level , the message is displayed. For example, the

following message would always be displayed:

A message with a level of 2 would be displayed only if the All Debug
Statements option was selected.

ose_out_debug(message,level);
char *message;
int level;

Value Option

0 No Debug Statements

1 Major Debug Statements

2 Most Debug Statements

3 All Debug Statements

ose_out_debug( message,-1);
3-2 Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



Milestone Message Routine

The ose_out_milestone() function is used to send information that may be of

general interest to the user. This function has the following format:

The first argument, message , is a pointer to a string containing the milestone

message to be displayed. Newline characters are not required at the end of the string

because the Online Exerciser control program formats the string into a statement

containing the test program ID, time, and other useful information.

The second argument, level , is an integer from -1 to 2. This value represents the

relative importance of the message. Four options for the Milestone Statements
parameter are available from the Param menu. Each option is assigned a value as

follows:

When a message is passed to the Online Exerciser, the control program compares the

message level with the value of the user selected option. If the option value is

greater than the message level , the message is displayed. For example, the

following message would always be displayed:

A message with a level of 2 would be displayed only if the All Milestones
option was selected.

ose_out_milestone(message,level);
char *message;
int level;

Value Option

0 Only Mandatory Milestones

1 Mandatory and Major Milestones

2 Most Milestones

3 All Milestones

ose_out_milestone( message,-1);
Chapter 3 Library Routines 3-3



Error Message Routine

The ose_out_error() function is used to display a message indicating that an

error occurred while a test program was run under the control of the Online

Exerciser program. This function has the following format:

The argument, message , is a pointer to a string containing the error message to be

displayed. Newline characters are not required at the end of the string because the

Online Exerciser control program formats the string into a statement containing the

test program ID, time, and other useful information.

Abort Message Routine

The ose_out_abort_notice() function is used to display a message indicating

that the test program is going to terminate due to an abnormal condition. This

function has the following format:

The argument, message , is a pointer to a string containing the message to be

displayed. Newline characters are not required at the end of the string because the

Online Exerciser control program formats the string into a statement containing the

test program ID, time, and other useful information.

ose_out_error(message);
char *message;

ose_out_abort_notice(message);
char *message;
3-4 Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



Configuration Variable Passing Routines

Two routines in liboe.a are used to pass configuration variables between the

control program and test program when the configuration function of the test

program is activated. The ose_out_string_param() function is used to pass

string parameter information and the ose_out_disc_param() function is used to

pass discrete parameter information.

Passing String Parameters

The ose_out_string_param() function is used to send string parameter

information from the test program to the control program. This function has the

following format:

The first argument, code , contains the ID of the parameter. Online Exerciser test

programs can use parameter IDs greater than or equal to the constant

TEST_UNIQUE, which is defined in oe.h .

Note – The string and discrete parameters must have unique IDs.

The second argument, codename , is a character pointer to text describing the

parameter. This string should be short enough to fit in the parameter name window

of the Param menu. Do not exceed 34 characters (not including the string

termination character).

The third argument, length , contains the maximum number of characters that this

string parameter may contain.

The fourth argument, dfltstr , is a character pointer to text with the default value

of this string parameter. This string should be short enough to fit in the parameter

value window of the Param menu. The default value received must not exceed 34

characters (not including the string termination character). The maximum string

length is 100 characters (including the string termination character).

ose_out_string_param(code,codename,length,dfltstr);
int code;
char *codename;
int length;
char *dfltstr;
Chapter 3 Library Routines 3-5



When you are using the Param menu, only the codename and dfltstr values are

displayed.

Passing Discrete Parameters

The ose_out_disc_param() function is used to send discrete parameter

information from the test program to the control program. This function has the

following format:

The first argument, code , contains the ID of the parameter. Online Exerciser test

programs can use parameter IDs greater than or equal to the constant

TEST_UNIQUE, which is defined in oe.h .

Note – The string and discrete parameters must have unique IDs.

The second argument, codename , is a character pointer to text describing the

parameter. This string should be short enough to fit in the parameter name window

of the Param menu. Do not exceed 34 characters (not including the string

termination character).

The third argument, selection , contains the ID of a value to which this parameter

can be set. The ose_out_disc_param() function must be called with each possible

selection of this parameter.

The fourth argument, selectname , is a character pointer to the string containing

the selection value. This string should be short enough to fit in the parameter value

window of the Param menu. The default value received must not exceed 34

characters (not including the string termination character). The maximum string

length is 100 characters (including the string termination character).

When you are using the Param menu, only the codename and selectname values

are displayed.

ose_out_disc_param(code,codename,selection,selectname);
int code;
char *codename;
int selection;
char *selectname;
3-6 Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



Execute_Test() Routine

The Execute_Test() function in liboe.a allows you to easily port test code to

run under the control of the Online Exerciser program. This function is called within

the test function of the test program and is used to execute code external to the test

function. The external test code should be written to send error messages to stderr .

Milestone messages are any messages sent to stdout . This function has the

following format:

The argument, Cmd, is a pointer to the string containing the name of the executable

and its command line arguments.

main() Routine

The main() routine is made a part of the test program when the test code is

compiled with liboe.a .

Execute_Test(Cmd);
char *Cmd;
Chapter 3 Library Routines 3-7



3-8 Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



CHAPTER 4

Sample Test Program

An Online Exerciser test program contains a minimum of five functions, four of

which may be stubs, and two structures. The required functions and structures are

described in Chapter 2. The main() function of the test program is provided when

the code is compiled with liboe.a .

The liboe.a file also provides library routines that can be used in a test program to

report messages, pass parameters, and execute code outside a test function. These

routines are described in Chapter 3.

A sample bare minimum test program, template.c , is provided in the

/usr/oe/test/devel directory. This program contains the required functions and

structures and can be used by a test developer to become familiar with building and

executing a test program under the control of the Online Exerciser.

Generating an Executable Image

Before you can incorporate a new test program into the Online Exerciser file

structure, you must make the program executable. For example, to generate an

executable image of the sample program, template.c , type:

This creates an executable image called template using default pathnames. You can

also use the makefile in the /usr/oe/test/devel directory to perform the same

operations.

cc -o template template.c -I/usr/include -L/usr/lib -loe
4-1



Note – Check the permissions for template and verify that it is an executable file

before continuing.

Adding a Test Program to the File
Structure

Once you have an executable image, it must be added to the Online Exerciser file

structure and identified in the test library. The following steps were performed by

the test code developer to incorporate the template test program. You can perform

similar steps to incorporate additional test programs.

1. Created a directory called devel in /usr/oe/test .

2. Installed the executable image, template , in /usr/oe/test/devel .

3. Moved to /usr/oe and edited the file testlib .

4. Added template and its test directory to the test library file, testlib . For

example, the new test program could have been added after the entry for the

memory test as follows:

Executing the Test Program

Once the new test program is added to the test library, perform the following steps

to execute the program under the control of the Online Exerciser:

1. Type ./oe in the /usr/oe directory to bring up the Online Exerciser.

2. Select the Group option.

memtest memory
template devel
4-2 Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999



3. Select the Add option. The sample test program should be listed as a test option

that can be run under the Online Exerciser program. For example, the following

will be displayed:

where hostname specifies the name of the system containing the test.

4. Create a test group containing the new program.

5. Select the Execute option to run the test group.

Once the test program starts, milestone messages are displayed in the following

format:

template.c Test Program

CODE EXAMPLE 4-1 displays the contents of the sample test program, template.c ,

which contains the required functions and uses the required structures.

hostname Exerciser Template devel template

S hostname template id date time Exerciser Template() Started
M hostname template id date time P1 C1 starting test
M hostname template id date time P1 C1 start of pass initialization started
M hostname template id date time P1 C1 start of pass initialization completed
M hostname template id date time P1 C1 Test Function start
M hostname template id date time P1 C1 this is a bare minimum OE test
C hostname template id date time P1 C1 Case ‘Test Function’ Complete
M hostname template id date time P1 C2 end of pass cleanup started
M hostname template id date time P1 C2 end of pass cleanup completed
P hostname template id date time P1 Pass Complete
F hostname template id date time Exerciser Template() Completed

Variable Description

hostname Specifies the name of the system where the test is running.

id Specifies the ID number assigned to the test.

date Specifies the date the message was received.

time Specifies the time the message was received.
Chapter 4 Sample Test Program 4-3



CODE EXAMPLE 4-1 Sample Test Program

#include <stdio.h>
#include <oe.h>

struct t_result *test_config() /* Configuration Function */
{
static struct t_result result;
result.r_code = PASSED;
result.r_message = NULL;
return(&result);

}

struct t_result *test_param(type,selection,strptr) /* Set
Parameters */
/* Function */
int type;
int selection;
char *strptr;
{
static struct t_result result;
result.r_code = PASSED;
result.r_message = NULL;
return(&result);

}

struct t_result *test_init() /* Initialization Function */
{
static struct t_result result;
result.r_code = PASSED;
result.r_message = NULL;
retunr(&result);

}

struct t_result *test_cleanup() /* Cleanup Function */
{
static struct t_result result;
result.r_code = PASSED;
result.r_message = NULL;
return(&result);

}
struct t_result *Test() /* Test Function */
{
static struct t_result result;

ose_out_milestone(“this is a bare minimum OE test”,0);

result.r_code = PASSED;
result.r_message = NULL;
return(&result);

}

struct ose_test test[] = { /* Test Array */
NULL,”Exerciser Template”,NULL,
*test_config,”Test Configuration”,NULL,
*test_param,”Test Parameters”,NULL,
*test_init,”Test Initialization”,NULL,
*test_cleanup,”Test Cleanup”,NULL,
*Test,”Test Function”,TEST_ENABLE,
NULL,NULL,NULL

};
4-4 Sun StorEdge A7000 Online Exerciser Programmer’s Guide • January 1999


	Sun StorEdge™ A7000 Online Exerciser Programmer’s Guide
	Contents
	1. Online Exerciser Environment�1-1
	2. Test Program Requirements�2-1
	3. Library Routines�3-1
	4. Sample Test Program�4-1

	Figures and Code Samples
	Tables
	Preface


	How This Book Is Organized
	Typographic Conventions
	TABLE�P�1 Typographic Conventions

	Related Documentation
	TABLE�P�2 Related Documentation

	Sun Documentation on the Web
	Sun Welcomes Your Comments
	1
	Online Exerciser Environment
	FIGURE�1�1 Process Relationships


	Control Process
	Test Process
	Process Communications
	1. Uses the ARPA Internet Address format and IP protocol to request a streams socket. This type o...
	2. Executes the bind command to request binding a name to the socket.
	3. Sets the socket to listen mode.
	4. Starts the test executive in the appropriate test directory.
	5. Passes its socket port number and the host name to the test executive as command line arguments.

	Startup Operations
	1. Determines whether any command line arguments were entered. If the version mode (-v) was speci...
	2. Initializes some global variables to their default values. The default values include running ...
	3. Once initialization is complete, the Online Exerciser verifies that the user has superuser pri...
	4. If superuser privileges are enabled, the Online Exerciser then checks the path to the test dir...
	5. If the Online Exerciser is running in configuration mode (-c), it determines and displays the ...
	1. Using a semaphore, protects the testlib and remotelib files, allowing multiple copies of the O...
	2. Connects to each test executive through a sockets interface.
	3. Once the connection is established, runs the configuration function found in each test executi...
	2
	Test Program Requirements

	Required Structures
	Result Structure
	Test Structure
	CODE�EXAMPLE�2�1 Test Structure Functions


	Required Functions
	Configuration Function
	CODE�EXAMPLE�2�2 Configuration Function Example

	Set Parameters Function
	CODE�EXAMPLE�2�3 Set Parameters Function Example

	Initialization Function
	Cleanup Function
	Test Function
	CODE�EXAMPLE�2�4 Network Exerciser Test Function


	Program Messages
	Error Messages
	Milestone Messages
	Debug Messages
	Abort Messages
	3
	Library Routines


	Message Routines
	Debug Message Routine
	Milestone Message Routine
	Error Message Routine
	Abort Message Routine

	Configuration Variable Passing Routines
	Passing String Parameters
	Passing Discrete Parameters

	Execute_Test() Routine
	main() Routine
	4
	Sample Test Program

	Generating an Executable Image
	Adding a Test Program to the File Structure
	1. Created a directory called devel in /usr/oe/test.
	2. Installed the executable image, template, in /usr/oe/test/devel.
	3. Moved to /usr/oe and edited the file testlib.
	4. Added template and its test directory to the test library file, testlib. For example, the new ...

	Executing the Test Program
	1. Type ./oe in the /usr/oe directory to bring up the Online Exerciser.
	2. Select the Group option.
	3. Select the Add option. The sample test program should be listed as a test option that can be r...
	4. Create a test group containing the new program.
	5. Select the Execute option to run the test group.

	template.c Test Program
	CODE�EXAMPLE�4�1 Sample Test Program


