
Sun Microsystems, Inc.
901 San Antonio Road

Palo Alto, CA 94303
U.S.A. 650-960-1300

Part No. 805-3145-10
February 1998, Revision A

OpenGL™ 1.1.1 For Solaris™

Implementation and
Performance Guide

Solaris ™ Version

Please

Recycle

Copyright 1997 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, SunSoft, SunDocs, SunExpress, and Solaris are trademarks, registered trademarks, or service marks of

Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered

trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture

developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges

the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun

holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN

LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1997 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, SunSoft, SunDocs, SunExpress, et Solaris sont des marques de fabrique ou des marques déposées, ou

marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et

sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant

les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Contents

1. Introduction to the OpenGL for Solaris Software 1

OpenGL 1.1.1 for Solaris Product Functionality 1

OpenGL 1.1.1 Library 1

Supported OpenGL 1.1.1 Extensions 2

Compatibility Issues 4

MT-Safe 4

Supported Platforms 5

Where to Look for Information on OpenGL Programming 6

2. OpenGL for Solaris Architecture 7

 Acceleration vs. Optimization 7

A Quick Review of the OpenGL Architecture 8

Graphics Hardware Architecture 9

Solaris OpenGL Software Architecture 10

Vertex Processing Architecture 12

Rasterization and Fragment Processing Architecture 13

Solaris OpenGL Interface Layers 13

3. Performance 17

General Tips on Vertex Processing 17
Contents iii

Vertex Arrays 18

Consistent Data Types 18

Low Batching 20

Optimized Data Types 21

Creator3D Graphics and Creator Graphics Performance 21

Attributes Affecting Creator3D Performance 22

Attributes Affecting Creator Performance 32

Pixel Operations 35

Pixel Transfer Pipeline Imaging Extensions and the Pixel Transform 38

Implementation 39

How To Use the Pixel Transfer Pipeline and Pixel Transform 40

GX Performance 53

4. X Visuals for the OpenGL for Solaris Software 55

Programming With X Visuals for the OpenGL for Solaris Software 55

Colormap Flashing for OpenGL Indexed Applications 57

GL Rendering Model and X Visual Class 58

Depth Buffer 58

Accumulation Buffer 59

Stencil Buffer 59

Auxiliary Buffers 59

Stereo 59

▼ To Set Up the Frame Buffer for Stereo Operation: 59

Rendering to DirectColor Visuals 60

Overlays 60

Server Overlay Visual (SOV) Convention 60

Enabling SOV Visuals 61

OpenGL Restrictions on SOV 62
iv OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

Compatibility of SOV with other Overlay Models 62

Gamma Correction 63

5. Tips and Techniques 65

Avoiding Overlay Colormap Flashing 65

Changing the Limitation on the Number of Simultaneous GLX Windows 66

Hardware Window ID Allocation Failure Message 66

Getting Peak Frame Rate 67

Identifying Release Version 67

Pixmap Rendering 67

Determining Visuals Supported by a Specific Frame Buffer 68

Creator3D Fog 68
Contents v

vi OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

Figures

FIGURE 2-1 OpenGL Architecture 8

FIGURE 2-2 Solaris OpenGL Software Architecture 12

FIGURE 2-3 Solaris OpenGL Data Paths 15

FIGURE 3-1 Hardware Rasterizer Path for Creator3D 26

FIGURE 3-2 Text Load Processing Flow 29

FIGURE 3-3 2D Texturing 31

FIGURE 3-4 3D Texturing 32

FIGURE 3-5 Software Rasterizer Data Path for Creator3d and Creator 34

FIGURE 3-6 OpenGL for Solaris Architecture for Drawing Pixels 35

FIGURE 3-7 Pixel Transfer Pipeline Functions and Order of Execution 39
Figures vii

viii OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

Tables

TABLE 1-1 OpenGL 1.0 Extensions That Have Become Apart of Base OpenGL 1.1 Functionality 2

TABLE 2-1 Data Paths Through the OpenGL for Solaris System 11

TABLE 3-1 3D optimized cases 30

TABLE 4-1 OpenGl-capable Visuals With Expanded Visuals 57

TABLE 4-2 OpenGL-capable Visuals Without Expanded Visuals 57
Tables ix

x OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

Preface

OpenGL 1.1.1 For Solaris Implementation and Performance Guide provides information

on the SolarisTM OpenGLTM software.

Who Should Use This Book

This book is intended for application developers who are using the Solaris OpenGL

software to port OpenGL applications to Sun hardware. It assumes familiarity with

OpenGL functionality and with the principles of 2D and 3D computer graphics.

How This Book Is Organized

This book is organized as follows:

Chapter 1 “Introduction to the OpenGL for Solaris Software,” provides a

description of the OpenGL for Solaris software.

Chapter 2 “OpenGL for Solaris Architecture,” presents information on the

OpenGL for Solaris architecture.

Chapter 3 “Performance,” presents specific information on using Sun’s OpenGL

library for specific hardware platforms.

Chapter 4 “X Visuals for the OpenGL for Solaris Software,” presents information

on visuals for the OpenGL for Solaris product.
Preface xi

Chapter 5 “Tips and Techniques,” contains information that may make using the

OpenGL for Solaris library easier.

Related Books

For information on the OpenGL library, refer to the following books:

■ Neider, Jackie, Tom Davis, Mason Woo, OpenGL Programming Guide, Reading,

Mass., Addison-Wesley, 1993.

■ OpenGL Review Board, OpenGL Reference Manual, Reading, Mass., Addison-

Wesley, 1992.

■ Kilgard, Mark, OpenGL Programming for X Window Systems, Reading, Mass.,

Addison-Wesley, 1996.

Ordering Sun Documents

The SunDocsSM program provides more than 250 manuals from Sun Microsystems,

Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase

documentation sets or individual manuals using this program.

For a list of documents and how to order them, see the catalog section of the

SunExpress™ Internet site at http://www.sun.com/sunexpress .

Accessing Sun Documentation Online

The docs.sun.com Web site enables you to access Sun technical documentation

online. You can browse the docs.sun.com archive or search for a specific book title

or subject. The URL is http://docs.sun.com/ .
xii OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

Sun Welcomes Your Comments

Sun is interested in improving our documentation and welcome your comments and

suggestions. You can email or fax your comments to us. Please include the part

number of your document in the subject line of your email or fax message.

■ Email:—smcc-docs@sun.com

■ Fax:—SMCC Document Feedback, 1-650-786-6443

What Typographic Changes Mean

The following table describes the typographic changes used in this book.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% You have mail.

AaBbCc123 What you type, contrasted with

on-screen computer output

machine_name% su
Password:

AaBbCc123 Command-line placeholder:

replace with a real name or

value

To delete a file, type rm filename.

AaBbCc123 Book titles, new words or terms,

or words to be emphasized

Read Chapter 6 in User’s Guide. These

are called class options.

You must be root to do this.
Preface xiii

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for the

C shell, Bourne shell, and Korn shell.

TABLE P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell

prompt

$

Bourne shell and Korn shell

superuser prompt

#

xiv OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

CHAPTER 1

Introduction to the OpenGL for
Solaris Software

The OpenGL for Solaris software is Sun’s native implementation of the OpenGL

application programming interface (API). The OpenGL API is an industry-standard,

vendor-neutral graphics library. It provides a small set of low-level geometric

primitives and many basic and advanced 3D rendering features, such as modeling

transformations, shading, lighting, anti-aliasing, texture mapping, fog, and alpha

blending.

OpenGL 1.1.1 for Solaris Product
Functionality

The OpenGL 1.1.1 for Solaris software is a functionally conforming implementation

based on the OpenGL 1.1, GLX 1.2, and GLU 1.2 standard specifications. The

OpenGL 1.1.1 for Solaris software incorporates the new features in OpenGL and

includes support for the SERVER_OVERLAY_VISUALSproperty.

OpenGL 1.1.1 Library

The OpenGL 1.1.1 library is a superset of OpenGL 1.1, including all OpenGL 1.1

functionality and additional features that were available as extensions to OpenGL

1.0. The added extensions, which are listed in TABLE 1-1 on page 2, have become part

of base OpenGL functionality; however, the semantics or syntax may have changed
1

in OpenGL 1.1.1 for Solaris. For detailed information on the extensions incorporated

into the OpenGL 1.1 specification, see Appendix C in The OpenGL Graphics System: A
Specification, Version 1.1.

Note – Because the OpenGL 1.1.1 for Solaris software is based on a more current

version of the OpenGL specifications (OpenGL 1.1, GLX 1.2, GLU 1.2) than the

OpenGL 1.0 version, customers currently using the OpenGL 1.0 extensions syntax

should be alert for software changes required to support the updated OpenGL

specifications.

Supported OpenGL 1.1.1 Extensions

The OpenGL 1.1.1 for Solaris software supports the following OpenGL extensions:

■ 3D texture mapping extension – GL_EXT_texture3D

■ ABGR reverse-order color format extension – GL_EXT_abgr

■ Texture color table extension – GL_SGI_texture_color_table

■ SGI color table extension – GL_SGI_color_table

■ Sun geometry compression extension – GL_SUNX_geometry_compression

■ Rescale normal extension – GL_EXT_rescale_normal

■ Histogram extension – GL_EXT_histogram

TABLE 1-1 OpenGL 1.0 Extensions That Have Become Apart of Base OpenGL 1.1
Functionality

OpenGL 1.1 Name Extension Name
Changed Syntax
or Semantics

Vertex arrays GL_EXT_vertex_array Yes

Polygon offset GL_EXT_polygon_offset Yes

RGBA logical operations GL_EXT_blend_logic_op No

Internal texture image formats GL_EXT_texture No

Texture replace environment GL_EXT_texture No

Texture proxies GL_EXT_texture Yes

Copy texture and subtexture GL_EXT_copy_texture
GL_EXT_subtexture

No

Texture objects GL_EXT_texture_object Yes
2 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

■ Postconvolution color table extension –

GL_SGI_postconvolution_color_table

■ Convolution extension – GL_EXT_convolution

■ Blend color extension – GL_EXT_blend_color

■ Blend minmax extension – GL_EXT_blend_minmax

■ Blend suptract extension – GL_EXT_blend_subtract

■ Pixel transform extension – GL_EXT_pixel_transform

■ Multidrawarrays extension – GL_SUN_multi_draw_arrays

■ Convolution border mode extension – GL_HP_convolution_border_modes

■ Convolution border mode extension – GL_SUN_convoution_border_modes

■ Pixel transformation extension – GL_EXT_pixel_transform

Note – glBlendEquationEXT(GL_LOGIC_OP) is not supported. Instead of using

the code sequence:

glLogicOpEXT(GL_XOR)
glBlendEquationEXT(GL_LOGIC_OP)
glEnable(GL_BLEND)

use the following code sequence:

glLogicOp(GL_XOR)
/* GL_LOGIC_OP not supported

in glBlendEquationEXT with
OpenGL for Solaris */

#ifdef GL_VERSION_1_1
glEnable(GL_COLOR_LOGIC_OP)

#endif

The OpenGL 1.1.1 for Solaris software also supports the following GLX extensions:

■ Return the transparent pixel index for an overlay/underlay window pair –

GLX_SUN_get_transparent_index. See the

glXGetTransparentIndexSUN (3gl) man page.

■ fbconfig extension – GLX_SGIX_fbconfig

■ pbuffer extension – GLX_SGIX_pbuffer

■ make current read extension – GLX_SGI_make_current_read

■ Multithread support extension – GLX_SUN_init_threads
Chapter 1 Introduction to the OpenGL for Solaris Software 3

Note – To determine what extensions, if any, your application uses, search for

command-name patterns such as gl ProcedureEXT(3gl) . If your application uses

extensions, you will need to ensure that it also handles the functionality in an

OpenGL 1.1-compliant manner. To determine what extensions an OpenGL

implementation supports, use glXQueryExtensionString(3gl). Because the

OpenGL 1.1.1 for Solaris software is based on a more current version of the OpenGL

specifications (OpenGL 1.1, GLX 1.2, GLU 1.2) than the OpenGL 1.0 version,

customers currently using the OpenGL 1.0 extensions syntax should be alert for

software changes required to support the updated OpenGL specifications.

Compatibility Issues

Applications compiled with the previous OpenGL for Solaris libraries will run

unchanged with the Solaris OpenGL 1.1.1 implementation. However, note the

following backward compatibility issues:

■ To reduce function call overhead and improve performance for vertex calls in

immediate mode, vertex commands such as glVertex, glColor, glNormal,
glTexCoord and glIndex have been redefined as macros in the OpenGL 1.1.1

for Solaris software. Therefore, by default, applications compiled with the

OpenGL 1.1.1 for Solaris library will not run on the 1.0 library. To compile an

application with the OpenGL 1.1.1 for Solaris library and maintain compatibility

with 1.0, use the flag -DSUN_OGL_NO_VERTEX_MACROSwhen compiling the

application. See the glVertex (3gl) man page for further information.

■ If your application uses the features in the OpenGL 1.1.1 for Solaris library, these

are not available in the previous release for OpenGL It will not be backward

compatible with the previous OpenGL libraries.

MT-Safe

The OpenGL for Solaris library is multithread safe (MT-safe). Multiple rendering

threads are allowed in a single process. See man page glXInitThreadsSUN(3gl).

If an application needs only one rendering thread, MT-safe mode is not

recommended. MT-safe mode incurs some performance overhead which can be

avoided for single threaded rendering. Some multithread cases may contain

computation or GUI threads. For these cases an application can create one OpenGL

rendering thread and separate GUI or computational threads.
4 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

Multithread safe allows OpenGL parallelism. This parallelism supports single to

multiple processors as well as single to multiple screens.

Multithread safe does not allow:

■ More than one thread using the same context

■ More than one current context per thread

The maximum number of OpenGL rendering threads supported is 64.

The following MT-Safe patches are required:

■ Solaris 2.5.1 +patch 103566-27

■ Solaris 2.6 +patch 105633-02 (if using Creator patch 105360-04 also needed)

Caution – When the OpenGL renderer (see glGetString(GL_RENDERER)) is a

graphics accelerator (not a software renderer), multiple rendering threads to the

same screen might perform slower than single threaded rendering. If possible,

avoid multithreaded rendering to a single graphics accelerated screen.

Supported Platforms

The OpenGL 1.1.1 for Solaris software supports the following devices:

■ Creator Graphics and Creator3D Graphics – OpenGL functionality is accelerated

in hardware.

■ SX, ZX, GX, GX+, TGX, TGX+, S24 – OpenGL functionality is performed in

software.

■ All SMCC SPARCTM systems equipped with the following frame buffers are

supported on the OpenGL 1.1.1 for Solaris software: the TCX, SX, GX, ZX and

Creator families of frame buffers. This includes UltraTM desktop, Ultra

EnterpriseTM and all the legacy SPARCstationTM family.

Note – The PGX frame buffer family is not supported by the OpenGL 1.1.1 for

Solaris software.
Chapter 1 Introduction to the OpenGL for Solaris Software 5

Where to Look for Information on
OpenGL Programming

For information on how to write an OpenGL application, see the following books:

■ OpenGL Programming Guide by Neider, Davis, and Woo

■ OpenGL Reference Manual by the OpenGL Architecture Review Board

■ OpenGL Programming for X Windows System by Mark Kilgard

These books are published by Addison-Wesley and are available through your local

bookstore.

For more information on OpenGL, you may want to refer to “The Design of the

OpenGL Interface” written by Mark Segal and Kurt Akeley. A PostScript copy of this

document is included in the SUNWgldoc package or the OpenGL 1.1.1 for Solaris

CD-ROM. For the complete specification of what constitutes OpenGL, see The
OpenGL Graphics System: A Specification, Version 1.1, also written by Mark Segal and

Kurt Akeley. An online version of this specification is located at http://
www.sgi.com/Technology/OpenGL/glspec1.1/glspec.html).

Finally, for a good source of answers to questions you may have about OpenGL, see

the OpenGL information center at http://www.sgi.com/Technology/OpenGL/
opengl.html .
6 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

CHAPTER 2

OpenGL for Solaris Architecture

The purpose of designing a graphics system architecture is to enable performance

within the constraints of cost and functionality goals. Hardware design places

various stages of the graphics pipeline into hardware accelerators. Software design

uses the hardware features and complements the hardware by providing complete

coverage of functionality.

Understanding the hardware and software architecture of a particular system will

help you determine whether a feature is accelerated in the graphics hardware or

implemented in software. This will enable you to identify which path through the

system your application uses for the feature. With this information, you can project

your application’s performance. Given knowledge of performance versus

functionality tradeoffs, you can make informed choices about how to use the system

to maximize your application’s interactivity.

This chapter describes the OpenGL for Solaris architecture. First it defines two terms

commonly used when discussing hardware and software performance.

Acceleration vs. Optimization

When discussing performance, understanding how the hardware implementor,

software implementor, and application programmer define and differentiate the

terms hardware acceleration and software optimization is helpful.

■ To the hardware designer, hardware accelerating OpenGL means implementing

logic in the form of gates and data paths for OpenGL functions.

■ To the OpenGL software implementor, accelerating OpenGL functions means

writing software to use the graphics hardware features. In addition, the software

implementor can optimize OpenGL features that are not accelerated in hardware

by writing highly tuned code to make the performance of those features as

efficient as possible.
7

■ To the OpenGL application programmer, acceleration typically means the speed

at which various combinations of geometry and OpenGL state render, with the

goal generally being interactive performance.

With these definitions in mind, the next sections describe the OpenGL architecture

and the implementation of this architecture in the Solaris OpenGL software.

A Quick Review of the OpenGL
Architecture

As a first step in examining the OpenGL for Solaris architecture, Figure 2-1 shows

the basic architecture of the OpenGL library.

FIGURE 2-1 OpenGL Architecture1

In the first stage of the OpenGL pipeline, vertex data enters the pipeline, and curve

and surface geometry is evaluated. Next, colors, normals, and texture coordinates

are associated with vertices, and vertices are transformed and lit. Vertices are then

assembled into geometric primitives.

The rasterization stage converts geometric primitives into frame buffer addresses

and values, or fragments. Each fragment may be altered by per-fragment operations,

such as blending. Per-fragment operations store updates into the frame buffer based

on incoming and previously stored Z values (for Z buffering), blending of incoming

fragment colors with stored colors, as well as masking and other logical operations.

1. From Segal, Mark, and Kurt Akeley, “The OpenGL Graphics System: A Specification,” Mountain View, CA,
1995.

Texture
Memory

Rasterization
Per-
Fragment
Operations

Frame BufferEvaluator

Display List

Per-Vertex
Operations

Primitive
Assembly

Pixel
Operations
8 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

Pixel data is processed in the pixel operation stage. The resulting data is stored as

texture memory, or rasterized and processed as fragments before being written to the

frame buffer.

The task of the hardware and software implementors at Sun was to implement the

OpenGL functionality. The remainder of this chapter describes this implementation.

Graphics Hardware Architecture

Graphics hardware architectures can be designed to meet varying constraints of cost

and CPU performance. High-performance model coordinate (MC) devices typically

implement vertex processing and transformations in hardware. A model coordinate

device may perform lighting, coordinate transformations, clipping, and culling as

well as rasterization and fragment processing in hardware, thereby providing very

fast performance.

At a different performance level, rasterization devices typically use the host CPU to

perform vertex processing and use the rasterization hardware to convert device

coordinate geometry into pixel values. The Ultra Creator and Creator3D systems are

examples of device coordinate (DC) devices. The graphics hardware architecture of

the Creator3D graphics system is designed as follows:

■ Primitive assembly and vertex processing are performed on the UltraSPARCTM

CPU. Texturing operations are also performed on the CPU.

■ Rasterization and fragment processing are performed in the Creator3D Graphics

hardware subsystem. The Creator3D graphics system accelerates rasterization of

lines, points, and triangles, and also accelerates per-fragment operations such as

the pixel ownership test, scissor test, depth buffer test, blending, logical

operations, line anti-aliasing, line stippling, and polygon stippling.

The benefit of building custom hardware for graphics is that when operations are

parallelized in hardware circuits, turning on features (like both Z-buffering and

blending) has a very small performance cost. If a feature is provided in hardware,

the hardware is usually designed to allow sustained throughput for that feature.

Thus, you can make full use of features that have been implemented in hardware

without experiencing performance degradation.

The benefit of putting graphics functions in software is that since the CPU is a

required and shared computing resource, using it for graphics operations imposes

no additional financial cost. The disadvantage is that each additional graphics

operation requires CPU cycle time. When an application asks more of the CPU, the

CPU may perform more slowly.
Chapter 2 OpenGL for Solaris Architecture 9

Solaris OpenGL Software Architecture

Once the hardware designers have determined what the hardware will accelerate, all

other decisions regarding performance fall to the software implementors. Software

implementors need to consider the following questions:

What hardware features will be used?

1. What features that are not accelerated in hardware can the software optimize?

2. How will the software implement all functionality?

In response to these questions, the Solaris OpenGL software developers

implemented OpenGL as follows:

■ Accelerated OpenGL by using using all features of the Creator and Creator3D

graphics subsystems.

■ For the Creator and Creator3D systems optimized line and point transformation

and clip test, and a subset of texture lookup and filtering.

■ Implemented OpenGL to its complete specification by writing code for primitive

assembly and vertex processing, including:

■ Coordinate transformations

■ Texture coordinate generation

■ Clipping

■ Implemented two forms of software rasterization for OpenGL features not

rasterized in hardware:

■ Optimized software rasterizer for many texturing functions and pixel

operations. Software rasterization is done by the CPU using an optimized

implementation. On an UltraSPARC CPU, some features, such as texturing

rasterization, may be handled using software code employing the VIS

instruction set.

■ A software rasterizer for all features not handled by the hardware or by the

VIS software.

This implementation of the OpenGL for Solaris library allows devices with varying

capabilities to run efficiently on the OpenGL software. It enables OpenGL for Solaris

applications to run on the following types of devices:

■ Model coordinate device – Handles most OpenGL functionality in hardware,

including vertex processing, primitive assembly, rasterization, and fragment

operations.

■ Device coordinate device (Creator or Creator3D graphics system) – Performs

vertex processing. Rasterization and fragment processing is handled in hardware.
10 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

■ Memory mappable devices (SX, ZX, GX, GX+, TGX, TGX+, TCX) – Vertex

processing, primitive assembly, rasterization, and fragment processing are

performed in software, and the results are written to the memory-mapped frame

buffer.

FIGURE 2-2 on page 12 illustrates the graphics software architecture of the OpenGL

for Solaris product. This figure shows the paths that application data can take

through the OpenGL system, depending on the type of hardware device the

application is running on. TABLE 2-1 summarizes the data paths with reference to

several hardware platforms.

TABLE 2-1 Data Paths Through the OpenGL for Solaris System

Platform Vertex Processing Rasterization Performance

MC device Hardware vertex processing Hardware rasterizer Fastest path

Software vertex processing Hardware rasterizer Fast path

Software vertex processing Software rasterizer Slow path

DC device

(Creator3D

or Creator)

Software vertex processing

Software vertex processing

Hardware rasterizer

Software rasterizer

Fast path

Slow path

Memory map

(ZX, GX, SX)

Software vertex processing Software rasterizer Only path
Chapter 2 OpenGL for Solaris Architecture 11

FIGURE 2-2 Solaris OpenGL Software Architecture

Vertex Processing Architecture

As Figure 2-2 shows, Sun’s OpenGL implementation handles vertex processing in

several ways:

■ Hardware vertex processing – On model coordinate devices, vertex processing is

done via the hardware. In addition to hardware acceleration, the model

coordinate (MC) pipeline is optimized for vertex arrays and display list mode.

The model coordinate pipeline also recognizes consistent data types within

glBegin /glEnd pairs. If the data is consistent, the software is able to use

hardware resources efficiently.

Batched vertex processing

Device coordinate Software
rasterization

Vertex

Rasterization/

Device independent code
OpenGL AP I
to Pipeline
Layer

Processing

API or Application

Frame buffer

Per-Fragment
Operations

hardware rasterization
(Creator/Creator3D)

Model
coordinate
hardware

Software

Hardware
12 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

■ Software vertex processor – This is the fully optimized path from the software

implementor's point of view. The principal optimization is that the model

coordinate software pipeline recognizes consistent data types within glBegin /

glEnd pairs: if the data is consistent, the software pipeline is able to use CPU

resources efficiently.

The OpenGL vertex array commands result in the best performance for vertex

processing on all hardware platforms. For repeated rendering of the same geometry,

display lists provide significant performance benefits over immediate mode

rendering.

Rasterization and Fragment Processing

Architecture

Rasterization and fragment processing is handled in one of the following ways:

■ Hardware rasterizer – The graphics subsystem handles lines, points, and

triangles, and does simple fragment processing, such as blending and the depth-

buffer test.

■ Optimized software rasterizer – The CPU does software rasterization using an

optimized implementation. On an UltraSPARC CPU, some features, such as

texturing rasterization, may be handled by the UltraSPARC CPU using software

code employing the VIS instruction set.

■ Software rasterizer – The CPU does software rasterization using a generic,

unoptimized implementation. The generic software rasterizer is approximately

one-sixth the speed of the optimized software rasterizer.

Solaris OpenGL Interface Layers

The OpenGL for Solaris implementation has three layers of interfaces with the

hardware, each requiring successively more processing by the host CPU. These

interface layers correspond to the stages of the OpenGL pipeline. The rendering

interface is determined by the value of the current OpenGL attributes, and in a small

number of cases by the geometry itself. In general, the more host processing needed,

the slower the resulting rendering, so an application should avoid attributes that

force the slower rendering layers to be used.

FIGURE 2-3 on page 15 shows the interface layers and their relationship to data paths

through the OpenGL for Solaris system. In this illustration, the filled boxes represent

the hardware-specific device pipeline (DP) components and show the hardware data

paths. The white boxes represent the device-independent (DI) software components

and show the software data paths.
Chapter 2 OpenGL for Solaris Architecture 13

The more efficiently an application can reach a filled box, the better the application’s

performance will be. For example, for an application running on a model coordinate

device, the fast data paths are those that result in rendering in hardware at the

vertex processing layer. Setting an attribute that causes the use of the software

pipeline for model coordinate processing can result in a significant drop in

performance. Setting an attribute that results in the use of software rasterizing can

cause an even more significant drop in performance.

On a device coordinate device such as the Creator3D system, hardware rasterization

is about three times faster than the VIS (optimized) rasterizer. The VIS rasterizer is

about five-to-six times faster than the generic software rasterizer. Thus, the best way

to increase rasterization and fragment processing performance on a DC device is to

stay in the hardware rasterizer whenever possible.

Memory-mappable devices without hardware support use the software pipeline for

model coordinate operations and the software rasterizer for rasterization. Examples

of this device are the single-buffered GX, and TGX. For devices that do not allow

memory access, the OpenGL for Solaris architecture provides a pixel--rendering

interface layer. However, at this time no Sun hardware devices use this interface

layer.

For detailed information on attributes that result in slower rendering paths, see

Chapter 3 “Performance.”
14 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

FIGURE 2-3 Solaris OpenGL Data Paths

MC Layer -

DP MC Renderer

glBegin

glEnd
glCallList

DP MC Renderer

glDrawArray

Software Rasterizer/ DP DC Renderer

glEnable

DP Pipeline
Selection

DP MC

Management
StateVertex

Array
Display

List
 Buffered
Primitives

DP State

(Non-buffered)

Pipeline Renderer
Software

.

.

Fragment Processing

DC Layer -

Memory Map
Layer

Frame buffer

Vertex Processing

Rasterization

Renderer
Chapter 2 OpenGL for Solaris Architecture 15

16 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

CHAPTER 3

Performance

This chapter provides performance information that you can use to tune your

application to make the best use of Sun hardware graphics accelerators. The first

section provides general advice on how to optimize vertex processing performance

for a variety of platforms. The subsequent sections provide specific techniques to

ensure maximum performance on the Creator3D and Creator graphics accelerators.

General Tips on Vertex Processing

To achieve the best vertex processing performance on all Sun platforms, follow these

guidelines:

1. Use vertex arrays or display list mode rather than immediate mode whenever

rendering data repeatedly.

2. Use consistent patterns of data types between glBegin (3gl) and glEnd (3gl) .

Consistent data types are described in “Consistent Data Types” on page 18.

3. If you must use immediate mode, try to include as many primitives of the same

type as possible between one glBegin and the corresponding glEnd .

4. If vertex array is used, try to stay in vertex array mode, rather than switching

between vertex array and immediate mode.

These guidelines are discussed in the sections that follow.
17

Vertex Arrays

Vertex array commands provide the best performance for vertex processing of big

primitives because they avoid the function call overhead of passing one vertex,

color, and normal at a time. Instead of calling an OpenGL command for each vertex,

you can pre-specify arrays of vertices, colors, and normals, and use them to define a

primitive or set of primitives of the same type with a single command. Interleaved

vertex arrays may enable even faster performance, since the application passes the

data packed in a single array.

MultiDrawArrays

OpenGL for Solaris contains the extension glMultiDrawArraysSUN (). This

function allows multiple strips of primitives to be rendered with one call to OpenGL.

Because of reduced function call and setup overhead, this function can provide

significant spee when an object contains many short strips. For some

implementations of this function, there may be additional performance gains if the

strips are contiguous in the vertex array. As with the standard glDrawArrays (),

using interleaved vertex arrays gives even better performance.

Consistent Data Types

For the OpenGL for Solaris implementation on all Sun platforms, vertex processing

is optimized if the application provides consistent, supported data types within a

glBegin /glEnd pair. Data types are consistent when the commands between one

vertex call, such as glVertex3fv , and the next vertex call include identical patterns

of data types in the identical order. In other words, consistent data is data for which

the pattern is the same for each vertex, except when glCallList or glEval* is

included. For example, the following set of commands is consistent because the

primitive is defined by the repeating set of calls glColor3fv (3gl);

glVertex3fv (3gl) .

glBegin(GL_LINES);

glColor3fv(...);

glVertex3fv(...);

glColor3fv(...);

glVertex3fv(...);

glColor3fv(...);

glVertex3fv(...);

glEnd();
18 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

As another example, the following set of commands is consistent since each vertex

contains the same data- a color, normal, and vertex in repeating order.

glBegin(GL_LINES);

glColor3f(...);

glNormal3f(...);

glVertex3f(...);

glColor3f(...);

glNormal3f(...);

glVertex3f(...);

glEnd();

Note – The *f versions of the calls may be used interchangeably with the *fv
versions.

Inconsistent data types do not follow a repeating, supported pattern. In the first

example below, the data is inconsistent because the first vertex has a normal, but the

second vertex doesn’t. In the second example, the order is reversed in the second set

of commands, although both vertices have a color and a normal.

glBegin(GL_LINES);

glNormal3fv(...);

glColor3fv(...);

glVertex3fv(...);

glColor3fv(...);

glVertex3fv(...);

glEnd();

glBegin(GL_LINES);

glColor3fv(...);

glNormal3fv(...);

glVertex3fv(...);

glNormal3fv(...);

glColor3fv(...);

glVertex3fv(...);

glEnd();
Chapter 3 Performance 19

For general information on the vertex data that can be specified between

glBegin (3gl) and glEnd (3gl) calls, see the glBegin (3gl) reference page.

Low Batching

OpenGL for Solaris performs best when given big primitives. If small primitives are

sent to the library, the library will try to batch these primitives together, providing

that the primitives are of the same primitive type, with the same consistent data

pattern, and there are no attribute state changes outside the glBegin call.

For example, the following primitives will be batched together by the library.

glBegin(GL_TRIANGLES);

 glNormal3fv(...);

 glVertex3fv(...);

 glNormal3fv(...);

 glVertex3fv(...);

 glNormal3fv(...);

 glVertex3fv(...);

glEnd();

glBegin(GL_TRIANGLES);

 glNormal3fv(...);

 glVertex3fv(...);

 glNormal3fv(...);

 glVertex3fv(...);

 glNormal3fv(...);

 glVertex3fv(...);

glEnd();

The following example shows that the primitives are not batched together because

the glColor3fv call outside the glBegin call breaks the batching of the

primitives.

glBegin(GL_LINES);

 glVertex3fv(...);

 glVertex3fv(...);

glEnd();
20 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

glColorfv(...);

glBegin(GL_LINES);

 glVertex3fv(...);

 glVertex3fv(...);

glEnd();

Optimized Data Types

On any platform that uses the software pipeline for model coordinate rendering,

your application will get better performance if it can pass vertex data in patterns for

which the software pipeline has optimized code. Optimized data patterns are

consistent data patterns which contain none of the following:

■ glEdgeFlag*()

■ glMaterial*()

■ glEvalCoord*()

■ glCallList() or glCallLists()

■ both glColor*() and glIndex*()

■ both glTexCoord*() and glIndex*()

Creator3D Graphics and Creator
Graphics Performance

The Ultra Creator and Creator 3D Graphics systems accelerate rasterization of lines,

points, and triangles as well as most per-fragment operations. Vertex processing and

texturing operations are performed on the UltraSPARC CPU. The OpenGL for

Solaris implementation for the Creator and Creator3D frame buffers uses all features

of the Creator graphics subsystem.

Rasterization and fragment processing is handled in one of three ways:

■ Creator3D hardware rasterizer – Handles lines, points, and triangles, and does

simple fragment processing.

■ Optimized software rasterizer – UltraSPARC VIS (Visual Instruction Set) handles

many texturing functions and pixel operations.

■ Generic software rasterizer – Performs rasterization for all features not handled

by the hardware or by the VIS software.
Chapter 3 Performance 21

To find out more about the Creator and Creator3D hardware platforms, refer to the

Architecture Technical White paper at http://www.sun.com/desktop/
products/Ultra2/ .

The following sections provide specific information on attribute use and pixel

operations on these platforms.

Attributes Affecting Creator3D Performance

Primitive-attribute settings affect performance; therefore, you will get a better level

of performance if you can avoid setting the attributes listed below. In some cases, the

listed attributes simply increase the amount of processing in the hardware or

optimized software data paths. In other cases, setting these attributes forces the use

of the software rasterizer, resulting in slow performance.

Attributes That Increase Vertex Processing Overhead

Attributes that that result in more vertex processing overhead include:

■ Enabling lighting.

■ Turning on user specified clip planes (GL_CLIP_PLANE[i]).

■ Enabling color material (GL_COLOR_MATERIAL).

■ Enabling non-linear fog (glFog(GL_FOG_MODE, GL_EXP{2})). An exception to

this is using RGBAmode on Creator3D Series 2.

■ Enabling GL_NORMALIZE.

■ Turning on polygon offset. However, polygon offset is optimized for the case

when the factor parameter of the glPolygonOffset call is set to 0.0. Users may

have to adjust the units parameter accordingly to avoid stitching for this case.

Primitive Types and Vertex Data Patterns That Increase Vertex
Processing Overhead

Types and patterns that result in more vertex processing overhead are:

■ Using a surface primitive type as an argument to glBegin . The surface primitive

types are: GL_TRIANGLES, GL_TRIANGLE_STRP, GL_TRIANGLE_FAN,
GL_QUADS, GL_QUAD_STRIPand GL_POLYGON.
22 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

■ Using a vertex data pattern for GL_POINTS, GL_LINES, GL_LINE_STRIP,
and GL_LINE_LOOP,other than one of the following repeating patterns. These are

the patterns that are maximally accelerated.

V3F:

glVertex3f(...);

...

C3F_V3F:

glColor3f(...);

glVertex3f(...);

...

C4F_V3F:

glColor4f(...);

glVertex3f(...);

...

V2F:

glVertex2f(...);

...

C3F_V2F:

glColor3f(...);

glVertex2f(...);

...

C4F_V2F:

glColor4f(...);

glVertex2f(...);

...

Note – All vertex data patterns, other than one of the above repeating patterns, take

more memory.

■ Using glDrawElements in immediate mode.
Chapter 3 Performance 23

Attributes That Increase Hardware Rasterization Overhead

Attributes that result in slower hardware rasterization are:

■ Enabling line antialiasing (GL_LINE_SMOOTH)

■ Enabling point antialiasing (GL_POINT_SMOOTH)

Environment Variables Affecting Read Performance

■ unsetenv SUN_OGL_ABGR_READPIX_NOCONFORM(default)

The alpha value read back from the frame buffer during glReadPixels with the

GL_ABGR_EXTformat is always 1.0. This is conformant but slower than the

following variable.

■ setenv SUN_OGL_ABGR_READPIX_NOCONFORM

The alpha value read back from the frame buffer during glReadPixels with the

GL_ABGR_EXTformat is undefined. This is up to 30% faster than the conformant

version. For Creator, the alpha value is not stored in the frame buffer anyway.

Consequently, if the application does not use the alpha value, then this version is

a significantly faster way to read pixels back from the frame buffer.

Attributes That Force the Use of the Software Rasterizer

Setting the following attributes forces the use of the software rasterizer. This is the

slowest data path. If your application requires any of the following attributes for

performance critical functionality, you may want to determine whether this

performance is acceptible. If not, you can evaluate whether the use of these

attributes is advisable.

1. Rasterization attributes

■ In Indexed color mode, enabling line anti-aliasing (GL_LINE_SMOOTH) or point

anti-aliasing (GL_POINT_SMOOTH)

■ Enabling polygon anti-aliasing (GL_POLYGON_SMOOTH)

■ Stippled lines (GL_LINE_STIPPLE) where the line stipple scale factor is larger

than 15

■ Non-antialiased (“jaggy”) points with glPointSize(3gl) greater than 1.0

Note – The only anti-aliased point size supported by Creator3D and Creator is 1.0.

glPointSize is ignored for anti-aliased points. Although the nominal antialiased

point size is 1.0, the actual visible size is approximately 1.5.
24 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

2. Fragment Attributes

■ Blending (GL_BLEND) forces the use of the software rasterizer unless both the

source and destination blend functions are in the following set of blend

functions supported by the hardware:

GL_ZERO
GL_ONE
GL_SRC_ALPHA
GL_ONE_MINUS_SRC_ALPHA

■ Enabling the stencil test (GL_STENCIL_TEST) on Creator3D or Creator3D

Series 2. (Enabling the stencil test does not force the use of the software

rasterizer on Creator3D Series 3 because it supports hardware stencilling).

On the UltraSPARC platform, a VIS optimized software rasterizer is used for

smooth-shaded non-textured stenciled triangles whenever the glStencilOp
parameter fail is anything other than GL_INCR or GL_DECRand the depth test

does not affect the stencil buffer. (This is the case when depth test is disabled

or the glStencilOp parameters zfail and zpass are identical).

■ Enabling any type of fog in Indexed color mode
Chapter 3 Performance 25

FIGURE 3-1 shows the data path for hardware rasterization on the Creator3D system.

FIGURE 3-5 on page 34 illustrates the data path that the application uses when it sets

an attribute that forces the use of the software rasterizer.

FIGURE 3-1 Hardware Rasterizer Path for Creator3D

3. Texturing Attributes

■ Color Table—When the GL_TEXTURE_COLOR_TABLE_SGIextension is used,

the only glTexEnv texture base internal formats that are accelerated are

GL_LUMINANCE, GL_LUMINANCE_ALPHAand GL_INTENSITY.

■ The texture environment mode glTexEnv GL_TEXTURE_ENV_MODEof

GL_BLENDis not accelerated when it is used with the

GL_TEXTURE_COLOR_TABLE_SGIextension.

Software
Pipeline Renderer

DP MC Renderer

glCallList

DP MC Renderer

glDrawArray

Software Rasterizer/ DP DC Renderer

Vertex
Array

Display
List

dpProcessBuffer dpDrawArray

 Buffered
Primitives

glBegin

glEnd

.

.

Fragment Processing

Framebuffer

Creator3D Fast Path

DP Pixel Renderer
26 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

■ Fog—On Creator3D, only linear fog is accelerated. On Creator3D Series 2, all

types of RGBA fog are accelerated.

Attributes That Vary Optimized Texturing Speed

Texturing makes extensive use of VIS on UltraSparc platforms and allows for large

textures. Texturing speed naturally increases with faster CPUs (a 300 Mhz UltraSparc

CPU is 1.6 times faster than a 167 Mhz CPU). Though texturing fill rates are slower

on a host CPU than on dedicated hardware, the system costs are lower.

The extensions supported for texturing include 3D Texture Mapping, SGI Color

Table, and SGI Texture Color Table.

Stencil and some fragment blending cases are slow. The rest are fast (done by

Creator 3D hardware).

Some texturing attributes are handled by generic code and result in the slowest

texturing speed when the GL_TEXTURE_COLOR_TABLE_SGIextension is used with

texture environment color blending or base internal formats of GL_ALPHA, GL_RGB,
or GL_RGBA.

Texturing attributes with the most impact on speed are:

■ Minification filter

■ Texture Coordinate Interior/Exterior Classification (per triangle)

■ All wrap modes set to GL_REPEAT
■ Texture Color Lookup Table

The VIS optimized software rasterizer will vary in texturing speed based on the

texturing attributes specified. The factors affecting texturing speed are listed below.

Note that this is variance within the optimized path, not the difference between the

optimized and generic paths.

■ Projection Type—The type of projection matrix. Orthographic is faster than

perspective.

■ Wrap Mode—Best speed is when all dimensions (GL_TEXTURE_WRAP_x) are set to

GL_REPEAT. If all the texture wrap modes are GL_REPEAT, this case is specially

optimized. If any of the texture wrap modes are GL_CLAMP, then the standard

texture wrap routine is used, but it is slower than the special case.

■ Dimension—In general, 2D texturing is faster than 3D texturing, since there is one

less texture coordinate to deal with. However, this does not mean it is better to

use many 2D textures to approximate 3D texturing since the texture load time (see

next section) may significantly increase the overhead.
Chapter 3 Performance 27

■ Minfilter—The fastest GL_TEXTURE_MIN_FILTERparameter is GL_NEAREST,
which is approximately 4x the speed of GL_LINEAR. See FIGURE 3-3 on page 31

and FIGURE 3-4 on page 32. The approximate relative speed in decreasing order is:

GL_NEAREST, GL_NEAREST_MIPMAP_NEAREST, GL_NEAREST_MIPMAP_LINEAR,
GL_LINEAR, GL_LINEAR_MIPMAP_NEAREST, and GL_LINEAR_MIPMAP_LINEAR.

■ Magfilter—For GL_TEXTURE_MAG_FILTER, the same speed ratio of 4x applies to

GL_NEARESTvs. GL_LINEAR. Note, however, that GL_TEXTURE_MAG_FILTERis
ignored when GL_TEXTURE_MIN_FILTERis set to GL_NEARESTor GL_LINEAR.

This can be overridden with a shell environment variable but this will slow down

texturing speed for GL_NEARESTand GL_LINEAR, since they now have to

perform level-of-detail calculations to determine when to use

GL_TEXTURE_MAG_FILTER. The shell environment variable that forces this

slower behavior is:

■ setenv SUN_OGL_MAGFILTER “conformant”

■ Texture Coordinate Classification—If all texture coordinates of a triangle/quad/

polygon are at LEAST 1/2 texel inside away from the texture map edge, then the

primitive is considered interior and are render faster than those whose texture

coordinates touch or cross the texture map’s edges. If any vertex touches or

crosses the texture map edge, then the primitive is considered exterior. If a

primitive is interior, then the texture edge related attributes such as wrap modes

and texture border no longer affect the texturing speed.

■ Env Mode—The fastest glTexEnv() GL_TEXTURE_ENV_MODE is GL_REPLACE,
followed closely by GL_MODULATE. GL_DECALis the same speed as GL_REPLACE.

■ Color Table—The use of the extension GL_TEXTURE_COLOR_TABLE_SGIwill

reduce texturing speed.

■ Texture Color Lookup Table—Using this table causes significant slowdown of

texturing speed. Only cases of one or two channel lookups are optimized -

GL_LUMINANCE, GL_INTENSITY, GL_LUMINANCE_ALPHA. Three or four

channel lookups (GL_RGB, GL_RGBA) go to a generic code routine that is slower

than the special case.

Attributes That Vary Texture Load Time

The time to load the texture image into a texture object or a display list will vary

depending on the pixel store and pixel transfer attributes specified when the texture

is specified.
28 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

FIGURE 3-2 shows the texture load processing flow.

FIGURE 3-2 Text Load Processing Flow

The following recommendations should be followed where possible to reduce

texture load time:

■ Use texture objects where possible.

■ If multiple textures are being used, put the textures in texture objects and use

glBindTexture to switch among the textures. This ensures that the internal

copy of texture is evaluated only once.

■ For faster load time of 1D and 2 D textures, use GL_ABGR_EXTformat of data

type GL_UNSIGNED_BYTEand texture internal format of GL_RGBA.

■ 3D textures use packed representation to minimize memory usage.

glTexImage*D()

glPixelStore()

glPixelTransfer()

texture conversion

 & storage

memcpy() &

texture

Optimized

texture conversion

& storage

API Layer

(Fast)(Fastest)(Slow)

Optional & slow

Required & fast
Chapter 3 Performance 29

■ For 3D textures using data type GL_UNSIGNED_BYTE,the following format/base

internal format combinations give the best loading performance:

Relative Performance of Attributes

The following two charts show the relative performance of the attributes. The Y-axis

is a ratio of the measured texturing speed against the fastest texturing case speed

(which is 2D ortho nearest replace interior). Since all the charts were computed

using the one number as a divisor, individual bars can be compared across charts.

For example, the relative performance of 2D vs 3D texturing can be seen by

comparing the bars between the 2D and 3D charts.

The meanings of the legend annotations in the charts are:

ortho—Orthographic Projection

persp—Perspective Projection

repeat—All wrap modes set to GL_REPEAT

clamp—Some wrap modes set to GL_CLAMP

intr—All texture coordinates are interior

extr—All texture coordinates are exterior

ctab—Texture Color Lookup Table extension (GL_TEXTURE_COLOR_TABLE_SGI)

is enabled

nearest—Texture minification filter is GL_NEAREST

nmn—Texture minification filter is GL_NEAREST_MIPMAP_NEAREST

nml—Texture minification filter is GL_NEAREST_MIPMAP_LINEAR

TABLE 3-1 3D optimized cases

Format Base Internal Format

GL_LUMINANCE_ALPHA GL_LUMINANCE_ALPHA

GL_RED GL_INTENSITY

GL_RED GL_LUMINANCE

GL_ALPHA GL_ALPHA

GL_LUMINANCE GL_INTENSITY

GL_LUMINANCE GL_LUMINANCE

GL_ABGR_EXT GL_RGBA
30 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

linear—Texture minification filter is GL_LINEAR

lmn—Texture minification filter is GL_LINEAR_MIPMAP_NEAREST

lml—Texture minification filter is GL_LINEAR_MIPMAP_LINEAR

FIGURE 3-3 2D Texturing
Chapter 3 Performance 31

FIGURE 3-4 3D Texturing

Attributes Affecting Creator Performance

This section applies when pure software rendering is being used. This happens on

the single-buffered Creator platform when glDrawBuffer (3gl) is set to GL_BACKor

GL_FRONT_AND_BACK. The data presented here is also valid for the SX, ZX, GX,

GX+, TGX, TGX+, and TCX platforms. Note that for non-Ultra machines, VIS

rasterization is replaced by an optimized software rasterizer.

Attributes That Increase Vertex Processing Overhead

Attributes that result in more vertex processing overhead are:

■ Enabling lighting.

■ Turning on user specified clip planes (GL_CLIP_PLANE[i]).

■ Enabling color material (GL_COLOR_MATERIAL).
32 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

■ Enabling non-linear fog (glFog (GL_FOG_MODE, GL_EXP{2})). An exception

to this is using RGBA mode on Creator3D Series 2.

■ Enabling GL_NORMALIZE.

■ Turning on polygon offset. However, polygon offset is optimized when the factor

parameter of the glPolygonOffset call is set to 0.0. Users may have to adjust

the units parameter accordingly to avoid stitching for this case.

Attributes That Force the Use of the Generic Software
Rasterizer

Setting the following attributes forces the use of the generic software rasterizer. This

is the slowest data path. If your application requires any of the following attributes

for performance critical functionality, you may want to determine whether this

performance is acceptable. If not, you can evaluate whether the use of these

attributes is advisable.

1. Texturing Attributes

■ All three-dimensional texturing attributes result in the use of the generic

software rasterizer.

■ Two-dimensional texture mapping (GL_TEXTURE_2D) in the following cases:

i. Texture environment mode glTexEnv GL_TEXTURE_ENV_MODEis set to

GL_BLEND.

ii. glTexEnv texture base internal format is GL_ALPHA.

iii. Texturing of points is handled by the generic software.

iv. Fog is enabled.

v. Any use of the SGI Texture Color Table (GL_SGI_texture_color_table)

extension.

2. Fragment Attributes

■ Enabling any type of fog in Indexed color mode.

■ Enabling blending (glBlendFunc) (3gl) except when the source blending

factor is GL_SRC_ALPHAand the destination blending factor is

GL_ONE_MINUS_SRC_ALPHA. This case is optimized.

■ Enabling logical operations.

■ Enabling depth test glEnable(GL_DEPTH_TEST) forces the use of the

optimized software rasterizer. If depth test is enabled, then if

glDepthFunc(3gl) is on, enabling any Z comparison other than GL_LESSor

GL_LEQUALforces the use of the generic software rasterizer.

■ Enabling alpha test.
Chapter 3 Performance 33

■ Setting glDrawBuffer(3gl) to GL_BACKor GL_FRONT_AND_BACK, or setting

glReadBuffer(3gl) to GL_BACK.

Index Mode

When pure software rendering is being used, index mode rendering is handled by

the generic software rasterizer. This includes any logic operation, blending, fog,

stencil, alpha test, and the above-mentioned cases for Z comparison.

FIGURE 3-5 Software Rasterizer Data Path for Creator3d and Creator

Software
Pipeline Renderer

DP MC Renderer

glCallList

DP MC Renderer

glDrawArray

Software Rasterizer/ DP DC Renderer

Vertex
Array

Display
List

dpProcessBuffer dpDrawArray

 Buffered
Primitives

glBegin

glEnd

.

.

Fragment Processing

Frame buffer

Software Rasterizing -
Slow Path

Creator / Creator3D
34 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

Pixel Operations

Under optimal conditions, the commands glDrawPixels(3gl) ,

glReadPixels (3gl) , and glCopyPixels (3gl) are optimized on the Creator and

Creator3D systems using the VIS instruction set on the UltraSPARC CPU. Bitmap

operations using the command glBitmap(3gl) are accelerated in the Creator3D

font registers. However, some attribute settings result in the use of the software

rasterizer for pixel operations.

FIGURE 3-6 shows the rasterization and fragment processing architecture for

glDrawPixels (3gl). The figure shows the optimized and unoptimized paths for

pixel rendering. Your application will experience performance degradation for each

functional box that it needs. In addition, performance degradation will occur if the

data type is not unsigned byte; in this case, the data must be reformatted internally.

FIGURE 3-6 OpenGL for Solaris Architecture for Drawing Pixels

Conditions That Result in VIS Optimization on Creator3D
Systems

In general, for DrawPixels, CopyPixels, and Bitmap, the use of texture mapping or

nonlinear fog (except in RGBA mode on Creator3D Series 2) will force the use of the

generic software rasterizer, resulting in slow performance. In addition, if the

DrawPixels

unpack

 zoom

transfer/map

texture/ fog

SW per-fragment ops

frame buffer

data type
reformatting
Chapter 3 Performance 35

hardware does not support the per-fragment operations that the application has

enabled, the generic software rasterizer is used. See the OpenGL documentation or

the “OpenGL Machine” diagram for a list of per-fragment operations.

For the Creator3D system, if the following conditions are true, pixel operations are

optimized. If these conditions are not true, the generic software rasterizer is used.

glDrawPixels Command
■ Pixel format is GL_RGBA, GL_RGB, GL_ABGR_EXT, GL_RED, GL_GREEN, GL_BLUE,

GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

■ Data type is GL_UNSIGNED_BYTE. (For GL_LUMINANCEthe data type can also be

GL_SHORT).

■ For the format of GL_DEPTH_COMPONENT, the types GL_INT, GL_UNSIGNED_INT,
and GL_FLOATare optimized for the case with no pixel transfer.

■ Texturing is disabled.

■ Pixel unpacking is unnecessary.

■ For the formats listed in the first line, the pixel transfer operations for scale/bias,

pixel map, SGI color table, convolution, SGI post convolution color table,

histogram, and minmax may be enabled.

■ Pixel Zoom may be done if it zoom factors are other than the default values.

■ Pixel transform may be done if its current matrix is other than the identity matrix.

glReadPixels Command
■ Pixel format is GL_RGBA, GL_RGB, GL_ABGR_EXT, GL_RED, GL_GREEN,

GL_BLUE, GL_LUMINANCE, and GL_LUMINANCE_ALPHA.

■ Data type is GL_UNSIGNED_BYTE.

■ For the format of GL_DEPTH_COMPONENT, the types GL_INT,

GL_UNSIGNED_INT, and GL_FLOAT are optimized for the case with no pixel

transfer.

■ Pixel packing is unnecessary.

■ For the formats listed in the first line, the pixel transfer operations for scale/bias,

pixel map, SGI color table, convolution, SGI post convolution color table,

histogram, and minmax may be enabled.

glCopyPixels Command

■ Pixel type is GL_COLOR.

■ Texturing is disabled.
36 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

■ Pixel zooming is in the default state.

■ The pixel transfer operations for scale/bias, pixel map, SGI color table,

convolution, SGI post convolution color table, histogram, and minmax may be

enabled.

glBitmap (3gl)Command
■ Texturing is not enabled.

■ Blending is not enabled.

Conditions That Result in VIS Optimization on Creator
Systems

For the Creator and non-Creator SMCC frame buffers, if the following conditions are

true, pixel operations are optimized. If these conditions are not true, the generic

software rasterizer is used.

glDrawPixels Command
■ For GL_LUMINANCE with data types GL_UNSIGNED_BYTE and GL_SHORT,

there are special VIS optimized routines for:

■ drawing directly to the framebuffer (or pbuffer).

■ performing pixel transfer (ie. scale/bias, pixel map, SGI color table,

convolution, SGI post convolution color table, histogram, and minmax) then

displaying directly to the framebuffer (or pbuffer).

■ performing the pixel transform extension, then drawing directly to the

framebuffer (or pbuffer).

■ performing pixel transfer followed by the pixel transform extension, then

finally drawing directly to the framebuffer (or pbuffer).

■ Pixel format is GL_RGBA, GL_RGBor GL_ABGR_EXT.
■ Data type is GL_UNSIGNED_BYTE.
■ Texturing is disabled.

■ Pixel unpacking is unnecessary.

■ If depth test is enabled, then if glDepthFunc (3gl) is on, enabling any Z

comparison other than GL_LESSor GL_LEQUAL.

glReadPixels Command
■ For GL_REDwith the data type GL_UNSIGNED_BYTE, there is one special VIS

optimized routine for extracting the red channel from an ABGRframebuffer or

pbuffer.
Chapter 3 Performance 37

■ If glReadPixels format is GL_RGBA, GL_RGB, or GL_ABGR_EXT, and the pixel

type is GL_UNSIGNED_BYTE, then glReadPixels is optimized.

■ If glReadPixels format is GL_DEPTH_COMPONENT, then these pixel types are

optimized: GL_INT, GL_UNSIGNED_INT, GL_FLOAT.
■ Pixel packing is unnecessary.

glCopyPixels Command

■ Pixel type is GL_COLOR.
■ Texturing is disabled.

■ Enabling any Z comparison other than GL_LESSor GL_LEQUAL.

glBitmap Command
■ Texturing is disabled.

■ If depth test is enabled, then if glDepthFunc is on, enabling any Z comparison

other than GL_LESSor GL_LEQUAL.

Pixel Transfer Pipeline Imaging
Extensions and the Pixel Transform

The Pixel Transfer Pipeline consists of a small set of image processing functions

which operate on most rectangular imagery with OpenGL. These operations are

performed whenever Pixel Transfer operations can occur within OpenGL (that is,.

glDrawPixels , glReadPixels , glCopyPixels , glTexImage2D ,

glTexImage3DEXT , and so on).

This pipeline has been fine tuned for maximum performance on GL_LUMINANCE

formatted data for the data types GL_UNSIGNED_BYTE and GL_SHORT. Other

formats have been accelerated as well; however, GL_LUMINANCE gains the most in

performance with this Implementation of the Pipeline.

This pipeline has been accelerated using the Visual Instruction Set, which is only

available on those systems with the UltraSPARC processor. The Pixel Transfer

Pipeline with VIS acceleration is not supported on Non-UltraSPARC processors;

however, the original Pixel Transfer Functionality is still there, minus the new

imaging extensions.
38 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

Implementation

The following figure shows the functions and the order of execution (from top to

bottom) of these functions in the Pixel Transfer Pipeline:

FIGURE 3-7 Pixel Transfer Pipeline Functions and Order of Execution

All functions in the pipeline have been accelerated using VIS whenever possible. The

new imaging extensions within this pipeline are convolution, post convolution

scale/bias, post convolution color table, histogram, minmax, and pixel transform.

The last one, pixel transform, is not really part of the pixel transfer pipeline, but is

instead considered part of the pixel rasterizer. Also, pixel transform is only executed

in the glDrawPixels interface. The functions for scale/bias, pixel map, and SGI

color table are part of the previous release, OpenGL 1.1. The difference here is that

they are accelerated using VIS when possible in OpenGL 1.1.1.

Another optimization that is worth noting here is that direct output to the display,

via the glDrawPixels interface, or into a pbuffer has been optimized for

GL_LUMINANCE format with GL_UNSIGNED_BYTE and GL_SHORT data types.

For GL_UNSIGNED_BYTE, while the framebuffer is in TrueColor mode (rgb mode),

the luminance pixels are expanded to XBGR format and then written directly to the

Scale/Bias

Pixel Map

SGI Color Table

Convolution

Post Convolution Scale/Bias

Post Convolution Color Table

Histogram

MinMax

Pixel Transform
Chapter 3 Performance 39

framebuffer memory using VIS for optimal throughput. For GL_LUMINANCE,

GL_SHORT data, the conversion of GL_SHORT data to GL_UNSIGNED_BYTE and

then expansion to XBGR for direct display has been optimized for maximum

throughput using VIS.

When the input format is GL_LUMINANCE and the input data type is GL_SHORT

the Pixel Transfer Pipeline has been made so that it will process the data from the

beginning to end of the pipe as GL_SHORT data. This maintains the accuracy and

integrity of the data from one stage of the pipeline to the next. Only just before

rendering into the frame buffer or pbuffer does the data get scaled down and

clamped to [0, 255].

In this pipeline none or all of these processing blocks can be enabled. Any time the

Pixel Transfer Pipeline is used, there is only one pass through the pipe, and the order

of execution does not change from that represented in the figure above.

How To Use the Pixel Transfer Pipeline and Pixel

Transform

For the most part, OpenGL operates on RGBA colors. Therefore, to be specification

compliant in OpenGL, if a user of OpenGL wants to do pixel transfer operations on

GL_LUMINANCE data, then that data should first be expanded to GL_RGBA

format, (or GL_ABGR_EXT format) before doing any processing. However,

depending on the OpenGL pixel transfer state parameters, it may not be necessary to

expand the image data before processing in the pixel transfer pipeline. That is, if we

expand the data from GL_LUMINANCE to GL_RGBA first, process the image as 4

banded data in the Pixel Transfer Pipeline, and then display, or if we process the

GL_LUMINANCE data as a single banded image in the Pixel Transfer Pipeline, then

expand the data at the end of the pipeline, then display the data; if the result would

be the same using either of the 2 paths, then it makes sense to use the faster path,

which, in this case, would be the latter path.

This takes about 1/4th the time, (or less) to do the correct desired operation. The

Pixel Transfer Pipeline evaluates the various states of the pixel transfer functions and

determines if it needs to do format expansion, before, during, or after processing,

but expansion always occurs, if needed, just before rendering to the framebuffer or

pbuffer.

The only case were format expansion can occur inside the Pixel Transfer Pipeline is

within the “pixel map” block. If you want optimal throughput for GL_LUMINANCE

data, do not use pixel map, instead use SGI color table if you need to use a color

table at this stage in the pipeline.
40 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

The following sections explain each stage of the Pixel Transfer Pipeline. The example

code provided shows you how to set the state parameters for the given stage so that

GL_LUMINANCE data is not expanded until the very end of the pipeline, just

before rendering to the frame buffer's window or the pbuffer.

Scale/Bias

This operation multiplies all pixels by a given scale value, then adds a bias value.

Scale and Bias values can be set differently for each color component of a pixel.

These values are set as follows:

glPixelTransferf (GL_RED_SCALE, red_scale_value);

glPixelTransferf (GL_GREEN_SCALE, green_scale_value);

glPixelTransferf (GL_BLUE_SCALE, blue_scale_value);

glPixelTransferf (GL_ALPHA_SCALE, alpha_scale_value);

glPixelTransferf (GL_RED_BIAS, red_bias_value);

glPixelTransferf (GL_GREEN_BIAS, green_bias_value);

glPixelTransferf (GL_BLUE_BIAS, blue_bias_value);

glPixelTransferf (GL_ALPHA_BIAS, alpha_bias_value);

If any of these deviate from their default values, (1.0 for scale and 0.0 for bias) then

the Scale/Bias block in the Pixel Transfer Pipeline is enabled. If any of the red, green,

blue, or alpha components differ from each other for either scale or bias, and if the

input format can be expanded to GL_RGBA or GL_ABGR_EXT format, then the

expansion will occur before processing starts in the pixel transfer pipeline. If the red,

green, blue and alpha scale values are all the same or alpha scale is 1.0, and the red,

green, blue and alpha bias values are the same or the alpha bias is 0.0, but the red,

green, and blue components are different from their default values, then expansion

does not need to occur. Hence, if you do a glDrawPixels operation and pass in

GL_LUMINANCE data, the red component will be used to do the scale and bias,

and the output will be a GL_LUMINANCE format image. Hence, the following

OpenGL calls will setup Scale/Bias to process GL_LUMINANCE without format

expansion:

glPixelTransferf (GL_RED_SCALE, scale_value);

glPixelTransferf (GL_GREEN_SCALE, scale_value);

glPixelTransferf (GL_BLUE_SCALE, scale_value);

glPixelTransferf (GL_ALPHA_SCALE, scale_value);

glPixelTransferf (GL_RED_BIAS, bias_value);

glPixelTransferf (GL_GREEN_BIAS, bias_value);

glPixelTransferf (GL_BLUE_BIAS, bias_value);

glPixelTransferf (GL_ALPHA_BIAS, bias_value);
Chapter 3 Performance 41

or

glPixelTransferf (GL_RED_SCALE, scale_value);

glPixelTransferf (GL_GREEN_SCALE, scale_value);

glPixelTransferf (GL_BLUE_SCALE, scale_value);

glPixelTransferf (GL_ALPHA_SCALE, 1.0);

glPixelTransferf (GL_RED_BIAS, bias_value);

glPixelTransferf (GL_GREEN_BIAS, bias_value);

glPixelTransferf (GL_BLUE_BIAS, bias_value);

glPixelTransferf (GL_ALPHA_BIAS, 0.0);

To disable scale/bias, just reset the scale/bias values back to their default values as

shown below:

glPixelTransferf (GL_RED_SCALE, 1.0);

glPixelTransferf (GL_GREEN_SCALE, 1.0);

glPixelTransferf (GL_BLUE_SCALE, 1.0);

glPixelTransferf (GL_ALPHA_SCALE, 1.0);

glPixelTransferf (GL_RED_BIAS, 0.0);

glPixelTransferf (GL_GREEN_BIAS, 0.0);

glPixelTransferf (GL_BLUE_BIAS, 0.0);

glPixelTransferf (GL_ALPHA_BIAS, 0.0);

Pixel Map

When in true color mode (RGB mode), if the input image data format is not

GL_RGBA or GL_ABGR_EXT, then expansion is always forced if pixel map is

enabled using glPixelTransfer (GL_MAP_COLOR, GL_TRUE). If the input

image format is GL_COLOR_INDEX and the current display mode is RGB, then

Pixel Map is called automatically whether it was enabled or not to do the conversion

from color index to RGBA. In terms of performance for GL_LUMINANCE, this case

is not optimal and you should use SGI color table instead.

To learn how to use Pixel Map consult the “OpenGL Reference Manual,” by the

OpenGL Architecture Review Board, known as the blue book. Read the sections on

glPixelTransfer , and glPixelMap .
42 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

SGI Color Table

This extension is very useful for accelerating color lookup for GL_LUMINANCE

data. Other formats are accelerated as well; however, GL_LUMINANCE benefits the

most. The following code fragment shows how to correctly setup SGI color table to

perform a color lookup for GL_LUMINANCE data:

int unpack_row_length;

int unpack_skip_pixels;

int unpack_skip_rows;

int unpack_alignment;

int lut_size;

void *lut;

/* Turns on SGI color table. */

glEnable (GL_COLOR_TABLE_SGI);

/* The current pixel storage modes also affect color table */

/* definition at the time the color table is created. We */

/* need to grab the current values, set the row length, */

/* skip pixels and skip rows to the defaults and */

/* set unpack alignment to 1. When finished defining the */

/* color table, restore the original values. */

glGetIntegerv (GL_UNPACK_ROW_LENGTH, (long *) &unpack_row_length);

glGetIntegerv (GL_UNPACK_SKIP_PIXELS, (long *) &unpack_skip_pixels);

glGetIntegerv (GL_UNPACK_SKIP_ROWS, (long *) &unpack_skip_rows);

glGetIntegerv (GL_UNPACK_ALIGNMENT, (long *) &unpack_alignment);

glPixelStorei (GL_UNPACK_ROW_LENGTH, 0);

glPixelStorei (GL_UNPACK_SKIP_PIXELS, 0);

glPixelStorei (GL_UNPACK_SKIP_ROWS, 0);

glPixelStorei (GL_UNPACK_ALIGNMENT, 1);

/* Define the color table for GL_LUMINANCE. */

/* If data type is GL_UNSIGNED_BYTE create a lookup table with */

/* 256 entries. Each entry is of type GL_UNSIGNED_BYTE. */

/* Range of values for any entry is [0, 255]. */

/* For a GL_SHORT lookup table, generate a table of 65536 entries */

/* ranging from -32768 to 32767. */

if (data_type == GL_UNSIGNED_BYTE) {

lut_size = 256;

lut = generate_unsigned_byte_lut();
Chapter 3 Performance 43

}

else if (data_type == GL_SHORT) {

lut_size = 65536;

lut = generate_short_lut();

}

glColorTableSGI (GL_COLOR_TABLE_SGI,
GL_LUMINANCE, /* Need to specify internal format. */

lut_size,

GL_LUMINANCE, /* Format of lut passed in. */

data_type, /* Data type of lut passed in. */

lut); /* Actual pointer to lut arrayl. */

/* Restore original Pixel Storage values in case something else */

/* needed these values. */

glPixelStorei (GL_UNPACK_ROW_LENGTH, unpack_row_length);

glPixelStorei (GL_UNPACK_SKIP_PIXELS, unpack_skip_pixels);

glPixelStorei (GL_UNPACK_SKIP_ROWS, unpack_skip_rows);

glPixelStorei (GL_UNPACK_ALIGNMENT, unpack_alignment);

Convolution, Post Convolution Scale/Bias and Post
Convolution Color Table

Convolution comes in 3 flavors: 1D convolution (applies to 1D textures only), 2D

general convolution, and 2D separable convolution. Special effort has been made to

maximize throughput for 2D general and separable convolutions for

GL_LUMINANCE format for GL_UNSIGNED_BYTE and GL_SHORT data types via

the glDrawPixels interface.

Convolution allows you to set scale and bias values that are applied to the

convolution filter kernel before it is used for convolving the image. This is different

from post convolution scale/bias (below) in that the bias is applied to the filter itself

before processing, where as with post convolution scale/bias, the bias is added to

the final convolution result before clamping for the given data type

(GL_UNSIGNED_BYTE or GL_SHORT).

Convolution and post convolution scale/bias have been combined into one

operation. The kernel values for convolution are multiplied by the scale value of the

post convolution scale/bias, then after each pixel is convolved the bias is added.

Since this is all done in VIS, there is no loss in performance when compared with an

ordinary convolve implemented in VIS.
44 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

The OpenGL 1.1.1 implementation of convolution only supports 1x3, 1x5, and 1x7

convolves for 1D convolves, and 3x3, 5x5, and 7x7 for 2D convolves. Also, the source

image must be 3 times larger than the size of the convolve kernel to be used.

OpenGL 1.1.1 convolution also supports the following border modes:

GL_REDUCE_EXT, GL_IGNORE_BORDER_HP, GL_CONSTANT_BORDER_HP,

GL_WRAP_BORDER_SUN, GL_REPLICATE_BORDER_HP.

SGI post convolution color table is set up exactly the same way as SGI color table.

The only difference being the target value when defining the table.

The code fragment below shows how to setup 2D convolution for both the general

and separable cases for a 3x3 convolve on GL_LUMINANCE format image data. The

setup is the same for either GL_UNSIGNED_BYTE or GL_SHORT data. It also

prepares for using the GL_CONSTANT_BORDER_HP mode, uses the

GL_CONVOLUTION_FILTER_SCALE_EXT and the

GL_CONVOLUTION_FILTER_BIAS_EXT, sets up for post convolution scale/bias,

then finally sets up the SGI post convolution color table.

int unpack_row_length;

int unpack_skip_pixels;

int unpack_skip_rows;

int unpack_alignment;

int lut_size;

void *lut;

float kernel3x3[9] = { 0.111111111, 0.111111111, 0.111111111,

0.111111111, 0.111111111, 0.111111111,

0.111111111, 0.111111111, 0.111111111};

float sepkernel3[3] = { 0.333333333, 0.333333333, 0.333333333};

float const_color[4] = { 0.5, 0.5, 0.5, 0.5 };

float kernel_scales[4] = { 0.8, 0.8, 0.8, 0.8 };

float kernel_biases[4] = { 0.2, 0.2, 0.2, 0.2 };

float post_conv_scales[4] = { 0.75, 0.75, 0.75, 0.75 };

float post_conv_biases[4] = { 0.25, 0.25, 0.25, 0.25 };

/* The current pixel storage modes affect convolve kernel */

/* destination at the time the kernels are created. */

/* We need to grab the current values, set the row length, */

/* skip pixels and skip rows to the defaults and set unpack */

/* alignment to 1. */

/* When finished defining the color table, restore the */
Chapter 3 Performance 45

/* original values. */

glGetIntegerv (GL_UNPACK_ROW_LENGTH, (long *) &unpack_row_length);

glGetIntegerv (GL_UNPACK_SKIP_PIXELS, (long *) &unpack_skip_pixels);

glGetIntegerv (GL_UNPACK_SKIP_ROWS, (long *) &unpack_skip_rows);

glGetIntegerv (GL_UNPACK_ALIGNMENT, (long *) &unpack_alignment);

glPixelStorei (GL_UNPACK_ROW_LENGTH, 0);

glPixelStorei (GL_UNPACK_SKIP_PIXELS, 0);

glPixelStorei (GL_UNPACK_SKIP_ROWS, 0);

glPixelStorei (GL_UNPACK_ALIGNMENT, 1);

/* Now, setup convolution with constant color border mode. */

if (convolve_type == GL_CONVOLUTION_2D_EXT) {

glEnable (GL_CONVOLUTION_2D_EXT);

glConvolutionFilter2DEXT (GL_CONVOLUTION_2D_EXT,
GL_LUMINANCE, /* Internal format. */
3, 3, /* Kernal dimensions. */
GL_LUMINANCE, /* Input kernel data format */
GL_FLOAT, /* Data type for kernel */

/* entries. */
(void *) kernel3x3); /* Pointer to kernel .*/

glConvolutionParameteriEXT(GL_CONVOLUTION_2D_EXT,
GL_CONVOLUTION_BORDER_MODE_EXT,
GL_CONSTANT_BORDER_HP);

glConvolutionParameterfvEXT(GL_CONVOLUTION_2D_EXT,

GL_CONVOLUTION_BORDER_COLOR_HP,

const_color);

glConvolutionParameterfvEXT(GL_CONVOLUTION_2D_EXT,

GL_CONVOLUTION_FILTER_SCALE_EXT,

kernel_scales);

glConvolutionParameterfvEXT(GL_CONVOLUTION_2D_EXT,

GL_CONVOLUTION_FILTER_BIAS_EXT,

kernel_biases);

}

else if (convolve_type == GL_SEPARABLE_2D_EXT) {

glEnable (GL_SEPARABLE_2D_EXT);

glSeparableFilter2DEXT (GL_SEPARABLE_2D_EXT,

GL_LUMINANCE,

3, 3,

GL_LUMINANCE,
46 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

GL_FLOAT,

sepkernel3, /* Horizontal Kernal Values. */

sepkernel3); /* Vertical Kernal Values. */

glConvolutionParameteriEXT(GL_SEPARABLE_2D_EXT,

GL_CONVOLUTION_BORDER_MODE_EXT,

GL_CONSTANT_BORDER_HP);

glConvolutionParameterfvEXT(GL_SEPARABLE_2D_EXT,

GL_CONVOLUTION_BORDER_COLOR_HP,

const_color);

glConvolutionParameterfvEXT(GL_SEPARABLE_2D_EXT,

GL_CONVOLUTION_FILTER_SCALE_EXT,

kernel_scales);

glConvolutionParameterfvEXT(GL_SEPARABLE_2D_EXT,

GL_CONVOLUTION_FILTER_BIAS_EXT,

kernel_biases);

}

glPixelTransferf(GL_POST_CONVOLUTION_RED_SCALE_EXT,

post_conv_scales[0]);

glPixelTransferf(GL_POST_CONVOLUTION_GREEN_SCALE_EXT,

post_conv_scales[1]);

glPixelTransferf(GL_POST_CONVOLUTION_BLUE_SCALE_EXT,

post_conv_scales[2]);

glPixelTransferf(GL_POST_CONVOLUTION_ALPHA_SCALE_EXT,

post_conv_scales[3]);

glPixelTransferf(GL_POST_CONVOLUTION_RED_BIAS_EXT,

post_conv_biases[0]);

glPixelTransferf(GL_POST_CONVOLUTION_GREEN_BIAS_EXT,

post_conv_biases[1]);

glPixelTransferf(GL_POST_CONVOLUTION_BLUE_BIAS_EXT,

post_conv_biases[2]);

glPixelTransferf(GL_POST_CONVOLUTION_ALPHA_BIAS_EXT,

post_conv_biases[3]);

/* Turns on SGI post convolution color table. */

glEnable (GL_POST_CONVOLUTION_COLOR_TABLE_SGI);

/* Define the color table for GL_LUMINANCE. */

/* If data type is GL_UNSIGNED_BYTE create a lookup table with */
Chapter 3 Performance 47

/* 256 entries. Each entry is of type GL_UNSIGNED_BYTE. */

/* Range of values for any entry is [0, 255]. */

/* For a GL_SHORT lookup table, generate a table of 65536 entries */

/* ranging from -32768 to 32767.*/

if (data_type == GL_UNSIGNED_BYTE) {

lut_size = 256;

lut = generate_unsigned_byte_lut();

}

else if (data_type == GL_SHORT) {

lut_size = 65536;

lut = generate_short_lut();

}

glColorTableSGI (GL_POST_CONVOLUTION_COLOR_TABLE_SGI,

GL_LUMINANCE, /* Need to specify internal format. */

lut_size,

GL_LUMINANCE, /* Format of lut passed in. */

data_type, /* Data type of lut passed in. */

lut); /* Actual pointer to lut arrayl. */

/* Restore original Pixel Storage values in case something else */

/* needed these values. */

glPixelStorei (GL_UNPACK_ROW_LENGTH, unpack_row_length);

glPixelStorei (GL_UNPACK_SKIP_PIXELS, unpack_skip_pixels);

glPixelStorei (GL_UNPACK_SKIP_ROWS, unpack_skip_rows);

glPixelStorei (GL_UNPACK_ALIGNMENT, unpack_alignment);

Histogram and Minmax

The Histogram and Minmax operations come at the end of the Pixel Transfer

Pipeline. When used, both can have their own “sink” values. If sink is enabled

(GL_TRUE), processing of image data stops here, and does not continue down the

pipeline and no output is generated. If the histogram's sink value is true, then

minmax is not executed. (See the man pages for more information about the sink

behavior of these operations).

The code below gives an example of getting a histogram for GL_LUMINANCE and

data for both GL_UNSIGNED_BYTE and GL_SHORT. Notice below that the

requested width of the histogram definition for GL_SHORT has been specified to be

32768 instead of 65536. The reason is that, for GL_SHORT data, the data is effectively
48 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

clamped in the range [0, 32767]. That is, if any of the GL_SHORT values are

negative, they will contribute to the very first histogram bin counter value for 0.

Specifying a larger width is pointless since only every other histogram bin would

have a value in it. Histogram widths, in general, may be any value which is a power

of 2 in the range [0, 65536]. However, for those cases where you want to actually

display the computed histogram, you can specify a smaller width for GL_SHORT

data type, say 256, 512, or 1024. This saves you the time because you do not have to

do the code. By requesting a smaller histogram width, histogram bins are added

together. For example, for GL_SHORT, if you requested a width of 256, each

returned bin value in the histogram image would have 128 bins added together.

Hence, all values in the range [0, 127] would be in bin 0. All values in the range [128,

255] would be in bin 1, and so on.

Minmax uses the histogram to compute its values. It gets the minmax values using

the histogram for the full width of the positive values for GL_UNSIGNED_BYTE

and GL_SHORT. Therefore, if the histogram is taken of GL_UNSIGNED_BYTE, the

possible range of minmax values is [0, 255]. For GL_SHORT, the possible range of

minmax values is [0, 32767].

int minmax[2];

int histogram[32768];

unsigned char *uc_buff;

short *s_buff;

glEnable(GL_HISTOGRAM_EXT);

glEnable(GL_MINMAX_EXT);

/* Allocate enough space for 64 x 64 GL_LUMINANCE images. */

uc_buff = (unsigned char *) malloc (4096*sizeof(unsigned char));

s_buff = (short *) malloc (4096*sizeof(short));

/* First, do it for GL_UNSIGNED_BYTE with GL_LUMINANCE format. */

glHistogramEXT(GL_HISTOGRAM_EXT, 256, GL_LUMINANCE, GL_FALSE);

glMinmaxEXT(GL_MINMAX_EXT, GL_LUMINANCE, GL_FALSE);

glDrawPixels(64, 64, GL_LUMINANCE, GL_UNSIGNED_BYTE, uc_buff);

/* Since the call to glHistogramEXT defined a width of 256, */

/* 256 entries of the histogram array will be filled in. */

/* The remaining entries in the array are untouched. */

glGetHistogramEXT(GL_HISTOGRAM_EXT, GL_TRUE, GL_LUMINANCE, GL_INT,

histogram);

glGetMinmaxEXT(GL_MINMAX_EXT, GL_TRUE, GL_LUMINANCE, GL_INT,

minmax);

/* Do something with the histogram and minmax. */

/* Now, do GL_SHORT data. */
Chapter 3 Performance 49

glHistogramEXT(GL_HISTOGRAM_EXT, 32768, GL_LUMINANCE, GL_FALSE);

glMinmaxEXT(GL_MINMAX_EXT, GL_LUMINANCE, GL_FALSE);

glDrawPixels(64, 64, GL_LUMINANCE, GL_SHORT, s_buff);

/* Since the call to glHistogramEXT defined a width of 32768, */

/* 32768 entries of the histogram array will be filled in. */

glGetHistogramEXT(GL_HISTOGRAM_EXT, GL_TRUE, GL_LUMINANCE, GL_INT,

histogram);

glGetMinmaxEXT(GL_MINMAX_EXT, GL_TRUE, GL_LUMINANCE, GL_INT,

minmax);

Pixel Transform

Pixel Transform, while shown at the end of the Pixel Transfer Pipeline, is not part of

it. Pixel Transform is in the Pixel Rasterizer, and it only works through the

glDrawPixels interface.

Pixel Transform has been especially optimized for applying affine transformation

warping to an input image on its way to the frame buffer or pbuffer. It has been

specially tuned for handling GL_LUMINANCE format and the

GL_UNSIGNED_BYTE and GL_SHORT data types. For GL_SHORT, the data is

scaled and clamped to [0, 255] and then warped into the frame buffer or pbuffer. On

the way to the frame buffer, the data is also expanded from GL_LUMINANCE data

to XBGR format, which is the native format of the frame buffer while in rgb mode.

Pixel Transform has its own matrix mode with its own matrix stack 32 deep.

glMatrixMode(GL_PIXEL_TRANSFORM_2D_EXT);

Pixel Transform is always enabled; however, if its current matrix is the identity

matrix, then the pixel transform is not performed. Only when the current matrix is

not the identity matrix will pixel transform be performed.

You can use all of the existing API calls available for matrix operations in OpenGL.

These will operate on the current matrix of the GL_PIXEL_TRANSFORM_2D_EXT

matrix mode (that is, glLoadMatrix , glTranslate , glRotate , glScale ,

glLoadIdentity , glPushMatrix , glPopMatrix , glMultMatrix , and so on).

When using these matrix operators on the current matrix, after the operation is

performed, only the affine components are kept. Entries in the matrix which apply to

the z and w components are left like they were initialized with the identity matrix.

The pixel transform extension operates as if the current raster position is the origin

of the coordinate system. To simplify, set the current raster position to be located in

the lower left corner of the display window, then figure out your operations. If you

want to translate the image, you can use glTranslate , or move the current raster
50 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

position. The difference is that glTranslate will be integrated into the total

transformation for pixel transform, while moving the raster position will translate

the image regardless of the current matrix contents of the pixel transform matrix.
Chapter 3 Performance 51

glPixelZoom also affects the pixel transform current matrix; however, only if the

current matrix mode is set to GL_PIXEL_TRANSFORM_2D_EXT. Also, if

glPixelZoom is called, it replaces the contexts of the current matrix as shown

below:

+-- --+

| x_zoom 0 0 0 |

| 0 y_zoom 0 0 |

| 0 0 1 0 |

| 0 0 0 1 |

+-- --+

If the current matrix mode is not GL_PIXEL_TRANSFORM_2D_EXT, then the

current matrix of GL_PIXEL_TRANSFORM_2D_EXT is not replaced. However, pixel

zoom will still be set.

If the current matrix of GL_PIXEL_TRANSFORM_2D_EXT has been set to

something different than identity, and glPixelZoom has been set, then the pixel

transform will override the glPixelZoom operation.

If you want to do any image warping, use the pixel transform extension. Do not use

the glPixelZoom interface. Instead, use glScale to set up a zoom matrix. If you

are using multiple matrix operations on the pixel transform's current matrix, do not

use glPixelZoom in the middle or end of the list of operations since it will reset the

matrix (shown above) and remove the affect of any previous operations. Instead, use

glScale.

Pixel Transform supports 4 types of resampling for minification and 3 types for

magnification. GL_NEAREST, GL_LINEAR, and GL_CUBIC_EXT are shared by

minification and magnification. GL_AVERAGE_EXT is only supported for

minification.

The code fragment below demonstrates how to prepare a pixel transform matrix to

do an arbitrary rotation of “angle” degrees about the center of the input image in the

center of the frame buffer display window. It assumes the image is

GL_LUMINANCE data and GL_UNSIGNED_BYTE. It also sets up the resampling

method to be GL_LINEAR for minification and GL_CUBIC_EXT for magnification

and sets the GL_CUBIC_WEIGHT_EXT to have the value -0.5.

double rotation_angle;

int window_width, window_height;

int image_width, image_height;

unsigned char *image_data;

/* Grab needed values for placing image in center. */

window_width = get_window_width();

window_height = get_window_height();
52 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

image_width = get_image_width();

image_height = get_image_height();

image_data = get_image_data();

rotation_angle = get_rotation_angle_between_0_and_360_degrees();

/* Prepare current pixel transform matrix. */

glMatrixMode(GL_PIXEL_TRANSFORM_2D_EXT);

glLoadIdentity();

glTranslated(window_width/2.0, window_height/2.0, 0.0);

glRotated(rotation_angle, 0.0, 0.0, 1.0);

glTranslated (-image_width/2.0, -image_height/2.0, 0.0);

/* Set up resampling methods. */

glPixelTransformParameteriEXT(GL_PIXEL_TRANSFORM_2D_EXT,

GL_PIXEL_MIN_FILTER_EXT,

GL_LINEAR);

glPixelTransformParameteriEXT(GL_PIXEL_TRANSFORM_2D_EXT,

GL_PIXEL_MAG_FILTER_EXT,

GL_CUBIC_EXT);

glPixelTransformParameterfEXT(GL_PIXEL_TRANSFORM_2D_EXT,

GL_PIXEL_CUBIC_WEIGHT_EXT,

-0.5);

/* Finally, render the image to the screen. */

glDrawPixels (image_width, image_height, GL_LUMINANCE,

GL_UNSINGED_BYTE,

image_data);

GX Performance

GX performance is affected by attributes that force the use of the generic software

rasterizer:

1. Texturing Attributes

a. Only triangles are optimized. Texturing of points and lines is handled by the

generic software.

b. Texture environment mode glTexEnv(3gl) GL_TEXTURE_ENV_MODEis
GL_BLEND.
Chapter 3 Performance 53

2. Fragment Attributes

a. Stencil operations

b. Logic operations

c. Any blending operation

d. Linear or nonlinear fog

e. Enabling any Z comparison other than GL_LESSor GL_LEQUAL
54 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

CHAPTER 4

X Visuals for the OpenGL for Solaris
Software

Programming With X Visuals for the
OpenGL for Solaris Software

OpenGL rendering is supported on a subset of the visuals exported by the Solaris X

window server on the Creator and Creator3D workstations. Because GLX overloads

the core X visual classes with a set of attributes that indicate frame buffer

capabilities, such as double buffer mode or stereo capabilities, the number of visuals

supported by an OpenGL-capable X server is potentially large. For example, for the

24-bit TrueColor visual, the Solaris X window server on the Creator and Creator3D

workstations exports the following types of GLX visuals: double buffer, single

buffer, monoscopic, and stereoscopic.

This approach of exporting multiple GLX visuals for each X protocol core visual is

colloquially referred to as the GLX expansion (or visual explosion). For each different

type of GLX visual that is exported, there is a corresponding X protocol core visual.

Thus, there are multiple GLX visuals whose core X visual attributes are all identical.

Note – OpenGL for Solaris does not support windows with backing store. Enabling

backing store on a window will penalize the user’s Creator3D rendering

performance.

Various OpenGL-capable visuals are supported in various releases of the Solaris

operating environment. These are the visuals that an OpenGL program can use.

This information applies to both Creator3D and Creator systems.

■ In Solaris 2.5.1-based systems, expanded visuals are disabled by default. The user

will have the option of enabling or disabling expanded visuals by using the

command ffbconfig -expvis < enable|disable>.
55

See Table 4-1 and Table 4-2 for detailed information on using OpenGL with or

without expanded visuals.

Note – In Solaris 2.5.1-based systems, an OpenGL-capable overlay visual is present

only if you run /usr/sbin/ffbconfig -sov enable before the Window system is

started. You must run this command as root.

The advantage to the overloading of X visuals is that the X server can be specific

about the frame buffer configurations that the graphics hardware provides. This

approach also enables the OpenGL implementation to better manage resources.

Instead of allocating the maximal amount of resources for each window, the OpenGL

implementation only needs to allocate the resources necessary for the GLX visual the

application has selected. Thus, the application has more direct control over resource

allocation.

Using the glXGetConfig(3gl) and glXChooseVisual(3gl) routines, applications

can get information on the supported visuals and choose the appropriate visual. For

helpful information on GLX programming, refer to OpenGL Programming for X
Windows Systems by Mark Kilgard and OpenGL Programming Guide.
56 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

Table 4-1 lists OpenGL-capable visuals with expanded visuals.

When the frame buffer video mode is monoscopic, only GL_MONO versions of

these visuals are supported. In a stereoscopic video mode, both GL_MONO and

GL_STEREO versions of these visuals are supported.

Table 4-2 lists OpenGL-capable visuals without expanded visuals.

Colormap Flashing for OpenGL Indexed
Applications

With the visuals exploded, there is greater potential for colormap flashing to occur

for OpenGL indexed applications. This is because applications are forced to create

private colormaps in order to create windows on the GLX visual they choose. In the

Table 4-1 OpenGl-capable Visuals With Expanded Visuals

Double Buffer
Capable?

GLX
BufferSize X Visual Class GL_RGBA

Gamma
Corrected? GLX Level

Yes 24 TrueColor True No 0

Yes 24 TrueColor True Yes 0

Yes 24 DirectColor True No 0

Yes 8 PseudoColor False No 0

No 24 TrueColor True No 0

No 24 TrueColor True Yes 0

No 24 DirectColor True No 0

No 8 PseudoColor False No 0

No 8 PseudoColor False No 1

Table 4-2 OpenGL-capable Visuals Without Expanded Visuals

Double Buffer
Capable?

GLX
BufferSize X Visual Class GL_RGBA

Gamma
Corrected? GLX Level

Yes 24 TrueColor True No 0

Yes 24 TrueColor True Yes 0

Yes 24 DirectColor True No 0

Yes 8 PseudoColor False No 0

No 8 PseudoColor False No 1
Chapter 4 X Visuals for the OpenGL for Solaris Software 57

Solaris 2.6 release, the colormap flashing problem is eased by the colormap

equivalence feature. This feature allows OpenGL color indexed applications to be

written in a way that creates less flashing.

Colormap equivalence allows a program to assign a colormap of one visual to a

window that was created with a different visual, as long as the two visuals are

colormap equivalent. This means, in general, that they share the same plane group

and have the same number of colormap entries. The standard X11 protocol does not

let programs mix visuals of colormaps and windows in this way. For more

information on colormap equivalence, see the

XSolarisCheckColormapEquivalence (3) man page.

Colormap equivalence is useful for OpenGL programs because the GLX visual

expansion creates up to four different variants of each base GL_CAPABLEvisual. So,

for example, instead of one 8-bit default PseudoColor colormap, there may be a

double-buffered variant, a stereo variant, and so on. Without colormap equivalence,

an application cannot assign the default colormap to windows of these variant

visuals, and this will result in more colormap flashing. With colormap equivalence,

windows of all variants can share a colormap that was created using the base visual,

and less colormap flashing will occur.

GL Rendering Model and X Visual Class

OpenGL RGBA rendering is supported on the 24-bit TrueColor and DirectColor

visuals. OpenGL indexed rendering is supported on the 8-bit PseudoColor visuals

and on the indexed or 224-color overlay visuals.

Depth Buffer

All GL-capable visuals, except for overlay visuals, have a 28-bit Z buffer

(GLX_DEPTH_SIZE == 28).
58 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

Accumulation Buffer

All GL RGBA visuals have a (16, 16, 16, 16) accumulation buffer

(GLX_ACCUM_RED_SIZE == GLX_ACCUM_GREEN_SIZE==
GLX_ACCUM_BLUE_SIZE == GLX_ACCUM_ALPHA_SIZE = 16).

Stencil Buffer

All GL capable visuals, except for the overlay and stereo visuals, have a 4-bit stencil

buffer (GLX_STENCIL_SIZE == 4).

Auxiliary Buffers

Auxiliary buffers are not supported by the OpenGL for Solaris product

(GLX_AUX_BUFFERS == 0).

Stereo

Note – This section is specific to Creator and Creator3D systems.

To run a stereo application in stereo mode, the frame buffer must be configured for

stereo operation.

▼ To Set Up the Frame Buffer for Stereo Operation:

1. Exit the window system.
Chapter 4 X Visuals for the OpenGL for Solaris Software 59

2. Type this command:

For Solaris 2.5.1 HW297 /usr/sbin/ffbconfig -res stereo -expvis
enable

For Solaris 2.6 /usr/sbin/ffbconfig -res stereo

Note – In the Solaris 2.6 release, this command must be run under superuser

permissions or sys admin permissions.

3. Restart the window system.

Application can now use the stereo hardware buffers.

Rendering to DirectColor Visuals

The OpenGL API has no support for color mapping. The only way to get a

DirectColor visual is to implement visual selection in the application using

XGetVisualInfo(3gl) and glXGetConfig . If you request a visual with

glXChooseVisual , you will get a 24-bit TrueColor visual for RGBA rendering and

an 8-bit PseudoColor visual for index rendering.

When rendering to DirectColor visuals, the GL system calculates pixel values in the

same way as it does for TrueColor visuals. The application is responsible for loading

the window colormap with cells that make sense to the application.

Overlays

The Creator and Creator3D systems have one 8-bit overlay visual in monoscopic

mode and two 8-bit overlays in stereo mode. The overlay visual GLX level is greater

than zero (GLX_LEVEL > 0). Visuals with a GLX level less than or equal to zero are

underlay visuals.

Server Overlay Visual (SOV) Convention

Server Overlay Visual (SOV) is an API for rendering transparent pixels in an overlay

window. A transparent pixel is a special pixel code that allows the contents of

underlay windows underneath to show through. SOV derives its name from the X
60 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

property that informs the user of the special transparent pixel value:

SERVER_OVERLAY_VISUALS. This value can be used as the input value to

glIndex* calls so that the transparent pixel can be rendered into the overlay.

The SOV API, while not an X11 standard, is a convention that is supported by many

X11 vendors. It is described at length in the book OpenGL Programming for the X
Window System by Mark J. Kilgard. This section describes Sun-specific aspects of the

SOV implementation.

Note – In this section, the term underlay is used as a synonym for the normal

planes referred to in OpenGL Programming for the X Window System.

The SERVER_OVERLAY_VISUALSproperty describes visuals with transparent pixels

(TransparentType = TransparentPixel), and also completely opaque visuals

(TransparentType = None). If you need an overlay visual with a transparent pixel,

make sure that you check the TransparentType field of the entries in this property.

The remainder of this section will discuss only the TransparentPixel SOV visuals.

Enabling SOV Visuals

SOV visuals are present by default in Solaris 2.6. But in Solaris 2.5.1 HW297, they

must be explicitly enabled. SOV visuals can be enabled in an OpenWindows

environment by becoming root , then typing the following command before starting

the OpenWindowsTM system: /usr/sbin/ffbconfig -sov enable. Then restart

the Window system.

Both Creator and Creator3D platforms support SOV visuals. When these devices are

configured for a monoscopic video mode, there is one TransparentPixel SOV visual.

When in a stereoscopic video mode, there are two TransparentPixel SOV visuals

exported: a monoscopic visual and a stereoscopic visual.

Note – Regardless of the video mode, there is always one overlay visual exported

on these devices that is not SOV-capable. This visual is provided in order to support

OVL, the Sun-specific overlay extension. This visual is not GL_CAPABLEand is never

returned by glXChooseVisuals .
Chapter 4 X Visuals for the OpenGL for Solaris Software 61

OpenGL Restrictions on SOV

Note – Creator and Creator 3D Series 3 systems support SOV directly when the

ftbconfig-extovl option is enabled. Earlier Creator and Creator 3D systems do not

directly support SOV, so the OpenGL for Solaris software provides the SOV support

using a low-overhead software translation mechanism. If a program follows the

restrictions described below, this mechanism provides rendering to SOV windows at

full hardware speeds in most cases.

On Creator and Creator 3D systems earlier than series 3, SOV is fully supported on

SOV-capable visuals except for the following features, which are not supported:

■ Uncorrelated window configurations. These window configurations are described

below.

■ Read back of transparent pixels via glReadPixels.

■ Interframebuffer copies of transparent pixels via glCopyPixels .

■ Logic operations other than GL_COPY.

■ Index masks other than 0xff.

■ glShadeModel (GL_SMOOTH).

If one of these unsupported features is used, rendering will complete without

generating an error but the visual results will be undefined.

A correlated window configuration is a combination of an overlay and an underlay

window that are the exact same size and shape. Typically, the overlay window is a

child of the underlay window, but it may also be a sibling. In either case, there must

be no other windows (mapped or unmapped) intervening between them. Once the

window configuration is set up, it should not be changed by re-parenting one of the

windows. If a window configuration doesn’t meet this definition, then it is called an

uncorrelated configuration and is not supported by OpenGL.

The application is responsible for maintaining the correlated relationship. The

system does not maintain it automatically. The client must check for underlay

window shape changes and if any occur, it must perform the equivalent changes on

the overlay window.

Compatibility of SOV with other Overlay Models

Programs that use SOV visuals may coexist on the same screen with programs that

use OVL, the Sun-specific overlay extension. But the two may not be used

simultaneously with the same window.
62 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

Some XGLTM and OpenGL 1.0 programs are written to use the SOV transparent pixel

if the SOV property is present, and to use XOR rendering in the default underlay

visual if the SOV property is not present. These programs may not behave properly

when the SOV property is present. When the SOV property is not present and the

underlay is being used, a program may simply attach the default colormap to the

default visual underlay window. In the presence of the SOV visual, the program will

switch to using the SOV overlay visual but may continue to use the default

colormap. Since the SOV overlay visual is usually not the same as the default visual,

this will result in an X11 BadMatch error when the program attempts to attach the

colormap to the overlay window. Care should be taken to write programs that

always attach colormaps of the proper visual to overlay windows. In this case, the

program should have created a colormap using the SOV visual instead of trying to

use the default colormap.

Programs that use SOV can also coexist with programs using the Sun visual overlay

capability glXGetTransparentIndexSUN . However,

glXGetTransparentIndexSUN is deprecated. It is provided only for

compatability for existing programs that use it. Newly written transparent overlay

programs should use SERVER_OVERLAY_VISUALS instead.

For information on using the Sun visual overlay capability, see the

glXGetTransparentIndexSUN man page. In addition, look at the overlay

example programs included in the SUNWglut package. These programs are installed

by default into the directory /usr/openwin/share/src/GL/contrib/
examples/sun/overlay .

Gamma Correction

On Creator and Creator3D workstations, two 24-bit TrueColor visuals are exported.

One is gamma corrected; the other is not. To support imaging and Xlib applications,

the nonlinear (not gamma-corrected) visuals are listed before linear visuals.

However, to provide linear visuals for graphics applications running under the

OpenGL for Solaris software, the glXChooseVisual() call was modified to return

a linear visual.

If you want to use a nonlinear TrueColor visual, you need to get the visual list from

Xlib. Use the Solaris API XSolarisGetVisualGamma (3) to query the linearity of the

visual. To determine whether a visual supports OpenGL, call glXGetConfig with

attrib set to GLX_USE_GL.

If you are using another vendor’s OpenGL and displaying your application on a

Creator or Creator3D graphics workstation, and you want to use a linear visual, run

the command /usr/sbin/ffbconfig -linearorder first to change the order
Chapter 4 X Visuals for the OpenGL for Solaris Software 63

of visuals so that the linear (gamma-corrected) visual is the first visual in the visual

list. See Solaris X Window System Developer’s Guide for more information on gamma

correction and XSolarisGetVisualGamma .
64 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

CHAPTER 5

Tips and Techniques

This chapter presents miscellaneous topics that you may find useful as you port

your application to the OpenGL for Solaris software.

Avoiding Overlay Colormap Flashing

Colormap flashing may occur when your application uses overlay windows. This

problem stems from several characteristics of the Creator3D system: the overlay

visual is not the default visual, the Creator3D is a single hardware colormap device,

and X11 allocates colormap cells from pixel 0 upward. When the application renders

to the overlay window, it must use a non-default visual, and a non-default colormap

is loaded. In this case, colormap flashing between the default and non-default

colormaps can occur.

The best solution to this problem is to allocate the overlay colors at the high end of

the overlay colormap. In other words, if you have n colors to allocate, allocate them

in the positions colormap_size -n -1 to colormap_size -1.This avoids the colors in the

default colormap, which are allocated upward starting at 0. To allocate n colors at

the top of the overlay colormap, first allocate colormap_size-n read/write placeholder

cells using XAllocColorCells . Then allocate the n overlay colors using

XAllocColor . Finally, free the placeholder cells. This solution is portable; it works

on both single- and multiple-hardware colormap devices.
65

Changing the Limitation on the Number
of Simultaneous GLX Windows

There is a limitation on the number of GLX windows that an application can use

simultaneously. Each GLX window that has an attached GLX context uses a file

descriptor for DGA (Direct Graphics Access) information. You can find the current

number of open file descriptors using the limit (1) command:

% limit descriptors

descriptors 64

The system response tells you that you have up to 64 direct GLX contexts, assuming

that you have no other processes concurrently using file descriptors.

You can increase the per-process maximum number of open file descriptors using

the limit command as follows:

% limit descriptors 128

This command changes the number of file descriptors available for DGA and other

uses to 128. Use the sysdef (1M) command to determine the maximum number of

file descriptors for your system.

Hardware Window ID Allocation Failure
Message

On Creator3D, when a program calls glXMakeCurrent(3gl) to make a window the

current OpenGL drawable, the system will attempt to allocate a unique hardware

window ID (WID) for the window. This allows double buffering and hardware WID

clipping to be used. Because hardware WIDs are a scarce resource and can be used

for other purposes, there might not be any WIDs available when glXMakeCurrent
is called. If this should happen, the following message is displayed:

OpenGL/FFB Warning: unable to allocate hardware window ID

In this situation, double buffering will not be provided for the window, and the

window will be treated as a single-buffered window.
66 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

Getting Peak Frame Rate

The frame rate that ogl_install_check prints out is synchronized to monitor

frequency. It measures the time it takes to render the frame, wait for vblank , then

swap the buffers. Since FFB can render the ogl_install_check image very

quickly, even on an FFB1 Electron 167 mhz machine, the bottleneck is waiting for the

monitor vblank . So, under normal circumstances, ogl_install_check is never

going to be able to get a frame rate faster than the monitor frequency.

However, there is an environment variable called OGL_NO_VBLANKthat you can set

to see the peak, unsynchronized frame rate. When set, this environment variable

swaps buffers immediately, without waiting for vblank .

Identifying Release Version

You can identify the Release Version Number of the OpenGL Library by:

1. Using the what (1) or mcs(1) command:

% what /usr/openwin/lib/libGL.so.1

% mcs -p /usr/openwin/lib/libGL.so.1

2. Programatically, by calling glGetString (GL_VERSION)

(see the glGetString man page for more details)

3. Running the OpenGL for Solaris install_check demo program:

% /usr/openwin/demo/GL/ogl_install_check

Pixmap Rendering

OpenGL for Solaris does not support GLX pixmaps with direct rendering contexts.

Use indirect rendering contexts (see the glXCreateContext(3gl) man page for

indirect rendering contexts).
Chapter 5 Tips and Techniques 67

Determining Visuals Supported by a
Specific Frame Buffer

To determine what visuals a specific frame buffer supports, use /usr/openwin/
demo/GL/xglinfo .

Creator3D Fog

There is a hardware problem with the linear perspective fog on Creator3D that

causes the fog color to overtake the scene color faster than it should for a given

depth. As a workaround, you can increase the start and end linear fog parameters

appropriately. For instance, in a scene where the fog start and end parameters are

equal to the start and end of the perspective view frustum, you should increase the

start parameter to be as close as possible to the start of the geometry. You can

increase the end parameter to attenuate the effect of the scene getting dark too

rapidly. Also, it helps to modify the Z begin and Z end values of the view frustum so

that they are closer together.

This problem is fixed in Creator3D Series 2.
68 OpenGL 1.1.1 For Solaris Implementation and Performance Guide • February 1998

	Preface
	Introduction to the OpenGL for Solaris Software
	OpenGL 1.1.1 for Solaris Product Functionality
	OpenGL 1.1.1 Library

	Supported OpenGL 1.1.1 Extensions
	Compatibility Issues
	MT-Safe
	Supported Platforms
	Where to Look for Information on OpenGL Programming

	OpenGL for Solaris Architecture
	Acceleration vs. Optimization
	A Quick Review of the OpenGL Architecture
	Graphics Hardware Architecture
	Solaris OpenGL Software Architecture
	Vertex Processing Architecture
	Rasterization and Fragment Processing Architecture
	Solaris OpenGL Interface Layers

	Performance
	General Tips on Vertex Processing
	Vertex Arrays
	MultiDrawArrays

	Consistent Data Types
	Low Batching
	Optimized Data Types

	Creator3D Graphics and Creator Graphics Performance
	Attributes Affecting Creator3D Performance
	Attributes That Increase Vertex Processing Overhead
	Primitive Types and Vertex Data Patterns That Increase Vertex Processing Overhead
	Attributes That Increase Hardware Rasterization Overhead
	Environment Variables Affecting Read Performance
	Attributes That Force the Use of the Software Rasterizer
	Attributes That Vary Optimized Texturing Speed
	Attributes That Vary Texture Load Time

	Attributes Affecting Creator Performance
	Attributes That Increase Vertex Processing Overhead
	Attributes That Force the Use of the Generic Software Rasterizer
	Index Mode

	Pixel Operations
	Conditions That Result in VIS Optimization on Creator3D Systems
	Conditions That Result in VIS Optimization on Creator Systems

	Pixel Transfer Pipeline Imaging Extensions and the Pixel Transform
	Implementation
	How To Use the Pixel Transfer Pipeline and Pixel Transform
	Scale/Bias
	Pixel Map
	SGI Color Table
	Convolution, Post Convolution Scale/Bias and Post Convolution Color Table
	Histogram and Minmax
	Pixel Transform

	GX Performance

	X Visuals for the OpenGL for Solaris Software
	Programming With X Visuals for the OpenGL for Solaris Software
	Colormap Flashing for OpenGL Indexed Applications
	GL Rendering Model and X Visual Class
	Depth Buffer
	Accumulation Buffer
	Stencil Buffer
	Auxiliary Buffers
	Stereo
	To Set Up the Frame Buffer for Stereo Operation:

	Rendering to DirectColor Visuals
	Overlays
	Server Overlay Visual (SOV) Convention
	Enabling SOV Visuals
	OpenGL Restrictions on SOV
	Compatibility of SOV with other Overlay Models

	Gamma Correction

	Tips and Techniques
	Avoiding Overlay Colormap Flashing
	Changing the Limitation on the Number of Simultaneous GLX Windows
	Hardware Window ID Allocation Failure Message
	Getting Peak Frame Rate
	Identifying Release Version
	Pixmap Rendering
	Determining Visuals Supported by a Specific Frame Buffer
	Creator3D Fog

