C H A P T E R  2

Advanced Frame Buffer Test (afbtest)

The afbtest verifies the functionality of the advanced frame buffer (AFB).

The afbtest can detect and adapt to the various video modes of the AFB. Instead of only running in one standard graphics mode, all tests can run in any mode. In stereo mode, all tests write into the right and left eyes unless you specify otherwise.

You can interrupt afbtest using Control-c.

Test accuracy is checked using a checksum algorithm. Possible locations of failing pixels are colored chartreuse to help visually identify their position.



caution icon

Caution - Do not run any other application or screen saver program that uses the AFB accelerator port while running afbtest. This combination causes SunVTS to return incorrect errors.




afbtest Test Requirements

Disable all screen savers before testing any graphics device. Type xset s off at a UNIX® prompt to disable the Solaris screen saver.

For full instructions on testing frame buffers, please see Testing Frame Buffers.

afbtest requires approximately 29 MB of disk space in the /tmp directory to extract its working files. If this space is not available, the diagnostic will fail and report warning and error messages, indicating a lack of disk space.


afbtest Options

To reach the dialog box below, right-click on the test name in the System Map and select Test Parameter Options. If you do not see this test in the System Map, you might need to expand the collapsed groups, or your system may not include the device appropriate to this test. Refer to the SunVTS User's Guide for more details.

By default, all afbtest options are enabled.

FIGURE 2-1 afbtest Test Parameter Options Dialog Box

Screenshot of the afbtest Test Parameter Options dialog box.

TABLE 2-1 afbtest Options

afbtest Options

Description

3DRAM test

The 3DRAM test thoroughly tests the video memory in the AFB using 512-bit reads and writes. 3DRAM makes a full-screen pass, consisting of a write and a read to each pixel location, for each access mode on the list below. The data used can be either random or specified by the user. A second pass is made with the one's complement of the data used in the first pass so that each memory location is tested with both a zero and a one.

Errors in this subtest are attributes to the 3DRAM. A failing chip is indicated by (X, Y) locations and device-specific "U" numbers.

  • DFB8R, DFB8G, DFB8B, DFB8X--Buffer A

  • DFB24--Buffer A

  • DFB32--Buffer A

  • SFB8R, SFB8G, SFB8B, SFB8X--Buffer A

  • SFB8R, SFB8G, SFB8B, SFB8X--Buffer B

  • SFB32--Buffer A

  • SFB32--Buffer B

  • SFB32--Buffer C

  • SFB64--Buffers A and C

  • SFB64--Buffers B and C

3DRAM Logic test

The 3DRAM Logic test provides logical functionality to the AFB. The following services are tested:

  • Compare Controls--Match AB

  • Compare Controls--Magnitude AB

  • Compare Controls--Match C

  • Compare Controls--Magnitude C

  • Match Mask--AB

  • Magnitude Mask--AB

  • Match Mask--C

  • Magnitude Mask--C

  • Raster Operations--RGB

  • Raster Operations--X

  • Raster Operations--YZ

  • Plane Mask--RGB

  • Plane Mask--X

  • Plane Mask--Y

  • Plane Mask--Z

  • Group Enable--R, G, B, X

  • Group Enable--Y, Z

Each function is tested separately with a series of SFB64 writes. A total of 16 writes are made for each different test case with Y coordinate values varying from 0 to 30 in increments of 2 pixels. This dotted column organization provides page thrashing and block flashing in all screen resolutions. For each operation all possible combinations are tested. For example, in ROP RGB new==old there are three possible values: new < old, new == old, and new > old. Each of these cases are tested.

Five passes of the functions are made. Each pass writes into a different AFB address space: SFB32-A, SFB32-B, SFB32-C, SFB64-AC, and SFB64-BC. Note that the passes that write into the SFB32 address spaces are writing two pixels at a time because the tests use SFB64 writes.

Care is taken to ensure that all 3DRAM chips are tested. Errors in this subtest are attributed to the 3DRAM.

RAMDAC test

RAMDAC registers are tested using simple read/write patterns to determine if there are any bad bits. This includes all LUTs (4 CLUTs, PWLUT and OWLUT). afbtest ensures that data is actually being read from the RAMDAC and not being supplied by the driver.

RAMDAC on AFB can be in SEP8 or Combined mode. RAMDAC test detects the RAMDAC mode and tests the RAMDAC output for that mode. The RAMDAC Signature Register captures the pixels going to the screen. This test determines that all of the different data paths within the RAMDAC are functioning properly.

The data pattern is designed so all the data paths are tested, that is, all CLUTs, PWLUTs, and OWLUTS. A cursor is also displayed on the screen.

Errors in this test are attributed to the RAMDAC.

Microcode test

Microcode test generates the checksum for the microcode of each enabled float and compares all the checksums for equality.

Errors in this test are attributed to the microcode PROMS & SRAMS.

Rendering Pipeline test

Rendering Pipeline test uses the rendering pipeline tests developed for the FFB stand-alone diagnostics. Each FFB primitive is tested thoroughly with a variety of sources and configurations:

  • Dots

  • Anti-aliased dots

  • Lines using all four line drawing primitives

  • Triangles

  • Polygons

  • Rectangles

  • Fonts

Errors in this test are attributed to the Draw Chips.

Fast Fill/Vertical Scroll test

Fast Fill/Vertical Scroll primitives are separated from the Rendering Pipeline tests because of their dependence on screen type. There are three different tests, one for each screen type. Each test uses both block and page mode fast fills.

Errors in this test are attributed to the Draw Chips.

Pixel Process test

The Pixel Processor test, a subtest, exercises the options selected by the AFB's Pixel Processor Control (PPC) register:

  • Auxiliary clipping (additive and subtractive)

  • Depth cueing

  • Alpha blend

  • Viewport clip (2D and 3D)

  • Area pattern (transparent and opaque)

Errors in this test are attributed to the Draw Chips.

AFB Dots test

This test uses the AFB primitive tests developed for the AFB stand-alone diagnostics. AFB Dots are tested thoroughly with a variety of sources and configurations:

  • Dots

  • Anti-aliased dots

  • Big dots

Errors in this test are attributed to the Command & Draw Chips.

AFB Lines test

This test uses the AFB primitive tests developed for the AFB stand alone diagnostics. AFB Lines are tested thoroughly with a variety of sources and configurations:

  • Jaggy lines

  • Anti-aliased lines

  • Lines with patterns

  • Bresenham lines

  • Wide lines drawn as lines and triangles

Errors in this test are attributed to the Command & Draw Chips.

AFB Triangles test

This test uses the AFB primitive tests developed for the AFB stand alone diagnostics. AFB Triangles are tested thoroughly with a variety of sources and configurations:

  • Triangles drawn clockwise & counter clockwise

  • Triangles drawn as stripes

  • Independent triangles

  • Triangles drawn as stars

  • Triangles with facet normals

Errors in this test are attributed to the Command & Draw Chips.

Lighting test

The Lighting test exercises AFB float and lighting microcode. This test lights an object with maximum number of lights (32) that AFB can handle in hardware. A checksum is generated for the rendered image and compared with the checksum generated for the same image on a known good system.

Errors in this test are attributed to the Float & Microcode SRAMS.

Texture Processor test

The Texture Processor test exercises the different options of the AFB's Texture Pixel Processor Control (TPPC) register:

  • Texture Minification

  • Texture Magnification

  • Blend

  • Decal

  • Modulation

Errors in this test are attributed to the Draw Chips.

AFB Mix test

The AFB Mix test draws different primitives with variety combinations of sources and configurations, exercising all the Draw, Float, Microcode, and 3DRAM chips on AFB. This test is to stress the AFB.

Errors in this test are attributed to Draw, Float, Microcode, and/or 3DRAM Chips.

Picking test

The Picking test exercises the pick detect login of the 3DRAM. We define a pick detect window and make sure that writes to the window are picked, and writes outside the window are not picked. The test is repeated once for each 3DRAM.

Errors in this test are attributed to the 3DRAM.

Arbitration test

The Arbitration test, a subtest, continuously renders an object into the accelerator port while doing reads and writes through the direct port. A picture is rendered into all 32 planes of the B buffer while the other process does 32-bit DFB reads and writes in the A plane. This subtest simulates conditions in the real world, where rendering processes and windows operations run concurrently.

Errors in this test are attributed to the Context switching between DFB and SFB.

Stereo test

Stereo test displays an object in stereo mode with different images for the right and left eye. The user can verify proper operation by looking at the screen with stereo glasses and following the instructions being displayed. If the monitor type is not 1280x1024 at 76MHz, this test prints a warning message and does not execute.

To prevent this message from being displayed or written to the SunVTS information log, disable the stereo test in the Test Parameter Options dialog box. Only Sony P4 and N2 monitors support stereo resolutions. This test temporarily switches the monitor into stereo mode, renders a stereo image, performs a signature analysis on the stereo image (using the RAMDAC signature capture register), and after displaying the image for five seconds, restores the monitor to its previous resolution.

Errors in this test are attributed to the RAMDAC.

UART test

The UART test tests both UART0 and UART1. First, UART memory is tested using simple read/write patterns to determine if there are any bad bits. Then data is written to UART 0/1 and the written data is read using the internal loopback in polling mode. The read data is verified with written data.

Errors in this test are attributed to UART and its SRAM memory chip.



afbtest Test Modes

Due to the nature of graphic tests, reading data from, or writing data to the frame buffer during graphic tests will disturb user operation. For this reason, afbtest is only available in offline Functional test mode.

TABLE 2-2 afbtest Supported Test Modes

Test Mode

Description

Functional

(Offline)

Runs the full set of tests.



afbtest Command-Line Syntax

/opt/SUNWvts/bin/afbtest standard_arguments -o dev=device_name, S=subtest_number,F=#_of_subtest_loops,B=#_of_test_loops,P=test_pattern

TABLE 2-3 afbtest Command-Line Syntax

Argument

Description

dev=device_name

device_name is the relative path name of the device being tested with respect to /dev/fbs; the default is afb0.

S=subtest_number

subtest_number is the test number of the subtest to be run. Select from the subtests below. You can run multiple subtests by adding the subtest numbers together. For example, n=0x3 runs both test 1 and test 2; n=0x180 runs both test 0x080 and test 0x0100. You do not need the leading zeros.

  • n--0x00001 3DRAM

  • n--0x00002 3DRAM Logic

  • n--0x00004 RAMDAC

  • n--0x00008 Micro code

  • n--0x00010 Rendering Pipeline

  • n--0x00020 FastFill/Vertical Scroll

  • n--0x00040 Pixel Processor

  • n--0x00080 AFB Dots

  • n--0x00100 AFB Lines

  • n--0x00200 AFB Triangles

  • n--0x00400 Lighting

  • n--0x00800 Texture Processor

  • n--0x02000 AFB Mix Test

  • n--0x04000 Picking

  • n--0x08000 Arbitration

  • n--0x10000 Stereo

  • n--0x40000 UART

F=#_of_subtest_loops

The number of times to repeat each subtest. The default is 1.

B=#_of_test_loops

The number of times to repeat a test loop before passing. The default is 1.

P=test_pattern

The test pattern number. The default is r, for random patterns. You may also choose 0 for 0x0000000, 3 for 0x3333333, 5 for 0x5555555, or 9 for 0x9999999.




Note - 64-bit tests are located in the sparcv9 subdirectory:
/opt/SUNWvts/bin/sparcv9/testname. If the test is not present in this directory, then it may only be available as a 32-bit test. For more information refer to 32-Bit and 64-Bit Tests.





Note - Errors returned by afbtest are nonspecific: It is not possible to determine which component caused a failure. In all error conditions, the field replaceable unit (FRU) is the entire AFB.