
Version Control with Subversion

For Subversion 1.4

(Compiled from r2866)

Ben Collins-Sussman
Brian W. Fitzpatrick

C. Michael Pilato

Version Control with Subversion: For Subversion 1.4:
(Compiled from r2866)
by Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato

Published (TBA)
Copyright © 2002, 2003, 2004, 2005, 2006, 2007 Ben Collins-SussmanBrian W. FitzpatrickC.
Michael Pilato

This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit ht-
tp://creativecommons.org/licenses/by/2.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford,
California 94305, USA.

http://creativecommons.org/licenses/by/2.0/
http://creativecommons.org/licenses/by/2.0/

Table of Contents
Foreword .. xi
Preface ..xiii

Audience ..xiii
How to Read this Book ..xiv
Conventions Used in This Book ... xv

Typographic Conventions .. xv
Icons .. xv

Organization of This Book ... xv
This Book is Free ..xvi
Acknowledgments ..xvii

From Ben Collins-Sussman ..xvii
From Brian W. Fitzpatrick ...xvii
From C. Michael Pilato .. xviii

What is Subversion? ... xviii
Subversion's History ...xix
Subversion's Features ...xix
Subversion's Architecture ..xxi
Subversion's Components ..xxii

1. Fundamental Concepts ...1
The Repository ...1
Versioning Models ..2

The Problem of File-Sharing ..2
The Lock-Modify-Unlock Solution ...3
The Copy-Modify-Merge Solution ...5

Subversion in Action ...7
Subversion Repository URLs ...7
Working Copies ..8
Revisions ... 11
How Working Copies Track the Repository ... 13
Mixed Revision Working Copies ... 14

Summary ... 15
2. Basic Usage ... 16

Help! .. 16
Getting Data into your Repository .. 16

svn import .. 16
Recommended repository layout .. 17

Initial Checkout ... 17
Disabling Password Caching ... 19
Authenticating as a Different User .. 19

Basic Work Cycle ... 20
Update Your Working Copy ... 20
Make Changes to Your Working Copy .. 21
Examine Your Changes .. 22
Undoing Working Changes .. 26
Resolve Conflicts (Merging Others' Changes) ... 26
Commit Your Changes .. 30

Examining History ... 31
Generating a list of historical changes .. 32
Examining the details of historical changes ... 33
Browsing the repository ... 35
Fetching older repository snapshots ... 36

iv

Sometimes You Just Need to Clean Up .. 37
Summary ... 37

3. Advanced Topics .. 38
Revision Specifiers ... 38

Revision Keywords ... 38
Revision Dates ... 39

Properties .. 40
Why Properties? ... 41
Manipulating Properties ... 42
Properties and the Subversion Workflow .. 45
Automatic Property Setting .. 46

File Portability ... 47
File Content Type ... 47
File Executability ... 48
End-of-Line Character Sequences ... 49

Ignoring Unversioned Items ... 50
Keyword Substitution .. 53
Locking .. 56

Creating locks .. 58
Discovering locks .. 60
Breaking and stealing locks ... 61
Lock Communication .. 63

Externals Definitions ... 64
Peg and Operative Revisions .. 67
Network Model ... 71

Requests and Responses ... 71
Client Credentials Caching .. 71

4. Branching and Merging ... 75
What's a Branch? ... 75
Using Branches .. 76

Creating a Branch ... 77
Working with Your Branch ... 80
The Key Concepts Behind Branches .. 82

Copying Changes Between Branches .. 82
Copying Specific Changes .. 82
The Key Concept Behind Merging .. 85
Best Practices for Merging .. 86

Common Use-Cases ... 89
Merging a Whole Branch to Another ... 89
Undoing Changes ... 91
Resurrecting Deleted Items ... 93
Common Branching Patterns ... 94

Traversing Branches ... 96
Tags .. 98

Creating a Simple Tag .. 98
Creating a Complex Tag ... 98

Branch Maintenance ... 99
Repository Layout ... 100
Data Lifetimes .. 100

Vendor branches .. 101
General Vendor Branch Management Procedure 102
svn_load_dirs.pl ... 104

Summary ... 105
5. Repository Administration .. 107

The Subversion Repository, Defined .. 107
Strategies for Repository Deployment .. 108

Planning Your Repository Organization .. 108

Version Control with Subversion

v

Deciding Where and How to Host Your Repository 111
Choosing a Data Store .. 111

Creating and Configuring Your Repository .. 115
Creating the Repository ... 115
Implementing Repository Hooks .. 116
Berkeley DB Configuration .. 117

Repository Maintenance .. 118
An Administrator's Toolkit .. 118
Commit Log Message Correction ... 122
Managing Disk Space ... 122
Berkeley DB Recovery .. 125
Migrating Repository Data Elsewhere ... 126
Filtering Repository History .. 130
Repository Replication .. 133
Repository Backup .. 138

Summary ... 140
6. Server Configuration ... 141

Overview .. 141
Choosing a Server Configuration ... 142

The svnserve Server .. 142
svnserve over SSH .. 143
The Apache HTTP Server ... 143
Recommendations .. 144

svnserve, a custom server ... 144
Invoking the Server ... 144
Built-in authentication and authorization ... 147
Tunneling over SSH .. 149
SSH configuration tricks .. 151

httpd, the Apache HTTP server .. 152
Prerequisites .. 153
Basic Apache Configuration .. 154
Authentication Options .. 155
Authorization Options .. 159
Extra Goodies .. 163

Path-Based Authorization .. 166
Supporting Multiple Repository Access Methods ... 169

7. Customizing Your Subversion Experience .. 172
Runtime Configuration Area .. 172

Configuration Area Layout ... 172
Configuration and the Windows Registry .. 173
Configuration Options ... 174

Localization .. 178
Understanding locales ... 178
Subversion's use of locales ... 179

Using External Differencing Tools .. 180
External diff .. 181
External diff3 .. 182

8. Embedding Subversion ... 184
Layered Library Design ... 184

Repository Layer .. 185
Repository Access Layer ... 189
Client Layer .. 189

Inside the Working Copy Administration Area ... 191
The Entries File .. 191
Pristine Copies and Property Files ... 191

Using the APIs .. 192
The Apache Portable Runtime Library .. 192

Version Control with Subversion

vi

URL and Path Requirements ... 193
Using Languages Other than C and C++ .. 194
Code Samples .. 194

9. Subversion Complete Reference .. 200
The Subversion Command Line Client: svn .. 200

svn Options ... 200
svn Subcommands ... 204

svnadmin .. 268
svnadmin Options .. 268
svnadmin Subcommands ... 269

svnlook ... 286
svnlook Options ... 286
svnlook Subcommands .. 287

svnsync .. 303
svnsync Options .. 303
svnsync Subcommands ... 304

svnserve ... 307
svnserve Options ... 308

svnversion .. 309
mod_dav_svn ... 311
Subversion properties ... 313

Versioned Properties .. 313
Unversioned Properties ... 313

Repository Hooks ... 314
A. Subversion Quick-Start Guide ... 324

Installing Subversion ... 324
High-speed Tutorial .. 325

B. Subversion for CVS Users ... 328
Revision Numbers Are Different Now ... 328
Directory Versions .. 328
More Disconnected Operations .. 329
Distinction Between Status and Update .. 329

Status .. 330
Update ... 331

Branches and Tags ... 331
Metadata Properties .. 331
Conflict Resolution .. 331
Binary Files and Translation .. 332
Versioned Modules ... 332
Authentication .. 332
Converting a Repository from CVS to Subversion ... 333

C. WebDAV and Autoversioning .. 334
What is WebDAV? .. 334
Autoversioning .. 335
Client Interoperability .. 336

Standalone WebDAV applications .. 338
File-explorer WebDAV extensions .. 339
WebDAV filesystem implementation ... 340

D. Third Party Tools .. 342
E. Copyright ... 343
Index ... 348

Version Control with Subversion

vii

List of Figures
1. Subversion's Architecture ..xxi
1.1. A typical client/server system ..1
1.2. The problem to avoid ..2
1.3. The lock-modify-unlock solution ..3
1.4. The copy-modify-merge solution ...5
1.5. The copy-modify-merge solution (continued) ..5
1.6. The repository's filesystem ..9
1.7. The repository .. 11
4.1. Branches of development ... 75
4.2. Starting repository layout .. 76
4.3. Repository with new copy ... 78
4.4. The branching of one file's history ... 80
8.1. Files and directories in two dimensions .. 187
8.2. Versioning time—the third dimension! .. 187

viii

List of Tables
1.1. Repository Access URLs .. 10
5.1. Repository Data Store Comparison ... 111
6.1. Comparison of Subversion Server Options ... 141
C.1. Common WebDAV Clients ... 336

ix

List of Examples
5.1. txn-info.sh (Reporting Outstanding Transactions) ... 123
5.2. Mirror repository's pre-revprop-change hook script ... 135
5.3. Mirror repository's start-commit hook script .. 135
6.1. A sample configuration for anonymous access. .. 161
6.2. A sample configuration for authenticated access. ... 161
6.3. A sample configuration for mixed authenticated/anonymous access. 161
6.4. Disabling path checks altogether ... 162
7.1. Sample Registration Entries (.reg) File. .. 173
7.2. diffwrap.sh ... 181
7.3. diffwrap.bat .. 182
7.4. diff3wrap.sh ... 182
7.5. diff3wrap.bat .. 183
8.1. Using the Repository Layer ... 194
8.2. Using the Repository Layer with Python ... 196
8.3. A Python Status Crawler ... 198

x

Foreword
Karl Fogel
Chicago, March 14, 2004

A bad Frequently Asked Questions (FAQ) sheet is one that is composed not of the questions
people actually asked, but of the questions the FAQ's author wished people had asked. Per-
haps you've seen the type before:

Q: How can I use Glorbosoft XYZ to maximize team productivity?

A: Many of our customers want to know how they can maximize productivity
through our patented office groupware innovations. The answer is simple: first,
click on the “File” menu, scroll down to “Increase Productivity”,
then…

The problem with such FAQs is that they are not, in a literal sense, FAQs at all. No one ever
called the tech support line and asked, “How can we maximize productivity?”. Rather, people
asked highly specific questions, like, “How can we change the calendaring system to send re-
minders two days in advance instead of one?” and so on. But it's a lot easier to make up ima-
ginary Frequently Asked Questions than it is to discover the real ones. Compiling a true FAQ
sheet requires a sustained, organized effort: over the lifetime of the software, incoming ques-
tions must be tracked, responses monitored, and all gathered into a coherent, searchable
whole that reflects the collective experience of users in the wild. It calls for the patient, observ-
ant attitude of a field naturalist. No grand hypothesizing, no visionary pronouncements
here—open eyes and accurate note-taking are what's needed most.

What I love about this book is that it grew out of just such a process, and shows it on every
page. It is the direct result of the authors' encounters with users. It began with Ben Collins-
Sussman's observation that people were asking the same basic questions over and over on
the Subversion mailing lists: What are the standard workflows to use with Subversion? Do
branches and tags work the same way as in other version control systems? How can I find out
who made a particular change?

Frustrated at seeing the same questions day after day, Ben worked intensely over a month in
the summer of 2002 to write The Subversion Handbook, a sixty page manual that covered all
the basics of using Subversion. The manual made no pretense of being complete, but it was
distributed with Subversion and got users over that initial hump in the learning curve. When
O'Reilly and Associates decided to publish a full-length Subversion book, the path of least res-
istance was obvious: just expand the Subversion handbook.

The three co-authors of the new book were thus presented with an unusual opportunity. Offi-
cially, their task was to write a book top-down, starting from a table of contents and an initial
draft. But they also had access to a steady stream—indeed, an uncontrollable geyser—of bot-
tom-up source material. Subversion was already in the hands of thousands of early adopters,
and those users were giving tons of feedback, not only about Subversion, but about its existing
documentation.

During the entire time they wrote this book, Ben, Mike, and Brian haunted the Subversion mail-
ing lists and chat rooms incessantly, carefully noting the problems users were having in real-
life situations. Monitoring such feedback was part of their job descriptions at CollabNet any-
way, and it gave them a huge advantage when they set out to document Subversion. The book
they produced is grounded firmly in the bedrock of experience, not in the shifting sands of
wishful thinking; it combines the best aspects of user manual and FAQ sheet. This duality
might not be noticeable on a first reading. Taken in order, front to back, the book is simply a

xi

straightforward description of a piece of software. There's the overview, the obligatory guided
tour, the chapter on administrative configuration, some advanced topics, and of course a com-
mand reference and troubleshooting guide. Only when you come back to it later, seeking the
solution to some specific problem, does its authenticity shine out: the telling details that can
only result from encounters with the unexpected, the examples honed from genuine use cases,
and most of all the sensitivity to the user's needs and the user's point of view.

Of course, no one can promise that this book will answer every question you have about Sub-
version. Sometimes, the precision with which it anticipates your questions will seem eerily tele-
pathic; yet occasionally, you will stumble into a hole in the community's knowledge, and come
away empty-handed. When this happens, the best thing you can do is email
<users@subversion.tigris.org> and present your problem. The authors are still there,
still watching, and they include not just the three listed on the cover, but many others who con-
tributed corrections and original material. From the community's point of view, solving your
problem is merely a pleasant side effect of a much larger project—namely, slowly adjusting
this book, and ultimately Subversion itself, to more closely match the way people actually use
it. They are eager to hear from you not merely because they can help you, but because you
can help them. With Subversion as with all active free software projects, you are not alone.

Let this book be your first companion.

Foreword

xii

Preface
“It is important not to let the perfect become the enemy of the good, even
when you can agree on what perfect is. Doubly so when you can't. As un-
pleasant as it is to be trapped by past mistakes, you can't make any progress
by being afraid of your own shadow during design.”

—Greg Hudson

In the world of open-source software, the Concurrent Versions System (CVS) was the tool of
choice for version control for many years. And rightly so. CVS was open-source software itself,
and its non-restrictive modus operandi and support for networked operation allowed dozens of
geographically dispersed programmers to share their work. It fit the collaborative nature of the
open-source world very well. CVS and its semi-chaotic development model have since be-
come cornerstones of open-source culture.

But CVS was not without its flaws, and simply fixing those flaws promised to be an enormous
effort. Enter Subversion. Designed to be a successor to CVS, Subversion's originators set out
to win the hearts of CVS users in two ways—by creating an open-source system with a design
(and “look and feel”) similar to CVS, and by attempting to avoid most of CVS's noticeable
flaws. While the result isn't necessarily the next great evolution in version control design, Sub-
version is very powerful, very usable, and very flexible. And for the most part, almost all newly-
started open-source projects now choose Subversion instead of CVS.

This book is written to document the 1.4 series of the Subversion version control system. We
have made every attempt to be thorough in our coverage. However, Subversion has a thriving
and energetic development community, so there are already a number of features and im-
provements planned for future versions of Subversion that may change some of the com-
mands and specific notes in this book.

Audience
This book is written for computer-literate folk who want to use Subversion to manage their
data. While Subversion runs on a number of different operating systems, its primary user inter-
face is command-line based. That command-line tool (svn), and some auxiliary programs, are
the focus of this book.

For consistency, the examples in this book assume the reader is using a Unix-like operating
system and is relatively comfortable with Unix and command-line interfaces. That said, the svn
program also runs on non-Unix platforms like Microsoft Windows. With a few minor exceptions,
such as the use of backward slashes (\) instead of forward slashes (/) for path separators, the
input to and output from this tool when run on Windows are identical to its Unix counterpart.

Most readers are probably programmers or system administrators who need to track changes
to source code. This is the most common use for Subversion, and therefore it is the scenario
underlying all of the book's examples. But Subversion can be used to manage changes to any
sort of information—images, music, databases, documentation, and so on. To Subversion, all
data is just data.

While this book is written with the assumption that the reader has never used a version control
system, we've also tried to make it easy for users of CVS (and other systems) to make a pain-
less leap into Subversion. Special sidebars may mention other version control systems from
time to time, and a special appendix summarizes many of the differences between CVS and
Subversion.

xiii

Note also that the source code examples used throughout the book are only examples. While
they will compile with the proper compiler incantations, they are intended to illustrate a particu-
lar scenario, not necessarily serve as examples of good programming style or practices.

How to Read this Book
Technical books always face a certain dilemma: whether to cater to top-down or bottom-up
learners. A top-down learner prefers to read or skim documentation, getting a large overview of
how the system works; only then does she actually start using the software. A bottom-learner
is a “learn by doing” person, someone who just wants to dive into the software and figure it out
as she goes, referring to book sections when necessary. Most books tend to be written for one
type of person or the other, and this book is undoubtedly biased towards top-down learners.
(And if you're actually reading this section, you're probably already a top-down learner your-
self!) However, if you're a bottom-up person, don't despair. While the book may be laid out as
a broad survey of Subversion topics, the contents of each section tends to be heavy with spe-
cific examples that you can try-by-doing. For the impatient folks who just want to get going, you
can jump right to Appendix A, Subversion Quick-Start Guide.

Regardless of your learning style, this book aims to be useful to people of widely different
backgrounds—from people with no previous experience in version control to experienced sys-
tem administrators. Depending on your own background, certain chapters may be more or less
important to you. The following can be considered a “recommended reading list” for various
types of readers:

Experienced System Administrators
The assumption here is that you've probably used version control before before, and are
dying to get a Subversion server up and running ASAP. Chapter 5, Repository Administra-
tion and Chapter 6, Server Configuration will show you how to create your first repository
and make it available over the network. After that's done, Chapter 2, Basic Usage and Ap-
pendix B, Subversion for CVS Users are the fastest routes to learning the Subversion cli-
ent.

New users
Your administrator has probably set up Subversion already, and you need to learn how to
use the client. If you've never used a version control system, then Chapter 1, Fundamental
Concepts is a vital introduction to the ideas behind version control. Chapter 2, Basic Usage
is a guided tour of the Subversion client.

Advanced users
Whether you're a user or administrator, eventually your project will grow larger. You're go-
ing to want to learn how to do more advanced things with Subversion, such as how to use
branches and perform merges (Chapter 4, Branching and Merging), how to use Subver-
sion's property support (Chapter 3, Advanced Topics), how to configure runtime options
(Chapter 7, Customizing Your Subversion Experience), and other things. These chapters
aren't critical at first, but be sure to read them once you're comfortable with the basics.

Developers
Presumably, you're already familiar with Subversion, and now want to either extend it or
build new software on top of its many APIs. Chapter 8, Embedding Subversion is just for
you.

The book ends with reference material—Chapter 9, Subversion Complete Reference is a refer-
ence guide for all Subversion commands, and the appendices cover a number of useful topics.
These are the chapters you're mostly likely to come back to after you've finished the book.

Preface

xiv

Conventions Used in This Book
This section covers the various conventions used in this book.

Typographic Conventions

Constant width
Used for commands, command output, and options

Constant width italic
Used for replaceable items in code and text

Italic
Used for file and directory names

Icons

This icon designates a note relating to the surrounding text.

This icon designates a helpful tip relating to the surrounding text.

This icon designates a warning relating to the surrounding text.

Organization of This Book
The chapters that follow and their contents are listed here:

Preface
Covers the history of Subversion as well as its features, architecture, and components.

Chapter 1, Fundamental Concepts
Explains the basics of version control and different versioning models, along with Subver-
sion's repository, working copies, and revisions.

Chapter 2, Basic Usage
Walks you through a day in the life of a Subversion user. It demonstrates how to use a
Subversion client to obtain, modify, and commit data.

Chapter 3, Advanced Topics
Covers more complex features that regular users will eventually come into contact with,
such as versioned metadata, file locking, and peg revisions.

Chapter 4, Branching and Merging
Discusses branches, merges, and tagging, including best practices for branching and mer-
ging, common use cases, how to undo changes, and how to easily swing from one branch
to the next.

Preface

xv

Chapter 5, Repository Administration
Describes the basics of the Subversion repository, how to create, configure, and maintain
a repository, and the tools you can use to do all of this.

Chapter 6, Server Configuration
Explains how to configure your Subversion server and different ways to access your repos-
itory: HTTP, the svn protocol, and local disk access. It also covers the details of authentic-
ation, authorization and anonymous access.

Chapter 7, Customizing Your Subversion Experience
Explores the Subversion client configuration files, the handling of internationalized text,
and how to make external tools cooperate with Subversion.

Chapter 8, Embedding Subversion
Describes the internals of Subversion, the Subversion filesystem, and the working copy
administrative areas from a programmer's point of view. Demonstrates how to use the pub-
lic APIs to write a program that uses Subversion, and most importantly, how to contribute
to the development of Subversion.

Chapter 9, Subversion Complete Reference
Explains in great detail every subcommand of svn, svnadmin, and svnlook with plenty of
examples for the whole family!

Appendix A, Subversion Quick-Start Guide
For the impatient, a whirlwind explanation of how to install Subversion and start using it im-
mediately. You have been warned.

Appendix B, Subversion for CVS Users
Covers the similarities and differences between Subversion and CVS, with numerous sug-
gestions on how to break all the bad habits you picked up from years of using CVS. In-
cluded are descriptions of Subversion revision numbers, versioned directories, offline oper-
ations, update vs. status, branches, tags, metadata, conflict resolution, and authentica-
tion.

Appendix C, WebDAV and Autoversioning
Describes the details of WebDAV and DeltaV, and how you can configure your Subversion
repository to be mounted read/write as a DAV share.

Appendix D, Third Party Tools
Discusses tools that support or use Subversion, including alternative client programs, re-
pository browser tools, and so on.

This Book is Free
This book started out as bits of documentation written by Subversion project developers, which
were then coalesced into a single work and rewritten. As such, it has always been under a free
license. (See Appendix E, Copyright.) In fact, the book was written in the public eye, originally
as a part of Subversion project itself. This means two things:

• You will always find the latest version of this book in the book's own Subversion repository.

• You can make changes to this book and redistribute it however you wish—it's under a free li-
cense. Your only obligation is to maintain proper attribution to the original authors. Of
course, rather than distribute your own private version of this book, we'd much rather you
send feedback and patches to the Subversion developer community.

Preface

xvi

1Oh, and thanks, Karl, for being too overworked to write this book yourself.

The online home of this book's development and most of the volunteer-driven translation ef-
forts around it is http://svnbook.red-bean.com. There, you can find links to the latest releases
and tagged versions of the book in various formats, as well as instructions for accessing the
book's Subversion repository (where lives its DocBook XML source code). Feedback is wel-
come—encouraged, even. Please submit all comments, complaints, and patches against the
book sources to <svnbook-dev@red-bean.com>.

Acknowledgments
This book would not be possible (nor very useful) if Subversion did not exist. For that, the au-
thors would like to thank Brian Behlendorf and CollabNet for the vision to fund such a risky and
ambitious new Open Source project; Jim Blandy for the original Subversion name and
design—we love you, Jim; Karl Fogel for being such a good friend and a great community
leader, in that order.1

Thanks to O'Reilly and our editors, Linda Mui and Tatiana Diaz for their patience and support.

Finally, we thank the countless people who contributed to this book with informal reviews, sug-
gestions, and fixes: While this is undoubtedly not a complete list, this book would be incom-
plete and incorrect without the help of: David Anderson, Jani Averbach, Ryan Barrett, Francois
Beausoleil, Jennifer Bevan, Matt Blais, Zack Brown, Martin Buchholz, Brane Cibej, John R.
Daily, Peter Davis, Olivier Davy, Robert P. J. Day, Mo DeJong, Brian Denny, Joe Drew, Nick
Duffek, Ben Elliston, Justin Erenkrantz, Shlomi Fish, Julian Foad, Chris Foote, Martin Furter,
Dave Gilbert, Eric Gillespie, David Glasser, Matthew Gregan, Art Haas, Eric Hanchrow, Greg
Hudson, Alexis Huxley, Jens B. Jorgensen, Tez Kamihira, David Kimdon, Mark Benedetto
King, Andreas J. Koenig, Nuutti Kotivuori, Matt Kraai, Scott Lamb, Vincent Lefevre, Morten
Ludvigsen, Paul Lussier, Bruce A. Mah, Philip Martin, Feliciano Matias, Patrick Mayweg,
Gareth McCaughan, Jon Middleton, Tim Moloney, Christopher Ness, Mats Nilsson, Joe Orton,
Amy Lyn Pilato, Kevin Pilch-Bisson, Dmitriy Popkov, Michael Price, Mark Proctor, Steffen Pro-
haska, Daniel Rall, Jack Repenning, Tobias Ringstrom, Garrett Rooney, Joel Rosdahl, Christi-
an Sauer, Larry Shatzer, Russell Steicke, Sander Striker, Erik Sjoelund, Johan Sundstroem,
John Szakmeister, Mason Thomas, Eric Wadsworth, Colin Watson, Alex Waugh, Chad
Whitacre, Josef Wolf, Blair Zajac, and the entire Subversion community.

From Ben Collins-Sussman
Thanks to my wife Frances, who, for many months, got to hear, “But honey, I'm still working on
the book”, rather than the usual, “But honey, I'm still doing email.” I don't know where she gets
all that patience! She's my perfect counterbalance.

Thanks to my extended family and friends for their sincere encouragement, despite having no
actual interest in the subject. (You know, the ones who say, “Ooh, you wrote a book?”, and
then when you tell them it's a computer book, sort of glaze over.)

Thanks to all my close friends, who make me a rich, rich man. Don't look at me that way—you
know who you are.

Thanks to my parents for the perfect low-level formatting, and being unbelievable role models.
Thanks to my son for the opportunity to pass that on.

From Brian W. Fitzpatrick
Huge thanks to my wife Marie for being incredibly understanding, supportive, and most of all,

Preface

xvii

http://svnbook.red-bean.com

2Translation: Daddy loves you and hopes you like computers as much as you like basketball, baseball, and football.
(Wasn't that obvious?)

patient. Thank you to my brother Eric who first introduced me to UNIX programming way back
when. Thanks to my Mom and Grandmother for all their support, not to mention enduring a
Christmas holiday where I came home and promptly buried my head in my laptop to work on
the book.

To Mike and Ben: It was a pleasure working with you on the book. Heck, it's a pleasure work-
ing with you at work!

To everyone in the Subversion community and the Apache Software Foundation, thanks for
having me. Not a day goes by where I don't learn something from at least one of you.

Lastly, thanks to my Grandfather who always told me that “freedom equals responsibility.” I
couldn't agree more.

From C. Michael Pilato
Special thanks to Amy, my best friend and wife of nine incredible years, for her love and pa-
tient support, for putting up with the late nights, and for graciously enduring the version control
processes I've imposed on her. Don't worry, Sweetheart—you'll be a TortoiseSVN wizard in no
time!

Gavin, there probably aren't many words in this book that you can successfully “sound out” at
this stage, but when you've finally got a handle on the written form of this crazy language we
speak, I hope you're as proud of your Daddy as he is of you.

Aidan, Daddy luffoo et ope Aiduh yike contootoo as much as Aiduh yike batetball, base-ball, et
bootball. 2

Mom and Dad, thanks for your constant support and enthusiasm. Mom- and Dad-in-law,
thanks for all of the same plus your fabulous daughter.

Hats off to Shep Kendall, through whom the world of computers was first opened to me; Ben
Collins-Sussman, my tour-guide through the open-source world; Karl Fogel—you are my
.emacs; Greg Stein, for oozing practical programming know-how; Brian Fitzpatrick—for shar-
ing this writing experience with me. To the many folks from whom I am constantly picking up
new knowledge—keep dropping it!

Finally, to the One who perfectly demonstrates creative excellence—thank You.

What is Subversion?
Subversion is a free/open-source version control system. That is, Subversion manages files
and directories, and the changes made to them, over time. This allows you to recover older
versions of your data, or examine the history of how your data changed. In this regard, many
people think of a version control system as a sort of “time machine”.

Subversion can operate across networks, which allows it to be used by people on different
computers. At some level, the ability for various people to modify and manage the same set of
data from their respective locations fosters collaboration. Progress can occur more quickly
without a single conduit through which all modifications must occur. And because the work is
versioned, you need not fear that quality is the trade-off for losing that conduit—if some incor-

Preface

xviii

rect change is made to the data, just undo that change.

Some version control systems are also software configuration management (SCM) systems.
These systems are specifically tailored to manage trees of source code, and have many fea-
tures that are specific to software development—such as natively understanding programming
languages, or supplying tools for building software. Subversion, however, is not one of these
systems. It is a general system that can be used to manage any collection of files. For you,
those files might be source code—for others, anything from grocery shopping lists to digital
video mixdowns and beyond.

Subversion's History
In early 2000, CollabNet, Inc. (http://www.collab.net) began seeking developers to write a re-
placement for CVS. CollabNet offers a collaboration software suite called CollabNet Enterprise
Edition (CEE) of which one component is version control. Although CEE used CVS as its initial
version control system, CVS's limitations were obvious from the beginning, and CollabNet
knew it would eventually have to find something better. Unfortunately, CVS had become the de
facto standard in the open source world largely because there wasn't anything better, at least
not under a free license. So CollabNet determined to write a new version control system from
scratch, retaining the basic ideas of CVS, but without the bugs and misfeatures.

In February 2000, they contacted Karl Fogel, the author of Open Source Development with
CVS (Coriolis, 1999), and asked if he'd like to work on this new project. Coincidentally, at the
time Karl was already discussing a design for a new version control system with his friend Jim
Blandy. In 1995, the two had started Cyclic Software, a company providing CVS support con-
tracts, and although they later sold the business, they still used CVS every day at their jobs.
Their frustration with CVS had led Jim to think carefully about better ways to manage ver-
sioned data, and he'd already come up with not only the name “Subversion”, but also with the
basic design of the Subversion data store. When CollabNet called, Karl immediately agreed to
work on the project, and Jim got his employer, Red Hat Software, to essentially donate him to
the project for an indefinite period of time. CollabNet hired Karl and Ben Collins-Sussman, and
detailed design work began in May. With the help of some well-placed prods from Brian
Behlendorf and Jason Robbins of CollabNet, and Greg Stein (at the time an independent de-
veloper active in the WebDAV/DeltaV specification process), Subversion quickly attracted a
community of active developers. It turned out that many people had had the same frustrating
experiences with CVS, and welcomed the chance to finally do something about it.

The original design team settled on some simple goals. They didn't want to break new ground
in version control methodology, they just wanted to fix CVS. They decided that Subversion
would match CVS's features, and preserve the same development model, but not duplicate
CVS's most obvious flaws. And although it did not need to be a drop-in replacement for CVS, it
should be similar enough that any CVS user could make the switch with little effort.

After fourteen months of coding, Subversion became “self-hosting” on August 31, 2001. That
is, Subversion developers stopped using CVS to manage Subversion's own source code, and
started using Subversion instead.

While CollabNet started the project, and still funds a large chunk of the work (it pays the salar-
ies of a few full-time Subversion developers), Subversion is run like most open-source
projects, governed by a loose, transparent set of rules that encourage meritocracy. CollabNet's
copyright license is fully compliant with the Debian Free Software Guidelines. In other words,
anyone is free to download, modify, and redistribute Subversion as he pleases; no permission
from CollabNet or anyone else is required.

Subversion's Features

Preface

xix

http://www.collab.net

When discussing the features that Subversion brings to the version control table, it is often
helpful to speak of them in terms of how they improve upon CVS's design. If you're not familiar
with CVS, you may not understand all of these features. And if you're not familiar with version
control at all, your eyes may glaze over unless you first read Chapter 1, Fundamental Con-
cepts, in which we provide a gentle introduction to version control.

Subversion provides:

Directory versioning
CVS only tracks the history of individual files, but Subversion implements a “virtual” ver-
sioned filesystem that tracks changes to whole directory trees over time. Files and director-
ies are versioned.

True version history
Since CVS is limited to file versioning, operations such as copies and renames—which
might happen to files, but which are really changes to the contents of some containing dir-
ectory—aren't supported in CVS. Additionally, in CVS you cannot replace a versioned file
with some new thing of the same name without the new item inheriting the history of the
old—perhaps completely unrelated—file. With Subversion, you can add, delete, copy, and
rename both files and directories. And every newly added file begins with a fresh, clean
history all its own.

Atomic commits
A collection of modifications either goes into the repository completely, or not at all. This al-
lows developers to construct and commit changes as logical chunks, and prevents prob-
lems that can occur when only a portion of a set of changes is successfully sent to the re-
pository.

Versioned metadata
Each file and directory has a set of properties—keys and their values—associated with it.
You can create and store any arbitrary key/value pairs you wish. Properties are versioned
over time, just like file contents.

Choice of network layers
Subversion has an abstracted notion of repository access, making it easy for people to im-
plement new network mechanisms. Subversion can plug into the Apache HTTP Server as
an extension module. This gives Subversion a big advantage in stability and interoperabil-
ity, and instant access to existing features provided by that server—authentication, author-
ization, wire compression, and so on. A more lightweight, standalone Subversion server
process is also available. This server speaks a custom protocol which can be easily
tunneled over SSH.

Consistent data handling
Subversion expresses file differences using a binary differencing algorithm, which works
identically on both text (human-readable) and binary (human-unreadable) files. Both types
of files are stored equally compressed in the repository, and differences are transmitted in
both directions across the network.

Efficient branching and tagging
The cost of branching and tagging need not be proportional to the project size. Subversion
creates branches and tags by simply copying the project, using a mechanism similar to a
hard-link. Thus these operations take only a very small, constant amount of time.

Hackability
Subversion has no historical baggage; it is implemented as a collection of shared C librar-
ies with well-defined APIs. This makes Subversion extremely maintainable and usable by

Preface

xx

other applications and languages.

Subversion's Architecture
Figure 1, “Subversion's Architecture” illustrates a “mile-high” view of Subversion's design.

Figure 1. Subversion's Architecture

On one end is a Subversion repository that holds all of your versioned data. On the other end
is your Subversion client program, which manages local reflections of portions of that ver-

Preface

xxi

sioned data (called “working copies”). Between these extremes are multiple routes through
various Repository Access (RA) layers. Some of these routes go across computer networks
and through network servers which then access the repository. Others bypass the network al-
together and access the repository directly.

Subversion's Components
Subversion, once installed, has a number of different pieces. The following is a quick overview
of what you get. Don't be alarmed if the brief descriptions leave you scratching your
head—there are plenty more pages in this book devoted to alleviating that confusion.

svn
The command-line client program.

svnversion
A program for reporting the state (in terms of revisions of the items present) of a working
copy.

svnlook
A tool for directly inspecting a Subversion repository.

svnadmin
A tool for creating, tweaking or repairing a Subversion repository.

svndumpfilter
A program for filtering Subversion repository dump streams.

mod_dav_svn
A plug-in module for the Apache HTTP Server, used to make your repository available to
others over a network.

svnserve
A custom standalone server program, runnable as a daemon process or invokable by
SSH; another way to make your repository available to others over a network.

svnsync
A program for incrementally mirroring one repository to another over a network.

Assuming you have Subversion installed correctly, you should be ready to start. The next two
chapters will walk you through the use of svn, Subversion's command-line client program.

Preface

xxii

Chapter 1. Fundamental Concepts
This chapter is a short, casual introduction to Subversion. If you're new to version control, this
chapter is definitely for you. We begin with a discussion of general version control concepts,
work our way into the specific ideas behind Subversion, and show some simple examples of
Subversion in use.

Even though the examples in this chapter show people sharing collections of program source
code, keep in mind that Subversion can manage any sort of file collection—it's not limited to
helping computer programmers.

The Repository
Subversion is a centralized system for sharing information. At its core is a repository, which is
a central store of data. The repository stores information in the form of a filesystem tree—a
typical hierarchy of files and directories. Any number of clients connect to the repository, and
then read or write to these files. By writing data, a client makes the information available to oth-
ers; by reading data, the client receives information from others. Figure 1.1, “A typical client/
server system” illustrates this.

Figure 1.1. A typical client/server system

So why is this interesting? So far, this sounds like the definition of a typical file server. And in-
deed, the repository is a kind of file server, but it's not your usual breed. What makes the Sub-
version repository special is that it remembers every change ever written to it: every change to
every file, and even changes to the directory tree itself, such as the addition, deletion, and re-
arrangement of files and directories.

When a client reads data from the repository, it normally sees only the latest version of the
filesystem tree. But the client also has the ability to view previous states of the filesystem. For
example, a client can ask historical questions like, “What did this directory contain last Wed-
nesday?” or “Who was the last person to change this file, and what changes did he make?”
These are the sorts of questions that are at the heart of any version control system: systems
that are designed to track changes to data over time.

1

Versioning Models
The core mission of a version control system is to enable collaborative editing and sharing of
data. But different systems use different strategies to achieve this. It's important to understand
these different strategies for a couple of reasons. First, it will help you compare and contrast
existing version control systems, in case you encounter other systems similar to Subversion.
Beyond that, it will also help you make more effective use of Subversion, since Subversion it-
self supports a couple of different ways of working.

The Problem of File-Sharing
All version control systems have to solve the same fundamental problem: how will the system
allow users to share information, but prevent them from accidentally stepping on each other's
feet? It's all too easy for users to accidentally overwrite each other's changes in the repository.

Consider the scenario shown in Figure 1.2, “The problem to avoid”. Suppose we have two co-
workers, Harry and Sally. They each decide to edit the same repository file at the same time. If
Harry saves his changes to the repository first, then it's possible that (a few moments later)
Sally could accidentally overwrite them with her own new version of the file. While Harry's ver-
sion of the file won't be lost forever (because the system remembers every change), any
changes Harry made won't be present in Sally's newer version of the file, because she never
saw Harry's changes to begin with. Harry's work is still effectively lost—or at least missing from
the latest version of the file—and probably by accident. This is definitely a situation we want to
avoid!

Figure 1.2. The problem to avoid

Fundamental Concepts

2

The Lock-Modify-Unlock Solution
Many version control systems use a lock-modify-unlock model to address the problem of many
authors clobbering each other's work. In this model, the repository allows only one person to
change a file at a time. This exclusivity policy is managed using locks. Harry must “lock” a file
before he can begin making changes to it. If Harry has locked a file, then Sally cannot also lock
it, and therefore cannot make any changes to that file. All she can do is read the file, and wait
for Harry to finish his changes and release his lock. After Harry unlocks the file, Sally can take
her turn by locking and editing the file. Figure 1.3, “The lock-modify-unlock solution” demon-
strates this simple solution.

Figure 1.3. The lock-modify-unlock solution

Fundamental Concepts

3

The problem with the lock-modify-unlock model is that it's a bit restrictive, and often becomes a
roadblock for users:

• Locking may cause administrative problems. Sometimes Harry will lock a file and then forget
about it. Meanwhile, because Sally is still waiting to edit the file, her hands are tied. And then
Harry goes on vacation. Now Sally has to get an administrator to release Harry's lock. The
situation ends up causing a lot of unnecessary delay and wasted time.

• Locking may cause unnecessary serialization. What if Harry is editing the beginning of a text
file, and Sally simply wants to edit the end of the same file? These changes don't overlap at
all. They could easily edit the file simultaneously, and no great harm would come, assuming
the changes were properly merged together. There's no need for them to take turns in this
situation.

• Locking may create a false sense of security. Suppose Harry locks and edits file A, while
Sally simultaneously locks and edits file B. But what if A and B depend on one another, and
the changes made to each are semantically incompatible? Suddenly A and B don't work to-
gether anymore. The locking system was powerless to prevent the problem—yet it somehow
provided a false sense of security. It's easy for Harry and Sally to imagine that by locking
files, each is beginning a safe, insulated task, and thus not bother discussing their incompat-
ible changes early on. Locking often becomes a substitute for real communication.

Fundamental Concepts

4

The Copy-Modify-Merge Solution
Subversion, CVS, and many other version control systems use a copy-modify-merge model as
an alternative to locking. In this model, each user's client contacts the project repository and
creates a personal working copy—a local reflection of the repository's files and directories.
Users then work simultaneously and independently, modifying their private copies. Finally, the
private copies are merged together into a new, final version. The version control system often
assists with the merging, but ultimately a human being is responsible for making it happen cor-
rectly.

Here's an example. Say that Harry and Sally each create working copies of the same project,
copied from the repository. They work concurrently, and make changes to the same file A with-
in their copies. Sally saves her changes to the repository first. When Harry attempts to save his
changes later, the repository informs him that his file A is out-of-date. In other words, that file A
in the repository has somehow changed since he last copied it. So Harry asks his client to
merge any new changes from the repository into his working copy of file A. Chances are that
Sally's changes don't overlap with his own; so once he has both sets of changes integrated, he
saves his working copy back to the repository. Figure 1.4, “The copy-modify-merge solution”
and Figure 1.5, “The copy-modify-merge solution (continued)” show this process.

Figure 1.4. The copy-modify-merge solution

Figure 1.5. The copy-modify-merge solution (continued)

Fundamental Concepts

5

But what if Sally's changes do overlap with Harry's changes? What then? This situation is
called a conflict, and it's usually not much of a problem. When Harry asks his client to merge
the latest repository changes into his working copy, his copy of file A is somehow flagged as
being in a state of conflict: he'll be able to see both sets of conflicting changes, and manually
choose between them. Note that software can't automatically resolve conflicts; only humans
are capable of understanding and making the necessary intelligent choices. Once Harry has
manually resolved the overlapping changes—perhaps after a discussion with Sally—he can
safely save the merged file back to the repository.

The copy-modify-merge model may sound a bit chaotic, but in practice, it runs extremely
smoothly. Users can work in parallel, never waiting for one another. When they work on the
same files, it turns out that most of their concurrent changes don't overlap at all; conflicts are
infrequent. And the amount of time it takes to resolve conflicts is usually far less than the time
lost by a locking system.

In the end, it all comes down to one critical factor: user communication. When users commu-
nicate poorly, both syntactic and semantic conflicts increase. No system can force users to
communicate perfectly, and no system can detect semantic conflicts. So there's no point in be-
ing lulled into a false sense of security that a locking system will somehow prevent conflicts; in
practice, locking seems to inhibit productivity more than anything else.

When Locking is Necessary

Fundamental Concepts

6

While the lock-modify-unlock model is considered generally harmful to collaboration,
there are still times when locking is appropriate.

The copy-modify-merge model is based on the assumption that files are contextually
mergeable: that is, that the majority of the files in the repository are line-based text files
(such as program source code). But for files with binary formats, such as artwork or
sound, it's often impossible to merge conflicting changes. In these situations, it really is
necessary to users to take strict turns when changing the file. Without serialized access,
somebody ends up wasting time on changes that are ultimately discarded.

While Subversion is still primarily a copy-modify-merge system, it still recognizes the
need to lock an occasional file and thus provide mechanisms for this. This feature is dis-
cussed later in this book, in the section called “Locking”.

Subversion in Action
It's time to move from the abstract to the concrete. In this section, we'll show real examples of
Subversion being used.

Subversion Repository URLs
Throughout this book, Subversion uses URLs to identify versioned files and directories in Sub-
version repositories. For the most part, these URLs use the standard syntax, allowing for serv-
er names and port numbers to be specified as part of the URL:

$ svn checkout http://svn.example.com:9834/repos
…

But there are some nuances in Subversion's handling of URLs that are notable. For example,
URLs containing the file:// access method (used for local repositories) must, in accord-
ance with convention, have either a server name of localhost or no server name at all:

$ svn checkout file:///path/to/repos
…
$ svn checkout file://localhost/path/to/repos
…

Also, users of the file:// scheme on Windows platforms will need to use an unofficially
“standard” syntax for accessing repositories that are on the same machine, but on a different
drive than the client's current working drive. Either of the two following URL path syntaxes will
work where X is the drive on which the repository resides:

C:\> svn checkout file:///X:/path/to/repos
…
C:\> svn checkout "file:///X|/path/to/repos"
…

In the second syntax, you need to quote the URL so that the vertical bar character is not inter-
preted as a pipe. Also, note that a URL uses forward slashes even though the native
(non-URL) form of a path on Windows uses backslashes.

Fundamental Concepts

7

Subversion's file:// URLs cannot be used in a regular web browser the way
typical file:// URLs can. When you attempt to view a file:// URL in a regu-
lar web browser, it reads and displays the contents of the file at that location by ex-
amining the filesystem directly. However, Subversion's resources exist in a virtual
filesystem (see the section called “Repository Layer”), and your browser will not
understand how to interact with that filesystem.

Finally, it should be noted that the Subversion client will automatically encode URLs as neces-
sary, just like a web browser does. For example, if a URL contains a space or upper-ASCII
character:

$ svn checkout "http://host/path with space/project/españa"

…then Subversion will escape the unsafe characters and behave as if you had typed:

$ svn checkout http://host/path%20with%20space/project/espa%C3%B1a

If the URL contains spaces, be sure to place it within quote marks, so that your shell treats the
whole thing as a single argument to the svn program.

Working Copies
You've already read about working copies; now we'll demonstrate how the Subversion client
creates and uses them.

A Subversion working copy is an ordinary directory tree on your local system, containing a col-
lection of files. You can edit these files however you wish, and if they're source code files, you
can compile your program from them in the usual way. Your working copy is your own private
work area: Subversion will never incorporate other people's changes, nor make your own
changes available to others, until you explicitly tell it to do so. You can even have multiple
working copies of the same project.

After you've made some changes to the files in your working copy and verified that they work
properly, Subversion provides you with commands to “publish” your changes to the other
people working with you on your project (by writing to the repository). If other people publish
their own changes, Subversion provides you with commands to merge those changes into your
working directory (by reading from the repository).

A working copy also contains some extra files, created and maintained by Subversion, to help
it carry out these commands. In particular, each directory in your working copy contains a sub-
directory named .svn, also known as the working copy administrative directory. The files in
each administrative directory help Subversion recognize which files contain unpublished
changes, and which files are out-of-date with respect to others' work.

A typical Subversion repository often holds the files (or source code) for several projects; usu-
ally, each project is a subdirectory in the repository's filesystem tree. In this arrangement, a
user's working copy will usually correspond to a particular subtree of the repository.

For example, suppose you have a repository that contains two software projects, paint and
calc. Each project lives in its own top-level subdirectory, as shown in Figure 1.6, “The reposit-
ory's filesystem”.

Fundamental Concepts

8

Figure 1.6. The repository's filesystem

To get a working copy, you must check out some subtree of the repository. (The term “check
out” may sound like it has something to do with locking or reserving resources, but it doesn't; it
simply creates a private copy of the project for you.) For example, if you check out /calc, you
will get a working copy like this:

$ svn checkout http://svn.example.com/repos/calc
A calc/Makefile
A calc/integer.c
A calc/button.c
Checked out revision 56.

$ ls -A calc
Makefile integer.c button.c .svn/

The list of letter A's in the left margin indicates that Subversion is adding a number of items to
your working copy. You now have a personal copy of the repository's /calc directory, with
one additional entry—.svn—which holds the extra information needed by Subversion, as
mentioned earlier.

Suppose you make changes to button.c. Since the .svn directory remembers the file's ori-

Fundamental Concepts

9

ginal modification date and contents, Subversion can tell that you've changed the file.
However, Subversion does not make your changes public until you explicitly tell it to. The act
of publishing your changes is more commonly known as committing (or checking in) changes
to the repository.

To publish your changes to others, you can use Subversion's commit command.

$ svn commit button.c -m "Fixed a typo in button.c."
Sending button.c
Transmitting file data .
Committed revision 57.

Now your changes to button.c have been committed to the repository, with a note describing
your change (namely, that you fixed a typo). If another user checks out a working copy of /
calc, they will see your changes in the latest version of the file.

Suppose you have a collaborator, Sally, who checked out a working copy of /calc at the
same time you did. When you commit your change to button.c, Sally's working copy is left
unchanged; Subversion only modifies working copies at the user's request.

To bring her project up to date, Sally can ask Subversion to update her working copy, by using
the Subversion update command. This will incorporate your changes into her working copy, as
well as any others that have been committed since she checked it out.

$ pwd
/home/sally/calc

$ ls -A
.svn/ Makefile integer.c button.c

$ svn update
U button.c
Updated to revision 57.

The output from the svn update command indicates that Subversion updated the contents of
button.c. Note that Sally didn't need to specify which files to update; Subversion uses the in-
formation in the .svn directory, and further information in the repository, to decide which files
need to be brought up to date.

Repository URLs

Subversion repositories can be accessed through many different methods—on local disk,
or through various network protocols, depending on how your administrator has set
things up for you. A repository location, however, is always a URL. Table 1.1, “Repository
Access URLs” describes how different URL schemes map to the available access meth-
ods.

Table 1.1. Repository Access URLs

Schema Access Method

file:/// direct repository access (on local disk)

http:// access via WebDAV protocol to Subversion-
aware Apache server

Fundamental Concepts

10

Schema Access Method

https:// same as http://, but with SSL encryption.

svn:// access via custom protocol to an svnserve
server

svn+ssh:// same as svn://, but through an SSH tunnel.

For more information on how Subversion parses URLs, see the section called
“Subversion Repository URLs”. For more information on the different types of network
servers available for Subversion, see Chapter 6, Server Configuration.

Revisions
An svn commit operation publishes changes to any number of files and directories as a single
atomic transaction. In your working copy, you can change files' contents; create, delete, re-
name and copy files and directories; then commit a complete set of changes as an atomic
transaction.

By “atomic transaction”, we mean simply this: either all of the changes happen in the reposit-
ory, or none of them happen. Subversion tries to retain this atomicity in the face of program
crashes, system crashes, network problems, and other users' actions.

Each time the repository accepts a commit, this creates a new state of the filesystem tree,
called a revision. Each revision is assigned a unique natural number, one greater than the
number of the previous revision. The initial revision of a freshly created repository is numbered
zero, and consists of nothing but an empty root directory.

Figure 1.7, “The repository” illustrates a nice way to visualize the repository. Imagine an array
of revision numbers, starting at 0, stretching from left to right. Each revision number has a
filesystem tree hanging below it, and each tree is a “snapshot” of the way the repository looked
after a commit.

Figure 1.7. The repository

Fundamental Concepts

11

Global Revision Numbers

Unlike most version control systems, Subversion's revision numbers apply to entire trees,
not individual files. Each revision number selects an entire tree, a particular state of the
repository after some committed change. Another way to think about it is that revision N
represents the state of the repository filesystem after the Nth commit. When Subversion
users talk about “revision 5 of foo.c”, they really mean “foo.c as it appears in revision
5.” Notice that in general, revisions N and M of a file do not necessarily differ! Many other
version control systems use per-file revision numbers, so this concept may seem unusual
at first. (Former CVS users might want to see Appendix B, Subversion for CVS Users for
more details.)

It's important to note that working copies do not always correspond to any single revision in the
repository; they may contain files from several different revisions. For example, suppose you
check out a working copy from a repository whose most recent revision is 4:

calc/Makefile:4
integer.c:4
button.c:4

At the moment, this working directory corresponds exactly to revision 4 in the repository.
However, suppose you make a change to button.c, and commit that change. Assuming no
other commits have taken place, your commit will create revision 5 of the repository, and your
working copy will now look like this:

calc/Makefile:4
integer.c:4
button.c:5

Fundamental Concepts

12

Suppose that, at this point, Sally commits a change to integer.c, creating revision 6. If you
use svn update to bring your working copy up to date, then it will look like this:

calc/Makefile:6
integer.c:6
button.c:6

Sally's change to integer.c will appear in your working copy, and your change will still be
present in button.c. In this example, the text of Makefile is identical in revisions 4, 5, and
6, but Subversion will mark your working copy of Makefile with revision 6 to indicate that it is
still current. So, after you do a clean update at the top of your working copy, it will generally
correspond to exactly one revision in the repository.

How Working Copies Track the Repository
For each file in a working directory, Subversion records two essential pieces of information in
the .svn/ administrative area:

• what revision your working file is based on (this is called the file's working revision), and

• a timestamp recording when the local copy was last updated by the repository.

Given this information, by talking to the repository, Subversion can tell which of the following
four states a working file is in:

Unchanged, and current
The file is unchanged in the working directory, and no changes to that file have been com-
mitted to the repository since its working revision. An svn commit of the file will do noth-
ing, and an svn update of the file will do nothing.

Locally changed, and current
The file has been changed in the working directory, and no changes to that file have been
committed to the repository since you last updated. There are local changes that have not
been committed to the repository, thus an svn commit of the file will succeed in publishing
your changes, and an svn update of the file will do nothing.

Unchanged, and out-of-date
The file has not been changed in the working directory, but it has been changed in the re-
pository. The file should eventually be updated, to make it current with the latest public re-
vision. An svn commit of the file will do nothing, and an svn update of the file will fold the
latest changes into your working copy.

Locally changed, and out-of-date
The file has been changed both in the working directory, and in the repository. An svn
commit of the file will fail with an “out-of-date” error. The file should be updated first; an
svn update command will attempt to merge the public changes with the local changes. If
Subversion can't complete the merge in a plausible way automatically, it leaves it to the
user to resolve the conflict.

This may sound like a lot to keep track of, but the svn status command will show you the state

Fundamental Concepts

13

of any item in your working copy. For more information on that command, see the section
called “See an overview of your changes”.

Mixed Revision Working Copies
As a general principle, Subversion tries to be as flexible as possible. One special kind of flexib-
ility is the ability to have a working copy containing files and directories with a mix of different
working revision numbers. Unfortunately, this flexibility tends to confuse a number of new
users. If the earlier example showing mixed revisions perplexed you, here's a primer on both
why the feature exists and how to make use of it.

Updates and Commits are Separate

One of the fundamental rules of Subversion is that a “push” action does not cause a “pull”, nor
the other way around. Just because you're ready to submit new changes to the repository
doesn't mean you're ready to receive changes from other people. And if you have new
changes still in progress, then svn update should gracefully merge repository changes into
your own, rather than forcing you to publish them.

The main side-effect of this rule is that it means a working copy has to do extra bookkeeping to
track mixed revisions, and be tolerant of the mixture as well. It's made more complicated by the
fact that directories themselves are versioned.

For example, suppose you have a working copy entirely at revision 10. You edit the file
foo.html and then perform an svn commit, which creates revision 15 in the repository. After
the commit succeeds, many new users would expect the working copy to be entirely at revision
15, but that's not the case! Any number of changes might have happened in the repository
between revisions 10 and 15. The client knows nothing of those changes in the repository,
since you haven't yet run svn update, and svn commit doesn't pull down new changes. If, on
the other hand, svn commit were to automatically download the newest changes, then it
would be possible to set the entire working copy to revision 15—but then we'd be breaking the
fundamental rule of “push” and “pull” remaining separate actions. Therefore the only safe thing
the Subversion client can do is mark the one file—foo.html—as being at revision 15. The
rest of the working copy remains at revision 10. Only by running svn update can the latest
changes be downloaded, and the whole working copy be marked as revision 15.

Mixed revisions are normal

The fact is, every time you run svn commit, your working copy ends up with some mixture of
revisions. The things you just committed are marked as having larger working revisions than
everything else. After several commits (with no updates in-between) your working copy will
contain a whole mixture of revisions. Even if you're the only person using the repository, you
will still see this phenomenon. To examine your mixture of working revisions, use the svn
status --verbose command (see the section called “See an overview of your changes” for
more information.)

Often, new users are completely unaware that their working copy contains mixed revisions.
This can be confusing, because many client commands are sensitive to the working revision of
the item they're examining. For example, the svn log command is used to display the history
of changes to a file or directory (see the section called “Generating a list of historical
changes”). When the user invokes this command on a working copy object, they expect to see
the entire history of the object. But if the object's working revision is quite old (often because
svn update hasn't been run in a long time), then the history of the older version of the object is
shown.

Mixed revisions are useful

Fundamental Concepts

14

If your project is sufficiently complex, you'll discover that it's sometimes nice to forcibly back-
date (or, update to a revision older than the one you already have) portions of your working
copy to an earlier revision; you'll learn how to do that in Chapter 2, Basic Usage. Perhaps
you'd like to test an earlier version of a sub-module contained in a subdirectory, or perhaps
you'd like to figure out when a bug first came into existence in a specific file. This is the “time
machine” aspect of a version control system—the feature which allows you to move any por-
tion of your working copy forward and backward in history.

Mixed revisions have limitations

However you make use of mixed revisions in your working copy, there are limitations to this
flexibility.

First, you cannot commit the deletion of a file or directory which isn't fully up-to-date. If a newer
version of the item exists in the repository, your attempt to delete will be rejected, to prevent
you from accidentally destroying changes you've not yet seen.

Second, you cannot commit a metadata change to a directory unless it's fully up-to-date. You'll
learn about attaching “properties” to items in Chapter 3, Advanced Topics. A directory's work-
ing revision defines a specific set of entries and properties, and thus committing a property
change to an out-of-date directory may destroy properties you've not yet seen.

Summary
We've covered a number of fundamental Subversion concepts in this chapter:

• We've introduced the notions of the central repository, the client working copy, and the array
of repository revision trees.

• We've seen some simple examples of how two collaborators can use Subversion to publish
and receive changes from one another, using the “copy-modify-merge” model.

• We've talked a bit about the way Subversion tracks and manages information in a working
copy.

At this point, you should have a good idea of how Subversion works in the most general sense.
Armed with this knowledge, you should now be ready to move into the next chapter, which is a
detailed tour of Subversion's commands and features.

Fundamental Concepts

15

Chapter 2. Basic Usage
Now we will go into the details of using Subversion. By the time you reach the end of this
chapter, you will be able to perform all the tasks you need to use Subversion in a normal day's
work. You'll start with getting your files into Subversion, followed by an initial checkout of your
code. We'll then walk you through making changes and examining those changes. You'll also
see how to bring changes made by others into your working copy, examine them, and work
through any conflicts that might arise.

Note that this chapter is not meant to be an exhaustive list of all Subversion's com-
mands—rather, it's a conversational introduction to the most common Subversion tasks you'll
encounter. This chapter assumes that you've read and understood Chapter 1, Fundamental
Concepts and are familiar with the general model of Subversion. For a complete reference of
all commands, see Chapter 9, Subversion Complete Reference.

Help!
Before reading on, here is the most important command you'll ever need when using Subver-
sion: svn help. The Subversion command-line client is self-documenting—at any time, a quick
svn help SUBCOMMAND will describe the syntax, options, and behavior of the subcommand.

$ svn help import
import: Commit an unversioned file or tree into the repository.
usage: import [PATH] URL

Recursively commit a copy of PATH to URL.
If PATH is omitted '.' is assumed.
Parent directories are created as necessary in the repository.
If PATH is a directory, the contents of the directory are added
directly under URL.

Valid options:
-q [--quiet] : print as little as possible
-N [--non-recursive] : operate on single directory only

…

Getting Data into your Repository
There are two ways to get new files into your Subversion repository: svn import and svn add.
We'll discuss svn import here and svn add later in this chapter when we review a typical day
with Subversion.

svn import
The svn import command is a quick way to copy an unversioned tree of files into a repository,
creating intermediate directories as necessary. svn import doesn't require a working copy,
and your files are immediately committed to the repository. This is typically used when you
have an existing tree of files that you want to begin tracking in your Subversion repository. For
example:

$ svnadmin create /usr/local/svn/newrepos
$ svn import mytree file:///usr/local/svn/newrepos/some/project \

16

-m "Initial import"
Adding mytree/foo.c
Adding mytree/bar.c
Adding mytree/subdir
Adding mytree/subdir/quux.h

Committed revision 1.

The previous example copied the contents of directory mytree under the directory some/
project in the repository:

$ svn list file:///usr/local/svn/newrepos/some/project
bar.c
foo.c
subdir/

Note that after the import is finished, the original tree is not converted into a working copy. To
start working, you still need to svn checkout a fresh working copy of the tree.

Recommended repository layout
While Subversion's flexibility allows you to layout your repository in any way that you choose,
we recommend that you create a trunk directory to hold the “main line” of development, a
branches directory to contain branch copies, and a tags directory to contain tag copies, for
example:

$ svn list file:///usr/local/svn/repos
/trunk
/branches
/tags

You'll learn more about tags and branches in Chapter 4, Branching and Merging. For details
and how to set up multiple projects, see the section called “Repository Layout” and the section
called “Planning Your Repository Organization” to read more about “project roots”.

Initial Checkout
Most of the time, you will start using a Subversion repository by doing a checkout of your
project. Checking out a repository creates a “working copy” of it on your local machine. This
copy contains the HEAD (latest revision) of the Subversion repository that you specify on the
command line:

$ svn checkout http://svn.collab.net/repos/svn/trunk
A trunk/Makefile.in
A trunk/ac-helpers
A trunk/ac-helpers/install.sh
A trunk/ac-helpers/install-sh
A trunk/build.conf
…
Checked out revision 8810.

Basic Usage

17

What's in a Name?

Subversion tries hard not to limit the type of data you can place under version control.
The contents of files and property values are stored and transmitted as binary data, and
the section called “File Content Type” tells you how to give Subversion a hint that
“textual” operations don't make sense for a particular file. There are a few places,
however, where Subversion places restrictions on information it stores.

Subversion internally handles certain bits of data—for example, property names, path
names, and log messages—as UTF-8 encoded Unicode. This is not to say that all your
interactions with Subversion must involve UTF-8, though. As a general rule, Subversion
clients will gracefully and transparently handle conversions between UTF-8 and the en-
coding system in use on your computer, if such a conversion can meaningfully be done
(which is the case for most common encodings in use today).

In addition, path names are used as XML attribute values in WebDAV exchanges, as well
in as some of Subversion's housekeeping files. This means that path names can only
contain legal XML (1.0) characters. Subversion also prohibits TAB, CR, and LF charac-
ters in path names to prevent paths from being broken up in diffs, or in the output of com-
mands like svn log or svn status.

While it may seem like a lot to remember, in practice these limitations are rarely a prob-
lem. As long as your locale settings are compatible with UTF-8, and you don't use control
characters in path names, you should have no trouble communicating with Subversion.
The command-line client adds an extra bit of help—it will automatically escape illegal
path characters as needed in URLs you type to create “legally correct” versions for in-
ternal use.

Although the above example checks out the trunk directory, you can just as easily check out
any deep subdirectory of a repository by specifying the subdirectory in the checkout URL:

$ svn checkout \
http://svn.collab.net/repos/svn/trunk/subversion/tests/cmdline/

A cmdline/revert_tests.py
A cmdline/diff_tests.py
A cmdline/autoprop_tests.py
A cmdline/xmltests
A cmdline/xmltests/svn-test.sh
…
Checked out revision 8810.

Since Subversion uses a “copy-modify-merge” model instead of “lock-modify-unlock” (see the
section called “Versioning Models”), you can start right in making changes to the files and dir-
ectories in your working copy. Your working copy is just like any other collection of files and
directories on your system. You can edit and change them, move them around, you can even
delete the entire working copy and forget about it.

While your working copy is “just like any other collection of files and directories on
your system”, you can edit files at will, but you must tell Subversion about
everything else that you do. For example, if you want to copy or move an item in a
working copy, you should use svn copy or svn move instead of the copy and
move commands provided by your operating system. We'll talk more about them
later in this chapter.

Basic Usage

18

1Of course, you're not terribly worried—first because you know that you can't really delete anything from Subversion
and, secondly, because your Subversion password isn't the same as any of the other three million passwords you
have, right? Right?

Unless you're ready to commit the addition of a new file or directory, or changes to existing
ones, there's no need to further notify the Subversion server that you've done anything.

What's with the .svn directory?

Every directory in a working copy contains an administrative area, a subdirectory named
.svn. Usually, directory listing commands won't show this subdirectory, but it is never-
theless an important directory. Whatever you do, don't delete or change anything in the
administrative area! Subversion depends on it to manage your working copy.

If you accidentally remove the .svn subdirectory, the easiest way to fix the problem is to
remove the entire containing directory (a normal system deletion, not svn delete), then
run svn update from a parent directory. The Subversion client will re-download the dir-
ectory you've deleted, with a new .svn area as well.

While you can certainly check out a working copy with the URL of the repository as the only ar-
gument, you can also specify a directory after your repository URL. This places your working
copy in the new directory that you name. For example:

$ svn checkout http://svn.collab.net/repos/svn/trunk subv
A subv/Makefile.in
A subv/ac-helpers
A subv/ac-helpers/install.sh
A subv/ac-helpers/install-sh
A subv/build.conf
…
Checked out revision 8810.

That will place your working copy in a directory named subv instead of a directory named
trunk as we did previously. The directory subv will be created if it doesn't already exist.

Disabling Password Caching
When you perform a Subversion operation that requires you to authenticate, by default Sub-
version caches your authentication credentials on disk. This is done for convenience, so that
you don't have to continually re-enter your password for future operations. If you're concerned
about caching your Subversion passwords,1 you can disable caching either permanently or on
a case-by-case basis.

To disable password caching for a particular one-time command, pass the -
-no-auth-cache option on the commandline. To permanently disable caching, you can add
the line store-passwords = no to your local machine's Subversion configuration file. See
the section called “Client Credentials Caching” for details.

Authenticating as a Different User
Since Subversion caches auth credentials by default (both username and password), it con-
veniently remembers who you were acting as the last time you modified you working copy. But
sometimes that's not helpful—particularly if you're working in a shared working copy, like a
system configuration directory or a webserver document root. In this case, just pass the -

Basic Usage

19

-username option on the commandline and Subversion will attempt to authenticate as that
user, prompting you for a password if necessary.

Basic Work Cycle
Subversion has numerous features, options, bells and whistles, but on a day-to-day basis,
odds are that you will only use a few of them. In this section we'll run through the most com-
mon things that you might find yourself doing with Subversion in the course of a day's work.

The typical work cycle looks like this:

• Update your working copy

• svn update

• Make changes

• svn add

• svn delete

• svn copy

• svn move

• Examine your changes

• svn status

• svn diff

• Possibly undo some changes

• svn revert

• Resolve Conflicts (Merge Others' Changes)

• svn update

• svn resolved

• Commit your changes

• svn commit

Update Your Working Copy
When working on a project with a team, you'll want to update your working copy to receive any
changes made since your last update by other developers on the project. Use svn update to
bring your working copy into sync with the latest revision in the repository.

$ svn update
U foo.c
U bar.c
Updated to revision 2.

Basic Usage

20

In this case, someone else checked in modifications to both foo.c and bar.c since the last
time you updated, and Subversion has updated your working copy to include those changes.

When the server sends changes to your working copy via svn update, a letter code is dis-
played next to each item to let you know what actions Subversion performed to bring your
working copy up-to-date. To find out what these letters mean, see svn update.

Make Changes to Your Working Copy
Now you can get to work and make changes in your working copy. It's usually most convenient
to decide on a discrete change (or set of changes) to make, such as writing a new feature, fix-
ing a bug, etc. The Subversion commands that you will use here are svn add, svn delete, svn
copy, svn move, and svn mkdir. However, if you are merely editing files that are already in
Subversion, you may not need to use any of these commands until you commit.

There are two kinds of changes you can make to your working copy: file changes and tree
changes. You don't need to tell Subversion that you intend to change a file; just make your
changes using your text editor, word processor, graphics program, or whatever tool you would
normally use. Subversion automatically detects which files have been changed, and in addition
handles binary files just as easily as it handles text files—and just as efficiently too. For tree
changes, you can ask Subversion to “mark” files and directories for scheduled removal, addi-
tion, copying, or moving. These changes may take place immediately in your working copy, but
no additions or removals will happen in the repository until you commit them.

Here is an overview of the five Subversion subcommands that you'll use most often to make
tree changes.

Versioning symbolic links

On non-Windows platforms, Subversion is able to version files of the special type sym-
bolic link (or, “symlink”). A symlink is a file which acts as a sort of transparent reference
to some other object in the filesystem, allowing programs to read and write to those ob-
jects indirectly by way of performing operations on the symlink itself.

When a symlink is committed into a Subversion repository, Subversion remembers that
the file was in fact a symlink, as well as the object to which the symlink “points”. When
that symlink is checked out to another working copy on a non-Windows system, Subver-
sion reconstructs a real filesystem-level symbolic link from the versioned symlink. But
that doesn't in any way limit the usability of working copies on systems such as Windows
which do not support symlinks. On such systems, Subversion simply creates a regular
text file whose contents are the path to which to the original symlink pointed. While that
file can't be used as a symlink on a Windows system, it also won't prevent Windows
users from performing their other Subversion-related activities.

svn add foo
Schedule file, directory, or symbolic link foo to be added to the repository. When you next
commit, foo will become a child of its parent directory. Note that if foo is a directory,
everything underneath foo will be scheduled for addition. If you only want to add foo it-
self, pass the --non-recursive (-N) option.

svn delete foo
Schedule file, directory, or symbolic link foo to be deleted from the repository. If foo is a
file or link, it is immediately deleted from your working copy. If foo is a directory, it is not
deleted, but Subversion schedules it for deletion. When you commit your changes, foo will

Basic Usage

21

2Of course, nothing is ever totally deleted from the repository—just from the HEAD of the repository. You can get back
anything you delete by checking out (or updating your working copy to) a revision earlier than the one in which you de-
leted it. Also see the section called “Resurrecting Deleted Items”.
3And also that you don't have a WAN card. Thought you got us, huh?

be entirely removed from your working copy and the repository. 2

svn copy foo bar
Create a new item bar as a duplicate of foo and automatically schedule bar for addition.
When bar is added to the repository on the next commit, its copy history is recorded (as
having originally come from foo). svn copy does not create intermediate directories.

svn move foo bar
This command is exactly the same as running svn copy foo bar; svn delete foo. That is,
bar is scheduled for addition as a copy of foo, and foo is scheduled for removal. svn
move does not create intermediate directories.

svn mkdir blort
This command is exactly the same as running mkdir blort; svn add blort. That is, a new
directory named blort is created and scheduled for addition.

Changing the Repository Without a Working Copy

There are some use cases that immediately commit tree changes to the repository. This
only happens when a subcommand is operating directly on a URL, rather than on a work-
ing-copy path. In particular, specific uses of svn mkdir, svn copy, svn move, and svn
delete can work with URLs (And don't forget that svn import always makes changes to a
URL).

URL operations behave in this manner because commands that operate on a working
copy can use the working copy as a sort of “staging area” to set up your changes before
committing them to the repository. Commands that operate on URLs don't have this lux-
ury, so when you operate directly on a URL, any of the above actions represent an imme-
diate commit.

Examine Your Changes
Once you've finished making changes, you need to commit them to the repository, but before
you do so, it's usually a good idea to take a look at exactly what you've changed. By examining
your changes before you commit, you can make a more accurate log message. You may also
discover that you've inadvertently changed a file, and this gives you a chance to revert those
changes before committing. Additionally, this is a good opportunity to review and scrutinize
changes before publishing them. You can see an overview of the changes you've made by us-
ing svn status, and dig into the details of those changes by using svn diff.

Look Ma! No Network!

The commands svn status, svn diff, and svn revert can be used without any network
access even if your repository is across the network. This makes it easy to manage your
changes-in-progress when you are somewhere without a network connection, such as
travelling on an airplane, riding a commuter train or hacking on the beach.3

Subversion does this by keeping private caches of pristine versions of each versioned file
inside of the .svn administrative areas. This allows Subversion to report—and re-

Basic Usage

22

vert—local modifications to those files without network access. This cache (called the
“text-base”) also allows Subversion to send the user's local modifications during a commit
to the server as a compressed delta (or “difference”) against the pristine version. Having
this cache is a tremendous benefit—even if you have a fast net connection, it's much
faster to send only a file's changes rather than the whole file to the server.

Subversion has been optimized to help you with this task, and is able to do many things
without communicating with the repository. In particular, your working copy contains a hidden
cached “pristine” copy of each version controlled file within the .svn area. Because of this,
Subversion can quickly show you how your working files have changed, or even allow you to
undo your changes without contacting the repository.

See an overview of your changes

To get an overview of your changes, you'll use the svn status command. You'll probably use
svn status more than any other Subversion command.

CVS Users: Hold That Update!

You're probably used to using cvs update to see what changes you've made to your
working copy. svn status will give you all the information you need regarding what has
changed in your working copy—without accessing the repository or potentially incorporat-
ing new changes published by other users.

In Subversion, update does just that—it updates your working copy with any changes
committed to the repository since the last time you've updated your working copy. You
may have to break the habit of using the update command to see what local modifica-
tions you've made.

If you run svn status at the top of your working copy with no arguments, it will detect all file
and tree changes you've made. Below are a few examples of the most common status codes
that svn status can return. (Note that the text following # is not actually printed by svn
status.)

A stuff/loot/bloo.h # file is scheduled for addition
C stuff/loot/lump.c # file has textual conflicts from an update
D stuff/fish.c # file is scheduled for deletion
M bar.c # the content in bar.c has local modifications

In this output format svn status prints six columns of characters, followed by several
whitespace characters, followed by a file or directory name. The first column tells the status of
a file or directory and/or its contents. The codes we listed are:

A item
The file, directory, or symbolic link item has been scheduled for addition into the reposit-
ory.

C item
The file item is in a state of conflict. That is, changes received from the server during an
update overlap with local changes that you have in your working copy. You must resolve
this conflict before committing your changes to the repository.

Basic Usage

23

D item
The file, directory, or symbolic link item has been scheduled for deletion from the reposit-
ory.

M item
The contents of the file item have been modified.

If you pass a specific path to svn status, you get information about that item alone:

$ svn status stuff/fish.c
D stuff/fish.c

svn status also has a --verbose (-v) option, which will show you the status of every item
in your working copy, even if it has not been changed:

$ svn status -v
M 44 23 sally README

44 30 sally INSTALL
M 44 20 harry bar.c

44 18 ira stuff
44 35 harry stuff/trout.c

D 44 19 ira stuff/fish.c
44 21 sally stuff/things

A 0 ? ? stuff/things/bloo.h
44 36 harry stuff/things/gloo.c

This is the “long form” output of svn status. The letters in the first column mean the same as
before, but the second column shows the working-revision of the item. The third and fourth
columns show the revision in which the item last changed, and who changed it.

None of the prior invocations to svn status contact the repository—instead, they compare the
metadata in the .svn directory with the working copy. Finally, there is the --show-updates
(-u) option, which contacts the repository and adds information about things that are out-
of-date:

$ svn status -u -v
M * 44 23 sally README
M 44 20 harry bar.c

* 44 35 harry stuff/trout.c
D 44 19 ira stuff/fish.c
A 0 ? ? stuff/things/bloo.h
Status against revision: 46

Notice the two asterisks: if you were to run svn update at this point, you would receive
changes to README and trout.c. This tells you some very useful information—you'll need to
update and get the server changes on README before you commit, or the repository will reject
your commit for being out-of-date. (More on this subject later.)

svn status can display much more information about the files and directories in your working
copy than we've shown here—for an exhaustive description of svn status and its output, see
svn status.

Examine the details of your local modifications

Basic Usage

24

Another way to examine your changes is with the svn diff command. You can find out exactly
how you've modified things by running svn diff with no arguments, which prints out file
changes in unified diff format:

$ svn diff
Index: bar.c
===
--- bar.c (revision 3)
+++ bar.c (working copy)
@@ -1,7 +1,12 @@
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <unistd.h>
+
+#include <stdio.h>

int main(void) {
- printf("Sixty-four slices of American Cheese...\n");
+ printf("Sixty-five slices of American Cheese...\n");
return 0;
}

Index: README
===
--- README (revision 3)
+++ README (working copy)
@@ -193,3 +193,4 @@
+Note to self: pick up laundry.

Index: stuff/fish.c
===
--- stuff/fish.c (revision 1)
+++ stuff/fish.c (working copy)
-Welcome to the file known as 'fish'.
-Information on fish will be here soon.

Index: stuff/things/bloo.h
===
--- stuff/things/bloo.h (revision 8)
+++ stuff/things/bloo.h (working copy)
+Here is a new file to describe
+things about bloo.

The svn diff command produces this output by comparing your working files against the
cached “pristine” copies within the .svn area. Files scheduled for addition are displayed as all
added-text, and files scheduled for deletion are displayed as all deleted text.

Output is displayed in unified diff format. That is, removed lines are prefaced with - and added
lines are prefaced with +. svn diff also prints filename and offset information useful to the
patch program, so you can generate “patches” by redirecting the diff output to a file:

$ svn diff > patchfile

You could, for example, email the patch file to another developer for review or testing prior to
commit.

Subversion uses its internal diff engine, which produces unified diff format, by default. If you
want diff output in a different format, specify an external diff program using --diff-cmd and

Basic Usage

25

pass any flags you'd like to it using the --extensions (-x) option. For example, to see loc-
al differences in file foo.c in context output format while ignoring case differences, you might
run svn diff --diff-cmd /usr/bin/diff --extensions '-i' foo.c.

Undoing Working Changes
Suppose while viewing the output of svn diff you determine that all the changes you made to a
particular file are mistakes. Maybe you shouldn't have changed the file at all, or perhaps it
would be easier to make different changes starting from scratch.

This is a perfect opportunity to use svn revert:

$ svn revert README
Reverted 'README'

Subversion reverts the file to its pre-modified state by overwriting it with the cached “pristine”
copy from the .svn area. But also note that svn revert can undo any scheduled opera-
tions—for example, you might decide that you don't want to add a new file after all:

$ svn status foo
? foo

$ svn add foo
A foo

$ svn revert foo
Reverted 'foo'

$ svn status foo
? foo

svn revert ITEM has exactly the same effect as deleting ITEM from your working
copy and then running svn update -r BASE ITEM. However, if you're reverting a
file, svn revert has one very noticeable difference—it doesn't have to communic-
ate with the repository to restore your file.

Or perhaps you mistakenly removed a file from version control:

$ svn status README
README

$ svn delete README
D README

$ svn revert README
Reverted 'README'

$ svn status README
README

Resolve Conflicts (Merging Others' Changes)
We've already seen how svn status -u can predict conflicts. Suppose you run svn update and

Basic Usage

26

some interesting things occur:

$ svn update
U INSTALL
G README
C bar.c
Updated to revision 46.

The U and G codes are no cause for concern; those files cleanly absorbed changes from the
repository. The files marked with U contained no local changes but were Updated with changes
from the repository. The G stands for merGed, which means that the file had local changes to
begin with, but the changes coming from the repository didn't overlap with the local changes.

But the C stands for conflict. This means that the changes from the server overlapped with
your own, and now you have to manually choose between them.

Whenever a conflict occurs, three things typically occur to assist you in noticing and resolving
that conflict:

• Subversion prints a C during the update, and remembers that the file is in a state of conflict.

• If Subversion considers the file to be mergeable, it places conflict markers—special strings
of text which delimit the “sides” of the conflict—into the file to visibly demonstrate the over-
lapping areas. (Subversion uses the svn:mime-type property to decide if a file is capable
of contextual, line-based merging. See the section called “File Content Type” to learn more.)

• For every conflicted file, Subversion places three extra unversioned files in your working
copy:

filename.mine
This is your file as it existed in your working copy before you updated your working
copy—that is, without conflict markers. This file has only your latest changes in it. (If Sub-
version considers the file to be unmergeable, then the .mine file isn't created, since it
would be identical to the working file.)

filename.rOLDREV
This is the file that was the BASE revision before you updated your working copy. That is,
the file that you checked out before you made your latest edits.

filename.rNEWREV
This is the file that your Subversion client just received from the server when you updated
your working copy. This file corresponds to the HEAD revision of the repository.

Here OLDREV is the revision number of the file in your .svn directory and NEWREV is the re-
vision number of the repository HEAD.

For example, Sally makes changes to the file sandwich.txt in the repository. Harry has just
changed the file in his working copy and checked it in. Sally updates her working copy before
checking in and she gets a conflict:

$ svn update
C sandwich.txt
Updated to revision 2.
$ ls -1
sandwich.txt

Basic Usage

27

4You can always remove the temporary files yourself, but would you really want to do that when Subversion can do it
for you? We didn't think so.

sandwich.txt.mine
sandwich.txt.r1
sandwich.txt.r2

At this point, Subversion will not allow you to commit the file sandwich.txt until the three
temporary files are removed.

$ svn commit -m "Add a few more things"
svn: Commit failed (details follow):
svn: Aborting commit: '/home/sally/svn-work/sandwich.txt' remains in conflict

If you get a conflict, you need to do one of three things:

• Merge the conflicted text “by hand” (by examining and editing the conflict markers within the
file).

• Copy one of the temporary files on top of your working file.

• Run svn revert <filename> to throw away all of your local changes.

Once you've resolved the conflict, you need to let Subversion know by running svn resolved.
This removes the three temporary files and Subversion no longer considers the file to be in a
state of conflict.4

$ svn resolved sandwich.txt
Resolved conflicted state of 'sandwich.txt'

Merging Conflicts by Hand

Merging conflicts by hand can be quite intimidating the first time you attempt it, but with a little
practice, it can become as easy as falling off a bike.

Here's an example. Due to a miscommunication, you and Sally, your collaborator, both edit the
file sandwich.txt at the same time. Sally commits her changes, and when you go to update
your working copy, you get a conflict and you're going to have to edit sandwich.txt to re-
solve the conflicts. First, let's take a look at the file:

$ cat sandwich.txt
Top piece of bread
Mayonnaise
Lettuce
Tomato
Provolone
<<<<<<< .mine
Salami
Mortadella
Prosciutto
=======
Sauerkraut
Grilled Chicken

Basic Usage

28

5And if you ask them for it, they may very well ride you out of town on a rail.

>>>>>>> .r2
Creole Mustard
Bottom piece of bread

The strings of less-than signs, equal signs, and greater-than signs are conflict markers, and
are not part of the actual data in conflict. You generally want to ensure that those are removed
from the file before your next commit. The text between the first two sets of markers is com-
posed of the changes you made in the conflicting area:

<<<<<<< .mine
Salami
Mortadella
Prosciutto
=======

The text between the second and third sets of conflict markers is the text from Sally's commit:

=======
Sauerkraut
Grilled Chicken
>>>>>>> .r2

Usually you won't want to just delete the conflict markers and Sally's changes—she's going to
be awfully surprised when the sandwich arrives and it's not what she wanted. So this is where
you pick up the phone or walk across the office and explain to Sally that you can't get
sauerkraut from an Italian deli.5 Once you've agreed on the changes you will check in, edit
your file and remove the conflict markers.

Top piece of bread
Mayonnaise
Lettuce
Tomato
Provolone
Salami
Mortadella
Prosciutto
Creole Mustard
Bottom piece of bread

Now run svn resolved, and you're ready to commit your changes:

$ svn resolved sandwich.txt
$ svn commit -m "Go ahead and use my sandwich, discarding Sally's edits."

Note that svn resolved, unlike most of the other commands we deal with in this chapter, re-
quires an argument. In any case, you want to be careful and only run svn resolved when
you're certain that you've fixed the conflict in your file—once the temporary files are removed,
Subversion will let you commit the file even if it still contains conflict markers.

If you ever get confused while editing the conflicted file, you can always consult the three files

Basic Usage

29

that Subversion creates for you in your working copy—including your file as it was before you
updated. You can even use a third-party interactive merging tool to examine those three files.

Copying a File Onto Your Working File

If you get a conflict and decide that you want to throw out your changes, you can merely copy
one of the temporary files created by Subversion over the file in your working copy:

$ svn update
C sandwich.txt
Updated to revision 2.
$ ls sandwich.*
sandwich.txt sandwich.txt.mine sandwich.txt.r2 sandwich.txt.r1
$ cp sandwich.txt.r2 sandwich.txt
$ svn resolved sandwich.txt

Punting: Using svn revert

If you get a conflict, and upon examination decide that you want to throw out your changes and
start your edits again, just revert your changes:

$ svn revert sandwich.txt
Reverted 'sandwich.txt'
$ ls sandwich.*
sandwich.txt

Note that when you revert a conflicted file, you don't have to run svn resolved.

Commit Your Changes
Finally! Your edits are finished, you've merged all changes from the server, and you're ready to
commit your changes to the repository.

The svn commit command sends all of your changes to the repository. When you commit a
change, you need to supply a log message, describing your change. Your log message will be
attached to the new revision you create. If your log message is brief, you may wish to supply it
on the command line using the --message (or -m) option:

$ svn commit -m "Corrected number of cheese slices."
Sending sandwich.txt
Transmitting file data .
Committed revision 3.

However, if you've been composing your log message as you work, you may want to tell Sub-
version to get the message from a file by passing the filename with the --file (-F) option:

$ svn commit -F logmsg
Sending sandwich.txt
Transmitting file data .
Committed revision 4.

Basic Usage

30

If you fail to specify either the --message or --file option, then Subversion will automatic-
ally launch your favorite editor (see the editor-cmd section in the section called “Config”) for
composing a log message.

If you're in your editor writing a commit message and decide that you want to can-
cel your commit, you can just quit your editor without saving changes. If you've
already saved your commit message, simply delete the text, save again, then
abort.

$ svn commit
Waiting for Emacs...Done

Log message unchanged or not specified
a)bort, c)ontinue, e)dit
a
$

The repository doesn't know or care if your changes make any sense as a whole; it only
checks to make sure that nobody else has changed any of the same files that you did when
you weren't looking. If somebody has done that, the entire commit will fail with a message in-
forming you that one or more of your files is out-of-date:

$ svn commit -m "Add another rule"
Sending rules.txt
svn: Commit failed (details follow):
svn: Your file or directory 'sandwich.txt' is probably out-of-date
…

(The exact wording of this error message depends on the network protocol and server you're
using, but the idea is the same in all cases.)

At this point, you need to run svn update, deal with any merges or conflicts that result, and at-
tempt your commit again.

That covers the basic work cycle for using Subversion. There are many other features in Sub-
version that you can use to manage your repository and working copy, but most of your day-
to-day use of Subversion will involve only the commands that we've discussed so far in this
chapter. We will, however, cover a few more commands that you'll use fairly often.

Examining History
Your Subversion repository is like a time machine. It keeps a record of every change ever
committed, and allows you to explore this history by examining previous versions of files and
directories as well as the metadata that accompanies them. With a single Subversion com-
mand, you can check out the repository (or restore an existing working copy) exactly as it was
at any date or revision number in the past. However, sometimes you just want to peer into the
past instead of going into the past.

There are several commands that can provide you with historical data from the repository:

svn log
Shows you broad information: log messages with date and author information attached to

Basic Usage

31

revisions, and which paths changed in each revision.

svn diff
Shows line-level details of a particular change.

svn cat
Retrieves a file as it existed in a particular revision number and display it on your screen.

svn list
Displays the files in a directory for any given revision.

Generating a list of historical changes
To find information about the history of a file or directory, use the svn log command. svn log
will provide you with a record of who made changes to a file or directory, at what revision it
changed, the time and date of that revision, and, if it was provided, the log message that ac-
companied the commit.

$ svn log
--
r3 | sally | Mon, 15 Jul 2002 18:03:46 -0500 | 1 line

Added include lines and corrected # of cheese slices.
--
r2 | harry | Mon, 15 Jul 2002 17:47:57 -0500 | 1 line

Added main() methods.
--
r1 | sally | Mon, 15 Jul 2002 17:40:08 -0500 | 1 line

Initial import
--

Note that the log messages are printed in reverse chronological order by default. If you wish to
see a different range of revisions in a particular order, or just a single revision, pass the -
-revision (-r) option:

$ svn log -r 5:19 # shows logs 5 through 19 in chronological order

$ svn log -r 19:5 # shows logs 5 through 19 in reverse order

$ svn log -r 8 # shows log for revision 8

You can also examine the log history of a single file or directory. For example:

$ svn log foo.c
…
$ svn log http://foo.com/svn/trunk/code/foo.c
…

These will display log messages only for those revisions in which the working file (or URL)
changed.

If you want even more information about a file or directory, svn log also takes a --verbose

Basic Usage

32

(-v) option. Because Subversion allows you to move and copy files and directories, it is im-
portant to be able to track path changes in the filesystem, so in verbose mode, svn log will in-
clude a list of changed paths in a revision in its output:

$ svn log -r 8 -v
--
r8 | sally | 2002-07-14 08:15:29 -0500 | 1 line
Changed paths:
M /trunk/code/foo.c
M /trunk/code/bar.h
A /trunk/code/doc/README

Frozzled the sub-space winch.

--

svn log also takes a --quiet (-q) option, which suppresses the body of the log message.
When combined with --verbose, it gives just the names of the changed files.

Why Does svn log Give Me an Empty Response?

After working with Subversion for a bit, most users will come across something like this:

$ svn log -r 2
--
$

At first glance, this seems like an error. But recall that while revisions are repository-wide,
svn log operates on a path in the repository. If you supply no path, Subversion uses the
current working directory as the default target. As a result, if you're operating in a subdir-
ectory of your working copy and attempt to see the log of a revision in which neither that
directory nor any of its children was changed, Subversion will show you an empty log. If
you want to see what changed in that revision, try pointing svn log directly at the top-
most URL of your repository, as in svn log -r 2 http://svn.collab.net/repos/svn.

Examining the details of historical changes
We've already seen svn diff before—it displays file differences in unified diff format; it was
used to show the local modifications made to our working copy before committing to the repos-
itory.

In fact, it turns out that there are three distinct uses of svn diff:

• Examining local changes

• Comparing your working copy to the repository

• Comparing repository to repository

Examining Local Changes

As we've seen, invoking svn diff with no options will compare your working files to the cached

Basic Usage

33

“pristine” copies in the .svn area:

$ svn diff
Index: rules.txt
===
--- rules.txt (revision 3)
+++ rules.txt (working copy)
@@ -1,4 +1,5 @@
Be kind to others
Freedom = Responsibility
Everything in moderation
-Chew with your mouth open
+Chew with your mouth closed
+Listen when others are speaking
$

Comparing Working Copy to Repository

If a single --revision (-r) number is passed, then your working copy is compared to the
specified revision in the repository.

$ svn diff -r 3 rules.txt
Index: rules.txt
===
--- rules.txt (revision 3)
+++ rules.txt (working copy)
@@ -1,4 +1,5 @@
Be kind to others
Freedom = Responsibility
Everything in moderation
-Chew with your mouth open
+Chew with your mouth closed
+Listen when others are speaking
$

Comparing Repository to Repository

If two revision numbers, separated by a colon, are passed via --revision (-r), then the
two revisions are directly compared.

$ svn diff -r 2:3 rules.txt
Index: rules.txt
===
--- rules.txt (revision 2)
+++ rules.txt (revision 3)
@@ -1,4 +1,4 @@
Be kind to others
-Freedom = Chocolate Ice Cream
+Freedom = Responsibility
Everything in moderation
Chew with your mouth open
$

A more convenient way of comparing a revision to the previous revision is to use the -
-change (-c):

Basic Usage

34

$ svn diff -c 3 rules.txt
Index: rules.txt
===
--- rules.txt (revision 2)
+++ rules.txt (revision 3)
@@ -1,4 +1,4 @@
Be kind to others
-Freedom = Chocolate Ice Cream
+Freedom = Responsibility
Everything in moderation
Chew with your mouth open
$

Lastly, you can compare repository revisions even when you don't have a working copy on
your local machine, just by including the appropriate URL on the command line:

$ svn diff -c 5 http://svn.example.com/repos/example/trunk/text/rules.txt
…
$

Browsing the repository
Using svn cat and svn list, you can view various revisions of files and directories without
changing the working revision of your working copy. In fact, you don't even need a working
copy to use either one.

svn cat

If you want to examine an earlier version of a file and not necessarily the differences between
two files, you can use svn cat:

$ svn cat -r 2 rules.txt
Be kind to others
Freedom = Chocolate Ice Cream
Everything in moderation
Chew with your mouth open
$

You can also redirect the output directly into a file:

$ svn cat -r 2 rules.txt > rules.txt.v2
$

svn list

The svn list command shows you what files are in a repository directory without actually
downloading the files to your local machine:

$ svn list http://svn.collab.net/repos/svn
README
branches/
clients/

Basic Usage

35

6See? We told you that Subversion was a time machine.

tags/
trunk/

If you want a more detailed listing, pass the --verbose (-v) flag to get output like this:

$ svn list -v http://svn.collab.net/repos/svn
20620 harry 1084 Jul 13 2006 README
23339 harry Feb 04 01:40 branches/
21282 sally Aug 27 09:41 developer-resources/
23198 harry Jan 23 17:17 tags/
23351 sally Feb 05 13:26 trunk/

The columns tell you the revision at which the file or directory was last modified, the user who
modified it, the size if it is a file, the date it was last modified, and the item's name.

The svn list with no arguments defaults to the repository URL of the current work-
ing directory, not the local working copy directory. After all, if you wanted a listing
of your local directory, you could use just plain ls (or any reasonable non-Unixy
equivalent).

Fetching older repository snapshots
In addition to all of the above commands, you can use svn update and svn checkout with the
--revision option to take an entire working copy “back in time” 6:

$ svn checkout -r 1729 # Checks out a new working copy at r1729
…
$ svn update -r 1729 # Updates an existing working copy to r1729
…

Many Subversion newcomers attempt to use the above svn update example to
“undo” committed changes, but this won't work as you can't commit changes that
you obtain from backdating a working copy if the changed files have newer revi-
sions. See the section called “Resurrecting Deleted Items” for a description of how
to “undo” a commit.

Lastly, if you're building a release and wish to bundle up your files from Subversion but don't
want those pesky .svn directories in the way, then you can use svn export to create a local
copy of all or part of your repository sans .svn directories. As with svn update and svn
checkout, you can also pass the --revision option to svn export:

$ svn export http://svn.example.com/svn/repos1 # Exports latest revision
…
$ svn export http://svn.example.com/svn/repos1 -r 1729
Exports revision r1729
…

Basic Usage

36

Sometimes You Just Need to Clean Up
When Subversion modifies your working copy (or any information within .svn), it tries to do so
as safely as possible. Before changing the working copy, Subversion writes its intentions to a
log file. Next it executes the commands in the log file to apply the requested change, holding a
lock on the relevant part of the working copy while it works—to prevent other Subversion cli-
ents from accessing the working copy in mid-change. Finally, Subversion removes the log file.
Architecturally, this is similar to a journaled filesystem. If a Subversion operation is interrupted
(if the process is killed, or if the machine crashes, for example), the log files remain on disk. By
re-executing the log files, Subversion can complete the previously started operation, and your
working copy can get itself back into a consistent state.

And this is exactly what svn cleanup does: it searches your working copy and runs any
leftover logs, removing working copy locks in the process. If Subversion ever tells you that
some part of your working copy is “locked”, then this is the command that you should run. Also,
svn status will display an L next to locked items:

$ svn status
L somedir

M somedir/foo.c

$ svn cleanup
$ svn status
M somedir/foo.c

Don't confuse these working copy locks with the ordinary locks that Subversion users create
when using the “lock-modify-unlock” model of concurrent version control; see The three mean-
ings of “lock” for clarification.

Summary
Now we've covered most of the Subversion client commands. Notable exceptions are those
dealing with branching and merging (see Chapter 4, Branching and Merging) and properties
(see the section called “Properties”). However, you may want to take a moment to skim
through Chapter 9, Subversion Complete Reference to get an idea of all the many different
commands that Subversion has—and how you can use them to make your work easier.

Basic Usage

37

Chapter 3. Advanced Topics
If you've been reading this book chapter by chapter, from start to finish, you should by now
have acquired enough knowledge to use the Subversion client to perform the most common
version control operations. You understand how to check out a working copy from a Subver-
sion repository. You are comfortable with submitting and receiving changes using the svn
commit and svn update functions. You've probably even developed a reflex which causes
you to run the svn status command almost unconsciously. For all intents and purposes, you
are ready to use Subversion in a typical environment.

But the Subversion feature set doesn't stop at “common version control operations”. It has oth-
er bits of functionality besides just communicating file and directory changes to and from a
central repository.

This chapter highlights some of Subversion's features that, while important, aren't part of the
typical user's daily routine. It assumes that you are familiar with Subversion's basic file and dir-
ectory versioning capabilities. If you aren't, you'll want to first read Chapter 1, Fundamental
Concepts and Chapter 2, Basic Usage. Once you've mastered those basics and consumed
this chapter, you'll be a Subversion power-user!

Revision Specifiers
As you saw in the section called “Revisions”, revision numbers in Subversion are pretty
straightforward—integers that keep getting larger as you commit more changes to your ver-
sioned data. Still, it doesn't take long before you can no longer remember exactly what
happened in each and every revision. Fortunately, the typical Subversion workflow doesn't of-
ten demand that you supply arbitrary revisions to the Subversion operations you perform. For
operations that do require a revision specifier, you generally supply a revision number that you
saw in a commit email, in the output of some other Subversion operation, or in some other
context that would give meaning to that particular number.

But occasionally, you need to pinpoint a moment in time for which you don't already have a re-
vision number memorized or handy. So besides the integer revision numbers, svn allows as
input some additional forms of revision specifiers—revision keywords, and revision dates.

The various forms of Subversion revision specifiers can be mixed and matched
when used to specify revision ranges. For example, you can use -r REV1:REV2
where REV1 is a revision keyword and REV2 is a revision number, or where REV1
is a date and REV2 is a revision keyword, and so on. The individual revision spe-
cifiers are independently evaluated, so you can put whatever you want on the op-
posite sides of that colon.

Revision Keywords
The Subversion client understands a number of revision keywords. These keywords can be
used instead of integer arguments to the --revision (-r) switch, and are resolved into
specific revision numbers by Subversion:

HEAD
The latest (or “youngest”) revision in the repository.

38

BASE
The revision number of an item in a working copy. If the item has been locally modified, the
“BASE version” refers to the way the item appears without those local modifications.

COMMITTED
The most recent revision prior to, or equal to, BASE, in which an item changed.

PREV
The revision immediately before the last revision in which an item changed. Technically,
this boils down to COMMITTED-1.

As can be derived from their descriptions, the PREV, BASE, and COMMITTED revision keywords
are used only when referring to a working copy path—they don't apply to repository URLs.
HEAD, on the other hand, can be used in conjunction with both of these path types.

Here are some examples of revision keywords in action:

$ svn diff -r PREV:COMMITTED foo.c
shows the last change committed to foo.c

$ svn log -r HEAD
shows log message for the latest repository commit

$ svn diff -r HEAD
compares your working copy (with all of its local changes) to the
latest version of that tree in the repository

$ svn diff -r BASE:HEAD foo.c
compares the unmodified version of foo.c with the latest version of
foo.c in the repository

$ svn log -r BASE:HEAD
shows all commit logs for the current versioned directory since you
last updated

$ svn update -r PREV foo.c
rewinds the last change on foo.c, decreasing foo.c's working revision

$ svn diff -r BASE:14 foo.c
compares the unmodified version of foo.c with the way foo.c looked
in revision 14

Revision Dates
Revision numbers reveal nothing about the world outside the version control system, but
sometimes you need to correlate a moment in real time with a moment in version history. To
facilitate this, the --revision (-r) option can also accept as input date specifiers wrapped
in curly braces ({ and }). Subversion accepts the standard ISO-8601 date and time formats,
plus a few others. Here are some examples. (Remember to use quotes around any date that
contains spaces.)

$ svn checkout -r {2006-02-17}
$ svn checkout -r {15:30}
$ svn checkout -r {15:30:00.200000}
$ svn checkout -r {"2006-02-17 15:30"}
$ svn checkout -r {"2006-02-17 15:30 +0230"}

Advanced Topics

39

$ svn checkout -r {2006-02-17T15:30}
$ svn checkout -r {2006-02-17T15:30Z}
$ svn checkout -r {2006-02-17T15:30-04:00}
$ svn checkout -r {20060217T1530}
$ svn checkout -r {20060217T1530Z}
$ svn checkout -r {20060217T1530-0500}
…

When you specify a date, Subversion resolves that date to the most recent revision of the re-
pository as of that date, and then continues to operate against that resolved revision number:

$ svn log -r {2006-11-28}
--
r12 | ira | 2006-11-27 12:31:51 -0600 (Mon, 27 Nov 2006) | 6 lines
…

Is Subversion a Day Early?

If you specify a single date as a revision without specifying a time of day (for example
2006-11-27), you may think that Subversion should give you the last revision that took
place on the 27th of November. Instead, you'll get back a revision from the 26th, or even
earlier. Remember that Subversion will find the most recent revision of the repository as
of the date you give. If you give a date without a timestamp, like 2006-11-27, Subver-
sion assumes a time of 00:00:00, so looking for the most recent revision won't return any-
thing on the day of the 27th.

If you want to include the 27th in your search, you can either specify the 27th with the
time ({"2006-11-27 23:59"}), or just specify the next day ({2006-11-28}).

You can also use a range of dates. Subversion will find all revisions between both dates, in-
clusive:

$ svn log -r {2006-11-20}:{2006-11-29}
…

Since the timestamp of a revision is stored as an unversioned, modifiable property
of the revision (see the section called “Properties”, revision timestamps can be
changed to represent complete falsifications of true chronology, or even removed
altogether. Subversion's ability to correctly convert revision dates into real revision
numbers depends on revision datestamps maintaining a sequential ordering—the
younger the revision, the younger its timestamp. If this ordering isn't maintained,
you will likely find that trying to use dates to specify revision ranges in your reposit-
ory doesn't always return the data you might have expected.

Properties
We've already covered in detail how Subversion stores and retrieves various versions of files
and directories in its repository. Whole chapters have been devoted to this most fundamental
piece of functionality provided by the tool. And if the versioning support stopped there, Subver-
sion would still be complete from a version control perspective.

Advanced Topics

40

But it doesn't stop there.

In addition to versioning your directories and files, Subversion provides interfaces for adding,
modifying, and removing versioned metadata on each of your versioned directories and files.
We refer to this metadata as properties, and they can be thought of as two-column tables that
map property names to arbitrary values attached to each item in your working copy. Generally
speaking, the names and values of the properties can be whatever you want them to be, with
the constraint that the names must be human-readable text. And the best part about these
properties is that they, too, are versioned, just like the textual contents of your files. You can
modify, commit, and revert property changes as easily as you can file content changes. And
the sending and receiving of property changes occurs as part of your typical commit and up-
date operations—you don't have to change your basic processes to accommodate them.

Subversion has reserved the set of properties whose names begin with svn: as
its own. While there are only a handful of such properties in use today, you should
avoid creating custom properties for your own needs whose names begin with this
prefix. Otherwise, you run the risk that a future release of Subversion will grow
support for a feature or behavior driven by a property of the same name but with
perhaps an entirely different interpretation.

Properties show up elsewhere in Subversion, too. Just as files and directories may have arbit-
rary property names and values attached to them, each revision as a whole may have arbitrary
properties attached to it. The same constraints apply—human-readable names and anything-
you-want binary values. The main difference is that revision properties are not versioned. In
other words, if you change the value of, or delete, a revision property, there's no way within the
scope of Subversion's functionality to recover the previous value.

Subversion has no particular policy regarding the use of properties. It asks only that you not
use property names that begin with the prefix svn:. That's the namespace that it sets aside for
its own use. And Subversion does, in fact, use properties, both the versioned and unversioned
variety. Certain versioned properties have special meaning or effects when found on files and
directories, or house a particular bit of information about the revisions on which they are found.
Certain revision properties are automatically attached to revisions by Subversion's commit pro-
cess, and carry information about the revision. Most of these properties are mentioned else-
where in this or other chapters as part of the more general topics to which they are related. For
an exhaustive list of Subversion's pre-defined properties, see the section called “Subversion
properties”.

In this section, we will examine the utility—both to users of Subversion, and to Subversion it-
self—of property support. You'll learn about the property-related svn subcommands, and how
property modifications affect your normal Subversion workflow.

Why Properties?
Just as Subversion uses properties to store extra information about the files, directories, and
revisions that it contains, you might also find properties to be of similar use. You might find it
useful to have a place close to your versioned data to hang custom metadata about that data.

Say you wish to design a website that houses many digital photos, and displays them with cap-
tions and a datestamp. Now, your set of photos is constantly changing, so you'd like to have as
much of this site automated as possible. These photos can be quite large, so as is common
with sites of this nature, you want to provide smaller thumbnail images to your site visitors.

Now, you can get this functionality using traditional files. That is, you can have your im-
age123.jpg and an image123-thumbnail.jpg side-by-side in a directory. Or if you want

Advanced Topics

41

to keep the filenames the same, you might have your thumbnails in a different directory, like
thumbnails/image123.jpg. You can also store your captions and datestamps in a similar
fashion, again separated from the original image file. But the problem here is that your collec-
tion of files grows in multiples with each new photo added to the site.

Now consider the same website deployed in a way that makes use of Subversion's file proper-
ties. Imagine having a single image file, image123.jpg, and then properties set on that file
named caption, datestamp, and even thumbnail. Now your working copy directory looks
much more manageable—in fact, it looks to the casual browser like there are nothing but im-
age files in it. But your automation scripts know better. They know that they can use svn (or
better yet, they can use the Subversion language bindings—see the section called “Using the
APIs”) to dig out the extra information that your site needs to display without having to read an
index file or play path manipulation games.

Custom revision properties are also frequently used. One common such use is a property
whose value contains an issue tracker ID with which the revision is associated, perhaps be-
cause the change made in that revision fixes a bug filed in the tracker issue with that ID. Other
uses include hanging more friendly names on the revision—it might be hard to remember that
revision 1935 was a fully tested revision. But if there's, say, a test-results property on that
revision with a value all passing, that's meaningful information to have.

Searchability (or, Why Not Properties)

For all their utility, Subversion properties—or, more accurately, the available interfaces to
them—have a major shortcoming: while it is a simple matter to set a custom property,
finding that property later is whole different ball of wax.

Trying to locate a custom revision property generally involves performing a linear walk
across all the revisions of the repository, asking of each revision, "Do you have the prop-
erty I'm looking for?" Trying to find a custom versioned property is painful, too, and often
involves a recursive svn propget across an entire working copy. In your situation, that
might not be as bad as a linear walk across all revisions. But it certainly leaves much to
be desired in terms of both performance and likelihood of success, especially if the scope
of your search would require a working copy from the root of your repository.

For this reason, you might choose—especially in the revision property use-case—to
simply add your metadata to the revision's log message, using some policy-driven (and
perhaps programmatically-enforced) formatting that is designed to be quickly parsed from
the output of svn log. It is quite common to see in Subversion log messages the likes of:

Issue(s): IZ2376, IZ1919
Reviewed by: sally

This fixes a nasty segfault in the wort frabbing process
…

But here again lies some misfortune. Subversion doesn't yet provide a log message tem-
plating mechanism, which would go a long way toward helping users be consistent with
the formatting of their log-embedded revision metadata.

Manipulating Properties
The svn command affords a few ways to add or modify file and directory properties. For prop-
erties with short, human-readable values, perhaps the simplest way to add a new property is to

Advanced Topics

42

1If you're familiar with XML, this is pretty much the ASCII subset of the syntax for XML "Name".

specify the property name and value on the command line of the propset subcommand.

$ svn propset copyright '(c) 2006 Red-Bean Software' calc/button.c
property 'copyright' set on 'calc/button.c'
$

But we've been touting the flexibility that Subversion offers for your property values. And if you
are planning to have a multi-line textual, or even binary, property value, you probably do not
want to supply that value on the command line. So the propset subcommand takes a --file
(-F) option for specifying the name of a file which contains the new property value.

$ svn propset license -F /path/to/LICENSE calc/button.c
property 'license' set on 'calc/button.c'
$

There are some restrictions on the names you can use for properties. A property name must
start with a letter, a colon (:), or an underscore (_); after that, you can also use digits, hyphens
(-), and periods (.). 1

In addition to the propset command, the svn program supplies the propedit command. This
command uses the configured editor program (see the section called “Config”) to add or modi-
fy properties. When you run the command, svn invokes your editor program on a temporary
file that contains the current value of the property (or which is empty, if you are adding a new
property). Then, you just modify that value in your editor program until it represents the new
value you wish to store for the property, save the temporary file, and then exit the editor pro-
gram. If Subversion detects that you've actually changed the existing value of the property, it
will accept that as the new property value. If you exit your editor without making any changes,
no property modification will occur:

$ svn propedit copyright calc/button.c ### exit the editor without changes
No changes to property 'copyright' on 'calc/button.c'
$

We should note that, as with other svn subcommands, those related to properties can act on
multiple paths at once. This enables you to modify properties on whole sets of files with a
single command. For example, we could have done:

$ svn propset copyright '(c) 2006 Red-Bean Software' calc/*
property 'copyright' set on 'calc/Makefile'
property 'copyright' set on 'calc/button.c'
property 'copyright' set on 'calc/integer.c'
…
$

All of this property adding and editing isn't really very useful if you can't easily get the stored
property value. So the svn program supplies two subcommands for displaying the names and
values of properties stored on files and directories. The svn proplist command will list the
names of properties that exist on a path. Once you know the names of the properties on the
node, you can request their values individually using svn propget. This command will, given a
property name and a path (or set of paths), print the value of the property to the standard out-
put stream.

Advanced Topics

43

$ svn proplist calc/button.c
Properties on 'calc/button.c':
copyright
license

$ svn propget copyright calc/button.c
(c) 2006 Red-Bean Software

There's even a variation of the proplist command that will list both the name and value of all of
the properties. Simply supply the --verbose (-v) option.

$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyright : (c) 2006 Red-Bean Software
license : ==

Copyright (c) 2006 Red-Bean Software. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions, and the recipe for Fitz's famous
red-beans-and-rice.
…

The last property-related subcommand is propdel. Since Subversion allows you to store prop-
erties with empty values, you can't remove a property altogether using propedit or propset.
For example, this command will not yield the desired effect:

$ svn propset license '' calc/button.c
property 'license' set on 'calc/button.c'
$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyright : (c) 2006 Red-Bean Software
license :

$

You need to use the propdel subcommand to delete properties altogether. The syntax is simil-
ar to the other property commands:

$ svn propdel license calc/button.c
property 'license' deleted from 'calc/button.c'.
$ svn proplist -v calc/button.c
Properties on 'calc/button.c':
copyright : (c) 2006 Red-Bean Software

$

Remember those unversioned revision properties? You can modify those, too, using the same
svn subcommands that we just described. Simply add the --revprop command-line para-
meter, and specify the revision whose property you wish to modify. Since revisions are global,
you don't need to specify a target path to these property-related commands so long as you are
positioned in a working copy of the repository whose revision property you wish to modify. Oth-
erwise, you can simply provide the URL of any path in the repository of interest (including the
repository's root URL). For example, you might want to replace the commit log message of an

Advanced Topics

44

2Fixing spelling errors, grammatical gotchas, and “just-plain-wrongness” in commit log messages is perhaps the most
common use case for the --revprop option.

existing revision. 2 If your current working directory is part of a working copy of your repository,
you can simply run the svn propset command with no target path:

$ svn propset svn:log '* button.c: Fix a compiler warning.' -r11 --revprop
property 'svn:log' set on repository revision '11'
$

But even if you haven't checked out a working copy from that repository, you can still affect the
property change by providing the repository's root URL:

$ svn propset svn:log '* button.c: Fix a compiler warning.' -r11 --revprop \
http://svn.example.com/repos/project

property 'svn:log' set on repository revision '11'
$

Note that the ability to modify these unversioned properties must be explicitly added by the re-
pository administrator (see the section called “Commit Log Message Correction”). That's be-
cause the properties aren't versioned, so you run the risk of losing information if you aren't
careful with your edits. The repository administrator can set up methods to protect against this
loss, and by default, modification of unversioned properties is disabled.

Users should, where possible, use svn propedit instead of svn propset. While
the end result of the commands is identical, the former will allow them to see the
current value of the property they are about to change, which helps them to verify
that they are, in fact, making the change they think they are making. This is espe-
cially true when modifying unversioned revision properties. Also, it is significantly
easier to modify multiline property values in a text editor than at the command line.

Properties and the Subversion Workflow
Now that you are familiar with all of the property-related svn subcommands, let's see how
property modifications affect the usual Subversion workflow. As we mentioned earlier, file and
directory properties are versioned, just like your file contents. As a result, Subversion provides
the same opportunities for merging—cleanly or with conflicts—someone else's modifications
into your own.

And as with file contents, your property changes are local modifications, only made permanent
when you commit them to the repository with svn commit. Your property changes can be eas-
ily unmade, too—the svn revert command will restore your files and directories to their un-
edited states—contents, properties, and all. Also, you can receive interesting information about
the state of your file and directory properties by using the svn status and svn diff commands.

$ svn status calc/button.c
M calc/button.c
$ svn diff calc/button.c
Property changes on: calc/button.c

Name: copyright

+ (c) 2006 Red-Bean Software

Advanced Topics

45

$

Notice how the status subcommand displays M in the second column instead of the first. That
is because we have modified the properties on calc/button.c, but not its textual contents.
Had we changed both, we would have seen M in the first column, too (see the section called
“See an overview of your changes”).

Property Conflicts

As with file contents, local property modifications can conflict with changes committed by
someone else. If you update your working copy directory and receive property changes
on a versioned object that clash with your own, Subversion will report that the object is in
a conflicted state.

% svn update calc
M calc/Makefile.in
C calc/button.c
Updated to revision 143.
$

Subversion will also create, in the same directory as the conflicted object, a file with a
.prej extension which contains the details of the conflict. You should examine the con-
tents of this file so you can decide how to resolve the conflict. Until the conflict is re-
solved, you will see a C in the second column of svn status output for that object, and at-
tempts to commit your local modifications will fail.

$ svn status calc
C calc/button.c
? calc/button.c.prej
$ cat calc/button.c.prej
prop 'linecount': user set to '1256', but update set to '1301'.
$

To resolve property conflicts, simply ensure that the conflicting properties contain the val-
ues that they should, and then use the svn resolved command to alert Subversion that
you have manually resolved the problem.

You might also have noticed the non-standard way that Subversion currently displays property
differences. You can still run svn diff and redirect the output to create a usable patch file. The
patch program will ignore property patches—as a rule, it ignores any noise it can't understand.
This does, unfortunately, mean that to fully apply a patch generated by svn diff, any property
modifications will need to be applied by hand.

Automatic Property Setting
Properties are a powerful feature of Subversion, acting as key components of many Subver-
sion features discussed elsewhere in this and other chapters—textual diff and merge support,
keyword substitution, newline translation, etc. But to get the full benefit of properties, they must
be set on the right files and directories. Unfortunately, that step can be easily forgotten in the
routine of things, especially since failing to set a property doesn't usually result in an obvious
error (at least compared to, say, failing to add a file to version control). To help your properties
get applied to the places that need them, Subversion provides a couple of simple but useful

Advanced Topics

46

features.

Whenever you introduce a file to version control using the svn add or svn import commands,
Subversion tries to assist by setting some common file properties automatically. First, on oper-
ating systems whose filesystems support an execute permission bit, Subversion will automatic-
ally set the svn:executable property on newly added or imported files whose execute bit is
enabled. (See the section called “File Executability” for more about this property.) Secondly, it
runs a very basic heuristic to determine if that file contains human-readable content. If not,
Subversion will automatically set the svn:mime-type property on that file to application/oct-
et-stream (the generic “this is a collection of bytes” MIME type). Of course, if Subversion
guesses incorrectly, or if you wish to set the svn:mime-type property to something more pre-
cise—perhaps image/png or application/x-shockwave-flash—you can always re-
move or edit that property. (For more on Subversion's use of MIME types, see the section
called “File Content Type”.)

Subversion also provides, via its runtime configuration system (see the section called “Runtime
Configuration Area”), a more flexible automatic property setting feature which allows you to
create mappings of filename patterns to property names and values. Once again, these map-
pings affect adds and imports, and can not only override the default MIME type decision made
by Subversion during those operations, but can also set additional Subversion or custom prop-
erties, too. For example, you might create a mapping that says that any time you add JPEG
files—ones whose names match the pattern *.jpg—Subversion should automatically set the
svn:mime-type property on those files to image/jpeg. Or perhaps any files that match
*.cpp should have svn:eol-style set to native, and svn:keywords set to Id. Automat-
ic property support is perhaps the handiest property-related tool in the Subversion toolbox. See
the section called “Config” for more about configuring that support.

File Portability
Fortunately for Subversion users who routinely find themselves on different computers with dif-
ferent operating systems, Subversion's command-line program behaves almost identically on
all those systems. If you know how to wield svn on one platform, you know how to wield it
everywhere.

However, the same is not always true of other general classes of software, or of the actual files
you keep in Subversion. For example, on a Windows machine, the definition of a “text file”
would be similar to that used on a Linux box, but with a key difference—the character se-
quences used to mark the ends of the lines of those files. There are other differences, too.
Unix platforms have (and Subversion supports) symbolic links; Windows does not. Unix plat-
forms use filesystem permission to determine executability; Windows uses filename exten-
sions.

Because Subversion is in no position to unite the whole world in common definitions and im-
plementations of all of these things, the best it can do is to try to help make your life simpler
when you need to work with your versioned files and directories on multiple computers and op-
erating systems. This section describes some of the ways Subversion does this.

File Content Type
Subversion joins the ranks of the many applications which recognize and make use of Mul-
tipurpose Internet Mail Extensions (MIME) content types. Besides being a general-purpose
storage location for a file's content type, the value of the svn:mime-type file property de-
termines some behavioral characteristics of Subversion itself.

Advanced Topics

47

3You think that was rough? During that same era, WordPerfect also used .DOC for their proprietary file format's
preferred extension!

Identifying File Types

Various programs on most modern operating systems make assumptions about the type
and format of the contents of a file by the file's name, specifically its file extension. For
example, files whose names end in .txt are generally assumed to be human-readable,
able to be understood by simple perusal rather than requiring complex processing to de-
cipher. Files whose names end in .png, on the other hand, are assumed to be of the
Portable Network Graphics type—not human-readable at all, and sensible only when in-
terpreted by software which understands the PNG format and can render the information
in that format as a raster image.

Unfortunately, some of those extensions have changed their meanings over time. When
personal computers first appeared, a file named README.DOC would have almost cer-
tainly been a plaintext file, just like today's .txt files. But by the mid-1990's, you could
almost bet that a file of that name would not be a plaintext file at all, but instead a Mi-
crosoft Word document in a proprietary, non-human-readable format. But this change
didn't occur overnight—there was certainly a period of confusion for computer users over
what exactly they had in hand when they saw a .DOC file. 3

The popularity of computer networking cast still more doubt on the mapping between a
file's name and its content. With information being served across networks and generated
dynamically by server-side scripts, there was often no real file per se, and therefore no
file name. Web servers, for example, needed some other way to tell browsers what they
were downloading so the browser could do something intelligent with that information,
whether that was to display the data using a program registered to handle that data type,
or to prompt the user for where on the client machine to store the downloaded data.

Eventually, a standard emerged for, among other things, describing the contents of a
data stream. In 1996, RFC2045 was published, the first of five RFCs describing MIME. It
describes the concept of media types and subtypes, and recommends a syntax for the
representation of those types. Today, MIME media types—or “MIME types”—are used al-
most universally across e-mail applications, Web servers, and other software as the de
facto mechanism for clearing up the file content confusion.

For example, one of the benefits that Subversion typically provides is contextual, line-based
merging of changes received from the server during an update into your working file. But for
files containing non-textual data, there is often no concept of a “line”. So, for versioned files
whose svn:mime-type property is set to a non-textual MIME type (generally, something that
doesn't begin with text/, though there are exceptions), Subversion does not attempt to per-
form contextual merges during updates. Instead, any time you have locally modified a binary
working copy file that is also being updated, your file is left untouched and Subversion creates
two new files. One file has a .oldrev extension and contains the BASE revision of the file.
The other file has a .newrev extension and contains the contents of the updated revision of
the file. This behavior is really for the protection of the user against failed attempts at perform-
ing contextual merges on files that simply cannot be contextually merged.

Also, if the svn:mime-type property is set, then the Subversion Apache module will use its
value to populate the Content-type: HTTP header when responding to GET requests. This
gives your web browser a crucial clue about how to display a file when you use it to peruse
your Subversion repository's contents.

File Executability

Advanced Topics

48

4The Windows filesystems use file extensions (such as .EXE, .BAT, and .COM) to denote executable files.

On many operating systems, the ability to execute a file as a command is governed by the
presence of an execute permission bit. This bit usually defaults to being disabled, and must be
explicitly enabled by the user for each file that needs it. But it would be a monumental hassle
to have to remember exactly which files in freshly checked-out working copy were supposed to
have their executable bits toggled on, and then to have to do that toggling. So, Subversion
provides the svn:executable property as a way to specify that the executable bit for the file
on which that property is set should be enabled, and Subversion honors that request when
populating working copies with such files.

This property has no effect on filesystems that have no concept of an executable permission
bit, such as FAT32 and NTFS. 4 Also, although it has no defined values, Subversion will force
its value to * when setting this property. Finally, this property is valid only on files, not on dir-
ectories.

End-of-Line Character Sequences
Unless otherwise noted using a versioned file's svn:mime-type property, Subversion as-
sumes the file contains human-readable data. Generally speaking, Subversion only uses this
knowledge to determine if contextual difference reports for that file are possible. Otherwise, to
Subversion, bytes are bytes.

This means that by default, Subversion doesn't pay any attention to the type of end-of-line
(EOL) markers used in your files. Unfortunately, different operating systems have different con-
ventions about which character sequences represent the end of a line of text in a file. For ex-
ample, the usual line ending token used by software on the Windows platform is a pair of AS-
CII control characters—a carriage return (CR) followed by a line feed (LF). Unix software,
however, just uses the LF character to denote the end of a line.

Not all of the various tools on these operating systems understand files that contain line end-
ings in a format that differs from the native line ending style of the operating system on which
they are running. So, typically, Unix programs treat the CR character present in Windows files
as a regular character (usually rendered as ^M), and Windows programs combine all of the
lines of a Unix file into one giant line because no carriage return-linefeed (or CRLF) character
combination was found to denote the ends of the lines.

This sensitivity to foreign EOL markers can be frustrating for folks who share a file across dif-
ferent operating systems. For example, consider a source code file, and developers that edit
this file on both Windows and Unix systems. If all the developers always use tools which pre-
serve the line ending style of the file, no problems occur.

But in practice, many common tools either fail to properly read a file with foreign EOL markers,
or they convert the file's line endings to the native style when the file is saved. If the former is
true for a developer, he has to use an external conversion utility (such as dos2unix or its com-
panion, unix2dos) to prepare the file for editing. The latter case requires no extra preparation.
But both cases result in a file that differs from the original quite literally on every line! Prior to
committing his changes, the user has two choices. Either he can use a conversion utility to re-
store the modified file to the same line ending style that it was in before his edits were made.
Or, he can simply commit the file—new EOL markers and all.

The result of scenarios like these include wasted time and unnecessary modifications to com-
mitted files. Wasted time is painful enough. But when commits change every line in a file, this
complicates the job of determining which of those lines were changed in a non-trivial way.
Where was that bug really fixed? On what line was a syntax error introduced?

The solution to this problem is the svn:eol-style property. When this property is set to a

Advanced Topics

49

valid value, Subversion uses it to determine what special processing to perform on the file so
that the file's line ending style isn't flip-flopping with every commit that comes from a different
operating system. The valid values are:

native
This causes the file to contain the EOL markers that are native to the operating system on
which Subversion was run. In other words, if a user on a Windows machine checks out a
working copy that contains a file with an svn:eol-style property set to native, that file
will contain CRLF EOL markers. A Unix user checking out a working copy which contains
the same file will see LF EOL markers in his copy of the file.

Note that Subversion will actually store the file in the repository using normalized LF EOL
markers regardless of the operating system. This is basically transparent to the user,
though.

CRLF
This causes the file to contain CRLF sequences for EOL markers, regardless of the operat-
ing system in use.

LF
This causes the file to contain LF characters for EOL markers, regardless of the operating
system in use.

CR
This causes the file to contain CR characters for EOL markers, regardless of the operating
system in use. This line ending style is not very common. It was used on older Macintosh
platforms (on which Subversion doesn't even run).

Ignoring Unversioned Items
In any given working copy there is a good chance that alongside all those versioned files and
directories are other files and directories which are neither versioned nor intended to be. Text
editors litter directories with backup files. Software compilers generate intermediate—or even
final—files which you typically wouldn't bother to version. And users themselves drop various
other files and directories wherever they see fit, often in version control working copies.

It's ludicrous to expect Subversion working copies to be somehow impervious to this kind of
clutter and impurity. In fact, Subversion counts it as a feature that its working copies are just
typical directories, just like unversioned trees. But these not-to-be-versioned files and director-
ies can cause some annoyance for Subversion users. For example, because the svn add and
svn import commands act recursively by default, and don't know which files in a given tree
you do and don't wish to version, it's easy to accidentally add stuff to version control that you
didn't mean to. And because svn status reports, by default, every item of interest in a working
copy—including unversioned files and directories—its output can get quite noisy where many
of these things exist.

So Subversion provides two ways for telling it which files you would prefer that it simply disreg-
ard. One of the ways involves the use of Subversion's runtime configuration system (see the
section called “Runtime Configuration Area”), and therefore applies to all the Subversion oper-
ations which make use of that runtime configuration, generally those performed on a particular
computer, or by a particular user of a computer. The other way makes use of Subversion's dir-
ectory property support, is more tightly bound to the versioned tree itself, and therefore affects
everyone who has a working copy of that tree. Both of the mechanisms use file patterns.

The Subversion runtime configuration system provides an option, global-ignores, whose

Advanced Topics

50

value is a whitespace-delimited collection of file patterns (also known as globs). The Subver-
sion client checks these patterns against the names of the files which are candidates for addi-
tion to version control, as well as to unversioned files which the svn status command notices.
If any file's name matches one of the patterns, Subversion will basically act as if the file didn't
exist at all. This is really useful for the kinds of files that you almost never want to version, such
as editor backup files like Emacs' *~ and .*~ files.

When found on a versioned directory, the svn:ignore property is expected to contain a list of
newline-delimited file patterns which Subversion should use to determine ignorable objects in
that same directory. These patterns do not override those found in the global-ignores
runtime configuration option, but are instead appended to that list. And it's worth noting again
that, unlike the global-ignores option, the patterns found in the svn:ignore property ap-
ply only to the directory on which that property is set, and not to any of its subdirectories. The
svn:ignore property is a good way to tell Subversion to ignore files that are likely to be
present in every user's working copy of that directory, such as compiler output or—to use an
example more appropriate to this book—the HTML, PDF, or PostScript files generated as the
result of a conversion of some source DocBook XML files to a more legible output format.

Subversion's support for ignorable file patterns extends only to the one-time pro-
cess of adding unversioned files and directories to version control. Once an object
is under Subversion's control, the ignore pattern mechanisms no longer apply to it.
In other words, don't expect Subversion to avoid committing changes you've made
to a versioned file simply because that file's name matches an ignore pat-
tern—Subversion always notices all of its versioned objects.

Ignore Patterns for CVS Users

The Subversion svn:ignore property is very similar in syntax and function to the CVS
.cvsignore file. In fact, if you are migrating a CVS working copy to Subversion, you
can directly migrate the ignore patterns by using the .cvsignore file as input file to the
svn propset command:

$ svn propset svn:ignore -F .cvsignore .
property 'svn:ignore' set on '.'
$

There are, however, some differences in the ways that CVS and Subversion handle ig-
nore patterns. The two systems use the ignore patterns at some different times, and
there are slight discrepancies in what the ignore patterns apply to. Also, Subversion does
not recognize the use of the ! pattern as a reset back to having no ignore patterns at all.

The global list of ignore patterns tends to be more a matter of personal taste, and tied more
closely to a user's particular tool chain than to the details of any particular working copy's
needs. So, the rest of this section will focus on the svn:ignore property and its uses.

Say you have the following output from svn status:

$ svn status calc
M calc/button.c
? calc/calculator
? calc/data.c
? calc/debug_log
? calc/debug_log.1

Advanced Topics

51

5Isn't that the whole point of a build system?

? calc/debug_log.2.gz
? calc/debug_log.3.gz

In this example, you have made some property modifications to button.c, but in your work-
ing copy you also have some unversioned files: the latest calculator program that you've
compiled from your source code, a source file named data.c, and a set of debugging output
log files. Now, you know that your build system always results in the calculator program
being generated. 5 And you know that your test suite always leaves those debugging log files
lying around. These facts are true for all working copies of this project, not just your own. And
you know that you aren't interested in seeing those things every time you run svn status, and
pretty sure that nobody else is interested in them either. So you use svn propedit svn:ignore
calc to add some ignore patterns to the calc directory. For example, you might add this as
the new value of the svn:ignore property:

calculator
debug_log*

After you've added this property, you will now have a local property modification on the calc
directory. But notice what else is different about your svn status output:

$ svn status
M calc
M calc/button.c
? calc/data.c

Now, all that cruft is missing from the output! Of course, your calculator compiled program
and all those logfiles are still in your working copy. Subversion is simply not reminding you that
they are present and unversioned. And now with all the uninteresting noise removed from the
display, you are left with more interesting items—such as that source code file data.c that
you probably forgot to add to version control.

Of course, this less-verbose report of your working copy status isn't the only one available. If
you actually want to see the ignored files as part of the status report, you can pass the -
-no-ignore option to Subversion:

$ svn status --no-ignore
M calc
M calc/button.c
I calc/calculator
? calc/data.c
I calc/debug_log
I calc/debug_log.1
I calc/debug_log.2.gz
I calc/debug_log.3.gz

As mentioned earlier, the list of file patterns to ignore is also used by svn add and svn import.
Both of these operations involve asking Subversion to begin managing some set of files and
directories. Rather than force the user to pick and choose which files in a tree she wishes to
start versioning, Subversion uses the ignore patterns—both the global and the per-directory
lists—to determine which files should not be swept into the version control system as part of a
larger recursive addition or import operation. And here again, you can use the --no-ignore

Advanced Topics

52

option to tell Subversion ignore its ignores list and operate on all the files and directories
present.

Keyword Substitution
Subversion has the ability to substitute keywords—pieces of useful, dynamic information about
a versioned file—into the contents of the file itself. Keywords generally provide information
about the last modification made to the file. Because this information changes each time the
file changes, and more importantly, just after the file changes, it is a hassle for any process ex-
cept the version control system to keep the data completely up-to-date. Left to human authors,
the information would inevitably grow stale.

For example, say you have a document in which you would like to display the last date on
which it was modified. You could burden every author of that document to, just before commit-
ting their changes, also tweak the part of the document that describes when it was last
changed. But sooner or later, someone would forget to do that. Instead, simply ask Subversion
to perform keyword substitution on the LastChangedDate keyword. You control where the
keyword is inserted into your document by placing a keyword anchor at the desired location in
the file. This anchor is just a string of text formatted as $KeywordName$.

All keywords are case-sensitive where they appear as anchors in files: you must use the cor-
rect capitalization in order for the keyword to be expanded. You should consider the value of
the svn:keywords property to be case-sensitive too—certain keyword names will be recog-
nized regardless of case, but this behavior is deprecated.

Subversion defines the list of keywords available for substitution. That list contains the follow-
ing five keywords, some of which have aliases that you can also use:

Date
This keyword describes the last time the file was known to have been changed in the re-
pository, and is of the form $Date: 2006-07-22 21:42:37 -0700 (Sat, 22 Jul
2006) $. It may also be specified as LastChangedDate.

Revision
This keyword describes the last known revision in which this file changed in the repository,
and looks something like $Revision: 144 $. It may also be specified as Last-
ChangedRevision or Rev.

Author
This keyword describes the last known user to change this file in the repository, and looks
something like $Author: harry $. It may also be specified as LastChangedBy.

HeadURL
This keyword describes the full URL to the latest version of the file in the repository, and
looks something like $HeadURL: http://svn.collab.net/repos/trunk/README
$. It may be abbreviated as URL.

Id
This keyword is a compressed combination of the other keywords. Its substitution looks
something like $Id: calc.c 148 2006-07-28 21:30:43Z sally $, and is inter-
preted to mean that the file calc.c was last changed in revision 148 on the evening of Ju-
ly 28, 2006 by the user sally.

Several of the previous descriptions use the phrase “last known” or similar wording. Keep in
mind that keyword expansion is a client-side operation, and your client only “knows” about

Advanced Topics

53

6… or maybe even a section of a book …

changes which have occurred in the repository when you update your working copy to include
those changes. If you never update your working copy, your keywords will never expand to dif-
ferent values even if those versioned files are being changed regularly in the repository.

Simply adding keyword anchor text to your file does nothing special. Subversion will never at-
tempt to perform textual substitutions on your file contents unless explicitly asked to do so.
After all, you might be writing a document 6 about how to use keywords, and you don't want
Subversion to substitute your beautiful examples of un-substituted keyword anchors!

To tell Subversion whether or not to substitute keywords on a particular file, we again turn to
the property-related subcommands. The svn:keywords property, when set on a versioned
file, controls which keywords will be substituted on that file. The value is a space-delimited list
of the keyword names or aliases found in the previous table.

For example, say you have a versioned file named weather.txt that looks like this:

Here is the latest report from the front lines.
$LastChangedDate$
Rev
Cumulus clouds are appearing more frequently as summer approaches.

With no svn:keywords property set on that file, Subversion will do nothing special. Now, let's
enable substitution of the LastChangedDate keyword.

$ svn propset svn:keywords "Date Author" weather.txt
property 'svn:keywords' set on 'weather.txt'
$

Now you have made a local property modification on the weather.txt file. You will see no
changes to the file's contents (unless you made some of your own prior to setting the prop-
erty). Notice that the file contained a keyword anchor for the Rev keyword, yet we did not in-
clude that keyword in the property value we set. Subversion will happily ignore requests to
substitute keywords that are not present in the file, and will not substitute keywords that are not
present in the svn:keywords property value.

Immediately after you commit this property change, Subversion will update your working file
with the new substitute text. Instead of seeing your keyword anchor $LastChangedDate$,
you'll see its substituted result. That result also contains the name of the keyword, and contin-
ues to be bounded by the dollar sign ($) characters. And as we predicted, the Rev keyword
was not substituted because we didn't ask for it to be.

Note also that we set the svn:keywords property to “Date Author” yet the keyword anchor
used the alias $LastChangedDate$ and still expanded correctly.

Here is the latest report from the front lines.
$LastChangedDate: 2006-07-22 21:42:37 -0700 (Sat, 22 Jul 2006) $
Rev
Cumulus clouds are appearing more frequently as summer approaches.

If someone else now commits a change to weather.txt, your copy of that file will continue to
display the same substituted keyword value as before—until you update your working copy. At
that time the keywords in your weather.txt file will be re-substituted with information that re-

Advanced Topics

54

flects the most recent known commit to that file.

Where's $GlobalRev$?

New users are often confused by how the Rev keyword works. Since the repository
has a single, globally increasing revision number, many people assume that it is this
number which is reflected by the Rev keyword's value. But Rev expands to show
the last revision in which the file changed, not the last revision to which it was updated.
Understanding this clears the confusion, but frustration often remains—without the sup-
port of a Subversion keyword to do so, how can you automatically get the global revision
number into your files?

To do this, you need external processing. Subversion ships with a tool called svnversion
which was designed for just this purpose. svnversion crawls your working copy and gen-
erates as output the revision(s) it finds. You can use this program, plus some additional
tooling, to embed that revision information into your files. For more information on svn-
version, see the section called “svnversion”.

Subversion 1.2 introduced a new variant of the keyword syntax which brought additional, use-
ful—though perhaps atypical—functionality. You can now tell Subversion to maintain a fixed
length (in terms of the number of bytes consumed) for the substituted keyword. By using a
double-colon (::) after the keyword name, followed by a number of space characters, you
define that fixed width. When Subversion goes to substitute your keyword for the keyword and
its value, it will essentially replace only those space characters, leaving the overall width of the
keyword field unchanged. If the substituted value is shorter than the defined field width, there
will be extra padding characters (spaces) at the end of the substituted field; if it is too long, it is
truncated with a special hash (#) character just before the final dollar sign terminator.

For example, say you have a document in which you have some section of tabular data reflect-
ing the document's Subversion keywords. Using the original Subversion keyword substitution
syntax, your file might look something like:

Rev: Revision of last commit
$Author$: Author of last commit
$Date$: Date of last commit

Now, that looks nice and tabular at the start of things. But when you then commit that file (with
keyword substitution enabled, of course), you see:

$Rev: 12 $: Revision of last commit
$Author: harry $: Author of last commit
$Date: 2006-03-15 02:33:03 -0500 (Wed, 15 Mar 2006) $: Date of last commit

The result is not so beautiful. And you might be tempted to then adjust the file after the substi-
tution so that it again looks tabular. But that only holds as long as the keyword values are the
same width. If the last committed revision rolls into a new place value (say, from 99 to 100), or
if another person with a longer username commits the file, stuff gets all crooked again.
However, if you are using Subversion 1.2 or better, you can use the new fixed-length keyword
syntax, define some field widths that seem sane, and now your file might look like this:

$Rev:: $: Revision of last commit
$Author:: $: Author of last commit
$Date:: $: Date of last commit

Advanced Topics

55

You commit this change to your file. This time, Subversion notices the new fixed-length
keyword syntax, and maintains the width of the fields as defined by the padding you placed
between the double-colon and the trailing dollar sign. After substitution, the width of the fields
is completely unchanged—the short values for Rev and Author are padded with spaces, and
the long Date field is truncated by a hash character:

$Rev:: 13 $: Revision of last commit
$Author:: harry $: Author of last commit
$Date:: 2006-03-15 0#$: Date of last commit

The use of fixed-length keywords is especially handy when performing substitutions into com-
plex file formats that themselves use fixed-length fields for data, or for which the stored size of
a given data field is overbearingly difficult to modify from outside the format's native application
(such as for Microsoft Office documents).

Be aware that because the width of a keyword field is measured in bytes, the po-
tential for corruption of multi-byte values exists. For example, a username which
contains some multi-byte UTF-8 characters might suffer truncation in the middle of
the string of bytes which make up one of those characters. The result will be a
mere truncation when viewed at the byte level, but will likely appear as a string
with an incorrect or garbled final character when viewed as UTF-8 text. It is con-
ceivable that certain applications, when asked to load the file, would notice the
broken UTF-8 text and deem the entire file corrupt, refusing to operate on the file
altogether. So, when limiting keywords to a fixed size, choose a size that allows for
this type of byte-wise expansion.

Locking
Subversion's copy-modify-merge version control model lives and dies on its data merging al-
gorithms, specifically on how well those algorithms perform when trying to resolve conflicts
caused by multiple users modifying the same file concurrently. Subversion itself provides only
one such algorithm, a three-way differencing algorithm which is smart enough to handle data
at a granularity of a single line of text. Subversion also allows you to supplement its content
merge processing with external differencing utilities (as described in the section called
“External diff3”), some of which may do an even better job, perhaps providing granularity of a
word or a single character of text. But common among those algorithms is that they generally
work only on text files. The landscape starts to look pretty grim when you start talking about
content merges of non-textual file formats. And when you can't find a tool that can handle that
type of merging, you begin to run into problems with the copy-modify-merge model.

Let's look at a real-life example of where this model runs aground. Harry and Sally are both
graphic designers working on the same project, a bit of marketing collateral for an automobile
mechanic. Central to the design of a particular poster is an image of a car in need of some
body work, stored in a file using the PNG image format. The poster's layout is almost finished,
and both Harry and Sally are pleased with the particular photo they chose for their damaged
car—a baby blue 1967 Ford Mustang with an unfortunate bit of crumpling on the left front fend-
er.

Now, as is common in graphic design work, there's a change in plans which causes the car's
color to be a concern. So Sally updates her working copy to HEAD, fires up her photo editing
software, and sets about tweaking the image so that the car is now cherry red. Meanwhile,

Advanced Topics

56

7Communication wouldn't have been such bad medicine for Harry and Sally's Hollywood namesakes, either, for that
matter.
8Subversion does not currently allow locks on directories.

Harry, feeling particularly inspired that day, decides that the image would have greater impact
if the car also appears to have suffered greater impact. He, too, updates to HEAD, and then
draws some cracks on the vehicle's windshield. He manages to finish his work before Sally fin-
ishes hers, and after admiring the fruits of his undeniable talent, commits the modified image.
Shortly thereafter, Sally is finished with the car's new finish, and tries to commit her changes.
But, as expected, Subversion fails the commit, informing Sally that now her version of the im-
age is out of date.

Here's where the difficulty sets in. Were Harry and Sally making changes to a text file, Sally
would simply update her working copy, receiving Harry's changes in the process. In the worst
possible case, they would have modified the same region of the file, and Sally would have to
work out by hand the proper resolution to the conflict. But these aren't text files—they are bin-
ary images. And while it's a simple matter to describe what one would expect the results of this
content merge to be, there is precious little chance that any software exists which is smart
enough to examine the common baseline image that each of these graphic artists worked
against, the changes that Harry made, and the changes that Sally made, and spit out an image
of a busted-up red Mustang with a cracked windshield!

Clearly, things would have gone more smoothly if Harry and Sally had serialized their modifica-
tions to the image—if, say, Harry had waited to draw his windshield cracks on Sally's now-red
car, or if Sally had tweaked the color of a car whose windshield was already cracked. As is dis-
cussed in the section called “The Copy-Modify-Merge Solution”, most of these types of prob-
lems go away entirely where perfect communication between Harry and Sally exists. 7 But as
one's version control system is, in fact, one form of communication, it follows that having that
software facilitate the serialization of non-parallelizable editing efforts is no bad thing. This
where Subversion's implementation of the lock-modify-unlock model steps into the spotlight.
This is where we talk about Subversion's locking feature, which is similar to the “reserved
checkouts” mechanisms of other version control systems.

Subversion's locking feature serves two main purposes:

• Serializing access to a versioned object. By allowing a user to programmatically claim the
exclusive right to change to a file in the repository, that user can be reasonably confident
that energy invested on unmergeable changes won't be wasted—his commit of those
changes will succeed.

• Aiding communication. By alerting other users that serialization is in effect for a particular
versioned object, those other users can reasonably expect that the object is about to be
changed by someone else, and they, too, can avoid wasting their time and energy on un-
mergeable changes that won't be committable due to eventual out-of-dateness.

When referring to Subversion's locking feature, one is actually talking about a fairly diverse col-
lection of behaviors which include the ability to lock a versioned file 8 (claiming the exclusive
right to modify the file), to unlock that file (yielding that exclusive right to modify), to see reports
about which files are locked and by whom, to annotate files for which locking before editing is
strongly advised, and so on. In this section, we'll cover all of these facets of the larger locking
feature.

The three meanings of “lock”

In this section, and almost everywhere in this book, the words “lock” and “locking” de-
scribe a mechanism for mutual exclusion between users to avoid clashing commits. Un-

Advanced Topics

57

fortunately, there are two other sorts of “lock” with which Subversion, and therefore this
book, sometimes needs to be concerned.

The first is working copy locks, used internally by Subversion to prevent clashes between
multiple Subversion clients operating on the same working copy. This is the sort of lock
indicated by an L in the third column of svn status output, and removed by the svn
cleanup command, as described in the section called “Sometimes You Just Need to
Clean Up”.

Secondly, there are database locks, used internally by the Berkeley DB backend to pre-
vent clashes between multiple programs trying to access the database. This is the sort of
lock whose unwanted persistence after an error can cause a repository to be “wedged”,
as described in the section called “Berkeley DB Recovery”.

You can generally forget about these other kinds of locks until something goes wrong
that requires you to care about them. In this book, “lock” means the first sort unless the
contrary is either clear from context or explicitly stated.

Creating locks
In the Subversion repository, a lock is a piece of metadata which grants exclusive access to
one user to change a file. This user is said to be the lock owner. Each lock also has a unique
identifier, typically a long string of characters, known as the lock token. The repository man-
ages locks, ultimately handling their creation, enforcement, and removal. If any commit trans-
action attempts to modify or delete a locked file (or delete one of the parent directories of the
file), the repository will demand two pieces of information—that the client performing the com-
mit be authenticated as the lock owner, and that the lock token has been provided as part of
the commit process as a sort of proof that client knows which lock it is using.

To demonstrate lock creation, let's refer back to our example of multiple graphic designers
working with on the same binary image files. Harry has decided to change a JPEG image. To
prevent other people from committing changes to the file while he is modifying it (as well as
alerting them that he is about to change it), he locks the file in the repository using the svn
lock command.

$ svn lock banana.jpg -m "Editing file for tomorrow's release."
'banana.jpg' locked by user 'harry'.
$

There are a number of new things demonstrated in the previous example. First, notice that
Harry passed the --message (-m) option to svn lock. Similar to svn commit, the svn lock
command can take comments (either via --message (-m) or --file (-F)) to describe the
reason for locking the file. Unlike svn commit, however, svn lock will not demand a message
by launching your preferred text editor. Lock comments are optional, but still recommended to
aid communication.

Secondly, the lock attempt succeeded. This means that the file wasn't already locked, and that
Harry had the latest version of the file. If Harry's working copy of the file had been out-of-date,
the repository would have rejected the request, forcing Harry to svn update and reattempt the
locking command. The locking command would also have failed if the file already been locked
by someone else.

As you can see, the svn lock command prints confirmation of the successful lock. At this

Advanced Topics

58

point, the fact that the file is locked becomes apparent in the output of the svn status and svn
info reporting subcommands.

$ svn status
K banana.jpg

$ svn info banana.jpg
Path: banana.jpg
Name: banana.jpg
URL: http://svn.example.com/repos/project/banana.jpg
Repository UUID: edb2f264-5ef2-0310-a47a-87b0ce17a8ec
Revision: 2198
Node Kind: file
Schedule: normal
Last Changed Author: frank
Last Changed Rev: 1950
Last Changed Date: 2006-03-15 12:43:04 -0600 (Wed, 15 Mar 2006)
Text Last Updated: 2006-06-08 19:23:07 -0500 (Thu, 08 Jun 2006)
Properties Last Updated: 2006-06-08 19:23:07 -0500 (Thu, 08 Jun 2006)
Checksum: 3b110d3b10638f5d1f4fe0f436a5a2a5
Lock Token: opaquelocktoken:0c0f600b-88f9-0310-9e48-355b44d4a58e
Lock Owner: harry
Lock Created: 2006-06-14 17:20:31 -0500 (Wed, 14 Jun 2006)
Lock Comment (1 line):
Editing file for tomorrow's release.

$

That the svn info command, which does not contact the repository when run against working
copy paths, can display the lock token reveals an important fact about lock tokens—that they
are cached in the working copy. The presence of the lock token is critical. It gives the working
copy authorization to make use of the lock later on. Also, the svn status command shows a K
next to the file (short for locKed), indicating that the lock token is present.

Regarding lock tokens

A lock token isn't an authentication token, so much as an authorization token. The token
isn't a protected secret. In fact, a lock's unique token is discoverable by anyone who runs
svn info URL. A lock token is special only when it lives inside a working copy. It's proof
that the lock was created in that particular working copy, and not somewhere else by
some other client. Merely authenticating as the lock owner isn't enough to prevent acci-
dents.

For example, suppose you lock a file using a computer at your office, but leave work for
the day before you finish your changes to that file. It should not be possible to accident-
ally commit changes to that same file from your home computer later that evening simply
because you've authenticated as the lock's owner. In other words, the lock token pre-
vents one piece of Subversion-related software from undermining the work of another. (In
our example, if you really need to change the file from an alternate working copy, you
would need to break the lock and re-lock the file.)

Now that Harry has locked banana.jpg, Sally is unable to change or delete that file:

$ svn delete banana.jpg
D banana.jpg
$ svn commit -m "Delete useless file."

Advanced Topics

59

Deleting banana.jpg
svn: Commit failed (details follow):
svn: DELETE of
'/repos/project/!svn/wrk/64bad3a9-96f9-0310-818a-df4224ddc35d/banana.jpg':
423 Locked (http://svn.example.com)
$

But Harry, after touching up the banana's shade of yellow, is able to commit his changes to the
file. That's because he authenticates as the lock owner, and also because his working copy
holds the correct lock token:

$ svn status
M K banana.jpg
$ svn commit -m "Make banana more yellow"
Sending banana.jpg
Transmitting file data .
Committed revision 2201.
$ svn status
$

Notice that after the commit is finished, svn status shows that the lock token is no longer
present in working copy. This is the standard behavior of svn commit—it searches the work-
ing copy (or list of targets, if you provide such a list) for local modifications, and sends all the
lock tokens it encounters during this walk to the server as part of the commit transaction. After
the commit completes successfully, all of the repository locks that were mentioned are re-
leased—even on files that weren't committed. This is meant to discourage users from being
sloppy about locking, or from holding locks for too long. If Harry haphazardly locks thirty files in
a directory named images because he's unsure of which files he needs to change, yet only
only changes four of those files, when he runs svn commit images, the process will still re-
lease all thirty locks.

This behavior of automatically releasing locks can be overridden with the --no-unlock op-
tion to svn commit. This is best used for those times when you want to commit changes, but
still plan to make more changes and thus need to retain existing locks. You can also make this
your default behavior by setting the no-unlock runtime configuration option (see the section
called “Runtime Configuration Area”).

Of course, locking a file doesn't oblige one to commit a change to it. The lock can be released
at any time with a simple svn unlock command:

$ svn unlock banana.c
'banana.c' unlocked.

Discovering locks
When a commit fails due to someone else's locks, it's fairly easy to learn about them. The easi-
est of these is svn status --show-updates:

$ svn status -u
M 23 bar.c
M O 32 raisin.jpg

* 72 foo.h
Status against revision: 105
$

Advanced Topics

60

In this example, Sally can see not only that her copy of foo.h is out-of-date, but that one of
the two modified files she plans to commit is locked in the repository. The O symbol stands for
“Other”, meaning that a lock exists on the file, and was created by somebody else. If she were
to attempt a commit, the lock on raisin.jpg would prevent it. Sally is left wondering who
made the lock, when, and why. Once again, svn info has the answers:

$ svn info http://svn.example.com/repos/project/raisin.jpg
Path: raisin.jpg
Name: raisin.jpg
URL: http://svn.example.com/repos/project/raisin.jpg
Repository UUID: edb2f264-5ef2-0310-a47a-87b0ce17a8ec
Revision: 105
Node Kind: file
Last Changed Author: sally
Last Changed Rev: 32
Last Changed Date: 2006-01-25 12:43:04 -0600 (Sun, 25 Jan 2006)
Lock Token: opaquelocktoken:fc2b4dee-98f9-0310-abf3-653ff3226e6b
Lock Owner: harry
Lock Created: 2006-02-16 13:29:18 -0500 (Thu, 16 Feb 2006)
Lock Comment (1 line):
Need to make a quick tweak to this image.
$

Just as svn info can be used to examine objects in the working copy, it can also be used to
examine objects in the repository. If the main argument to svn info is a working copy path,
then all of the working copy's cached information is displayed; any mention of a lock means
that the working copy is holding a lock token (if a file is locked by another user or in another
working copy, svn info on a working copy path will show no lock information at all). If the main
argument to svn info is a URL, then the information reflects the latest version of an object in
the repository, and any mention of a lock describes the current lock on the object.

So in this particular example, Sally can see that Harry locked the file on February 16th to
“make a quick tweak”. It being June, she suspects that he probably forgot all about the lock.
She might phone Harry to complain and ask him to release the lock. If he's unavailable, she
might try to forcibly break the lock herself or ask an administrator to do so.

Breaking and stealing locks
A repository lock isn't sacred—in Subversion's default configuration state, locks can be re-
leased not only by the person who created them, but by anyone at all. When somebody other
than the original lock creator destroys a lock, we refer to this as breaking the lock.

From the administrator's chair, it's simple to break locks. The svnlook and svnadmin pro-
grams have the ability to display and remove locks directly from the repository. (For more in-
formation about these tools, see the section called “An Administrator's Toolkit”.)

$ svnadmin lslocks /usr/local/svn/repos
Path: /project2/images/banana.jpg
UUID Token: opaquelocktoken:c32b4d88-e8fb-2310-abb3-153ff1236923
Owner: frank
Created: 2006-06-15 13:29:18 -0500 (Thu, 15 Jun 2006)
Expires:
Comment (1 line):
Still improving the yellow color.

Advanced Topics

61

Path: /project/raisin.jpg
UUID Token: opaquelocktoken:fc2b4dee-98f9-0310-abf3-653ff3226e6b
Owner: harry
Created: 2006-02-16 13:29:18 -0500 (Thu, 16 Feb 2006)
Expires:
Comment (1 line):
Need to make a quick tweak to this image.

$ svnadmin rmlocks /usr/local/svn/repos /project/raisin.jpg
Removed lock on '/project/raisin.jpg'.
$

The more interesting option is allowing users to break each other's locks over the network. To
do this, Sally simply needs to pass the --force to the unlock command:

$ svn status -u
M 23 bar.c
M O 32 raisin.jpg

* 72 foo.h
Status against revision: 105
$ svn unlock raisin.jpg
svn: 'raisin.jpg' is not locked in this working copy
$ svn info raisin.jpg | grep URL
URL: http://svn.example.com/repos/project/raisin.jpg
$ svn unlock http://svn.example.com/repos/project/raisin.jpg
svn: Unlock request failed: 403 Forbidden (http://svn.example.com)
$ svn unlock --force http://svn.example.com/repos/project/raisin.jpg
'raisin.jpg' unlocked.
$

Now, Sally's initial attempt to unlock failed because she ran svn unlock directly on her working
copy of the file, and no lock token was present. To remove the lock directly from the repository,
she needs to pass a URL to svn unlock. Her first attempt to unlock the URL fails, because
she can't authenticate as the lock owner (nor does she have the lock token). But when she
passes --force, the authentication and authorization requirements are ignored, and the re-
mote lock is broken.

Simply breaking a lock may not be enough. In the running example, Sally may not only want to
break Harry's long-forgotten lock, but re-lock the file for her own use. She can accomplish this
by running svn unlock --force and then svn lock back-to-back, but there's a small chance
that somebody else might lock the file between the two commands. The simpler thing to is
steal the lock, which involves breaking and re-locking the file all in one atomic step. To do this,
Sally passes the --force option to svn lock:

$ svn lock raisin.jpg
svn: Lock request failed: 423 Locked (http://svn.example.com)
$ svn lock --force raisin.jpg
'raisin.jpg' locked by user 'sally'.
$

In any case, whether the lock is broken or stolen, Harry may be in for a surprise. Harry's work-
ing copy still contains the original lock token, but that lock no longer exists. The lock token is
said to be defunct. The lock represented by the lock token has either been broken (no longer in
the repository), or stolen (replaced with a different lock). Either way, Harry can see this by ask-
ing svn status to contact the repository:

Advanced Topics

62

$ svn status
K raisin.jpg

$ svn status -u
B 32 raisin.jpg

$ svn update
B raisin.jpg

$ svn status
$

If the repository lock was broken, then svn status --show-updates displays a B (Broken) sym-
bol next to the file. If a new lock exists in place of the old one, then a T (sTolen) symbol is
shown. Finally, svn update notices any defunct lock tokens and removes them from the work-
ing copy.

Locking Policies

Different systems have different notions of how strict a lock should be. Some folks argue
that locks must be strictly enforced at all costs, releasable only by the original creator or
administrator. They argue that if anyone can break a lock, then chaos runs rampant and
the whole point of locking is defeated. The other side argues that locks are first and fore-
most a communication tool. If users are constantly breaking each others' locks, then it
represents a cultural failure within the team and the problem falls outside the scope of
software enforcement.

Subversion defaults to the “softer” approach, but still allows administrators to create
stricter enforcement policies through the use of hook scripts. In particular, the pre-lock
and pre-unlock hooks allow administrators to decide when lock creation and lock re-
leases are allowed to happen. Depending on whether or not a lock already exists, these
two hooks can decide whether or not to allow a certain user to break or steal a lock. The
post-lock and post-unlock hooks are also available, and can be used to send email
after locking actions. To learn more about repository hooks, see the section called
“Implementing Repository Hooks”.

Lock Communication
We've seen how svn lock and svn unlock can be used to create, release, break, and steal
locks. This satisfies the goal of serializing commit access to a file. But what about the larger
problem of preventing wasted time?

For example, suppose Harry locks an image file and then begins editing it. Meanwhile, miles
away, Sally wants to do the same thing. She doesn't think to run svn status --show-updates,
so she has no idea that Harry has already locked the file. She spends hours editing the file,
and when she tries to commit her change, she discovers that either the file is locked or that
she's out-of-date. Regardless, her changes aren't mergeable with Harry's. One of these two
people has to throw away their work, and a lot of time has been wasted.

Subversion's solution to this problem is to provide a mechanism to remind users that a file
ought to be locked before the editing begins. The mechanism is a special property,
svn:needs-lock. If that property is attached to a file (regardless of its value, which is irrelev-
ant), then Subversion will try to use filesystem-level permissions to make the file read-
only—unless, of course, the user has explicitly locked the file. When a lock token is present (as
a result of running svn lock), the file becomes read-write. When the lock is released, the file
becomes read-only again.

Advanced Topics

63

9Except, perhaps, a classic Vulcan mind-meld.

The theory, then, is that if the image file has this property attached, then Sally would immedi-
ately notice something is strange when she opens the file for editing: many applications alert
users immediately when a read-only file is opened for editing, and nearly all would prevent her
from saving changes to the file. This reminds her to lock the file before editing, whereby she
discovers the pre-existing lock:

$ /usr/local/bin/gimp raisin.jpg
gimp: error: file is read-only!
$ ls -l raisin.jpg
-r--r--r-- 1 sally sally 215589 Jun 8 19:23 raisin.jpg
$ svn lock raisin.jpg
svn: Lock request failed: 423 Locked (http://svn.example.com)
$ svn info http://svn.example.com/repos/project/raisin.jpg | grep Lock
Lock Token: opaquelocktoken:fc2b4dee-98f9-0310-abf3-653ff3226e6b
Lock Owner: harry
Lock Created: 2006-06-08 07:29:18 -0500 (Thu, 08 June 2006)
Lock Comment (1 line):
Making some tweaks. Locking for the next two hours.
$

Users and administrators alike are encouraged to attach the svn:needs-lock
property to any file which cannot be contextually merged. This is the primary tech-
nique for encouraging good locking habits and preventing wasted effort.

Note that this property is a communication tool which works independently from the locking
system. In other words, any file can be locked, whether or not this property is present. And
conversely, the presence of this property doesn't make the repository require a lock when com-
mitting.

Unfortunately, the system isn't flawless. It's possible that even when a file has the property, the
read-only reminder won't always work. Sometimes applications misbehave and “hijack” the
read-only file, silently allowing users to edit and save the file anyway. There's not much that
Subversion can do in this situation—at the end of the day, there's simply no substitution for
good interpersonal communication. 9

Externals Definitions
Sometimes it is useful to construct a working copy that is made out of a number of different
checkouts. For example, you may want different subdirectories to come from different locations
in a repository, or perhaps from different repositories altogether. You could certainly set up
such a scenario by hand—using svn checkout to create the sort of nested working copy struc-
ture you are trying to achieve. But if this layout is important for everyone who uses your repos-
itory, every other user will need to perform the same checkout operations that you did.

Fortunately, Subversion provides support for externals definitions. An externals definition is a
mapping of a local directory to the URL—and ideally a particular revision—of a versioned dir-
ectory. In Subversion, you declare externals definitions in groups using the svn:externals
property. You can create or modify this property using svn propset or svn propedit (see the
section called “Manipulating Properties”). It can be set on any versioned directory, and its
value is a multi-line table of subdirectories (relative to the versioned directory on which the

Advanced Topics

64

property is set), optional revision flags, and fully qualified, absolute Subversion repository
URLs.

$ svn propget svn:externals calc
third-party/sounds http://sounds.red-bean.com/repos
third-party/skins http://skins.red-bean.com/repositories/skinproj
third-party/skins/toolkit -r21 http://svn.red-bean.com/repos/skin-maker

The convenience of the svn:externals property is that once it is set on a versioned direct-
ory, everyone who checks out a working copy with that directory also gets the benefit of the ex-
ternals definition. In other words, once one person has made the effort to define those nested
working copy checkouts, no one else has to bother—Subversion will, upon checkout of the ori-
ginal working copy, also check out the external working copies.

The relative target subdirectories of externals definitions must not already exist on
your or other users' systems—Subversion will create them when it checks out the
external working copy.

Note the previous externals definition example. When someone checks out a working copy of
the calc directory, Subversion also continues to check out the items found in its externals
definition.

$ svn checkout http://svn.example.com/repos/calc
A calc
A calc/Makefile
A calc/integer.c
A calc/button.c
Checked out revision 148.

Fetching external item into calc/third-party/sounds
A calc/third-party/sounds/ding.ogg
A calc/third-party/sounds/dong.ogg
A calc/third-party/sounds/clang.ogg
…
A calc/third-party/sounds/bang.ogg
A calc/third-party/sounds/twang.ogg
Checked out revision 14.

Fetching external item into calc/third-party/skins
…

If you need to change the externals definition, you can do so using the regular property modi-
fication subcommands. When you commit a change to the svn:externals property, Subver-
sion will synchronize the checked-out items against the changed externals definition when you
next run svn update. The same thing will happen when others update their working copies
and receive your changes to the externals definition.

Because the svn:externals property has a multiline value, we strongly recom-
mend that you use svn propedit instead of svn propset.

You should seriously consider using explicit revision numbers in all of your extern-
als definitions. Doing so means that you get to decide when to pull down a differ-
ent snapshot of external information, and exactly which snapshot to pull. Besides

Advanced Topics

65

avoiding the surprise of getting changes to third-party repositories that you might
not have any control over, using explicit revision numbers also means that as you
backdate your working copy to a previous revision, your externals definitions will
also revert to the way they looked in that previous revision, which in turn means
that the external working copies will be updated to match they way they looked
back when your repository was at that previous revision. For software projects, this
could be the difference between a successful and a failed build of an older snap-
shot of your complex codebase.

The svn status command also recognizes externals definitions, displaying a status code of X
for the disjoint subdirectories into which externals are checked out, and then recursing into
those subdirectories to display the status of the external items themselves.

The support that exists for externals definitions in Subversion is less than ideal, though. First,
an externals definition can only point to directories, not files. Second, the externals definition
cannot point to relative paths (paths like ../../skins/myskin). Third, the working copies
created via the externals definition support are still disconnected from the primary working
copy (on whose versioned directories the svn:externals property was actually set). And
Subversion still only truly operates on non-disjoint working copies. So, for example, if you want
to commit changes that you've made in one or more of those external working copies, you
must run svn commit explicitly on those working copies—committing on the primary working
copy will not recurse into any external ones.

Also, since the definitions themselves use absolute URLs, moving or copying a directory to
which they are attached will not affect what gets checked out as an external (though the relat-
ive local target subdirectory will, of course, move with renamed directory). This can be confus-
ing—even frustrating—in certain situations. For example, say you have a top-level directory
named my-project, and you've created an externals definition on one of its subdirectories
(my-project/some-dir) which tracks the latest revision of another of its subdirectories (my-
project/external-dir).

$ svn checkout http://svn.example.com/projects .
A my-project
A my-project/some-dir
A my-project/external-dir
…
Fetching external item into 'my-project/some-dir/subdir'
Checked out external at revision 11.

Checked out revision 11.
$ svn propget svn:externals my-project/some-dir
subdir http://svn.example.com/projects/my-project/external-dir

$

Now you use svn move to rename the my-project directory. At this point, your externals
definition will still refer to a path under the my-project directory, even though that directory
no longer exists.

$ svn move -q my-project renamed-project
$ svn commit -m "Rename my-project to renamed-project."
Deleting my-project
Adding my-renamed-project

Committed revision 12.

Advanced Topics

66

10“You're not supposed to name it. Once you name it, you start getting attached to it.”—Mike Wazowski

$ svn update

Fetching external item into 'renamed-project/some-dir/subdir'
svn: Target path does not exist
$

Also, the absolute URLs that externals definitions use can cause problems with repositories
that are available via multiple URL schemes. For example, if your Subversion server is con-
figured to allow everyone to check out the repository over http:// or https://, but only al-
low commits to come in via https://, you have an interesting problem on your hands. If your
externals definitions use the http:// form of the repository URLs, you won't be able to com-
mit anything from the working copies created by those externals. On the other hand, if they use
the https:// form of the URLs, anyone who might be checking out via http:// because
their client doesn't support https:// will be unable to fetch the external items. Be aware, too,
that if you need to re-parent your working copy (using svn switch --relocate), externals defini-
tions will not also be re-parented.

Finally, there might be times when you would prefer that svn subcommands would not recog-
nize, or otherwise operate upon, the external working copies. In those instances, you can pass
the --ignore-externals option to the subcommand.

Peg and Operative Revisions
We copy, move, rename, and completely replace files and directories on our computers all the
time. And your version control system shouldn't get in the way of your doing these things with
your version-controlled files and directories, either. Subversion's file management support is
quite liberating, affording almost as much flexibility for versioned files as you'd expect when
manipulating your unversioned ones. But that flexibility means that across the lifetime of your
repository, a given versioned object might have many paths, and a given path might represent
several entirely different versioned objects. And this introduces a certain level of complexity to
your interactions with those paths and objects.

Subversion is pretty smart about noticing when an object's version history includes such
“changes of address”. For example, if you ask for the revision history log of a particular file that
was renamed last week, Subversion happily provides all those logs—the revision in which the
rename itself happened, plus the logs of relevant revisions both before and after that rename.
So, most of the time, you don't even have to think about such things. But occasionally, Subver-
sion needs your help to clear up ambiguities.

The simplest example of this occurs when a directory or file is deleted from version control,
and then a new directory or file is created with the same name and added to version control.
Clearly the thing you deleted and the thing you later added aren't the same thing. They merely
happen to have had the same path, /trunk/object for example. What, then, does it mean
to ask Subversion about the history of /trunk/object? Are you asking about the thing cur-
rently at that location, or the old thing you deleted from that location? Are you asking about the
operations that have happened to all the objects that have ever lived at that path? Clearly,
Subversion needs a hint about what you really want.

And thanks to moves, versioned object history can get far more twisted than that, even. For ex-
ample, you might have a directory named concept, containing some nascent software project
you've been toying with. Eventually, though, that project matures to the point that the idea
seems to actually have some wings, so you do the unthinkable and decide to give the project a
name. 10 Let's say you called your software Frabnaggilywort. At this point, it makes sense to
rename the directory to reflect the project's new name, so concept is renamed to frabnag-

Advanced Topics

67

11606 N. Main Street, Wheaton, Illinois, is the home of the Wheaton History Center. Get it—“History Center”? It
seemed appropriate….

gilywort. Life goes on, Frabnaggilywort releases a 1.0 version, and is downloaded and used
daily by hordes of people aiming to improve their lives.

It's a nice story, really, but it doesn't end there. Entrepreneur that you are, you've already got
another think in the tank. So you make a new directory, concept, and the cycle begins again.
In fact, the cycle begins again many times over the years, each time starting with that old
concept directory, then sometimes seeing that directory renamed as the idea cures, some-
times seeing it deleted when you scrap the idea. Or, to get really sick, maybe you rename
concept to something else for a while, but later rename the thing back to concept for some
reason.

In scenarios like these, attempting to instruct Subversion to work with these re-used paths can
be a little like instructing a motorist in Chicago's West Suburbs to drive east down Roosevelt
Road and turn left onto Main Street. In a mere twenty minutes, you can cross “Main Street” in
Wheaton, Glen Ellyn, and Lombard. And no, they aren't the same street. Our motorist—and
our Subversion—need a little more detail in order to do the right thing.

In version 1.1, Subversion introduced a way for you to tell it exactly which Main Street you
meant. It's called the peg revision, and it is a revision provided to Subversion for the sole pur-
pose of identifying a unique line of history. Because at most one versioned object may occupy
a path at any given time—or, more precisely, in any one revision—the combination of a path
and a peg revision is all that is needed to refer to a specific line of history. Peg revisions are
specified to the Subversion command-line client using at syntax, so called because the syntax
involves appending an “at sign” (@) and the peg revision to the end of the path with which the
revision is associated.

But what of the --revision (-r) of which we've spoken so much in this book? That revi-
sion (or set of revisions) is called the operative revision (or operative revision range). Once a
particular line of history has been identified using a path and peg revision, Subversion per-
forms the requested operation using the operative revision(s). To map this to our Chicagoland
streets analogy, if we are told to go to 606 N. Main Street in Wheaton, 11 we can think of “Main
Street” as our path and “Wheaton” as our peg revision. These two pieces of information identi-
fy a unique path which can travelled (north or south on Main Street), and will keep us from
travelling up and down the wrong Main Street in search of our destination. Now we throw in
“606 N.” as our operative revision, of sorts, and we know exactly where to go.

The peg revision algorithm

The Subversion command-line performs the peg revision algorithm any time it needs to
resolve possible ambiguities in the paths and revisions provided to it. Here's an example
of such an invocation:

$ svn command -r OPERATIVE-REV item@PEG-REV

If OPERATIVE-REV is older than PEG-REV, then the algorithm is as follows:

• Locate item in the revision identified by PEG-REV. There can be only one such object.

• Trace the object's history backwards (through any possible renames) to its ancestor in
the revision OPERATIVE-REV.

• Perform the requested action on that ancestor, wherever it is located, or whatever its

Advanced Topics

68

name might be or have been at that time.

But what if OPERATIVE-REV is younger than PEG-REV? Well, that adds some complexity
to the theoretical problem of locating the path in OPERATIVE-REV, because the path's
history could have forked multiple times (thanks to copy operations) between PEG-REV
and OPERATIVE-REV. And that's not all—Subversion doesn't store enough information
to performantly trace an object's history forward, anyway. So the algorithm is a little differ-
ent:

• Locate item in the revision identified by OPERATIVE-REV. There can be only one
such object.

• Trace the object's history backwards (through any possible renames) to its ancestor in
the revision PEG-REV.

• Verify that the object's location (path-wise) in PEG-REV is the same as it is in OPERAT-
IVE-REV. If that's the case, then at least the two locations are known to be directly re-
lated, so perform the requested action on the location in OPERATIVE-REV. Otherwise,
relatedness was not established, so error out with a loud complaint that no viable loca-
tion was found. (Someday, we expect that Subversion will be able to handle this usage
scenario with more flexibility and grace.)

Note that even when you don't explicitly supply a peg revision or operative revision, they
are still present. For your convenience, the default peg revision is BASE for working copy
items and HEAD for repository URLs. And when no operative revision is provided, it de-
faults to being the same revision as the peg revision.

Say that long ago we created our repository, and in revision 1 added our first concept direct-
ory, plus an IDEA file in that directory talking about the concept. After several revisions in
which real code was added and tweaked, we, in revision 20, renamed this directory to frabn-
aggilywort. By revision 27, we had a new concept, a new concept directory to hold it, and
a new IDEA file to describe it. And then five years and twenty thousand revisions flew by, just
like they would in any good romance story.

Now, years later, we wonder what the IDEA file looked like back in revision 1. But Subversion
needs to know if we are asking about how the current file looked back in revision 1, or if we are
asking for the contents of whatever file lived at concepts/IDEA in revision 1. Certainly those
questions have different answers, and because of peg revisions, you can ask either of them.
To find out how the current IDEA file looked in that old revision, you run:

$ svn cat -r 1 concept/IDEA
svn: Unable to find repository location for 'concept/IDEA' in revision 1

Of course, in this example, the current IDEA file didn't exist yet in revision 1, so Subversion
gives an error. The command above is shorthand for a longer notation which explicitly lists a
peg revision. The expanded notation is:

$ svn cat -r 1 concept/IDEA@BASE
svn: Unable to find repository location for 'concept/IDEA' in revision 1

Advanced Topics

69

And when executed, it has the expected results.

The perceptive reader is probably wondering at this point if the peg revision syntax causes
problems for working copy paths or URLs that actually have at signs in them. After all, how
does svn know whether news@11 is the name of a directory in my tree, or just a syntax for
“revision 11 of news”? Thankfully, while svn will always assume the latter, there is a trivial
workaround. You need only append an at sign to the end of the path, such as news@11@. svn
only cares about the last at sign in the argument, and it is not considered illegal to omit a literal
peg revision specifier after that at sign. This workaround even applies to paths that end in an at
sign—you would use filename@@ to talk about a file named filename@.

Let's ask the other question, then—in revision 1, what were the contents of whatever file occu-
pied the address concepts/IDEA at the time? We'll use an explicit peg revision to help us
out.

$ svn cat concept/IDEA@1
The idea behind this project is to come up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky
business, and doing it incorrectly can have serious ramifications, so
we need to employ over-the-top input validation and data verification
mechanisms.

Notice that we didn't provide an operative revision this time. That's because when no operative
revision is specified, Subversion assumes a default operative revision that's the same as the
peg revision.

As you can see, the output from our operation appears to be correct. The text even mentions
frabbing naggily worts, so this is almost certainly the file which describes the software now
called Frabnaggilywort. In fact, we can verify this using the combination of an explicit peg revi-
sion and explicit operative revision. We know that in HEAD, the Frabnaggilywort project is loc-
ated in the frabnaggilywort directory. So we specify that we want to see how the line of
history identified in HEAD as the path frabnaggilywort/IDEA looked in revision 1.

$ svn cat -r 1 frabnaggilywort/IDEA@HEAD
The idea behind this project is to come up with a piece of software
that can frab a naggily wort. Frabbing naggily worts is tricky
business, and doing it incorrectly can have serious ramifications, so
we need to employ over-the-top input validation and data verification
mechanisms.

And the peg and operative revisions need not be so trivial, either. For example, say frabnag-
gilywort had been deleted from HEAD, but we know it existed in revision 20, and we want to
see the diffs for its IDEA file between revisions 4 and 10. We can use the peg revision 20 in
conjunction with the URL that would have held Frabnaggilywort's IDEA file in revision 20, and
then use 4 and 10 as our operative revision range.

$ svn diff -r 4:10 http://svn.red-bean.com/projects/frabnaggilywort/IDEA@20
Index: frabnaggilywort/IDEA
===
--- frabnaggilywort/IDEA (revision 4)
+++ frabnaggilywort/IDEA (revision 10)
@@ -1,5 +1,5 @@
-The idea behind this project is to come up with a piece of software
-that can frab a naggily wort. Frabbing naggily worts is tricky
-business, and doing it incorrectly can have serious ramifications, so

Advanced Topics

70

-we need to employ over-the-top input validation and data verification
-mechanisms.
+The idea behind this project is to come up with a piece of
+client-server software that can remotely frab a naggily wort.
+Frabbing naggily worts is tricky business, and doing it incorrectly
+can have serious ramifications, so we need to employ over-the-top
+input validation and data verification mechanisms.

Fortunately, most folks aren't faced with such complex situations. But when you are, remember
that peg revisions are that extra hint Subversion needs to clear up ambiguity.

Network Model
At some point, you're going to need to understand how your Subversion client communicates
with its server. Subversion's networking layer is abstracted, meaning that Subversion clients
exhibit the same general behaviors no matter what sort of server they are operating against.
Whether speaking the HTTP protocol (http://) with the Apache HTTP Server or speaking
the custom Subversion protocol (svn://) with svnserve, the basic network model is the
same. In this section, we'll explain the basics of that network model, including how Subversion
manages authentication and authorization matters.

Requests and Responses
The Subversion client spends most of its time managing working copies. When it needs in-
formation from a remote repository, however, it makes a network request, and the server re-
sponds with an appropriate answer. The details of the network protocol are hidden from the
user—the client attempts to access a URL, and depending on the URL scheme, a particular
protocol is used to contact the server (see Repository URLs).

Run svn --version to see which URL schemes and protocols the client knows how
to use.

When the server process receives a client request, it often demands that the client identify it-
self. It issues an authentication challenge to the client, and the client responds by providing
credentials back to the server. Once authentication is complete, the server responds with the
original information the client asked for. Notice that this system is different from systems like
CVS, where the client pre-emptively offers credentials (“logs in”) to the server before ever mak-
ing a request. In Subversion, the server “pulls” credentials by challenging the client at the ap-
propriate moment, rather than the client “pushing” them. This makes certain operations more
elegant. For example, if a server is configured to allow anyone in the world to read a reposit-
ory, then the server will never issue an authentication challenge when a client attempts to svn
checkout.

If the particular network requests issued by the client result in a new revision being created in
the repository, (e.g. svn commit), then Subversion uses the authenticated username associ-
ated with those requests as the author of the revision. That is, the authenticated user's name is
stored as the value of the svn:author property on the new revision (see the section called
“Subversion properties”). If the client was not authenticated (in other words, the server never
issued an authentication challenge), then the revision's svn:author property is empty.

Client Credentials Caching
Many servers are configured to require authentication on every request. This would be a big

Advanced Topics

71

annoyance to users, if they were forced to type their passwords over and over again. Fortu-
nately, the Subversion client has a remedy for this—a built-in system for caching authentica-
tion credentials on disk. By default, whenever the command-line client successfully responds
to a server's authentication challenge, it saves the credentials in the user's private runtime con-
figuration area (~/.subversion/auth/ on Unix-like systems or
%APPDATA%/Subversion/auth/ on Windows; see the section called “Runtime Configura-
tion Area” for more details about the runtime configuration system). Successful credentials are
cached on disk, keyed on a combination of the server's hostname, port, and authentication
realm.

When the client receives an authentication challenge, it first looks for the appropriate creden-
tials in the user's disk cache. If seemingly suitable credentials are not present, or if the cached
credentials ultimately fail to authenticate, then the client will, by default, fall back to prompting
the user for the necessary information.

The security-conscious reader will suspect immediately that there is reason for concern here.
“Caching passwords on disk? That's terrible! You should never do that!”

The Subversion developers recognize the legitimacy of such concerns, and so Subversion
works with available mechanisms provided by the operating system and environment to try to
minimize the risk of leaking this information. Here's a breakdown of what this means for users
on the most common platforms:

• On Windows 2000 and later, the Subversion client uses standard Windows cryptography
services to encrypt the password on disk. Because the encryption key is managed by Win-
dows and is tied to the user's own login credentials, only the user can decrypt the cached
password. (Note that if the user's Windows account password is reset by an administrator,
all of the cached passwords become undecipherable. The Subversion client will behave as if
they don't exist, prompting for passwords when required.)

• Similarly, on Mac OS X, the Subversion client stores all repository passwords in the login
keyring (managed by the Keychain service), which is protected by the user's account pass-
word. User preference settings can impose additional policies, such as requiring the user's
account password be entered each time the Subversion password is used.

• For other Unix-like operating systems, no standard “keychain” services exist. However, the
auth/ caching area is still permission-protected so that only the user (owner) can read data
from it, not the world at large. The operating system's own file permissions protect the pass-
words.

Of course, for the truly paranoid, none of these mechanisms meets the test of perfection. So
for those folks willing to sacrifice convenience for the ultimate security, Subversion provides
various ways of disabling its credentials caching system altogether.

To disable caching for a single command, pass the --no-auth-cache option:

$ svn commit -F log_msg.txt --no-auth-cache
Authentication realm: <svn://host.example.com:3690> example realm
Username: joe
Password for 'joe':

Adding newfile
Transmitting file data .
Committed revision 2324.

password was not cached, so a second commit still prompts us

Advanced Topics

72

12Again, a common mistake is to misconfigure a server so that it never issues an authentication challenge. When
users pass --username and --password options to the client, they're surprised to see that they're never used, i.e.
new revisions still appear to have been committed anonymously!

$ svn delete newfile
$ svn commit -F new_msg.txt
Authentication realm: <svn://host.example.com:3690> example realm
Username: joe
…

Or, if you want to disable credential caching permanently, you can edit the config file in your
runtime configuration area, and set the store-auth-creds option to no. This will prevent the
storing of credentials used in any Subversion interactions you perform on the affected com-
puter. This can be extended to cover all users on the computer, too, by modifying the system-
wide runtime configuration area (described in the section called “Configuration Area Layout”).

[auth]
store-auth-creds = no

Sometimes users will want to remove specific credentials from the disk cache. To do this, you
need to navigate into the auth/ area and manually delete the appropriate cache file. Creden-
tials are cached in individual files; if you look inside each file, you will see keys and values. The
svn:realmstring key describes the particular server realm that the file is associated with:

$ ls ~/.subversion/auth/svn.simple/
5671adf2865e267db74f09ba6f872c28
3893ed123b39500bca8a0b382839198e
5c3c22968347b390f349ff340196ed39

$ cat ~/.subversion/auth/svn.simple/5671adf2865e267db74f09ba6f872c28

K 8
username
V 3
joe
K 8
password
V 4
blah
K 15
svn:realmstring
V 45
<https://svn.domain.com:443> Joe's repository
END

Once you have located the proper cache file, just delete it.

One last word about svn's authentication behavior, specifically regarding the --username
and --password options. Many client subcommands accept these options, but it is important
to understand using these options does not automatically send credentials to the server. As
discussed earlier, the server “pulls” credentials from the client when it deems necessary; the
client cannot “push” them at will. If a username and/or password are passed as options, they
will only be presented to the server if the server requests them. 12 These options are typically
used to authenticate as a different user than Subversion would have chosen by default (such
as your system login name), or when trying to avoid interactive prompting (such as when call-

Advanced Topics

73

ing svn from a script).

Here is a final summary that describes how a Subversion client behaves when it receives an
authentication challenge.

1. First, the client checks whether the user specified any credentials as command-line options
(--username and/or --password). If not, or if these options fail to authenticate success-
fully, then

2. the client looks up the server's hostname, port, and realm in the runtime auth/ area, to see
if the user already has the appropriate credentials cached. If not, or if the cached credentials
fail to authenticate, then

3. finally, the client resorts to prompting the user (unless instructed not to do so via the -
-non-interactive option or its client-specific equivalents).

If the client successfully authenticates by any of the methods listed above, it will attempt to
cache the credentials on disk (unless the user has disabled this behavior, as mentioned earli-
er).

Advanced Topics

74

Chapter 4. Branching and Merging
“#### (It is upon the Trunk that a gentleman works.)”

—Confucius

Branching, tagging, and merging are concepts common to almost all version control systems.
If you're not familiar with these ideas, we provide a good introduction in this chapter. If you are
familiar, then hopefully you'll find it interesting to see how Subversion implements these ideas.

Branching is a fundamental part of version control. If you're going to allow Subversion to man-
age your data, then this is a feature you'll eventually come to depend on. This chapter as-
sumes that you're already familiar with Subversion's basic concepts (Chapter 1, Fundamental
Concepts).

What's a Branch?
Suppose it's your job to maintain a document for a division in your company, a handbook of
some sort. One day a different division asks you for the same handbook, but with a few parts
“tweaked” for them, since they do things slightly differently.

What do you do in this situation? You do the obvious thing: you make a second copy of your
document, and begin maintaining the two copies separately. As each department asks you to
make small changes, you incorporate them into one copy or the other.

You often want to make the same change to both copies. For example, if you discover a typo
in the first copy, it's very likely that the same typo exists in the second copy. The two docu-
ments are almost the same, after all; they only differ in small, specific ways.

This is the basic concept of a branch—namely, a line of development that exists independently
of another line, yet still shares a common history if you look far enough back in time. A branch
always begins life as a copy of something, and moves on from there, generating its own history
(see Figure 4.1, “Branches of development”).

Figure 4.1. Branches of development

Subversion has commands to help you maintain parallel branches of your files and directories.
It allows you to create branches by copying your data, and remembers that the copies are re-
lated to one another. It also helps you duplicate changes from one branch to another. Finally, it
can make portions of your working copy reflect different branches, so that you can “mix and

75

match” different lines of development in your daily work.

Using Branches
At this point, you should understand how each commit creates an entire new filesystem tree
(called a “revision”) in the repository. If not, go back and read about revisions in the section
called “Revisions”.

For this chapter, we'll go back to the same example from Chapter 1, Fundamental Concepts.
Remember that you and your collaborator, Sally, are sharing a repository that contains two
projects, paint and calc. Notice that in Figure 4.2, “Starting repository layout”, however,
each project directory now contains subdirectories named trunk and branches. The reason
for this will soon become clear.

Figure 4.2. Starting repository layout

As before, assume that Sally and you both have working copies of the “calc” project. Specific-
ally, you each have a working copy of /calc/trunk. All the files for the project are in this
subdirectory rather than in /calc itself, because your team has decided that /calc/trunk is
where the “main line” of development is going to take place.

Let's say that you've been given the task of implementing radical new project feature. It will
take a long time to write, and will affect all the files in the project. The problem here is that you
don't want to interfere with Sally, who is in the process of fixing small bugs here and there.
She's depending on the fact that the latest version of the project (in /calc/trunk) is always
usable. If you start committing your changes bit-by-bit, you'll surely break things for Sally.

Branching and Merging

76

One strategy is to crawl into a hole: you and Sally can stop sharing information for a week or
two. That is, start gutting and reorganizing all the files in your working copy, but don't commit
or update until you're completely finished with the task. There are a number of problems with
this, though. First, it's not very safe. Most people like to save their work to the repository fre-
quently, should something bad accidentally happen to their working copy. Second, it's not very
flexible. If you do your work on different computers (perhaps you have a working copy of /
calc/trunk on two different machines), you'll need to manually copy your changes back and
forth, or just do all the work on a single computer. By that same token, it's difficult to share your
changes-in-progress with anyone else. A common software development “best practice” is to
allow your peers to review your work as you go. If nobody sees your intermediate commits,
you lose potential feedback. Finally, when you're finished with all your changes, you might find
it very difficult to re-merge your final work with the rest of the company's main body of code.
Sally (or others) may have made many other changes in the repository that are difficult to in-
corporate into your working copy—especially if you run svn update after weeks of isolation.

The better solution is to create your own branch, or line of development, in the repository. This
allows you to save your half-broken work frequently without interfering with others, yet you can
still selectively share information with your collaborators. You'll see exactly how this works later
on.

Creating a Branch
Creating a branch is very simple—you make a copy of the project in the repository using the
svn copy command. Subversion is not only able to copy single files, but whole directories as
well. In this case, you want to make a copy of the /calc/trunk directory. Where should the
new copy live? Wherever you wish—it's a matter of project policy. Let's say that your team has
a policy of creating branches in the /calc/branches area of the repository, and you want to
name your branch my-calc-branch. You'll want to create a new directory, /
calc/branches/my-calc-branch, which begins its life as a copy of /calc/trunk.

There are two different ways to make a copy. We'll demonstrate the messy way first, just to
make the concept clear. To begin, check out a working copy of the project's root directory, /
calc:

$ svn checkout http://svn.example.com/repos/calc bigwc
A bigwc/trunk/
A bigwc/trunk/Makefile
A bigwc/trunk/integer.c
A bigwc/trunk/button.c
A bigwc/branches/
Checked out revision 340.

Making a copy is now simply a matter of passing two working-copy paths to the svn copy
command:

$ cd bigwc
$ svn copy trunk branches/my-calc-branch
$ svn status
A + branches/my-calc-branch

In this case, the svn copy command recursively copies the trunk working directory to a new
working directory, branches/my-calc-branch. As you can see from the svn status com-
mand, the new directory is now scheduled for addition to the repository. But also notice the “+”
sign next to the letter A. This indicates that the scheduled addition is a copy of something, not

Branching and Merging

77

1Subversion does not support copying between different repositories. When using URLs with svn copy or svn move,
you can only copy items within the same repository.

something new. When you commit your changes, Subversion will create /
calc/branches/my-calc-branch in the repository by copying /calc/trunk, rather than
resending all of the working copy data over the network:

$ svn commit -m "Creating a private branch of /calc/trunk."
Adding branches/my-calc-branch
Committed revision 341.

And now here's the easier method of creating a branch, which we should have told you about
in the first place: svn copy is able to operate directly on two URLs.

$ svn copy http://svn.example.com/repos/calc/trunk \
http://svn.example.com/repos/calc/branches/my-calc-branch \

-m "Creating a private branch of /calc/trunk."

Committed revision 341.

From the repository's point of view, there's really no difference between these two methods.
Both procedures create a new directory in revision 341, and the new directory is a copy of /
calc/trunk. This is shown in Figure 4.3, “Repository with new copy”. Notice that the second
method, however, performs an immediate commit in constant time. 1 It's an easier procedure,
because it doesn't require you to check out a large portion of the repository. In fact, this tech-
nique doesn't even require you to have a working copy at all. This is the way most users create
branches.

Figure 4.3. Repository with new copy

Branching and Merging

78

Cheap Copies

Subversion's repository has a special design. When you copy a directory, you don't need
to worry about the repository growing huge—Subversion doesn't actually duplicate any
data. Instead, it creates a new directory entry that points to an existing tree. If you're a
Unix user, this is the same concept as a hard-link. As further changes are made to files
and directories beneath the copied directory, Subversion continues to employ this hard-
link concept where it can. It only duplicates data when it is necessary to disambiguate dif-
ferent versions of objects.

This is why you'll often hear Subversion users talk about “cheap copies”. It doesn't matter
how large the directory is—it takes a very tiny, constant amount of time to make a copy of
it. In fact, this feature is the basis of how commits work in Subversion: each revision is a
“cheap copy” of the previous revision, with a few items lazily changed within. (To read
more about this, visit Subversion's website and read about the “bubble up” method in
Subversion's design documents.)

Of course, these internal mechanics of copying and sharing data are hidden from the
user, who simply sees copies of trees. The main point here is that copies are cheap, both
in time and space. If you create a branch entirely within the repository (by running svn
copy URL1 URL2), it's a quick, constant-time operation. Make branches as often as you
want.

Branching and Merging

79

Working with Your Branch
Now that you've created a branch of the project, you can check out a new working copy to start
using it:

$ svn checkout http://svn.example.com/repos/calc/branches/my-calc-branch
A my-calc-branch/Makefile
A my-calc-branch/integer.c
A my-calc-branch/button.c
Checked out revision 341.

There's nothing special about this working copy; it simply mirrors a different directory in the re-
pository. When you commit changes, however, Sally won'tsee them when she updates, be-
cause her working copy is of /calc/trunk. (Be sure to read the section called “Traversing
Branches” later in this chapter: the svn switch command is an alternate way of creating a
working copy of a branch.)

Let's pretend that a week goes by, and the following commits happen:

• You make a change to /calc/branches/my-calc-branch/button.c, which creates
revision 342.

• You make a change to /calc/branches/my-calc-branch/integer.c, which creates
revision 343.

• Sally makes a change to /calc/trunk/integer.c, which creates revision 344.

There are now two independent lines of development, shown in Figure 4.4, “The branching of
one file's history”, happening on integer.c.

Figure 4.4. The branching of one file's history

Things get interesting when you look at the history of changes made to your copy of in-
teger.c:

$ pwd
/home/user/my-calc-branch

Branching and Merging

80

$ svn log -v integer.c
--
r343 | user | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed paths:

M /calc/branches/my-calc-branch/integer.c

* integer.c: frozzled the wazjub.

--
r341 | user | 2002-11-03 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed paths:

A /calc/branches/my-calc-branch (from /calc/trunk:340)

Creating a private branch of /calc/trunk.

--
r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Oct 2002) | 2 lines
Changed paths:

M /calc/trunk/integer.c

* integer.c: changed a docstring.

--
r98 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed paths:

M /calc/trunk/integer.c

* integer.c: adding this file to the project.

--

Notice that Subversion is tracing the history of your branch's integer.c all the way back
through time, even traversing the point where it was copied. It shows the creation of the branch
as an event in the history, because integer.c was implicitly copied when all of /
calc/trunk/ was copied. Now look what happens when Sally runs the same command on
her copy of the file:

$ pwd
/home/sally/calc

$ svn log -v integer.c
--
r344 | sally | 2002-11-07 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed paths:

M /calc/trunk/integer.c

* integer.c: fix a bunch of spelling errors.

--
r303 | sally | 2002-10-29 21:14:35 -0600 (Tue, 29 Oct 2002) | 2 lines
Changed paths:

M /calc/trunk/integer.c

* integer.c: changed a docstring.

--
r98 | sally | 2002-02-22 15:35:29 -0600 (Fri, 22 Feb 2002) | 2 lines
Changed paths:

M /calc/trunk/integer.c

* integer.c: adding this file to the project.

Branching and Merging

81

--

Sally sees her own revision 344 change, but not the change you made in revision 343. As far
as Subversion is concerned, these two commits affected different files in different repository
locations. However, Subversion does show that the two files share a common history. Before
the branch-copy was made in revision 341, they used to be the same file. That's why you and
Sally both see the changes made in revisions 303 and 98.

The Key Concepts Behind Branches
There are two important lessons that you should remember from this section. First, Subversion
has no internal concept of a branch—it only knows how to make copies. When you copy a dir-
ectory, the resulting directory is only a “branch” because you attach that meaning to it. You
may think of the directory differently, or treat it differently, but to Subversion it's just an ordinary
directory that happens to carry some extra historical information. Second, because of this copy
mechanism, Subversion's branches exist as normal filesystem directories in the repository.
This is different from other version control systems, where branches are typically defined by
adding extra-dimensional “labels” to collections of files.

Copying Changes Between Branches
Now you and Sally are working on parallel branches of the project: you're working on a private
branch, and Sally is working on the trunk, or main line of development.

For projects that have a large number of contributors, it's common for most people to have
working copies of the trunk. Whenever someone needs to make a long-running change that is
likely to disrupt the trunk, a standard procedure is to create a private branch and commit
changes there until all the work is complete.

So, the good news is that you and Sally aren't interfering with each other. The bad news is that
it's very easy to drift too far apart. Remember that one of the problems with the “crawl in a
hole” strategy is that by the time you're finished with your branch, it may be near-impossible to
merge your changes back into the trunk without a huge number of conflicts.

Instead, you and Sally might continue to share changes as you work. It's up to you to decide
which changes are worth sharing; Subversion gives you the ability to selectively “copy”
changes between branches. And when you're completely finished with your branch, your entire
set of branch changes can be copied back into the trunk.

Copying Specific Changes
In the previous section, we mentioned that both you and Sally made changes to integer.c
on different branches. If you look at Sally's log message for revision 344, you can see that she
fixed some spelling errors. No doubt, your copy of the same file still has the same spelling er-
rors. It's likely that your future changes to this file will be affecting the same areas that have the
spelling errors, so you're in for some potential conflicts when you merge your branch someday.
It's better, then, to receive Sally's change now, before you start working too heavily in the
same places.

It's time to use the svn merge command. This command, it turns out, is a very close cousin to
the svn diff command (which you read about in Chapter 2, Basic Usage). Both commands are
able to compare any two objects in the repository and describe the differences. For example,
you can ask svn diff to show you the exact change made by Sally in revision 344:

Branching and Merging

82

$ svn diff -c 344 http://svn.example.com/repos/calc/trunk

Index: integer.c
===
--- integer.c (revision 343)
+++ integer.c (revision 344)
@@ -147,7 +147,7 @@

case 6: sprintf(info->operating_system, "HPFS (OS/2 or NT)"); break;
case 7: sprintf(info->operating_system, "Macintosh"); break;
case 8: sprintf(info->operating_system, "Z-System"); break;

- case 9: sprintf(info->operating_system, "CPM"); break;
+ case 9: sprintf(info->operating_system, "CP/M"); break;

case 10: sprintf(info->operating_system, "TOPS-20"); break;
case 11: sprintf(info->operating_system, "NTFS (Windows NT)"); break;
case 12: sprintf(info->operating_system, "QDOS"); break;

@@ -164,7 +164,7 @@
low = (unsigned short) read_byte(gzfile); /* read LSB */
high = (unsigned short) read_byte(gzfile); /* read MSB */
high = high << 8; /* interpret MSB correctly */

- total = low + high; /* add them togethe for correct total */
+ total = low + high; /* add them together for correct total */

info->extra_header = (unsigned char *) my_malloc(total);
fread(info->extra_header, total, 1, gzfile);

@@ -241,7 +241,7 @@
Store the offset with ftell() ! */

if ((info->data_offset = ftell(gzfile))== -1) {
- printf("error: ftell() retturned -1.\n");
+ printf("error: ftell() returned -1.\n");

exit(1);
}

@@ -249,7 +249,7 @@
printf("I believe start of compressed data is %u\n", info->data_offset);
#endif

- /* Set postion eight bytes from the end of the file. */
+ /* Set position eight bytes from the end of the file. */

if (fseek(gzfile, -8, SEEK_END)) {
printf("error: fseek() returned non-zero\n");

The svn merge command is almost exactly the same. Instead of printing the differences to
your terminal, however, it applies them directly to your working copy as local modifications:

$ svn merge -c 344 http://svn.example.com/repos/calc/trunk
U integer.c

$ svn status
M integer.c

The output of svn merge shows that your copy of integer.c was patched. It now contains
Sally's change—the change has been “copied” from the trunk to your working copy of your
private branch, and now exists as a local modification. At this point, it's up to you to review the
local modification and make sure it works correctly.

In another scenario, it's possible that things may not have gone so well, and that integer.c
may have entered a conflicted state. You might need to resolve the conflict using standard pro-

Branching and Merging

83

cedures (see Chapter 2, Basic Usage), or if you decide that the merge was a bad idea alto-
gether, simply give up and svn revert the local change.

But assuming that you've reviewed the merged change, you can svn commit the change as
usual. At that point, the change has been merged into your repository branch. In version con-
trol terminology, this act of copying changes between branches is commonly called porting
changes.

When you commit the local modification, make sure your log message mentions that you're
porting a specific change from one branch to another. For example:

$ svn commit -m "integer.c: ported r344 (spelling fixes) from trunk."
Sending integer.c
Transmitting file data .
Committed revision 360.

As you'll see in the next sections, this is a very important “best practice” to follow.

Why Not Use Patches Instead?

A question may be on your mind, especially if you're a Unix user: why bother to use svn
merge at all? Why not simply use the operating system's patch command to accomplish
the same job? For example:

$ svn diff -c 344 http://svn.example.com/repos/calc/trunk > patchfile
$ patch -p0 < patchfile
Patching file integer.c using Plan A...
Hunk #1 succeeded at 147.
Hunk #2 succeeded at 164.
Hunk #3 succeeded at 241.
Hunk #4 succeeded at 249.
done

In this particular case, yes, there really is no difference. But svn merge has special abilit-
ies that surpass the patch program. The file format used by patch is quite limited; it's
only able to tweak file contents. There's no way to represent changes to trees, such as
the addition, removal, or renaming of files and directories. Nor can the patch program
notice changes to properties. If Sally's change had, say, added a new directory, the out-
put of svn diff wouldn't have mentioned it at all. svn diff only outputs the limited patch-
format, so there are some ideas it simply can't express. The svn merge command,
however, can express changes in tree structure and properties by directly applying them
to your working copy.

A word of warning: while svn diff and svn merge are very similar in concept, they do have dif-
ferent syntax in many cases. Be sure to read about them in Chapter 9, Subversion Complete
Reference for details, or ask svn help. For example, svn merge requires a working-copy path
as a target, i.e. a place where it should apply the tree-changes. If the target isn't specified, it
assumes you are trying to perform one of the following common operations:

1. You want to merge directory changes into your current working directory.

2. You want to merge the changes in a specific file into a file by the same name which exists in
your current working directory.

Branching and Merging

84

If you are merging a directory and haven't specified a target path, svn merge assumes the first
case above and tries to apply the changes into your current directory. If you are merging a file,
and that file (or a file by the same name) exists in your current working directory, svn merge
assumes the second case and tries to apply the changes to a local file with the same name.

If you want changes applied somewhere else, you'll need to say so. For example, if you're sit-
ting in the parent directory of your working copy, you'll have to specify the target directory to re-
ceive the changes:

$ svn merge -c 344 http://svn.example.com/repos/calc/trunk my-calc-branch
U my-calc-branch/integer.c

The Key Concept Behind Merging
You've now seen an example of the svn merge command, and you're about to see several
more. If you're feeling confused about exactly how merging works, you're not alone. Many
users (especially those new to version control) are initially perplexed about the proper syntax
of the command, and about how and when the feature should be used. But fear not, this com-
mand is actually much simpler than you think! There's a very easy technique for understanding
exactly how svn merge behaves.

The main source of confusion is the name of the command. The term “merge” somehow de-
notes that branches are combined together, or that there's some sort of mysterious blending of
data going on. That's not the case. A better name for the command might have been svn diff-
and-apply, because that's all that happens: two repository trees are compared, and the differ-
ences are applied to a working copy.

The command takes three arguments:

1. An initial repository tree (often called the left side of the comparison),

2. A final repository tree (often called the right side of the comparison),

3. A working copy to accept the differences as local changes (often called the target of the
merge).

Once these three arguments are specified, the two trees are compared, and the resulting dif-
ferences are applied to the target working copy as local modifications. When the command is
done, the results are no different than if you had hand-edited the files, or run various svn add
or svn delete commands yourself. If you like the results, you can commit them. If you don't like
the results, you can simply svn revert all of the changes.

The syntax of svn merge allows you to specify the three necessary arguments rather flexibly.
Here are some examples:

$ svn merge http://svn.example.com/repos/branch1@150 \
http://svn.example.com/repos/branch2@212 \
my-working-copy

$ svn merge -r 100:200 http://svn.example.com/repos/trunk my-working-copy

$ svn merge -r 100:200 http://svn.example.com/repos/trunk

Branching and Merging

85

2However, at the time of writing, this feature is being worked on!

The first syntax lays out all three arguments explicitly, naming each tree in the form
URL@REV and naming the working copy target. The second syntax can be used as a short-
hand for situations when you're comparing two different revisions of the same URL. The last
syntax shows how the working-copy argument is optional; if omitted, it defaults to the current
directory.

Best Practices for Merging

Tracking Merges Manually

Merging changes sounds simple enough, but in practice it can become a headache. The prob-
lem is that if you repeatedly merge changes from one branch to another, you might accident-
ally merge the same change twice. When this happens, sometimes things will work fine. When
patching a file, Subversion typically notices if the file already has the change, and does noth-
ing. But if the already-existing change has been modified in any way, you'll get a conflict.

Ideally, your version control system should prevent the double-application of changes to a
branch. It should automatically remember which changes a branch has already received, and
be able to list them for you. It should use this information to help automate merges as much as
possible.

Unfortunately, Subversion is not such a system; it does not yet record any information about
merge operations. 2 When you commit local modifications, the repository has no idea whether
those changes came from running svn merge, or from just hand-editing the files.

What does this mean to you, the user? It means that until the day Subversion grows this fea-
ture, you'll have to track merge information yourself. The best place to do this is in the commit
log-message. As demonstrated in prior examples, it's recommended that your log-message
mention a specific revision number (or range of revisions) that are being merged into your
branch. Later on, you can run svn log to review which changes your branch already contains.
This will allow you to carefully construct a subsequent svn merge command that won't be re-
dundant with previously ported changes.

In the next section, we'll show some examples of this technique in action.

Previewing Merges

First, always remember to do your merge into a working copy that has no local edits and has
been recently updated. If your working copy isn't “clean” in these ways, you can run into some
headaches.

Assuming your working copy is tidy, merging isn't a particularly high-risk operation. If you get
the merge wrong the first time, simply svn revert the changes and try again.

If you've merged into a working copy that already has local modifications, the changes applied
by a merge will be mixed with your pre-existing ones, and running svn revert is no longer an
option. The two sets of changes may be impossible to separate.

In cases like this, people take comfort in being able to predict or examine merges before they
happen. One simple way to do that is to run svn diff with the same arguments you plan to
pass to svn merge, as we already showed in our first example of merging. Another method of
previewing is to pass the --dry-run option to the merge command:

Branching and Merging

86

$ svn merge --dry-run -c 344 http://svn.example.com/repos/calc/trunk
U integer.c

$ svn status
nothing printed, working copy is still unchanged.

The --dry-run option doesn't actually apply any local changes to the working copy. It only
shows status codes that would be printed in a real merge. It's useful for getting a “high level”
preview of the potential merge, for those times when running svn diff gives too much detail.

Merge Conflicts

Just like the svn update command, svn merge applies changes to your working copy. And
therefore it's also capable of creating conflicts. The conflicts produced by svn merge,
however, are sometimes different, and this section explains those differences.

To begin with, assume that your working copy has no local edits. When you svn update to a
particular revision, the changes sent by the server will always apply “cleanly” to your working
copy. The server produces the delta by comparing two trees: a virtual snapshot of your work-
ing copy, and the revision tree you're interested in. Because the left-hand side of the comparis-
on is exactly equal to what you already have, the delta is guaranteed to correctly convert your
working copy into the right-hand tree.

But svn merge has no such guarantees and can be much more chaotic: the user can ask the
server to compare any two trees at all, even ones that are unrelated to the working copy! This
means there's large potential for human error. Users will sometimes compare the wrong two
trees, creating a delta that doesn't apply cleanly. svn merge will do its best to apply as much
of the delta as possible, but some parts may be impossible. Just as the Unix patch command
sometimes complains about “failed hunks”, svn merge will complain about “skipped targets”:

$ svn merge -r 1288:1351 http://svn.example.com/repos/branch
U foo.c
U bar.c
Skipped missing target: 'baz.c'
U glub.c
C glorb.h

$

In the previous example it might be the case that baz.c exists in both snapshots of the branch
being compared, and the resulting delta wants to change the file's contents, but the file doesn't
exist in the working copy. Whatever the case, the “skipped” message means that the user is
most likely comparing the wrong two trees; they're the classic sign of user error. When this
happens, it's easy to recursively revert all the changes created by the merge (svn revert -
-recursive), delete any unversioned files or directories left behind after the revert, and re-run
svn merge with different arguments.

Also notice that the previous example shows a conflict happening on glorb.h. We already
stated that the working copy has no local edits: how can a conflict possibly happen? Again, be-
cause the user can use svn merge to define and apply any old delta to the working copy, that
delta may contain textual changes that don't cleanly apply to a working file, even if the file has
no local modifications.

Another small difference between svn update and svn merge are the names of the full-text
files created when a conflict happens. In the section called “Resolve Conflicts (Merging Others'
Changes)”, we saw that an update produces files named filename.mine, file-

Branching and Merging

87

name.rOLDREV, and filename.rNEWREV. When svn merge produces a conflict, though, it
creates three files named filename.working, filename.left, and filename.right. In
this case, the terms “left” and “right” are describing which side of the double-tree comparison
the file came from. In any case, these differing names will help you distinguish between con-
flicts that happened as a result of an update versus ones that happened as a result of a merge.

Noticing or Ignoring Ancestry

When conversing with a Subversion developer, you might very likely hear reference to the term
ancestry. This word is used to describe the relationship between two objects in a repository: if
they're related to each other, then one object is said to be an ancestor of the other.

For example, suppose you commit revision 100, which includes a change to a file foo.c.
Then foo.c@99 is an “ancestor” of foo.c@100. On the other hand, suppose you commit the
deletion of foo.c in revision 101, and then add a new file by the same name in revision 102.
In this case, foo.c@99 and foo.c@102 may appear to be related (they have the same path),
but in fact are completely different objects in the repository. They share no history or
“ancestry”.

The reason for bringing this up is to point out an important difference between svn diff and
svn merge. The former command ignores ancestry, while the latter command is quite sensit-
ive to it. For example, if you asked svn diff to compare revisions 99 and 102 of foo.c, you
would see line-based diffs; the diff command is blindly comparing two paths. But if you
asked svn merge to compare the same two objects, it would notice that they're unrelated and
first attempt to delete the old file, then add the new file; the output would indicate a deletion fol-
lowed by an add:

D foo.c
A foo.c

Most merges involve comparing trees that are ancestrally related to one another, and therefore
svn merge defaults to this behavior. Occasionally, however, you may want the merge com-
mand to compare two unrelated trees. For example, you may have imported two source-code
trees representing different vendor releases of a software project (see the section called
“Vendor branches”). If you asked svn merge to compare the two trees, you'd see the entire
first tree being deleted, followed by an add of the entire second tree! In these situations, you'll
want svn merge to do a path-based comparison only, ignoring any relations between files and
directories. Add the --ignore-ancestry option to your merge command, and it will behave
just like svn diff. (And conversely, the --notice-ancestry option will cause svn diff to be-
have like the merge command.)

Merges and Moves

A common desire is to refactor source code, especially in Java-based software projects. Files
and directories are shuffled around and renamed, often causing great disruption to everyone
working on the project. Sounds like a perfect case to use a branch, doesn't it? Just create a
branch, shuffle things around, then merge the branch back to the trunk, right?

Alas, this scenario doesn't work so well right now, and is considered one of Subversion's cur-
rent weak spots. The problem is that Subversion's update command isn't as robust as it
should be, particularly when dealing with copy and move operations.

When you use svn copy to duplicate a file, the repository remembers where the new file came
from, but it fails to transmit that information to the client which is running svn update or svn
merge. Instead of telling the client, “Copy that file you already have to this new location”, it in-
stead sends down an entirely new file. This can lead to problems, especially because the

Branching and Merging

88

same thing happens with renamed files. A lesser-known fact about Subversion is that it lacks
“true renames”—the svn move command is nothing more than an aggregation of svn copy
and svn delete.

For example, suppose that while working on your private branch, you rename integer.c to
whole.c. Effectively you've created a new file in your branch that is a copy of the original file,
and deleted the original file. Meanwhile, back on trunk, Sally has committed some improve-
ments to integer.c. Now you decide to merge your branch to the trunk:

$ cd calc/trunk

$ svn merge -r 341:405 http://svn.example.com/repos/calc/branches/my-calc-branch
D integer.c
A whole.c

This doesn't look so bad at first glance, but it's also probably not what you or Sally expected.
The merge operation has deleted the latest version of integer.c file (the one containing
Sally's latest changes), and blindly added your new whole.c file—which is a duplicate of the
older version of integer.c. The net effect is that merging your “rename” to the branch has
removed Sally's recent changes from the latest revision!

This isn't true data-loss; Sally's changes are still in the repository's history, but it may not be
immediately obvious that this has happened. The moral of this story is that until Subversion im-
proves, be very careful about merging copies and renames from one branch to another.

Common Use-Cases
There are many different uses for branching and svn merge, and this section describes the
most common ones you're likely to run into.

Merging a Whole Branch to Another
To complete our running example, we'll move forward in time. Suppose several days have
passed, and many changes have happened on both the trunk and your private branch. Sup-
pose that you've finished working on your private branch; the feature or bug fix is finally com-
plete, and now you want to merge all of your branch changes back into the trunk for others to
enjoy.

So how do we use svn merge in this scenario? Remember that this command compares two
trees, and applies the differences to a working copy. So to receive the changes, you need to
have a working copy of the trunk. We'll assume that either you still have your original one lying
around (fully updated), or that you recently checked out a fresh working copy of
/calc/trunk.

But which two trees should be compared? At first glance, the answer may seem obvious: just
compare the latest trunk tree with your latest branch tree. But beware—this assumption is
wrong, and has burned many a new user! Since svn merge operates like svn diff, comparing
the latest trunk and branch trees will not merely describe the set of changes you made to your
branch. Such a comparison shows too many changes: it would not only show the addition of
your branch changes, but also the removal of trunk changes that never happened on your
branch.

To express only the changes that happened on your branch, you need to compare the initial
state of your branch to its final state. Using svn log on your branch, you can see that your
branch was created in revision 341. And the final state of your branch is simply a matter of us-

Branching and Merging

89

ing the HEAD revision. That means you want to compare revisions 341 and HEAD of your
branch directory, and apply those differences to a working copy of the trunk.

A nice way of finding the revision in which a branch was created (the “base” of the
branch) is to use the --stop-on-copy option to svn log. The log subcommand
will normally show every change ever made to the branch, including tracing back
through the copy which created the branch. So normally, you'll see history from the
trunk as well. The --stop-on-copy will halt log output as soon as svn log de-
tects that its target was copied or renamed.

So in our continuing example,

$ svn log -v --stop-on-copy \
http://svn.example.com/repos/calc/branches/my-calc-branch

…
--
r341 | user | 2002-11-03 15:27:56 -0600 (Thu, 07 Nov 2002) | 2 lines
Changed paths:

A /calc/branches/my-calc-branch (from /calc/trunk:340)

$

As expected, the final revision printed by this command is the revision in which
my-calc-branch was created by copying.

Here's the final merging procedure, then:

$ cd calc/trunk
$ svn update
At revision 405.

$ svn merge -r 341:405 http://svn.example.com/repos/calc/branches/my-calc-branch
U integer.c
U button.c
U Makefile

$ svn status
M integer.c
M button.c
M Makefile

...examine the diffs, compile, test, etc...

$ svn commit -m "Merged my-calc-branch changes r341:405 into the trunk."
Sending integer.c
Sending button.c
Sending Makefile
Transmitting file data ...
Committed revision 406.

Again, notice that the commit log message very specifically mentions the range of changes
that was merged into the trunk. Always remember to do this, because it's critical information
you'll need later on.

For example, suppose you decide to keep working on your branch for another week, in order
to complete an enhancement to your original feature or bug fix. The repository's HEAD revision

Branching and Merging

90

is now 480, and you're ready to do another merge from your private branch to the trunk. But as
discussed in the section called “Best Practices for Merging”, you don't want to merge the
changes you've already merged before; you only want to merge everything “new” on your
branch since the last time you merged. The trick is to figure out what's new.

The first step is to run svn log on the trunk, and look for a log message about the last time you
merged from the branch:

$ cd calc/trunk
$ svn log
…
--
r406 | user | 2004-02-08 11:17:26 -0600 (Sun, 08 Feb 2004) | 1 line

Merged my-calc-branch changes r341:405 into the trunk.
--
…

Aha! Since all branch-changes that happened between revisions 341 and 405 were previously
merged to the trunk as revision 406, you now know that you want to merge only the branch
changes after that—by comparing revisions 406 and HEAD.

$ cd calc/trunk
$ svn update
At revision 480.

We notice that HEAD is currently 480, so we use it to do the merge:

$ svn merge -r 406:480 http://svn.example.com/repos/calc/branches/my-calc-branch
U integer.c
U button.c
U Makefile

$ svn commit -m "Merged my-calc-branch changes r406:480 into the trunk."
Sending integer.c
Sending button.c
Sending Makefile
Transmitting file data ...
Committed revision 481.

Now the trunk contains the complete second wave of changes made to the branch. At this
point, you can either delete your branch (we'll discuss this later on), or continue working on
your branch and repeat this procedure for subsequent merges.

Undoing Changes
Another common use for svn merge is to roll back a change that has already been committed.
Suppose you're working away happily on a working copy of /calc/trunk, and you discover
that the change made way back in revision 303, which changed integer.c, is completely
wrong. It never should have been committed. You can use svn merge to “undo” the change in
your working copy, and then commit the local modification to the repository. All you need to do
is to specify a reverse difference. (You can do this by specifying --revision 303:302, or
by an equivalent --change -303.)

$ svn merge -c -303 http://svn.example.com/repos/calc/trunk
U integer.c

Branching and Merging

91

$ svn status
M integer.c

$ svn diff
…
verify that the change is removed
…

$ svn commit -m "Undoing change committed in r303."
Sending integer.c
Transmitting file data .
Committed revision 350.

One way to think about a repository revision is as a specific group of changes (some version
control systems call these changesets). By using the -r option, you can ask svn merge to ap-
ply a changeset, or whole range of changesets, to your working copy. In our case of undoing a
change, we're asking svn merge to apply changeset #303 to our working copy backwards.

Subversion and Changesets

Everyone seems to have a slightly different definition of “changeset”, or at least a differ-
ent expectation of what it means for a version control system to have “changeset fea-
tures”. For our purpose, let's say that a changeset is just a collection of changes with a
unique name. The changes might include textual edits to file contents, modifications to
tree structure, or tweaks to metadata. In more common speak, a changeset is just a
patch with a name you can refer to.

In Subversion, a global revision number N names a tree in the repository: it's the way the
repository looked after the Nth commit. It's also the name of an implicit changeset: if you
compare tree N with tree N-1, you can derive the exact patch that was committed. For
this reason, it's easy to think of “revision N” as not just a tree, but a changeset as well. If
you use an issue tracker to manage bugs, you can use the revision numbers to refer to
particular patches that fix bugs—for example, “this issue was fixed by revision 9238.”.
Somebody can then run svn log -r9238 to read about the exact changeset which fixed
the bug, and run svn diff -c 9238 to see the patch itself. And Subversion's merge com-
mand also uses revision numbers. You can merge specific changesets from one branch
to another by naming them in the merge arguments: svn merge -r9237:9238 would
merge changeset #9238 into your working copy.

Keep in mind that rolling back a change like this is just like any other svn merge operation, so
you should use svn status and svn diff to confirm that your work is in the state you want it to
be in, and then use svn commit to send the final version to the repository. After committing,
this particular changeset is no longer reflected in the HEAD revision.

Again, you may be thinking: well, that really didn't undo the commit, did it? The change still ex-
ists in revision 303. If somebody checks out a version of the calc project between revisions
303 and 349, they'll still see the bad change, right?

Yes, that's true. When we talk about “removing” a change, we're really talking about removing
it from HEAD. The original change still exists in the repository's history. For most situations, this
is good enough. Most people are only interested in tracking the HEAD of a project anyway.
There are special cases, however, where you really might want to destroy all evidence of the
commit. (Perhaps somebody accidentally committed a confidential document.) This isn't so
easy, it turns out, because Subversion was deliberately designed to never lose information.
Revisions are immutable trees which build upon one another. Removing a revision from history

Branching and Merging

92

3The Subversion project has plans, however, to someday implement a command that would accomplish the task of
permanently deleting information. In the meantime, see the section called “svndumpfilter” for a possible workaround.

would cause a domino effect, creating chaos in all subsequent revisions and possibly invalidat-
ing all working copies. 3

Resurrecting Deleted Items
The great thing about version control systems is that information is never lost. Even when you
delete a file or directory, it may be gone from the HEAD revision, but the object still exists in
earlier revisions. One of the most common questions new users ask is, “How do I get my old
file or directory back?”.

The first step is to define exactly which item you're trying to resurrect. Here's a useful meta-
phor: you can think of every object in the repository as existing in a sort of two-dimensional co-
ordinate system. The first coordinate is a particular revision tree, and the second coordinate is
a path within that tree. So every version of your file or directory can be defined by a specific
coordinate pair. (Remember the “peg revision” syntax—foo.c@224 —mentioned back in the
section called “Peg and Operative Revisions”.)

First, you might need to use svn log to discover the exact coordinate pair you wish to resur-
rect. A good strategy is to run svn log --verbose in a directory which used to contain your de-
leted item. The --verbose (-v) option shows a list of all changed items in each revision; all
you need to do is find the revision in which you deleted the file or directory. You can do this
visually, or by using another tool to examine the log output (via grep, or perhaps via an incre-
mental search in an editor).

$ cd parent-dir
$ svn log -v
…
--
r808 | joe | 2003-12-26 14:29:40 -0600 (Fri, 26 Dec 2003) | 3 lines
Changed paths:

D /calc/trunk/real.c
M /calc/trunk/integer.c

Added fast fourier transform functions to integer.c.
Removed real.c because code now in double.c.
…

In the example, we're assuming that you're looking for a deleted file real.c. By looking
through the logs of a parent directory, you've spotted that this file was deleted in revision 808.
Therefore, the last version of the file to exist was in the revision right before that. Conclusion:
you want to resurrect the path /calc/trunk/real.c from revision 807.

That was the hard part—the research. Now that you know what you want to restore, you have
two different choices.

One option is to use svn merge to apply revision 808 “in reverse”. (We've already discussed
how to undo changes, see the section called “Undoing Changes”.) This would have the effect
of re-adding real.c as a local modification. The file would be scheduled for addition, and
after a commit, the file would again exist in HEAD.

In this particular example, however, this is probably not the best strategy. Reverse-applying re-
vision 808 would not only schedule real.c for addition, but the log message indicates that it
would also undo certain changes to integer.c, which you don't want. Certainly, you could re-
verse-merge revision 808 and then svn revert the local modifications to integer.c, but this

Branching and Merging

93

technique doesn't scale well. What if there were 90 files changed in revision 808?

A second, more targeted strategy is not to use svn merge at all, but rather the svn copy com-
mand. Simply copy the exact revision and path “coordinate pair” from the repository to your
working copy:

$ svn copy -r 807 \
http://svn.example.com/repos/calc/trunk/real.c ./real.c

$ svn status
A + real.c

$ svn commit -m "Resurrected real.c from revision 807, /calc/trunk/real.c."
Adding real.c
Transmitting file data .
Committed revision 1390.

The plus sign in the status output indicates that the item isn't merely scheduled for addition, but
scheduled for addition “with history”. Subversion remembers where it was copied from. In the
future, running svn log on this file will traverse back through the file's resurrection and through
all the history it had prior to revision 807. In other words, this new real.c isn't really new; it's
a direct descendant of the original, deleted file.

Although our example shows us resurrecting a file, note that these same techniques work just
as well for resurrecting deleted directories.

Common Branching Patterns
Version control is most often used for software development, so here's a quick peek at two of
the most common branching/merging patterns used by teams of programmers. If you're not us-
ing Subversion for software development, feel free to skip this section. If you're a software de-
veloper using version control for the first time, pay close attention, as these patterns are often
considered best practices by experienced folk. These processes aren't specific to Subversion;
they're applicable to any version control system. Still, it may help to see them described in
Subversion terms.

Release Branches

Most software has a typical lifecycle: code, test, release, repeat. There are two problems with
this process. First, developers need to keep writing new features while quality-assurance
teams take time to test supposedly-stable versions of the software. New work cannot halt while
the software is tested. Second, the team almost always needs to support older, released ver-
sions of software; if a bug is discovered in the latest code, it most likely exists in released ver-
sions as well, and customers will want to get that bugfix without having to wait for a major new
release.

Here's where version control can help. The typical procedure looks like this:

• Developers commit all new work to the trunk. Day-to-day changes are committed to
/trunk: new features, bugfixes, and so on.

• The trunk is copied to a “release” branch. When the team thinks the software is ready for re-
lease (say, a 1.0 release), then /trunk might be copied to /branches/1.0.

• Teams continue to work in parallel. One team begins rigorous testing of the release branch,
while another team continues new work (say, for version 2.0) on /trunk. If bugs are dis-

Branching and Merging

94

covered in either location, fixes are ported back and forth as necessary. At some point,
however, even that process stops. The branch is “frozen” for final testing right before a re-
lease.

• The branch is tagged and released. When testing is complete, /branches/1.0 is copied to
/tags/1.0.0 as a reference snapshot. The tag is packaged and released to customers.

• The branch is maintained over time. While work continues on /trunk for version 2.0, bug-
fixes continue to be ported from /trunk to /branches/1.0. When enough bugfixes have
accumulated, management may decide to do a 1.0.1 release: /branches/1.0 is copied to
/tags/1.0.1, and the tag is packaged and released.

This entire process repeats as the software matures: when the 2.0 work is complete, a new 2.0
release branch is created, tested, tagged, and eventually released. After some years, the re-
pository ends up with a number of release branches in “maintenance” mode, and a number of
tags representing final shipped versions.

Feature Branches

A feature branch is the sort of branch that's been the dominant example in this chapter, the
one you've been working on while Sally continues to work on /trunk. It's a temporary branch
created to work on a complex change without interfering with the stability of /trunk. Unlike re-
lease branches (which may need to be supported forever), feature branches are born, used for
a while, merged back to the trunk, then ultimately deleted. They have a finite span of useful-
ness.

Again, project policies vary widely concerning exactly when it's appropriate to create a feature
branch. Some projects never use feature branches at all: commits to /trunk are a free-for-all.
The advantage to this system is that it's simple—nobody needs to learn about branching or
merging. The disadvantage is that the trunk code is often unstable or unusable. Other projects
use branches to an extreme: no change is ever committed to the trunk directly. Even the most
trivial changes are created on a short-lived branch, carefully reviewed and merged to the trunk.
Then the branch is deleted. This system guarantees an exceptionally stable and usable trunk
at all times, but at the cost of tremendous process overhead.

Most projects take a middle-of-the-road approach. They commonly insist that /trunk compile
and pass regression tests at all times. A feature branch is only required when a change re-
quires a large number of destabilizing commits. A good rule of thumb is to ask this question: if
the developer worked for days in isolation and then committed the large change all at once (so
that /trunk were never destabilized), would it be too large a change to review? If the answer
to that question is “yes”, then the change should be developed on a feature branch. As the de-
veloper commits incremental changes to the branch, they can be easily reviewed by peers.

Finally, there's the issue of how to best keep a feature branch in “sync” with the trunk as work
progresses. As we mentioned earlier, there's a great risk to working on a branch for weeks or
months; trunk changes may continue to pour in, to the point where the two lines of develop-
ment differ so greatly that it may become a nightmare trying to merge the branch back to the
trunk.

This situation is best avoided by regularly merging trunk changes to the branch. Make up a
policy: once a week, merge the last week's worth of trunk changes to the branch. Take care
when doing this; the merging needs to be hand-tracked to avoid the problem of repeated
merges (as described in the section called “Tracking Merges Manually”). You'll need to write
careful log messages detailing exactly which revision ranges have been merged already (as
demonstrated in the section called “Merging a Whole Branch to Another”). It may sound intim-
idating, but it's actually pretty easy to do.

Branching and Merging

95

At some point, you'll be ready to merge the “synchronized” feature branch back to the trunk. To
do this, begin by doing a final merge of the latest trunk changes to the branch. When that's
done, the latest versions of branch and trunk will be absolutely identical except for your branch
changes. So in this special case, you would merge by comparing the branch with the trunk:

$ cd trunk-working-copy

$ svn update
At revision 1910.

$ svn merge http://svn.example.com/repos/calc/trunk@1910 \
http://svn.example.com/repos/calc/branches/mybranch@1910

U real.c
U integer.c
A newdirectory
A newdirectory/newfile
…

By comparing the HEAD revision of the trunk with the HEAD revision of the branch, you're defin-
ing a delta that describes only the changes you made to the branch; both lines of development
already have all of the trunk changes.

Another way of thinking about this pattern is that your weekly sync of trunk to branch is analog-
ous to running svn update in a working copy, while the final merge step is analogous to run-
ning svn commit from a working copy. After all, what else is a working copy but a very shallow
private branch? It's a branch that's only capable of storing one change at a time.

Traversing Branches
The svn switch command transforms an existing working copy to reflect a different branch.
While this command isn't strictly necessary for working with branches, it provides a nice short-
cut. In our earlier example, after creating your private branch, you checked out a fresh working
copy of the new repository directory. Instead, you can simply ask Subversion to change your
working copy of /calc/trunk to mirror the new branch location:

$ cd calc

$ svn info | grep URL
URL: http://svn.example.com/repos/calc/trunk

$ svn switch http://svn.example.com/repos/calc/branches/my-calc-branch
U integer.c
U button.c
U Makefile
Updated to revision 341.

$ svn info | grep URL
URL: http://svn.example.com/repos/calc/branches/my-calc-branch

After “switching” to the branch, your working copy is no different than what you would get from
doing a fresh checkout of the directory. And it's usually more efficient to use this command, be-
cause often branches only differ by a small degree. The server sends only the minimal set of
changes necessary to make your working copy reflect the branch directory.

The svn switch command also takes a --revision (-r) option, so you need not always
move your working copy to the HEAD of the branch.

Branching and Merging

96

4You can, however, use svn switch with the --relocate option if the URL of your server changes and you don't
want to abandon an existing working copy. See svn switch for more information and an example.

Of course, most projects are more complicated than our calc example, containing multiple
subdirectories. Subversion users often follow a specific algorithm when using branches:

1. Copy the project's entire “trunk” to a new branch directory.

2. Switch only part of the trunk working copy to mirror the branch.

In other words, if a user knows that the branch-work only needs to happen on a specific subdir-
ectory, they use svn switch to move only that subdirectory to the branch. (Or sometimes
users will switch just a single working file to the branch!) That way, they can continue to re-
ceive normal “trunk” updates to most of their working copy, but the switched portions will re-
main immune (unless someone commits a change to their branch). This feature adds a whole
new dimension to the concept of a “mixed working copy”—not only can working copies contain
a mixture of working revisions, but a mixture of repository locations as well.

If your working copy contains a number of switched subtrees from different repository loca-
tions, it continues to function as normal. When you update, you'll receive patches to each sub-
tree as appropriate. When you commit, your local changes will still be applied as a single,
atomic change to the repository.

Note that while it's okay for your working copy to reflect a mixture of repository locations, these
locations must all be within the same repository. Subversion repositories aren't yet able to
communicate with one another; that's a feature planned for the future. 4

Switches and Updates

Have you noticed that the output of svn switch and svn update look the same? The
switch command is actually a superset of the update command.

When you run svn update, you're asking the repository to compare two trees. The repos-
itory does so, and then sends a description of the differences back to the client. The only
difference between svn switch and svn update is that the update command always
compares two identical paths.

That is, if your working copy is a mirror of /calc/trunk, then svn update will automat-
ically compare your working copy of /calc/trunk to /calc/trunk in the HEAD revi-
sion. If you're switching your working copy to a branch, then svn switch will compare
your working copy of /calc/trunk to some other branch-directory in the HEAD revision.

In other words, an update moves your working copy through time. A switch moves your
working copy through time and space.

Because svn switch is essentially a variant of svn update, it shares the same behaviors; any
local modifications in your working copy are preserved when new data arrives from the reposit-
ory. This allows you to perform all sorts of clever tricks.

For example, suppose you have a working copy of /calc/trunk and make a number of
changes to it. Then you suddenly realize that you meant to make the changes to a branch in-
stead. No problem! When you svn switch your working copy to the branch, the local changes
will remain. You can then test and commit them to the branch.

Branching and Merging

97

Tags
Another common version control concept is a tag. A tag is just a “snapshot” of a project in time.
In Subversion, this idea already seems to be everywhere. Each repository revision is exactly
that—a snapshot of the filesystem after each commit.

However, people often want to give more human-friendly names to tags, like release-1.0.
And they want to make snapshots of smaller subdirectories of the filesystem. After all, it's not
so easy to remember that release-1.0 of a piece of software is a particular subdirectory of revi-
sion 4822.

Creating a Simple Tag
Once again, svn copy comes to the rescue. If you want to create a snapshot of /
calc/trunk exactly as it looks in the HEAD revision, then make a copy of it:

$ svn copy http://svn.example.com/repos/calc/trunk \
http://svn.example.com/repos/calc/tags/release-1.0 \

-m "Tagging the 1.0 release of the 'calc' project."

Committed revision 351.

This example assumes that a /calc/tags directory already exists. (If it doesn't, you can cre-
ate it using svn mkdir.) After the copy completes, the new release-1.0 directory is forever
a snapshot of how the project looked in the HEAD revision at the time you made the copy. Of
course you might want to be more precise about exactly which revision you copy, in case
somebody else may have committed changes to the project when you weren't looking. So if
you know that revision 350 of /calc/trunk is exactly the snapshot you want, you can specify
it by passing -r 350 to the svn copy command.

But wait a moment: isn't this tag-creation procedure the same procedure we used to create a
branch? Yes, in fact, it is. In Subversion, there's no difference between a tag and a branch.
Both are just ordinary directories that are created by copying. Just as with branches, the only
reason a copied directory is a “tag” is because humans have decided to treat it that way: as
long as nobody ever commits to the directory, it forever remains a snapshot. If people start
committing to it, it becomes a branch.

If you are administering a repository, there are two approaches you can take to managing tags.
The first approach is “hands off”: as a matter of project policy, decide where your tags will live,
and make sure all users know how to treat the directories they copy in there. (That is, make
sure they know not to commit to them.) The second approach is more paranoid: you can use
one of the access-control scripts provided with Subversion to prevent anyone from doing any-
thing but creating new copies in the tags-area (See Chapter 6, Server Configuration.) The
paranoid approach, however, isn't usually necessary. If a user accidentally commits a change
to a tag-directory, you can simply undo the change as discussed in the previous section. This
is version control, after all.

Creating a Complex Tag
Sometimes you may want your “snapshot” to be more complicated than a single directory at a
single revision.

For example, pretend your project is much larger than our calc example: suppose it contains
a number of subdirectories and many more files. In the course of your work, you may decide
that you need to create a working copy that is designed to have specific features and bug

Branching and Merging

98

fixes. You can accomplish this by selectively backdating files or directories to particular revi-
sions (using svn update -r liberally), or by switching files and directories to particular branches
(making use of svn switch). When you're done, your working copy is a hodgepodge of reposit-
ory locations from different revisions. But after testing, you know it's the precise combination of
data you need.

Time to make a snapshot. Copying one URL to another won't work here. In this case, you want
to make a snapshot of your exact working copy arrangement and store it in the repository.
Luckily, svn copy actually has four different uses (which you can read about in Chapter 9,
Subversion Complete Reference), including the ability to copy a working-copy tree to the re-
pository:

$ ls
my-working-copy/

$ svn copy my-working-copy http://svn.example.com/repos/calc/tags/mytag

Committed revision 352.

Now there is a new directory in the repository, /calc/tags/mytag, which is an exact snap-
shot of your working copy—mixed revisions, URLs, and all.

Other users have found interesting uses for this feature. Sometimes there are situations where
you have a bunch of local changes made to your working copy, and you'd like a collaborator to
see them. Instead of running svn diff and sending a patch file (which won't capture tree
changes, symlink changes or changes in properties), you can instead use svn copy to
“upload” your working copy to a private area of the repository. Your collaborator can then
either check out a verbatim copy of your working copy, or use svn merge to receive your exact
changes.

While this is a nice method for uploading a quick snapshot of your working copy, note that this
is not a good way to initially create a branch. Branch creation should be an event onto itself,
and this method conflates the creation of a branch with extra changes to files, all within a
single revision. This makes it very difficult (later on) to identify a single revision number as a
branch point.

Have you ever found yourself making some complex edits (in your /trunk work-
ing copy) and suddenly realized, “hey, these changes ought to be in their own
branch?” A great technique to do this can be summarized in two steps:

$ svn copy http://svn.example.com/repos/calc/trunk \
http://svn.example.com/repos/calc/branches/newbranch

Committed revision 353.

$ svn switch http://svn.example.com/repos/calc/branches/newbranch
At revision 353.

The svn switch command, like svn update, preserves your local edits. At this
point, your working copy is now a reflection of the newly created branch, and your
next svn commit invocation will send your changes there.

Branch Maintenance

Branching and Merging

99

You may have noticed by now that Subversion is extremely flexible. Because it implements
branches and tags with the same underlying mechanism (directory copies), and because
branches and tags appear in normal filesystem space, many people find Subversion intimidat-
ing. It's almost too flexible. In this section, we'll offer some suggestions for arranging and man-
aging your data over time.

Repository Layout
There are some standard, recommended ways to organize a repository. Most people create a
trunk directory to hold the “main line” of development, a branches directory to contain
branch copies, and a tags directory to contain tag copies. If a repository holds only one
project, then often people create these top-level directories:

/trunk
/branches
/tags

If a repository contains multiple projects, admins typically index their layout by project (see the
section called “Planning Your Repository Organization” to read more about “project roots”):

/paint/trunk
/paint/branches
/paint/tags
/calc/trunk
/calc/branches
/calc/tags

Of course, you're free to ignore these common layouts. You can create any sort of variation,
whatever works best for you or your team. Remember that whatever you choose, it's not a per-
manent commitment. You can reorganize your repository at any time. Because branches and
tags are ordinary directories, the svn move command can move or rename them however you
wish. Switching from one layout to another is just a matter of issuing a series of server-side
moves; if you don't like the way things are organized in the repository, just juggle the director-
ies around.

Remember, though, that while moving directories may be easy to do, you need to be consider-
ate of your users as well. Your juggling can be disorienting to users with existing working cop-
ies. If a user has a working copy of a particular repository directory, your svn move operation
might remove the path from the latest revision. When the user next runs svn update, she will
be told that her working copy represents a path that no longer exists, and the user will be
forced to svn switch to the new location.

Data Lifetimes
Another nice feature of Subversion's model is that branches and tags can have finite lifetimes,
just like any other versioned item. For example, suppose you eventually finish all your work on
your personal branch of the calc project. After merging all of your changes back into /
calc/trunk, there's no need for your private branch directory to stick around anymore:

$ svn delete http://svn.example.com/repos/calc/branches/my-calc-branch \
-m "Removing obsolete branch of calc project."

Committed revision 375.

Branching and Merging

100

And now your branch is gone. Of course it's not really gone: the directory is simply missing
from the HEAD revision, no longer distracting anyone. If you use svn checkout, svn switch, or
svn list to examine an earlier revision, you'll still be able to see your old branch.

If browsing your deleted directory isn't enough, you can always bring it back. Resurrecting data
is very easy in Subversion. If there's a deleted directory (or file) that you'd like to bring back in-
to HEAD, simply use svn copy -r to copy it from the old revision:

$ svn copy -r 374 http://svn.example.com/repos/calc/branches/my-calc-branch \
http://svn.example.com/repos/calc/branches/my-calc-branch

Committed revision 376.

In our example, your personal branch had a relatively short lifetime: you may have created it to
fix a bug or implement a new feature. When your task is done, so is the branch. In software de-
velopment, though, it's also common to have two “main” branches running side-by-side for very
long periods. For example, suppose it's time to release a stable version of the calc project to
the public, and you know it's going to take a couple of months to shake bugs out of the soft-
ware. You don't want people to add new features to the project, but you don't want to tell all
developers to stop programming either. So instead, you create a “stable” branch of the soft-
ware that won't change much:

$ svn copy http://svn.example.com/repos/calc/trunk \
http://svn.example.com/repos/calc/branches/stable-1.0 \
-m "Creating stable branch of calc project."

Committed revision 377.

And now developers are free to continue adding cutting-edge (or experimental) features to /
calc/trunk, and you can declare a project policy that only bug fixes are to be committed to /
calc/branches/stable-1.0. That is, as people continue to work on the trunk, a human
selectively ports bug fixes over to the stable branch. Even after the stable branch has shipped,
you'll probably continue to maintain the branch for a long time—that is, as long as you continue
to support that release for customers.

Vendor branches
As is especially the case when developing software, the data that you maintain under version
control is often closely related to, or perhaps dependent upon, someone else's data. Generally,
the needs of your project will dictate that you stay as up-to-date as possible with the data
provided by that external entity without sacrificing the stability of your own project. This scen-
ario plays itself out all the time—anywhere that the information generated by one group of
people has a direct effect on that which is generated by another group.

For example, software developers might be working on an application which makes use of a
third-party library. Subversion has just such a relationship with the Apache Portable Runtime
library (see the section called “The Apache Portable Runtime Library”). The Subversion source
code depends on the APR library for all its portability needs. In earlier stages of Subversion's
development, the project closely tracked APR's changing API, always sticking to the “bleeding
edge” of the library's code churn. Now that both APR and Subversion have matured, Subver-
sion attempts to synchronize with APR's library API only at well-tested, stable release points.

Branching and Merging

101

Now, if your project depends on someone else's information, there are several ways that you
could attempt to synchronize that information with your own. Most painfully, you could issue or-
al or written instructions to all the contributors of your project, telling them to make sure that
they have the specific versions of that third-party information that your project needs. If the
third-party information is maintained in a Subversion repository, you could also use Subver-
sion's externals definitions to effectively “pin down” specific versions of that information to
some location in your own working copy directory (see the section called “Externals Defini-
tions”).

But sometimes you want to maintain custom modifications to third-party data in your own ver-
sion control system. Returning to the software development example, programmers might
need to make modifications to that third-party library for their own purposes. These modifica-
tions might include new functionality or bug fixes, maintained internally only until they become
part of an official release of the third-party library. Or the changes might never be relayed back
to the library maintainers, existing solely as custom tweaks to make the library further suit the
needs of the software developers.

Now you face an interesting situation. Your project could house its custom modifications to the
third-party data in some disjointed fashion, such as using patch files or full-fledged alternate
versions of files and directories. But these quickly become maintenance headaches, requiring
some mechanism by which to apply your custom changes to the third-party data, and necessit-
ating regeneration of those changes with each successive version of the third-party data that
you track.

The solution to this problem is to use vendor branches. A vendor branch is a directory tree in
your own version control system that contains information provided by a third-party entity, or
vendor. Each version of the vendor's data that you decide to absorb into your project is called
a vendor drop.

Vendor branches provide two benefits. First, by storing the currently supported vendor drop in
your own version control system, the members of your project never need to question whether
they have the right version of the vendor's data. They simply receive that correct version as
part of their regular working copy updates. Secondly, because the data lives in your own Sub-
version repository, you can store your custom changes to it in-place—you have no more need
of an automated (or worse, manual) method for swapping in your customizations.

General Vendor Branch Management Procedure
Managing vendor branches generally works like this. You create a top-level directory (such as
/vendor) to hold the vendor branches. Then you import the third party code into a subdirect-
ory of that top-level directory. You then copy that subdirectory into your main development
branch (for example, /trunk) at the appropriate location. You always make your local
changes in the main development branch. With each new release of the code you are tracking
you bring it into the vendor branch and merge the changes into /trunk, resolving whatever
conflicts occur between your local changes and the upstream changes.

Perhaps an example will help to clarify this algorithm. We'll use a scenario where your devel-
opment team is creating a calculator program that links against a third-party complex number
arithmetic library, libcomplex. We'll begin with the initial creation of the vendor branch, and the
import of the first vendor drop. We'll call our vendor branch directory libcomplex, and our
code drops will go into a subdirectory of our vendor branch called current. And since svn
import creates all the intermediate parent directories it needs, we can actually accomplish
both of these steps with a single command.

$ svn import /path/to/libcomplex-1.0 \
http://svn.example.com/repos/vendor/libcomplex/current \

Branching and Merging

102

5And entirely bug-free, of course!

-m 'importing initial 1.0 vendor drop'
…

We now have the current version of the libcomplex source code in /
vendor/libcomplex/current. Now, we tag that version (see the section called “Tags”)
and then copy it into the main development branch. Our copy will create a new directory called
libcomplex in our existing calc project directory. It is in this copied version of the vendor
data that we will make our customizations.

$ svn copy http://svn.example.com/repos/vendor/libcomplex/current \
http://svn.example.com/repos/vendor/libcomplex/1.0 \
-m 'tagging libcomplex-1.0'

…
$ svn copy http://svn.example.com/repos/vendor/libcomplex/1.0 \

http://svn.example.com/repos/calc/libcomplex \
-m 'bringing libcomplex-1.0 into the main branch'

…

We check out our project's main branch—which now includes a copy of the first vendor
drop—and we get to work customizing the libcomplex code. Before we know it, our modified
version of libcomplex is now completely integrated into our calculator program. 5

A few weeks later, the developers of libcomplex release a new version of their library—version
1.1—which contains some features and functionality that we really want. We'd like to upgrade
to this new version, but without losing the customizations we made to the existing version.
What we essentially would like to do is to replace our current baseline version of libcomplex
1.0 with a copy of libcomplex 1.1, and then re-apply the custom modifications we previously
made to that library to the new version. But we actually approach the problem from the other
direction, applying the changes made to libcomplex between versions 1.0 and 1.1 to our modi-
fied copy of it.

To perform this upgrade, we check out a copy of our vendor branch, and replace the code in
the current directory with the new libcomplex 1.1 source code. We quite literally copy new
files on top of existing files, perhaps exploding the libcomplex 1.1 release tarball atop our exist-
ing files and directories. The goal here is to make our current directory contain only the lib-
complex 1.1 code, and to ensure that all that code is under version control. Oh, and we want to
do this with as little version control history disturbance as possible.

After replacing the 1.0 code with 1.1 code, svn status will show files with local modifications
as well as, perhaps, some unversioned or missing files. If we did what we were supposed to
do, the unversioned files are only those new files introduced in the 1.1 release of libcom-
plex—we run svn add on those to get them under version control. The missing files are files
that were in 1.0 but not in 1.1, and on those paths we run svn delete. Finally, once our cur-
rent working copy contains only the libcomplex 1.1 code, we commit the changes we made to
get it looking that way.

Our current branch now contains the new vendor drop. We tag the new version (in the same
way we previously tagged the version 1.0 vendor drop), and then merge the differences
between the tag of the previous version and the new current version into our main develop-
ment branch.

$ cd working-copies/calc
$ svn merge http://svn.example.com/repos/vendor/libcomplex/1.0 \

Branching and Merging

103

http://svn.example.com/repos/vendor/libcomplex/current \
libcomplex

… # resolve all the conflicts between their changes and our changes
$ svn commit -m 'merging libcomplex-1.1 into the main branch'
…

In the trivial use case, the new version of our third-party tool would look, from a files-
and-directories point of view, just like the previous version. None of the libcomplex source files
would have been deleted, renamed or moved to different locations—the new version would
contain only textual modifications against the previous one. In a perfect world, our modifica-
tions would apply cleanly to the new version of the library, with absolutely no complications or
conflicts.

But things aren't always that simple, and in fact it is quite common for source files to get moved
around between releases of software. This complicates the process of ensuring that our modi-
fications are still valid for the new version of code, and can quickly degrade into a situation
where we have to manually recreate our customizations in the new version. Once Subversion
knows about the history of a given source file—including all its previous locations—the process
of merging in the new version of the library is pretty simple. But we are responsible for telling
Subversion how the source file layout changed from vendor drop to vendor drop.

svn_load_dirs.pl
Vendor drops that contain more than a few deletes, additions and moves complicate the pro-
cess of upgrading to each successive version of the third-party data. So Subversion supplies
the svn_load_dirs.pl script to assist with this process. This script automates the importing
steps we mentioned in the general vendor branch management procedure to make sure that
mistakes are minimized. You will still be responsible for using the merge commands to merge
the new versions of the third-party data into your main development branch, but
svn_load_dirs.pl can help you more quickly and easily arrive at that stage.

In short, svn_load_dirs.pl is an enhancement to svn import that has several important char-
acteristics:

• It can be run at any point in time to bring an existing directory in the repository to exactly
match an external directory, performing all the necessary adds and deletes, and optionally
performing moves, too.

• It takes care of complicated series of operations between which Subversion requires an in-
termediate commit—such as before renaming a file or directory twice.

• It will optionally tag the newly imported directory.

• It will optionally add arbitrary properties to files and directories that match a regular expres-
sion.

svn_load_dirs.pl takes three mandatory arguments. The first argument is the URL to the base
Subversion directory to work in. This argument is followed by the URL—relative to the first ar-
gument—into which the current vendor drop will be imported. Finally, the third argument is the
local directory to import. Using our previous example, a typical run of svn_load_dirs.pl might
look like:

$ svn_load_dirs.pl http://svn.example.com/repos/vendor/libcomplex \
current \

Branching and Merging

104

/path/to/libcomplex-1.1
…

You can indicate that you'd like svn_load_dirs.pl to tag the new vendor drop by passing the -
t command-line option and specifying a tag name. This tag is another URL relative to the first
program argument.

$ svn_load_dirs.pl -t libcomplex-1.1 \
http://svn.example.com/repos/vendor/libcomplex \
current \
/path/to/libcomplex-1.1

…

When you run svn_load_dirs.pl, it examines the contents of your existing “current” vendor
drop, and compares them with the proposed new vendor drop. In the trivial case, there will be
no files that are in one version and not the other, and the script will perform the new import
without incident. If, however, there are discrepancies in the file layouts between versions,
svn_load_dirs.pl will ask you how to resolve those differences. For example, you will have the
opportunity to tell the script that you know that the file math.c in version 1.0 of libcomplex was
renamed to arithmetic.c in libcomplex 1.1. Any discrepancies not explained by moves are
treated as regular additions and deletions.

The script also accepts a separate configuration file for setting properties on files and director-
ies matching a regular expression that are added to the repository. This configuration file is
specified to svn_load_dirs.pl using the -p command-line option. Each line of the configura-
tion file is a whitespace-delimited set of two or four values: a Perl-style regular expression to
match the added path against, a control keyword (either break or cont), and then optionally a
property name and value.

\.png$ break svn:mime-type image/png
\.jpe?g$ break svn:mime-type image/jpeg
\.m3u$ cont svn:mime-type audio/x-mpegurl
\.m3u$ break svn:eol-style LF
.* break svn:eol-style native

For each added path, the configured property changes whose regular expression matches the
path are applied in order, unless the control specification is break (which means that no more
property changes should be applied to that path). If the control specification is cont—an ab-
breviation for continue—then matching will continue with the next line of the configuration
file.

Any whitespace in the regular expression, property name, or property value must be surroun-
ded by either single or double quote characters. You can escape quote characters that are not
used for wrapping whitespace by preceding them with a backslash (\) character. The back-
slash escapes only quotes when parsing the configuration file, so do not protect any other
characters beyond what is necessary for the regular expression.

Summary
We've covered a lot of ground in this chapter. We've discussed the concepts of tags and
branches, and demonstrated how Subversion implements these concepts by copying director-
ies with the svn copy command. We've shown how to use svn merge to copy changes from
one branch to another, or roll back bad changes. We've gone over the use of svn switch to

Branching and Merging

105

create mixed-location working copies. And we've talked about how one might manage the or-
ganization and lifetimes of branches in a repository.

Remember the Subversion mantra: branches and tags are cheap. So use them liberally! At the
same time, don't forget to use good merging habits. Cheap copies are only useful when you're
careful about tracking your merging actions.

Branching and Merging

106

1This may sound really prestigious and lofty, but we're just talking about anyone who is interested in that mysterious
realm beyond the working copy where everyone's data hangs out.

Chapter 5. Repository Administration
The Subversion repository is the central storehouse of all your versioned data. As such, it be-
comes an obvious candidate for all the love and attention an administrator can offer. While the
repository is generally a low-maintenance item, it is important to understand how to properly
configure and care for it so that potential problems are avoided, and actual problems are safely
resolved.

In this chapter, we'll discuss how to create and configure a Subversion repository. We'll also
talk about repository maintenance, providing examples of how and when to use the svnlook
and svnadmin tools provided with Subversion. We'll address some common questions and
mistakes, and give some suggestions on how to arrange the data in the repository.

If you plan to access a Subversion repository only in the role of a user whose data is under
version control (that is, via a Subversion client), you can skip this chapter altogether. However,
if you are, or wish to become, a Subversion repository administrator, 1 this chapter is for you.

The Subversion Repository, Defined
Before jumping into the broader topic of repository administration, let's further define what a re-
pository is. How does it look? How does it feel? Does it take its tea hot or iced, sweetened, and
with lemon? As an administrator, you'll be expected to understand the composition of a reposit-
ory both from a literal, OS-level perspective—how a repository looks and acts with respect to
non-Subversion tools—and from a logical perspective—dealing with how data is represented
inside the repository.

Seen through the eyes of a typical file browser application (such as the Windows Explorer) or
command-line based filesystem navigation tools, the Subversion repository is just another dir-
ectory full of stuff. There are some subdirectories with human-readable configuration files in
them, some subdirectories with some not-so-human-readable data files, and so on. As in other
areas of the Subversion design, modularity is given high regard, and hierarchical organization
is preferred to cluttered chaos. So a shallow glance into a typical repository from a nuts-
and-bolts perspective is sufficient to reveal the basic components of the repository:

$ ls repos
conf/ dav/ db/ format hooks/ locks/ README.txt

Here's a quick fly-by overview of what exactly you're seeing in this directory listing. (Don't get
bogged down in the terminology—detailed coverage of these components exists elsewhere in
this and other chapters.)

conf
A directory containing repository configuration files.

dav
A directory provided to mod_dav_svn for its private housekeeping data.

107

db
The data store for all of your versioned data.

format
A file that contains a single integer that indicates the version number of the repository lay-
out.

hooks
A directory full of hook script templates (and hook scripts themselves, once you've in-
stalled some).

locks
A directory for Subversion's repository lock files, used for tracking accessors to the reposit-
ory.

README.txt
A file whose contents merely inform its readers that they are looking at a Subversion re-
pository.

Of course, when accessed via the Subversion libraries, this otherwise unremarkable collection
of files and directories suddenly becomes an implementation of a virtual, versioned filesystem,
complete with customizable event triggers. This filesystem has its own notions of directories
and files, very similar to the notions of such things held by real filesystems (such as NTFS,
FAT32, ext3, and so on). But this is a special filesystem—it hangs these directories and files
from revisions, keeping all the changes you've ever made to them safely stored and forever ac-
cessible. This is where the entirety of your versioned data lives.

Strategies for Repository Deployment
Due largely to the simplicity of the overall design of the Subversion repository and the techno-
logies on which it relies, creating and configuring a repository are fairly straightforward tasks.
There are a few preliminary decisions you'll want to make, but the actual work involved in any
given setup of a Subversion repository is pretty straightforward, tending towards mindless re-
petition if you find yourself setting up multiples of these things.

Some things you'll want to consider up front, though, are:

• What data do you expect to live in your repository (or repositories), and how will that data be
organized?

• Where will your repository live, and how will it be accessed?

• What types of access control and repository event reporting do you need?

• Which of the available types of data store do you want to use?

In this section, we'll try to help you answer those questions.

Planning Your Repository Organization
While Subversion allows you to move around versioned files and directories without any loss of
information, and even provides ways of moving whole sets of versioned history from one re-
pository to another, doing so can greatly disrupt the workflow of those who access the reposit-

Repository Administration

108

2Whether founded in ignorance or in poorly considered concepts about how to derive legitimate software development
metrics, global revision numbers are a silly thing to fear, and not the kind of thing you should weigh when deciding how
to arrange your projects and repositories.
3The trunk, tags, and branches trio are sometimes referred to as “the TTB directories”.

ory often and come to expect things to be at certain locations. So before creating a new repos-
itory, try to peer into the future a bit; plan ahead before placing your data under version control.
By conscientiously “laying out” your repository or repositories and their versioned contents
ahead of time, you can prevent many future headaches.

Let's assume that as repository administrator, you will be responsible for supporting the ver-
sion control system for several projects. Your first decision is whether to use a single reposit-
ory for multiple projects, or to give each project its own repository, or some compromise of
these two.

There are benefits to using a single repository for multiple projects, most obviously the lack of
duplicated maintenance. A single repository means that there is one set of hook programs, one
thing to routinely backup, one thing to dump and load if Subversion releases an incompatible
new version, and so on. Also, you can move data between projects easily, and without losing
any historical versioning information.

The downside of using a single repository is that different projects may have different require-
ments in terms of the repository event triggers, such as needing to send commit notification
emails to different mailing lists, or having different definitions about what does and does not
constitute a legitimate commit. These aren't insurmountable problems, of course—it just
means that all of your hook scripts have to be sensitive to the layout of your repository rather
than assuming that the whole repository is associated with a single group of people. Also, re-
member that Subversion uses repository-global revision numbers. While those numbers don't
have any particular magical powers, some folks still don't like the fact that even though no
changes have been made to their project lately, the youngest revision number for the reposit-
ory keeps climbing because other projects are actively adding new revisions. 2

A middle-ground approach can be taken, too. For example, projects can be grouped by how
well they relate to each other. You might have a few repositories with a handful of projects in
each repository. That way, projects that are likely to want to share data can do so easily, and
as new revisions are added to the repository, at least the developers know that those new revi-
sions are at least remotely related to everyone who uses that repository.

After deciding how to organize your projects with respect to repositories, you'll probably want
to think about directory hierarchies within the repositories themselves. Because Subversion
uses regular directory copies for branching and tagging (see Chapter 4, Branching and Mer-
ging), the Subversion community recommends that you choose a repository location for each
project root—the “top-most” directory which contains data related to that project—and then cre-
ate three subdirectories beneath that root: trunk, meaning the directory under which the main
project development occurs; branches, which is a directory in which to create various named
branches of the main development line; tags, which is a collection of tree snapshots that are
created, and perhaps destroyed, but never changed. 3

For example, your repository might look like:

/
calc/

trunk/
tags/
branches/

calendar/
trunk/
tags/

Repository Administration

109

branches/
spreadsheet/

trunk/
tags/
branches/

…

Note that it doesn't matter where in your repository each project root is. If you have only one
project per repository, the logical place to put each project root is at the root of that project's re-
spective repository. If you have multiple projects, you might want to arrange them in groups in-
side the repository, perhaps putting projects with similar goals or shared code in the same sub-
directory, or maybe just grouping them alphabetically. Such an arrangement might look like:

/
utils/

calc/
trunk/
tags/
branches/

calendar/
trunk/
tags/
branches/

…
office/

spreadsheet/
trunk/
tags/
branches/

…

Lay out your repository in whatever way you see fit. Subversion does not expect or enforce a
particular layout—in its eyes, a directory is a directory is a directory. Ultimately, you should
choose the repository arrangement that meets the needs of the people who work on the
projects that live there.

In the name of full disclosure, though, we'll mention another very common layout. In this layout,
the trunk, tags, and branches directories live in the root directory of your repository, and
your projects are in subdirectories beneath those, like:

/
trunk/

calc/
calendar/
spreadsheet/
…

tags/
calc/
calendar/
spreadsheet/
…

branches/
calc/
calendar/
spreadsheet/
…

Repository Administration

110

4Often pronounced “fuzz-fuzz”, if Jack Repenning has anything to say about it. (This book, however, assumes that the
reader is thinking “eff-ess-eff-ess”.)

There's nothing particularly incorrect about such a layout, but it may or may not seem as intuit-
ive for your users. Especially in large, multi-project situations with many users, those users
may tend to be familiar with only one or two of the projects in the repository. But the projects-
as-branch-siblings tends to de-emphasize project individuality and focus on the entire set of
projects as a single entity. That's a social issue though. We like our originally suggested ar-
rangement for purely practical reasons—it's easier to ask about (or modify, or migrate else-
where) the entire history of a single project when there's a single repository path that holds the
entire history—past, present, tagged, and branched—for that project and that project alone.

Deciding Where and How to Host Your Repository
Before creating your Subversion repository, an obvious question you'll need to answer is
where the thing is going to live. This is strongly connected to a myriad of other questions in-
volving how the repository will be accessed (via a Subversion server or directly), by whom
(users behind your corporate firewall or the whole world out on the open Internet), what other
services you'll be providing around Subversion (repository browsing interfaces, e-mail based
commit notification, etc.), your data backup strategy, and so on.

We cover server choice and configuration in Chapter 6, Server Configuration, but the point
we'd like to briefly make here is simply that the answers to some of these other questions
might have implications that force your hand when deciding where your repository will live. For
example, certain deployment scenarios might require accessing the repository via a remote
filesystem from multiple computers, in which case (as you'll read in the next section) your
choice of a repository back-end data store turns out not to be a choice at all because only one
of the available back-ends will work in this scenario.

Addressing each possible way to deploy Subversion is both impossible, and outside the scope
of this book. We simply encourage you to evaluate your options using these pages and other
sources as your reference material, and plan ahead.

Choosing a Data Store
As of version 1.1, Subversion provides two options for the type of underlying data store—often
referred to as “the back-end” or, somewhat confusingly, “the (versioned) filesystem”—that each
repository uses. One type of data store keeps everything in a Berkeley DB (or BDB) database
environment; repositories that use this type are often referred to as being “BDB-backed”. The
other type stores data in ordinary flat files, using a custom format. Subversion developers have
adopted the habit of referring to this latter data storage mechanism as FSFS 4 —a versioned
filesystem implementation that uses the native OS filesystem directly—rather than via a data-
base library or some other abstraction layer—to store data.

Table 5.1, “Repository Data Store Comparison” gives a comparative overview of Berkeley DB
and FSFS repositories.

Table 5.1. Repository Data Store Comparison

Repository Administration

111

Category Feature Berkeley DB FSFS

Reliability Data integrity when properly de-
ployed, extremely reli-
able; Berkeley DB 4.4
brings auto-recovery

older versions had
some rarely demon-
strated, but data-
destroying bugs

Sensitivity to interrup-
tions

very; crashes and per-
mission problems can
leave the database
“wedged”, requiring
journaled recovery
procedures

quite insensitive

Accessibility Usable from a read-
only mount

no yes

Platform-independent
storage

no yes

Usable over network
filesystems

generally, no yes

Group permissions
handling

sensitive to user
umask problems; best
if accessed by only
one user

works around umask
problems

Scalability Repository disk usage larger (especially if
logfiles aren't purged)

smaller

Number of revision
trees

database; no prob-
lems

some older native
filesystems don't scale
well with thousands of
entries in a single dir-
ectory

Directories with many
files

slower faster

Performance Checking out latest re-
vision

no meaningful differ-
ence

no meaningful differ-
ence

Large commits slower overall, but
cost is amortized
across the lifetime of
the commit

faster overall, but fi-
nalization delay may
cause client timeouts

There are advantages and disadvantages to each of these two back-end types. Neither of
them is more “official” than the other, though the newer FSFS is the default data store as of
Subversion 1.2. Both are reliable enough to trust with your versioned data. But as you can see
in Table 5.1, “Repository Data Store Comparison”, the FSFS backend provides quite a bit
more flexibility in terms of its supported deployment scenarios. More flexibility means you have
to work a little harder to find ways to deploy it incorrectly. Those reasons—plus the fact that not
using Berkeley DB means there's one fewer component in the system—largely explain why
today almost everyone uses the FSFS backend when creating new repositories.

Fortunately, most programs which access Subversion repositories are blissfully ignorant of
which back-end data store is in use. And you aren't even necessarily stuck with your first
choice of a data store—in the event that you change your mind later, Subversion provides
ways of migrating your repository's data into another repository that uses a different back-end
data store. We talk more about that later in this chapter.

Repository Administration

112

5Berkeley DB requires that the underlying filesystem implement strict POSIX locking semantics, and more importantly,
the ability to map files directly into process memory.

The following subsections provide a more detailed look at the available data store types.

Berkeley DB

When the initial design phase of Subversion was in progress, the developers decided to use
Berkeley DB for a variety of reasons, including its open-source license, transaction support, re-
liability, performance, API simplicity, thread-safety, support for cursors, and so on.

Berkeley DB provides real transaction support—perhaps its most powerful feature. Multiple
processes accessing your Subversion repositories don't have to worry about accidentally clob-
bering each other's data. The isolation provided by the transaction system is such that for any
given operation, the Subversion repository code sees a static view of the database—not a
database that is constantly changing at the hand of some other process—and can make de-
cisions based on that view. If the decision made happens to conflict with what another process
is doing, the entire operation is rolled back as if it never happened, and Subversion gracefully
retries the operation against a new, updated (and yet still static) view of the database.

Another great feature of Berkeley DB is hot backups—the ability to backup the database envir-
onment without taking it “offline”. We'll discuss how to backup your repository in the section
called “Repository Backup”, but the benefits of being able to make fully functional copies of
your repositories without any downtime should be obvious.

Berkeley DB is also a very reliable database system when properly used. Subversion uses
Berkeley DB's logging facilities, which means that the database first writes to on-disk log files a
description of any modifications it is about to make, and then makes the modification itself.
This is to ensure that if anything goes wrong, the database system can back up to a previous
checkpoint—a location in the log files known not to be corrupt—and replay transactions until
the data is restored to a usable state. See the section called “Managing Disk Space” for more
about Berkeley DB log files.

But every rose has its thorn, and so we must note some known limitations of Berkeley DB.
First, Berkeley DB environments are not portable. You cannot simply copy a Subversion repos-
itory that was created on a Unix system onto a Windows system and expect it to work. While
much of the Berkeley DB database format is architecture independent, there are other aspects
of the environment that are not. Secondly, Subversion uses Berkeley DB in a way that will not
operate on Windows 95/98 systems—if you need to house a BDB-backed repository on a Win-
dows machine, stick with Windows 2000 or newer.

While Berkeley DB promises to behave correctly on network shares that meet a particular set
of specifications, 5 most networked filesystem types and appliances do not actually meet those
requirements. And in no case can you allow a BDB-backed repository that resides on a net-
work share to be accessed by multiple clients of that share at once (which quite often is the
whole point of having the repository live on a network share in the first place).

If you attempt to use Berkeley DB on a non-compliant remote filesystem, the res-
ults are unpredictable—you may see mysterious errors right away, or it may be
months before you discover that your repository database is subtly corrupted. You
should strongly consider using the FSFS data store for repositories that need to
live on a network share.

Finally, because Berkeley DB is a library linked directly into Subversion, it's more sensitive to
interruptions than a typical relational database system. Most SQL systems, for example, have

Repository Administration

113

a dedicated server process that mediates all access to tables. If a program accessing the data-
base crashes for some reason, the database daemon notices the lost connection and cleans
up any mess left behind. And because the database daemon is the only process accessing the
tables, applications don't need to worry about permission conflicts. These things are not the
case with Berkeley DB, however. Subversion (and programs using Subversion libraries) ac-
cess the database tables directly, which means that a program crash can leave the database
in a temporarily inconsistent, inaccessible state. When this happens, an administrator needs to
ask Berkeley DB to restore to a checkpoint, which is a bit of an annoyance. Other things can
cause a repository to “wedge” besides crashed processes, such as programs conflicting over
ownership and permissions on the database files.

Berkeley DB 4.4 brings (to Subversion 1.4 and better) the ability for Subversion to
automatically and transparently recover Berkeley DB environments in need of
such recovery. When a Subversion process attaches to a repository's Berkeley DB
environment, it uses some process accounting mechanisms to detect any unclean
disconnections by previous processes, performs any necessary recovery, and
then continues on as if nothing happened. This doesn't completely eliminate in-
stances of repository wedging, but it does drastically reduce the amount of human
interaction required to recover from them.

So while a Berkeley DB repository is quite fast and scalable, it's best used by a single server
process running as one user—such as Apache's httpd or svnserve (see Chapter 6, Server
Configuration)—rather than accessing it as many different users via file:// or svn+ssh://
URLs. If using a Berkeley DB repository directly as multiple users, be sure to read the section
called “Supporting Multiple Repository Access Methods”.

FSFS

In mid-2004, a second type of repository storage system—one which doesn't use a database
at all—came into being. An FSFS repository stores the changes associated with a revision in a
single file, and so all of a repository's revisions can be found in a single subdirectory full of
numbered files. Transactions are created in separate subdirectories as individual files. When
complete, the transaction file is renamed and moved into the revisions directory, thus guaran-
teeing that commits are atomic. And because a revision file is permanent and unchanging, the
repository also can be backed up while “hot”, just like a BDB-backed repository.

The FSFS revision files describe a revision's directory structure, file contents, and deltas
against files in other revision trees. Unlike a Berkeley DB database, this storage format is port-
able across different operating systems and isn't sensitive to CPU architecture. Because
there's no journaling or shared-memory files being used, the repository can be safely accessed
over a network filesystem and examined in a read-only environment. The lack of database
overhead also means that the overall repository size is a bit smaller.

FSFS has different performance characteristics too. When committing a directory with a huge
number of files, FSFS is able to more quickly append directory entries. On the other hand,
FSFS writes the latest version of a file as a delta against an earlier version, which means that
checking out the latest tree is a bit slower than fetching the fulltexts stored in a Berkeley DB
HEAD revision. FSFS also has a longer delay when finalizing a commit, which could in ex-
treme cases cause clients to time out while waiting for a response.

The most important distinction, however, is FSFS's imperviousness to “wedging” when
something goes wrong. If a process using a Berkeley DB database runs into a permissions
problem or suddenly crashes, the database can be left in an unusable state until an adminis-
trator recovers it. If the same scenarios happen to a process using an FSFS repository, the re-
pository isn't affected at all. At worst, some transaction data is left behind.

Repository Administration

114

6Oracle bought Sleepycat and its flagship software, Berkeley DB, on Valentine's Day in 2006.

The only real argument against FSFS is its relative immaturity compared to Berkeley DB. Un-
like Berkeley DB, which has years of history, its own dedicated development team and, now,
Oracle's mighty name attached to it, 6 FSFS is a much newer bit of engineering. Prior to Sub-
version 1.4, it was still shaking out some pretty serious data integrity bugs which, while only
triggered in very rare cases, nonetheless did occur. That said, FSFS has quickly become the
back-end of choice for some of the largest public and private Subversion repositories, and
promises a lower barrier to entry for Subversion across the board.

Creating and Configuring Your Repository
In the section called “Strategies for Repository Deployment”, we looked at some of the import-
ant decisions that should be made before creating and configuring your Subversion repository.
Now, we finally get to get our hands dirty! In this section, we'll see how to actually create a
Subversion repository and configure it to perform custom actions when special repository
events occur.

Creating the Repository
Subversion repository creation is an incredibly simple task. The svnadmin utility that comes
with Subversion provides a subcommand (create) for doing just that.

$ svnadmin create /path/to/repos

This creates a new repository in the directory /path/to/repos, and with the default filesys-
tem data store. Prior to Subversion 1.2, the default was to use Berkeley DB; the default is now
FSFS. You can explicitly choose the filesystem type using the --fs-type argument, which
accepts as a parameter either fsfs or bdb.

$ # Create an FSFS-backed repository
$ svnadmin create --fs-type fsfs /path/to/repos
$

Create a Berkeley-DB-backed repository
$ svnadmin create --fs-type bdb /path/to/repos
$

After running this simple command, you have a Subversion repository.

The path argument to svnadmin is just a regular filesystem path and not a URL
like the svn client program uses when referring to repositories. Both svnadmin
and svnlook are considered server-side utilities—they are used on the machine
where the repository resides to examine or modify aspects of the repository, and
are in fact unable to perform tasks across a network. A common mistake made by
Subversion newcomers is trying to pass URLs (even “local” file:// ones) to
these two programs.

Repository Administration

115

Present in the db/ subdirectory of your repository is the implementation of the versioned
filesystem. Your new repository's versioned filesystem begins life at revision 0, which is
defined to consist of nothing but the top-level root (/) directory. Initially, revision 0 also has a
single revision property, svn:date, set to the time at which the repository was created.

Now that you have a repository, it's time to customize it.

While some parts of a Subversion repository—such as the configuration files and
hook scripts—are meant to be examined and modified manually, you shouldn't
(and shouldn't need to) tamper with the other parts of the repository “by hand”. The
svnadmin tool should be sufficient for any changes necessary to your repository,
or you can look to third-party tools (such as Berkeley DB's tool suite) for tweaking
relevant subsections of the repository. Do not attempt manual manipulation of your
version control history by poking and prodding around in your repository's data
store files!

Implementing Repository Hooks
A hook is a program triggered by some repository event, such as the creation of a new revision
or the modification of an unversioned property. Some hooks (the so-called “pre hooks”) run in
advance of a repository operation and provide a means by which to both report what is about
to happen and to prevent it from happening at all. Other hooks (the “post hooks”) run after the
completion of a repository event, and are useful for performing tasks that examine—but don't
modify—the repository. Each hook is handed enough information to tell what that event is (or
was), the specific repository changes proposed (or completed), and the username of the per-
son who triggered the event.

The hooks subdirectory is, by default, filled with templates for various repository hooks.

$ ls repos/hooks/
post-commit.tmpl post-unlock.tmpl pre-revprop-change.tmpl
post-lock.tmpl pre-commit.tmpl pre-unlock.tmpl
post-revprop-change.tmpl pre-lock.tmpl start-commit.tmpl

There is one template for each hook that the Subversion repository supports, and by examin-
ing the contents of those template scripts, you can see what triggers each script to run and
what data is passed to that script. Also present in many of these templates are examples of
how one might use that script, in conjunction with other Subversion-supplied programs, to per-
form common useful tasks. To actually install a working hook, you need only place some ex-
ecutable program or script into the repos/hooks directory which can be executed as the
name (like start-commit or post-commit) of the hook.

On Unix platforms, this means supplying a script or program (which could be a shell script, a
Python program, a compiled C binary, or any number of other things) named exactly like the
name of the hook. Of course, the template files are present for more than just informational
purposes—the easiest way to install a hook on Unix platforms is to simply copy the appropriate
template file to a new file that lacks the .tmpl extension, customize the hook's contents, and
ensure that the script is executable. Windows, however, uses file extensions to determine
whether or not a program is executable, so you would need to supply a program whose base-
name is the name of the hook, and whose extension is one of the special extensions recog-
nized by Windows for executable programs, such as .exe for programs, and .bat for batch
files.

Repository Administration

116

For security reasons, the Subversion repository executes hook programs with an
empty environment—that is, no environment variables are set at all, not even
$PATH (or %PATH%, under Windows). Because of this, many administrators are
baffled when their hook program runs fine by hand, but doesn't work when run by
Subversion. Be sure to explicitly set any necessary environment variables in your
hook program and/or use absolute paths to programs.

Subversion executes hooks as the same user who owns the process which is accessing the
Subversion repository. In most cases, the repository is being accessed via a Subversion serv-
er, so this user is the same user as which that server runs on the system. The hooks them-
selves will need to be configured with OS-level permissions that allow that user to execute
them. Also, this means that any file or programs (including the Subversion repository itself) ac-
cessed directly or indirectly by the hook will be accessed as the same user. In other words, be
alert to potential permission-related problems that could prevent the hook from performing the
tasks it is designed to perform.

There are nine hooks implemented by the Subversion repository, and you can get details
about each of them in the section called “Repository Hooks”. As a repository administrator,
you'll need to decide which of hooks you wish to implement (by way of providing an appropri-
ately named and permissioned hook program), and how. When you make this decision, keep
in mind the big picture of how your repository is deployed. For example, if you are using server
configuration to determine which users are permitted to commit changes to your repository,
then you don't need to do this sort of access control via the hook system.

There is no shortage of Subversion hook programs and scripts freely available either from the
Subversion community itself or elsewhere. These scripts cover a wide range of utility—basic
access control, policy adherence checking, issue tracker integration, email- or syndication-
based commit notification, and beyond. See Appendix D, Third Party Tools for discussion of
some of the most commonly used hook programs. Or, if you wish to write your own, see
Chapter 8, Embedding Subversion.

While hook scripts can do almost anything, there is one dimension in which hook
script authors should show restraint: do not modify a commit transaction using
hook scripts. While it might be tempting to use hook scripts to automatically correct
errors or shortcomings or policy violations present in the files being committed, do-
ing so can cause problems. Subversion keeps client-side caches of certain bits of
repository data, and if you change a commit transaction in this way, those caches
become indetectably stale. This inconsistency can lead to surprising and unexpec-
ted behavior. Instead of modifying the transaction, you should simply validate the
transaction in the pre-commit hook and reject the commit if it does not meet the
desired requirements. As a bonus, your users will learn the value of careful, com-
pliance-minded work habits.

Berkeley DB Configuration
A Berkeley DB environment is an encapsulation of one or more databases, log files, region
files and configuration files. The Berkeley DB environment has its own set of default configura-
tion values for things like the number of database locks allowed to be taken out at any given
time, or the maximum size of the journaling log files, etc. Subversion's filesystem logic addi-
tionally chooses default values for some of the Berkeley DB configuration options. However,
sometimes your particular repository, with its unique collection of data and access patterns,
might require a different set of configuration option values.

Repository Administration

117

The producers of Berkeley DB understand that different applications and database environ-
ments have different requirements, and so they have provided a mechanism for overriding at
runtime many of the configuration values for the Berkeley DB environment: BDB checks for the
presence of a file named DB_CONFIG in the environment directory (namely, the repository's db
subdirectory), and parses the options found in that file . Subversion itself creates this file when
it creates the rest of the repository. The file initially contains some default options, as well as
pointers to the Berkeley DB online documentation so you can read about what those options
do. Of course, you are free to add any of the supported Berkeley DB options to your
DB_CONFIG file. Just be aware that while Subversion never attempts to read or interpret the
contents of the file, and makes no direct use of the option settings in it, you'll want to avoid any
configuration changes that may cause Berkeley DB to behave in a fashion that is at odds with
what Subversion might expect. Also, changes made to DB_CONFIG won't take effect until you
recover the database environment (using svnadmin recover).

Repository Maintenance
Maintaining a Subversion repository can be daunting, mostly due to the complexities inherent
in systems which have a database backend. Doing the task well is all about knowing the
tools—what they are, when to use them, and how to use them. This section will introduce you
to the repository administration tools provided by Subversion, and how to wield them to accom-
plish tasks such as repository data migration, upgrades, backups and cleanups.

An Administrator's Toolkit
Subversion provides a handful of utilities useful for creating, inspecting, modifying and repair-
ing your repository. Let's look more closely at each of those tools. Afterward, we'll briefly exam-
ine some of the utilities included in the Berkeley DB distribution that provide functionality spe-
cific to your repository's database backend not otherwise provided by Subversion's own tools.

svnadmin

The svnadmin program is the repository administrator's best friend. Besides providing the abil-
ity to create Subversion repositories, this program allows you to perform several maintenance
operations on those repositories. The syntax of svnadmin is similar to that of other Subversion
command-line programs:

$ svnadmin help
general usage: svnadmin SUBCOMMAND REPOS_PATH [ARGS & OPTIONS ...]
Type 'svnadmin help <subcommand>' for help on a specific subcommand.
Type 'svnadmin --version' to see the program version and FS modules.

Available subcommands:
crashtest
create
deltify

…

We've already mentioned svnadmin's create subcommand (see the section called “Creating
the Repository”). Most of the others we will cover later in this chapter. And you can consult the
section called “svnadmin” for a full rundown of subcommands and what each of them offers.

svnlook

svnlook is a tool provided by Subversion for examining the various revisions and transactions

Repository Administration

118

(which are revisions in-the-making) in a repository. No part of this program attempts to change
the repository. svnlook is typically used by the repository hooks for reporting the changes that
are about to be committed (in the case of the pre-commit hook) or that were just committed
(in the case of the post-commit hook) to the repository. A repository administrator may use
this tool for diagnostic purposes.

svnlook has a straightforward syntax:

$ svnlook help
general usage: svnlook SUBCOMMAND REPOS_PATH [ARGS & OPTIONS ...]
Note: any subcommand which takes the '--revision' and '--transaction'

options will, if invoked without one of those options, act on
the repository's youngest revision.

Type 'svnlook help <subcommand>' for help on a specific subcommand.
Type 'svnlook --version' to see the program version and FS modules.
…

Nearly every one of svnlook's subcommands can operate on either a revision or a transaction
tree, printing information about the tree itself, or how it differs from the previous revision of the
repository. You use the --revision (-r) and --transaction (-t) options to specify
which revision or transaction, respectively, to examine. In the absence of both the -
-revision (-r) and --transaction (-t) options, svnlook will examine the youngest
(or “HEAD”) revision in the repository. So the following two commands do exactly the same
thing when 19 is the youngest revision in the repository located at /path/to/repos:

$ svnlook info /path/to/repos
$ svnlook info /path/to/repos -r 19

The only exception to these rules about subcommands is the svnlook youngest subcom-
mand, which takes no options, and simply prints out the repository's youngest revision number.

$ svnlook youngest /path/to/repos
19

Keep in mind that the only transactions you can browse are uncommitted ones.
Most repositories will have no such transactions, because transactions are usually
either committed (in which case, you should access them as revision with the -
-revision (-r) option) or aborted and removed.

Output from svnlook is designed to be both human- and machine-parsable. Take as an ex-
ample the output of the info subcommand:

$ svnlook info /path/to/repos
sally
2002-11-04 09:29:13 -0600 (Mon, 04 Nov 2002)
27
Added the usual
Greek tree.

The output of the info subcommand is defined as:

Repository Administration

119

1. The author, followed by a newline.

2. The date, followed by a newline.

3. The number of characters in the log message, followed by a newline.

4. The log message itself, followed by a newline.

This output is human-readable, meaning items like the datestamp are displayed using a textual
representation instead of something more obscure (such as the number of nanoseconds since
the Tasty Freeze guy drove by). But the output is also machine-parsable—because the log
message can contain multiple lines and be unbounded in length, svnlook provides the length
of that message before the message itself. This allows scripts and other wrappers around this
command to make intelligent decisions about the log message, such as how much memory to
allocate for the message, or at least how many bytes to skip in the event that this output is not
the last bit of data in the stream.

svnlook can perform a variety of other queries: displaying subsets of bits of information we've
mentioned previously, recursively listing versioned directory trees, reporting which paths were
modified in a given revision or transaction, showing textual and property differences made to
files and directories, and so on. See the section called “svnlook” for a full reference of svn-
look's features.

svndumpfilter

While it won't be the most commonly used tool at the administrator's disposal, svndumpfilter
provides a very particular brand of useful functionality—the ability to quickly and easily modify
streams of Subversion repository history data by acting as a path-based filter.

The syntax of svndumpfilter is as follows:

$ svndumpfilter help
general usage: svndumpfilter SUBCOMMAND [ARGS & OPTIONS ...]
Type "svndumpfilter help <subcommand>" for help on a specific subcommand.
Type 'svndumpfilter --version' to see the program version.

Available subcommands:
exclude
include
help (?, h)

There are only two interesting subcommands. They allow you to make the choice between ex-
plicit or implicit inclusion of paths in the stream:

exclude
Filter out a set of paths from the dump data stream.

include
Allow only the requested set of paths to pass through the dump data stream.

You can learn more about these subcommands and svndumpfilter's unique purpose in the
section called “Filtering Repository History”.

Repository Administration

120

7Or is that, the “sync”?

svnsync

The svnsync program, which is new to the 1.4 release of Subversion, provides all the func-
tionality required for maintaining a read-only mirror of a Subversion repository. The program
really has one job—to transfer one repository's versioned history into another repository. And
while there are few ways to do that, its primary strength is that it can operate remotely—the
“source” and “sink” 7 repositories may be on different computers from each other and from
svnsync itself.

As you might expect, svnsync has a syntax that looks very much like every other program
we've mentioned in this chapter:

$ svnsync help
general usage: svnsync SUBCOMMAND DEST_URL [ARGS & OPTIONS ...]
Type 'svnsync help <subcommand>' for help on a specific subcommand.
Type 'svnsync --version' to see the program version and RA modules.

Available subcommands:
initialize (init)
synchronize (sync)
copy-revprops
help (?, h)

$

We talk more about replication repositories with svnsync in the section called “Repository
Replication”.

Berkeley DB Utilities

If you're using a Berkeley DB repository, then all of your versioned filesystem's structure and
data live in a set of database tables within the db/ subdirectory of your repository. This subdir-
ectory is a regular Berkeley DB environment directory, and can therefore be used in conjunc-
tion with any of the Berkeley database tools, typically provided as part of the Berkeley DB dis-
tribution.

For day-to-day Subversion use, these tools are unnecessary. Most of the functionality typically
needed for Subversion repositories has been duplicated in the svnadmin tool. For example,
svnadmin list-unused-dblogs and svnadmin list-dblogs perform a subset of what is
provided by the Berkeley db_archive command, and svnadmin recover reflects the common
use cases of the db_recover utility.

However, there are still a few Berkeley DB utilities that you might find useful. The db_dump
and db_load programs write and read, respectively, a custom file format which describes the
keys and values in a Berkeley DB database. Since Berkeley databases are not portable across
machine architectures, this format is a useful way to transfer those databases from machine to
machine, irrespective of architecture or operating system. As we describe later in this chapter,
you can also use svnadmin dump and svnadmin load for similar purposes, but db_dump
and db_load can do certain jobs just as well and much faster. They can also be useful if the
experienced Berkeley DB hacker needs to do in-place tweaking of the data in a BDB-backed
repository for some reason, which is something Subversion's utilities won't allow. Also, the
db_stat utility can provide useful information about the status of your Berkeley DB environ-
ment, including detailed statistics about the locking and storage subsystems.

For more information on the Berkeley DB tool chain, visit the documentation section of the

Repository Administration

121

Berkeley DB section of Oracle's website, located at ht-
tp://www.oracle.com/technology/documentation/berkeley-db/db/.

Commit Log Message Correction
Sometimes a user will have an error in her log message (a misspelling or some misinforma-
tion, perhaps). If the repository is configured (using the pre-revprop-change hook; see the
section called “Implementing Repository Hooks”) to accept changes to this log message after
the commit is finished, then the user can “fix” her log message remotely using the svn pro-
gram's propset command (see svn propset). However, because of the potential to lose in-
formation forever, Subversion repositories are not, by default, configured to allow changes to
unversioned properties—except by an administrator.

If a log message needs to be changed by an administrator, this can be done using svnadmin
setlog. This command changes the log message (the svn:log property) on a given revision
of a repository, reading the new value from a provided file.

$ echo "Here is the new, correct log message" > newlog.txt
$ svnadmin setlog myrepos newlog.txt -r 388

The svnadmin setlog command, by default, is still bound by the same protections against
modifying unversioned properties as a remote client is—the pre- and post-rev-
prop-change hooks are still triggered, and therefore must be set up to accept changes of this
nature. But an administrator can get around these protections by passing the -
-bypass-hooks option to the svnadmin setlog command.

Remember, though, that by bypassing the hooks, you are likely avoiding such
things as email notifications of property changes, backup systems which track un-
versioned property changes, and so on. In other words, be very careful about what
you are changing, and how you change it.

Managing Disk Space
While the cost of storage has dropped incredibly in the past few years, disk usage is still a val-
id concern for administrators seeking to version large amounts of data. Every bit of version his-
tory information stored in the live repository needs to be backed up elsewhere, perhaps mul-
tiple times as part of rotating backup schedules. It is useful to know what pieces of Subver-
sion's repository data need to remain on the live site, which need to be backed up, and which
can be safely removed.

How Subversion saves disk space

To keep the repository small, Subversion uses deltification (or, “deltified storage”) within the re-
pository itself. Deltification involves encoding the representation of a chunk of data as a collec-
tion of differences against some other chunk of data. If the two pieces of data are very similar,
this deltification results in storage savings for the deltified chunk—rather than taking up space
equal to the size of the original data, it takes up only enough space to say, “I look just like this
other piece of data over here, except for the following couple of changes”. The result is that
most of the repository data that tends to be bulky—namely, the contents of versioned files—is
stored at a much smaller size than the original “fulltext” representation of that data. And for re-
positories created with Subversion 1.4 or later, the space savings are even better—now those
fulltext representations of file contents are themselves compressed.

Repository Administration

122

http://www.oracle.com/technology/documentation/berkeley-db/db/
http://www.oracle.com/technology/documentation/berkeley-db/db/

Because all of the data that is subject to deltification in a BDB-backed repository is
stored in a single Berkeley DB database file, reducing the size of the stored values
will not immediately reduce the size of the database file itself. Berkeley DB will,
however, keep internal records of unused areas of the database file, and consume
those areas first before growing the size of the database file. So while deltification
doesn't produce immediate space savings, it can drastically slow future growth of
the database.

Removing dead transactions

Though they are uncommon, there are circumstances in which a Subversion commit process
might fail, leaving behind in the repository the remnants of the revision-to-be that wasn't—an
uncommitted transaction and all the file and directory changes associated with it. This could
happen for several reasons: perhaps the client operation was inelegantly terminated by the
user, or a network failure occurred in the middle of an operation. Regardless of the reason,
dead transactions can happen. They don't do any real harm, other than consuming disk space.
A fastidious administrator may nonetheless wish to remove them.

You can use svnadmin's lstxns command to list the names of the currently outstanding
transactions.

$ svnadmin lstxns myrepos
19
3a1
a45
$

Each item in the resultant output can then be used with svnlook (and its --transaction
(-t) option) to determine who created the transaction, when it was created, what types of
changes were made in the transaction—information that is helpful in determining whether or
not the transaction is a safe candidate for removal! If you do indeed want to remove a transac-
tion, its name can be passed to svnadmin rmtxns, which will perform the cleanup of the trans-
action. In fact, the rmtxns subcommand can take its input directly from the output of lstxns!

$ svnadmin rmtxns myrepos `svnadmin lstxns myrepos`
$

If you use these two subcommands like this, you should consider making your repository tem-
porarily inaccessible to clients. That way, no one can begin a legitimate transaction before you
start your cleanup. Example 5.1, “txn-info.sh (Reporting Outstanding Transactions)” contains a
bit of shell-scripting that can quickly generate information about each outstanding transaction
in your repository.

Example 5.1. txn-info.sh (Reporting Outstanding Transactions)

#!/bin/sh

Generate informational output for all outstanding transactions in
a Subversion repository.

Repository Administration

123

REPOS="${1}"
if ["x$REPOS" = x] ; then
echo "usage: $0 REPOS_PATH"
exit

fi

for TXN in `svnadmin lstxns ${REPOS}`; do
echo "---[Transaction ${TXN}]---"
svnlook info "${REPOS}" -t "${TXN}"

done

The output of the script is basically a concatenation of several chunks of svnlook info output
(see the section called “svnlook”), and will look something like:

$ txn-info.sh myrepos
---[Transaction 19]---
sally
2001-09-04 11:57:19 -0500 (Tue, 04 Sep 2001)
0
---[Transaction 3a1]---
harry
2001-09-10 16:50:30 -0500 (Mon, 10 Sep 2001)
39
Trying to commit over a faulty network.
---[Transaction a45]---
sally
2001-09-12 11:09:28 -0500 (Wed, 12 Sep 2001)
0
$

A long-abandoned transaction usually represents some sort of failed or interrupted commit. A
transaction's datestamp can provide interesting information—for example, how likely is it that
an operation begun nine months ago is still active?

In short, transaction cleanup decisions need not be made unwisely. Various sources of inform-
ation—including Apache's error and access logs, Subversion's operational logs, Subversion re-
vision history, and so on—can be employed in the decision-making process. And of course, an
administrator can often simply communicate with a seemingly dead transaction's owner (via
email, for example) to verify that the transaction is, in fact, in a zombie state.

Purging unused Berkeley DB logfiles

Until recently, the largest offender of disk space usage with respect to BDB-backed Subversion
repositories was the log files in which Berkeley DB performs its pre-writes before modifying the
actual database files. These files capture all the actions taken along the route of changing the
database from one state to another—while the database files, at any given time, reflect a par-
ticular state, the log files contain all the many changes along the way between states. Thus,
they can grow and accumulate quite rapidly.

Fortunately, beginning with the 4.2 release of Berkeley DB, the database environment has the
ability to remove its own unused log files automatically. Any repositories created using an svn-
admin which is compiled against Berkeley DB version 4.2 or greater will be configured for this
automatic log file removal. If you don't want this feature enabled, simply pass the -
-bdb-log-keep option to the svnadmin create command. If you forget to do this, or change
your mind at a later time, simply edit the DB_CONFIG file found in your repository's db direct-
ory, comment out the line which contains the set_flags DB_LOG_AUTOREMOVE directive,

Repository Administration

124

and then run svnadmin recover on your repository to force the configuration changes to take
effect. See the section called “Berkeley DB Configuration” for more information about database
configuration.

Without some sort of automatic log file removal in place, log files will accumulate as you use
your repository. This is actually somewhat of a feature of the database system—you should be
able to recreate your entire database using nothing but the log files, so these files can be use-
ful for catastrophic database recovery. But typically, you'll want to archive the log files that are
no longer in use by Berkeley DB, and then remove them from disk to conserve space. Use the
svnadmin list-unused-dblogs command to list the unused log files:

$ svnadmin list-unused-dblogs /path/to/repos
/path/to/repos/log.0000000031
/path/to/repos/log.0000000032
/path/to/repos/log.0000000033
…
$ rm `svnadmin list-unused-dblogs /path/to/repos`
disk space reclaimed!

BDB-backed repositories whose log files are used as part of a backup or disaster
recovery plan should not make use of the log file autoremoval feature. Reconstruc-
tion of a repository's data from log files can only be accomplished when all the log
files are available. If some of the log files are removed from disk before the backup
system has a chance to copy them elsewhere, the incomplete set of backed-up log
files is essentially useless.

Berkeley DB Recovery
As mentioned in the section called “Berkeley DB”, a Berkeley DB repository can sometimes be
left in frozen state if not closed properly. When this happens, an administrator needs to rewind
the database back into a consistent state. This is unique to BDB-backed repositories,
though—if you are using FSFS-backed ones instead, this won't apply to you. And for those of
you using Subversion 1.4 with Berkeley DB 4.4 or better, you should find that Subversion has
become much more resilient in these types of situations. Still, wedged Berkeley DB repositor-
ies do occur, and an administrator needs to know how to safely deal with this circumstance.

In order to protect the data in your repository, Berkeley DB uses a locking mechanism. This
mechanism ensures that portions of the database are not simultaneously modified by multiple
database accessors, and that each process sees the data in the correct state when that data is
being read from the database. When a process needs to change something in the database, it
first checks for the existence of a lock on the target data. If the data is not locked, the process
locks the data, makes the change it wants to make, and then unlocks the data. Other pro-
cesses are forced to wait until that lock is removed before they are permitted to continue ac-
cessing that section of the database. (This has nothing to do with the locks that you, as a user,
can apply to versioned files within the repository; we try to clear up the confusion caused by
this terminology collision in The three meanings of “lock”.)

In the course of using your Subversion repository, fatal errors or interruptions can prevent a
process from having the chance to remove the locks it has placed in the database. The result
is that the back-end database system gets “wedged”. When this happens, any attempts to ac-
cess the repository hang indefinitely (since each new accessor is waiting for a lock to go
away—which isn't going to happen).

If this happens to your repository, don't panic. The Berkeley DB filesystem takes advantage of
database transactions and checkpoints and pre-write journaling to ensure that only the most

Repository Administration

125

8E.g.: hard drive + huge electromagnet = disaster.

catastrophic of events 8 can permanently destroy a database environment. A sufficiently para-
noid repository administrator will have made off-site backups of the repository data in some
fashion, but don't head off to the tape backup storage closet just yet.

Instead, use the following recipe to attempt to “unwedge” your repository:

1. Make sure that there are no processes accessing (or attempting to access) the repository.
For networked repositories, this means shutting down the Apache HTTP Server or svnserve
daemon, too.

2. Become the user who owns and manages the repository. This is important, as recovering a
repository while running as the wrong user can tweak the permissions of the repository's
files in such a way that your repository will still be inaccessible even after it is “unwedged”.

3. Run the command svnadmin recover /path/to/repos. You should see output like this:

Repository lock acquired.
Please wait; recovering the repository may take some time...

Recovery completed.
The latest repos revision is 19.

This command may take many minutes to complete.

4. Restart the server process.

This procedure fixes almost every case of repository lock-up. Make sure that you run this com-
mand as the user that owns and manages the database, not just as root. Part of the recovery
process might involve recreating from scratch various database files (shared memory regions,
for example). Recovering as root will create those files such that they are owned by root,
which means that even after you restore connectivity to your repository, regular users will be
unable to access it.

If the previous procedure, for some reason, does not successfully unwedge your repository,
you should do two things. First, move your broken repository directory aside (perhaps by re-
naming it to something like repos.BROKEN) and then restore your latest backup of it. Then,
send an email to the Subversion user list (at <users@subversion.tigris.org>) describ-
ing your problem in detail. Data integrity is an extremely high priority to the Subversion de-
velopers.

Migrating Repository Data Elsewhere
A Subversion filesystem has its data spread throughout files in the repository, in a fashion gen-
erally understood by (and of interest to) only the Subversion developers themselves. However,
circumstances may arise that call for all, or some subset, of that data to be copied or moved in-
to another repository.

Subversion provides such functionality by way of repository dump streams. A repository dump
stream (often referred to as a “dumpfile” when stored as a file on disk) is a portable, flat file
format that describes the various revisions in your repository—what was changed, by whom,
when, and so on. This dump stream is the primary mechanism used to marshal versioned his-
tory—in whole or in part, with or without modification—between repositories. And Subversion

Repository Administration

126

provides the tools necessary for creating and loading these dump streams—the svnadmin
dump and svnadmin load subcommands, respectively.

While the Subversion repository dump format contains human-readable portions
and a familiar structure (it resembles an RFC-822 format, the same type of format
used for most email), it is not a plaintext file format. It is a binary file format, highly
sensitive to meddling. For example, many text editors will corrupt the file by auto-
matically converting line endings.

There are many reasons for dumping and loading Subversion repository data. Early in Subver-
sion's life, the most common reason was due to the evolution of Subversion itself. As Subver-
sion matured, there were times when changes made to the back-end database schema
caused compatibility issues with previous versions of the repository, so users had to dump
their repository data using the previous version of Subversion, and load it into a freshly created
repository with the new version of Subversion. Now, these types of schema changes haven't
occurred since Subversion's 1.0 release, and the Subversion developers promise not to force
users to dump and load their repositories when upgrading between minor versions (such as
from 1.3 to 1.4) of Subversion. But there are still other reasons for dumping and loading, in-
cluding re-deploying a Berkeley DB repository on a new OS or CPU architecture, switching
between the Berkeley DB and FSFS back-ends, or (as we'll cover in the section called
“Filtering Repository History”) purging versioned data from repository history.

Whatever your reason for migrating repository history, using the svnadmin dump and svnad-
min load subcommands is straightforward. svnadmin dump will output a range of repository
revisions that are formatted using Subversion's custom filesystem dump format. The dump
format is printed to the standard output stream, while informative messages are printed to the
standard error stream. This allows you to redirect the output stream to a file while watching the
status output in your terminal window. For example:

$ svnlook youngest myrepos
26
$ svnadmin dump myrepos > dumpfile
* Dumped revision 0.
* Dumped revision 1.
* Dumped revision 2.
…
* Dumped revision 25.
* Dumped revision 26.

At the end of the process, you will have a single file (dumpfile in the previous example) that
contains all the data stored in your repository in the requested range of revisions. Note that
svnadmin dump is reading revision trees from the repository just like any other “reader” pro-
cess would (svn checkout, for example), so it's safe to run this command at any time.

The other subcommand in the pair, svnadmin load, parses the standard input stream as a
Subversion repository dump file, and effectively replays those dumped revisions into the target
repository for that operation. It also gives informative feedback, this time using the standard
output stream:

$ svnadmin load newrepos < dumpfile
<<< Started new txn, based on original revision 1

* adding path : A ... done.
* adding path : A/B ... done.
…

Repository Administration

127

------- Committed new rev 1 (loaded from original rev 1) >>>

<<< Started new txn, based on original revision 2
* editing path : A/mu ... done.
* editing path : A/D/G/rho ... done.

------- Committed new rev 2 (loaded from original rev 2) >>>

…

<<< Started new txn, based on original revision 25
* editing path : A/D/gamma ... done.

------- Committed new rev 25 (loaded from original rev 25) >>>

<<< Started new txn, based on original revision 26
* adding path : A/Z/zeta ... done.
* editing path : A/mu ... done.

------- Committed new rev 26 (loaded from original rev 26) >>>

The result of a load is new revisions added to a repository—the same thing you get by making
commits against that repository from a regular Subversion client. And just as in a commit, you
can use hook programs to perform actions before and after each of the commits made during a
load process. By passing the --use-pre-commit-hook and --use-post-commit-hook
options to svnadmin load, you can instruct Subversion to execute the pre-commit and post-
commit hook programs, respectively, for each loaded revision. You might use these, for ex-
ample, to ensure that loaded revisions pass through the same validation steps that regular
commits pass through. Of course, you should use these options with care—if your post-commit
hook sends emails to a mailing list for each new commit, you might not want to spew hundreds
or thousands of commit emails in rapid succession at that list! You can read more about the
use of hook scripts in the section called “Implementing Repository Hooks”.

Note that because svnadmin uses standard input and output streams for the repository dump
and load process, people who are feeling especially saucy can try things like this (perhaps
even using different versions of svnadmin on each side of the pipe):

$ svnadmin create newrepos
$ svnadmin dump oldrepos | svnadmin load newrepos

By default, the dump file will be quite large—much larger than the repository itself. That's be-
cause by default every version of every file is expressed as a full text in the dump file. This is
the fastest and simplest behavior, and nice if you're piping the dump data directly into some
other process (such as a compression program, filtering program, or into a loading process).
But if you're creating a dump file for longer-term storage, you'll likely want to save disk space
by using the --deltas option. With this option, successive revisions of files will be output as
compressed, binary differences—just as file revisions are stored in a repository. This option is
slower, but results in a dump file much closer in size to the original repository.

We mentioned previously that svnadmin dump outputs a range of revisions. Use the -
-revision (-r) option to specify a single revision to dump, or a range of revisions. If you
omit this option, all the existing repository revisions will be dumped.

$ svnadmin dump myrepos -r 23 > rev-23.dumpfile
$ svnadmin dump myrepos -r 100:200 > revs-100-200.dumpfile

Repository Administration

128

As Subversion dumps each new revision, it outputs only enough information to allow a future
loader to re-create that revision based on the previous one. In other words, for any given revi-
sion in the dump file, only the items that were changed in that revision will appear in the dump.
The only exception to this rule is the first revision that is dumped with the current svnadmin
dump command.

By default, Subversion will not express the first dumped revision as merely differences to be
applied to the previous revision. For one thing, there is no previous revision in the dump file!
And secondly, Subversion cannot know the state of the repository into which the dump data
will be loaded (if it ever is). To ensure that the output of each execution of svnadmin dump is
self-sufficient, the first dumped revision is by default a full representation of every directory,
file, and property in that revision of the repository.

However, you can change this default behavior. If you add the --incremental option when
you dump your repository, svnadmin will compare the first dumped revision against the previ-
ous revision in the repository, the same way it treats every other revision that gets dumped. It
will then output the first revision exactly as it does the rest of the revisions in the dump
range—mentioning only the changes that occurred in that revision. The benefit of this is that
you can create several small dump files that can be loaded in succession, instead of one large
one, like so:

$ svnadmin dump myrepos -r 0:1000 > dumpfile1
$ svnadmin dump myrepos -r 1001:2000 --incremental > dumpfile2
$ svnadmin dump myrepos -r 2001:3000 --incremental > dumpfile3

These dump files could be loaded into a new repository with the following command sequence:

$ svnadmin load newrepos < dumpfile1
$ svnadmin load newrepos < dumpfile2
$ svnadmin load newrepos < dumpfile3

Another neat trick you can perform with this --incremental option involves appending to an
existing dump file a new range of dumped revisions. For example, you might have a post-
commit hook that simply appends the repository dump of the single revision that triggered the
hook. Or you might have a script that runs nightly to append dump file data for all the revisions
that were added to the repository since the last time the script ran. Used like this, svnadmin
dump can be one way to back up changes to your repository over time in case of a system
crash or some other catastrophic event.

The dump format can also be used to merge the contents of several different repositories into
a single repository. By using the --parent-dir option of svnadmin load, you can specify a
new virtual root directory for the load process. That means if you have dump files for three re-
positories, say calc-dumpfile, cal-dumpfile, and ss-dumpfile, you can first create a
new repository to hold them all:

$ svnadmin create /path/to/projects
$

Then, make new directories in the repository which will encapsulate the contents of each of the
three previous repositories:

Repository Administration

129

9That's rather the reason you use version control at all, right?
10Conscious, cautious removal of certain bits of versioned data is actually supported by real use-cases. That's why an
“obliterate” feature has been one of the most highly requested Subversion features, and one which the Subversion de-
velopers hope to soon provide.

$ svn mkdir -m "Initial project roots" \
file:///path/to/projects/calc \
file:///path/to/projects/calendar \
file:///path/to/projects/spreadsheet

Committed revision 1.
$

Lastly, load the individual dump files into their respective locations in the new repository:

$ svnadmin load /path/to/projects --parent-dir calc < calc-dumpfile
…
$ svnadmin load /path/to/projects --parent-dir calendar < cal-dumpfile
…
$ svnadmin load /path/to/projects --parent-dir spreadsheet < ss-dumpfile
…
$

We'll mention one final way to use the Subversion repository dump format—conversion from a
different storage mechanism or version control system altogether. Because the dump file
format is, for the most part, human-readable, it should be relatively easy to describe generic
sets of changes—each of which should be treated as a new revision—using this file format. In
fact, the cvs2svn utility (see the section called “Converting a Repository from CVS to Subver-
sion”) uses the dump format to represent the contents of a CVS repository so that those con-
tents can be copied into a Subversion repository.

Filtering Repository History
Since Subversion stores your versioned history using, at the very least, binary differencing al-
gorithms and data compression (optionally in a completely opaque database system), attempt-
ing manual tweaks is unwise, if not quite difficult, and at any rate strongly discouraged. And
once data has been stored in your repository, Subversion generally doesn't provide an easy
way to remove that data. 9 But inevitably, there will be times when you would like to manipulate
the history of your repository. You might need to strip out all instances of a file that was acci-
dentally added to the repository (and shouldn't be there for whatever reason). 10 Or, perhaps
you have multiple projects sharing a single repository, and you decide to split them up into
their own repositories. To accomplish tasks like this, administrators need a more manageable
and malleable representation of the data in their repositories—the Subversion repository dump
format.

As we described in the section called “Migrating Repository Data Elsewhere”, the Subversion
repository dump format is a human-readable representation of the changes that you've made
to your versioned data over time. You use the svnadmin dump command to generate the
dump data, and svnadmin load to populate a new repository with it (see the section called
“Migrating Repository Data Elsewhere”). The great thing about the human-readability aspect of
the dump format is that, if you aren't careless about it, you can manually inspect and modify it.
Of course, the downside is that if you have three years' worth of repository activity encapsu-
lated in what is likely to be a very large dump file, it could take you a long, long time to manu-
ally inspect and modify it.

That's where svndumpfilter becomes useful. This program acts as path-based filter for repos-

Repository Administration

130

itory dump streams. Simply give it either a list of paths you wish to keep, or a list of paths you
wish to not keep, then pipe your repository dump data through this filter. The result will be a
modified stream of dump data that contains only the versioned paths you (explicitly or impli-
citly) requested.

Let's look a realistic example of how you might use this program. We discuss elsewhere (see
the section called “Planning Your Repository Organization”) the process of deciding how to
choose a layout for the data in your repositories—using one repository per project or combin-
ing them, arranging stuff within your repository, and so on. But sometimes after new revisions
start flying in, you rethink your layout and would like to make some changes. A common
change is the decision to move multiple projects which are sharing a single repository into sep-
arate repositories for each project.

Our imaginary repository contains three projects: calc, calendar, and spreadsheet. They
have been living side-by-side in a layout like this:

/
calc/

trunk/
branches/
tags/

calendar/
trunk/
branches/
tags/

spreadsheet/
trunk/
branches/
tags/

To get these three projects into their own repositories, we first dump the whole repository:

$ svnadmin dump /path/to/repos > repos-dumpfile
* Dumped revision 0.
* Dumped revision 1.
* Dumped revision 2.
* Dumped revision 3.
…
$

Next, run that dump file through the filter, each time including only one of our top-level director-
ies, and resulting in three new dump files:

$ svndumpfilter include calc < repos-dumpfile > calc-dumpfile
…
$ svndumpfilter include calendar < repos-dumpfile > cal-dumpfile
…
$ svndumpfilter include spreadsheet < repos-dumpfile > ss-dumpfile
…
$

At this point, you have to make a decision. Each of your dump files will create a valid reposit-
ory, but will preserve the paths exactly as they were in the original repository. This means that
even though you would have a repository solely for your calc project, that repository would
still have a top-level directory named calc. If you want your trunk, tags, and branches dir-
ectories to live in the root of your repository, you might wish to edit your dump files, tweaking

Repository Administration

131

the Node-path and Node-copyfrom-path headers to no longer have that first calc/ path
component. Also, you'll want to remove the section of dump data that creates the calc direct-
ory. It will look something like:

Node-path: calc
Node-action: add
Node-kind: dir
Content-length: 0

If you do plan on manually editing the dump file to remove a top-level directory,
make sure that your editor is not set to automatically convert end-of-line charac-
ters to the native format (e.g. \r\n to \n), as the content will then not agree with the
metadata. This will render the dump file useless.

All that remains now is to create your three new repositories, and load each dump file into the
right repository:

$ svnadmin create calc; svnadmin load calc < calc-dumpfile
<<< Started new transaction, based on original revision 1

* adding path : Makefile ... done.
* adding path : button.c ... done.

…
$ svnadmin create calendar; svnadmin load calendar < cal-dumpfile
<<< Started new transaction, based on original revision 1

* adding path : Makefile ... done.
* adding path : cal.c ... done.

…
$ svnadmin create spreadsheet; svnadmin load spreadsheet < ss-dumpfile
<<< Started new transaction, based on original revision 1

* adding path : Makefile ... done.
* adding path : ss.c ... done.

…
$

Both of svndumpfilter's subcommands accept options for deciding how to deal with “empty”
revisions. If a given revision contained only changes to paths that were filtered out, that now-
empty revision could be considered uninteresting or even unwanted. So to give the user con-
trol over what to do with those revisions, svndumpfilter provides the following command-line
options:

--drop-empty-revs
Do not generate empty revisions at all—just omit them.

--renumber-revs
If empty revisions are dropped (using the --drop-empty-revs option), change the revi-
sion numbers of the remaining revisions so that there are no gaps in the numeric se-
quence.

--preserve-revprops
If empty revisions are not dropped, preserve the revision properties (log message, author,
date, custom properties, etc.) for those empty revisions. Otherwise, empty revisions will
only contain the original datestamp, and a generated log message that indicates that this
revision was emptied by svndumpfilter.

Repository Administration

132

11While svnadmin dump has a consistent leading slash policy—to not include them—other programs which generate
dump data might not be so consistent.

While svndumpfilter can be very useful, and a huge timesaver, there are unfortunately a
couple of gotchas. First, this utility is overly sensitive to path semantics. Pay attention to
whether paths in your dump file are specified with or without leading slashes. You'll want to
look at the Node-path and Node-copyfrom-path headers.

…
Node-path: spreadsheet/Makefile
…

If the paths have leading slashes, you should include leading slashes in the paths you pass to
svndumpfilter include and svndumpfilter exclude (and if they don't, you shouldn't). Further,
if your dump file has an inconsistent usage of leading slashes for some reason, 11 you should
probably normalize those paths so they all have, or lack, leading slashes.

Also, copied paths can give you some trouble. Subversion supports copy operations in the re-
pository, where a new path is created by copying some already existing path. It is possible that
at some point in the lifetime of your repository, you might have copied a file or directory from
some location that svndumpfilter is excluding, to a location that it is including. In order to
make the dump data self-sufficient, svndumpfilter needs to still show the addition of the new
path—including the contents of any files created by the copy—and not represent that addition
as a copy from a source that won't exist in your filtered dump data stream. But because the
Subversion repository dump format only shows what was changed in each revision, the con-
tents of the copy source might not be readily available. If you suspect that you have any copies
of this sort in your repository, you might want to rethink your set of included/excluded paths,
perhaps including the paths that served as sources of your troublesome copy operations, too.

Finally, svndumpfilter takes path filtering quite literally. If you are trying to copy the history of
a project rooted at trunk/my-project and move it into a repository of its own, you would, of
course, use the svndumpfilter include command to keep all the changes in and under
trunk/my-project. But the resulting dump file makes no assumptions about the repository
into which you plan to load this data. Specifically, the dump data might begin with the revision
which added the trunk/my-project directory, but it will not contain directives which would
create the trunk directory itself (because trunk doesn't match the include filter). You'll need
to make sure that any directories which the new dump stream expect to exist actually do exist
in the target repository before trying to load the stream into that repository.

Repository Replication
There are several scenarios in which it is quite handy to have a Subversion repository whose
version history is exactly the same as some other repository's. Perhaps the most obvious one
is the maintenance of a simple backup repository, used when the primary repository has be-
come inaccessible due to a hardware failure, network outage, or other such annoyance. Other
scenarios include deploying mirror repositories to distribute heavy Subversion load across mul-
tiple servers, use as a soft-upgrade mechanism, and so on.

As of version 1.4, Subversion provides a program for managing scenarios like these—svn-
sync. svnsync works by essentially asking the Subversion server to “replay” revisions, one at
a time. It then uses that revision information to mimic a commit of the same to another reposit-
ory. Neither repository needs to be locally accessible to machine on which svnsync is run-
ning—its parameters are repository URLs, and it does all its work through Subversion's repos-
itory access (RA) interfaces. All it requires is read access to the source repository and read/
write access to the destination repository.

Repository Administration

133

12In fact, it can't truly be read-only, or svnsync itself would have a tough time copying revision history into it.

When using svnsync against a remote source repository, the Subversion server
for that repository must be running Subversion version 1.4 or better.

Assuming you already have a source repository that you'd like to mirror, the next thing you
need is an empty target repository which will actually serve as that mirror. This target reposit-
ory can use either of the available filesystem data-store back-ends (see the section called
“Choosing a Data Store”), but it must not yet have any version history in it. The protocol via
which svnsync communicates revision information is highly sensitive to mismatches between
the versioned histories contained in the source and target repositories. For this reason, while
svnsync cannot demand that the target repository be read-only, 12 allowing the revision his-
tory in the target repository to change by any mechanism other than the mirroring process is a
recipe for disaster.

Do not modify a mirror repository in such a way as to cause its version history to
deviate from that of the repository it mirrors. The only commits and revision prop-
erty modifications that ever occur on that mirror repository should be those per-
formed by the svnsync tool.

Another requirement of the target repository is that the svnsync process be allowed to modify
certain revision properties. svnsync stores its bookkeeping information in special revision
properties on revision 0 of the destination repository. Because svnsync works within the
framework of that repository's hook system, the default state of the repository (which is to dis-
allow revision property changes; see pre-revprop-change) is insufficient. You'll need to expli-
citly implement the pre-revprop-change hook, and your script must allow svnsync to set and
change its special properties. With those provisions in place, you are ready to start mirroring
repository revisions.

It's a good idea to implement authorization measures which allow your repository
replication process to perform its tasks while preventing other users from modify-
ing the contents of your mirror repository at all.

Let's walk through the use of svnsync in a somewhat typical mirroring scenario. We'll pepper
this discourse with practical recommendations which you are free to disregard if they aren't re-
quired by or suitable for your environment.

As a service to the fine developers of our favorite version control system, we will be mirroring
the public Subversion source code repository and exposing that mirror publicly on the Internet,
hosted on a different machine than the one on which the original Subversion source code re-
pository lives. This remote host has a global configuration which permits anonymous users to
read the contents of repositories on the host, but requires users to authenticate in order to
modify those repositories. (Please forgive us for glossing over the details of Subversion server
configuration for the moment—those are covered thoroughly in Chapter 6, Server Configura-
tion.) And for no other reason than that it makes for a more interesting example, we'll be driv-
ing the replication process from a third machine, the one which we currently find ourselves us-
ing.

First, we'll create the repository which will be our mirror. This and the next couple of steps do
require shell access to the machine on which the mirror repository will live. Once the repository
is all configured, though, we shouldn't need to touch it directly again.

Repository Administration

134

$ ssh admin@svn.example.com \
"svnadmin create /path/to/repositories/svn-mirror"

admin@svn.example.com's password: ********
$

At this point, we have our repository, and due to our server's configuration, that repository is
now “live” on the Internet. Now, because we don't want anything modifying the repository ex-
cept our replication process, we need a way to distinguish that process from other would-be
committers. To do so, we use a dedicated username for our process. Only commits and revi-
sion property modifications performed by the special username syncuser will be allowed.

We'll use the repository's hook system both to allow the replication process to do what it needs
to do, and to enforce that only it is doing those things. We accomplish this by implementing two
of the repository event hooks—pre-revprop-change and start-commit. Our pre-rev-
prop-change hook script is found in Example 5.2, “Mirror repository's pre-revprop-change
hook script”, and basically verifies that the user attempting the property changes is our syn-
cuser user. If so, the change is allowed; otherwise, it is denied.

Example 5.2. Mirror repository's pre-revprop-change hook script

#!/bin/sh

USER="$3"

if ["$USER" = "syncuser"]; then exit 0; fi

echo "Only the syncuser user may change revision properties" >&2
exit 1

That covers revision property changes. Now we need to ensure that only the syncuser user
is permitted to commit new revisions to the repository. We do this using a start-commit
hook scripts like the one in Example 5.3, “Mirror repository's start-commit hook script”.

Example 5.3. Mirror repository's start-commit hook script

#!/bin/sh

USER="$2"

if ["$USER" = "syncuser"]; then exit 0; fi

echo "Only the syncuser user may commit new revisions" >&2
exit 1

After installing our hook scripts and ensuring that they are executable by the Subversion serv-
er, we're finished with the setup of the mirror repository. Now, we get to actually do the mirror-
ing.

The first thing we need to do with svnsync is to register in our target repository the fact that it

Repository Administration

135

13Be forewarned that while it will take only a few seconds for the average reader to parse this paragraph and the
sample output which follows it, the actual time required to complete such a mirroring operation is, shall we say, quite a
bit longer.

will be a mirror of the source repository. We do this using the svnsync initialize subcommand.
Note that the various svnsync subcommands provide several of the same authentication-re-
lated options that svn does: --username, --password, --non-interactive, -
-config-dir, and --no-auth-cache.

$ svnsync help init
initialize (init): usage: svnsync initialize DEST_URL SOURCE_URL

Initialize a destination repository for synchronization from
another repository.

The destination URL must point to the root of a repository with
no committed revisions. The destination repository must allow
revision property changes.

You should not commit to, or make revision property changes in,
the destination repository by any method other than 'svnsync'.
In other words, the destination repository should be a read-only
mirror of the source repository.

Valid options:
--non-interactive : do no interactive prompting
--no-auth-cache : do not cache authentication tokens
--username arg : specify a username ARG
--password arg : specify a password ARG
--config-dir arg : read user configuration files from directory ARG

$ svnsync initialize http://svn.example.com/svn-mirror \
http://svn.collab.net/repos/svn \
--username syncuser --password syncpass

Copied properties for revision 0.
$

Our target repository will now remember that it is a mirror of the public Subversion source code
repository. Notice that we provided a username and password as arguments to svnsync—that
was required by the pre-revprop-change hook on our mirror repository.

The URLs provided to svnsync must point to the root directories of the target and
source repositories, respectively. The tool does not handle mirroring of repository
subtrees.

The initial release of svnsync (in Subversion 1.4) has a small shortcoming—the
values given to the --username and --password command-line options get
used for authentication against both the source and destination repositories. Obvi-
ously, there's no guarantee that the synchronizing user's credentials are the same
in both places. In the event that they are not the same, users trying to run svn-
sync in non-interactive mode (with the --non-interactive option) might ex-
perience problems.

And now comes the fun part. With a single subcommand, we can tell svnsync to copy all the
as-yet-unmirrored revisions from the source repository to the target. 13 The svnsync syn-
chronize subcommand will peek into the special revision properties previously stored on the

Repository Administration

136

target repository, and determine what repository it is mirroring and that the most recently
mirrored revision was revision 0. Then it will query the source repository and determine what
the latest revision in that repository is. Finally, it asks the source repository's server to start re-
playing all the revisions between 0 and that latest revision. As svnsync get the resulting re-
sponse from the source repository's server, it begins forwarding those revisions to the target
repository's server as new commits.

$ svnsync help synchronize
synchronize (sync): usage: svnsync synchronize DEST_URL

Transfer all pending revisions from source to destination.
…
$ svnsync synchronize http://svn.example.com/svn-mirror \

--username syncuser --password syncpass
Committed revision 1.
Copied properties for revision 1.
Committed revision 2.
Copied properties for revision 2.
Committed revision 3.
Copied properties for revision 3.
…
Committed revision 23406.
Copied properties for revision 23406.
Committed revision 23407.
Copied properties for revision 23407.
Committed revision 23408.
Copied properties for revision 23408.

Of particular interest here is that for each mirrored revision, there is first a commit of that revi-
sion to the target repository, and then property changes follow. This is because the initial com-
mit is performed by (and attributed to) the user syncuser, and datestamped with the time as
of that revision's creation. Also, Subversion's underlying repository access interfaces don't
provide a mechanism for setting arbitrary revision properties as part of a commit. So svnsync
follows up with an immediate series of property modifications which copy all the revision prop-
erties found for that revision in the source repository into the target repository. This also has
the effect of fixing the author and datestamp of the revision to match that of the source reposit-
ory.

Also noteworthy is that svnsync performs careful bookkeeping that allows it to be safely inter-
rupted and restarted without ruining the integrity of the mirrored data. If a network glitch occurs
while mirroring a repository, simply repeat the svnsync synchronize command and it will hap-
pily pick up right where it left off. In fact, as new revisions appear in the source repository, this
is exactly what you to do in order to keep your mirror up-to-date.

There is, however, one bit of inelegance in the process. Because Subversion revision proper-
ties can be changed at any time throughout the lifetime of the repository, and don't leave an
audit trail that indicates when they were changed, replication processes have to pay special at-
tention to them. If you've already mirrored the first 15 revisions of a repository and someone
then changes a revision property on revision 12, svnsync won't know to go back and patch up
its copy of revision 12. You'll need to tell it to do so manually by using (or with some addition-
ally tooling around) the svnsync copy-revprops subcommand, which simply re-replicates all
the revision properties for a particular revision.

$ svnsync help copy-revprops
copy-revprops: usage: svnsync copy-revprops DEST_URL REV

Copy all revision properties for revision REV from source to
destination.

Repository Administration

137

…
$ svnsync copy-revprops http://svn.example.com/svn-mirror 12 \

--username syncuser --password syncpass
Copied properties for revision 12.
$

That's repository replication in a nutshell. You'll likely want some automation around such a
process. For example, while our example was a pull-and-push setup, you might wish to have
your primary repository push changes to one or more blessed mirrors as part of its post-
commit and post-revprop-change hook implementations. This would enable the mirror to be
up-to-date in as near to realtime as is likely possible.

Also, while it isn't very commonplace to do so, svnsync does gracefully mirror repositories in
which the user as whom it authenticates only has partial read access. It simply copies only the
bits of the repository that it is permitted to see. Obviously such a mirror is not useful as a
backup solution.

As far as user interaction with repositories and mirrors goes, it is possible to have a single
working copy that interacts with both, but you'll have to jump through some hoops to make it
happen. First, you need to ensure that both the primary and mirror repositories have the same
repository UUID (which is not the case by default). You can set the mirror repository's UUID by
loading a dump file stub into it which contains the UUID of the primary repository, like so:

$ cat - <<EOF | svnadmin load --force-uuid dest
SVN-fs-dump-format-version: 2

UUID: 65390229-12b7-0310-b90b-f21a5aa7ec8e
EOF
$

Now that the two repositories have the same UUID, you can use svn switch --relocate to
point your working copy to whichever of the repositories you wish to operate against, a process
which is described in svn switch. There is a possible danger here, though, in that if the primary
and mirror repositories aren't in close synchronization, a working copy up-to-date with, and
pointing to, the primary repository will, if relocated to point to an out-of-date mirror, become
confused about the apparent sudden loss of revisions it fully expects to be present, and throws
errors to that effect. If this occurs, you can relocate your working copy back to the primary re-
pository and then either wait until the mirror repository is up-to-date, or backdate your working
copy to a revision you know is present in the sync repository and then retry the relocation.

Finally, be aware that the revision-based replication provided by svnsync is only
that—replication of revisions. It does not include such things as the hook implementations, re-
pository or server configuration data, uncommitted transactions, or information about user
locks on repository paths. Only information carried by the Subversion repository dump file
format is available for replication.

Repository Backup
Despite numerous advances in technology since the birth of the modern computer, one thing
unfortunately rings true with crystalline clarity—sometimes, things go very, very awry. Power
outages, network connectivity dropouts, corrupt RAM and crashed hard drives are but a taste
of the evil that Fate is poised to unleash on even the most conscientious administrator. And so
we arrive at a very important topic—how to make backup copies of your repository data.

There are two types of backup methods available for Subversion repository administrat-

Repository Administration

138

ors—full and incremental. A full backup of the repository involves squirreling away in one
sweeping action all the information required to fully reconstruct that repository in the event of a
catastrophe. Usually, it means, quite literally, the duplication of the entire repository directory
(which includes either a Berkeley DB or FSFS environment). Incremental backups are lesser
things, backups of only the portion of the repository data that has changed since the previous
backup.

As far as full backups go, the naive approach might seem like a sane one, but unless you tem-
porarily disable all other access to your repository, simply doing a recursive directory copy runs
the risk of generating a faulty backup. In the case of Berkeley DB, the documentation de-
scribes a certain order in which database files can be copied that will guarantee a valid backup
copy. A similar ordering exists for FSFS data. But you don't have to implement these al-
gorithms yourself, because the Subversion development team has already done so. The svn-
admin hotcopy command takes care of the minutia involved in making a hot backup of your
repository. And its invocation is as trivial as Unix's cp or Windows' copy operations:

$ svnadmin hotcopy /path/to/repos /path/to/repos-backup

The resulting backup is a fully functional Subversion repository, able to be dropped in as a re-
placement for your live repository should something go horribly wrong.

When making copies of a Berkeley DB repository, you can even instruct svnadmin hotcopy to
purge any unused Berkeley DB logfiles (see the section called “Purging unused Berkeley DB
logfiles”) from the original repository upon completion of the copy. Simply provide the -
-clean-logs option on the command-line.

$ svnadmin hotcopy --clean-logs /path/to/bdb-repos /path/to/bdb-repos-backup

Additional tooling around this command is available, too. The tools/backup/ directory of the
Subversion source distribution holds the hot-backup.py script. This script adds a bit of backup
management atop svnadmin hotcopy, allowing you to keep only the most recent configured
number of backups of each repository. It will automatically manage the names of the backed-
up repository directories to avoid collisions with previous backups, and will “rotate off” older
backups, deleting them so only the most recent ones remain. Even if you also have an incre-
mental backup, you might want to run this program on a regular basis. For example, you might
consider using hot-backup.py from a program scheduler (such as cron on Unix systems)
which will cause it to run nightly (or at whatever granularity of Time you deem safe).

Some administrators use a different backup mechanism built around generating and storing re-
pository dump data. We described in the section called “Migrating Repository Data Elsewhere”
how to use svnadmin dump --incremental to perform an incremental backup of a given revi-
sion or range of revisions. And of course, there is a full backup variation of this achieved by
omitting the --incremental option to that command. There is some value in these methods,
in that the format of your backed-up information is flexible—it's not tied to a particular platform,
versioned filesystem type, or release of Subversion or Berkeley DB. But that flexibility comes
at a cost, namely that restoring that data can take a long time—longer with each new revision
committed to your repository. Also, as is the case with so many of the various backup meth-
ods, revision property changes made to already-backed-up revisions won't get picked up by a
non-overlapping, incremental dump generation. For these reasons, we recommend against re-
lying solely on dump-based backup approaches.

As you can see, each of the various backup types and methods has its advantages and disad-
vantages. The easiest is by far the full hot backup, which will always result in a perfect working
replica of your repository. Should something bad happen to your live repository, you can re-

Repository Administration

139

14svnadmin setlog can be called in a way that bypasses the hook interface altogether.
15You know—the collective term for all of her “fickle fingers”.

store from the backup with a simple recursive directory copy. Unfortunately, if you are main-
taining multiple backups of your repository, these full copies will each eat up just as much disk
space as your live repository. Incremental backups, by contrast, tend to be quicker to generate
and smaller to store. But the restoration process can be a pain, often involving applying mul-
tiple incremental backups. And other methods have their own peculiarities. Administrators
need to find the balance between the cost of making the backup and the cost of restoring it.

The svnsync program (see the section called “Repository Replication”) actually provides a
rather handy middle-ground approach. If you are regularly synchronizing a read-only mirror
with your main repository, then in a pinch, your read-only mirror is probably a good candidate
for replacing that main repository if it falls over. The primary disadvantage of this method is
that only the versioned repository data gets synchronized—repository configuration files, user-
specified repository path locks, and other items which might live in the physical repository dir-
ectory but not inside the repository's virtual versioned filesystem are not handled by svnsync.

In any backup scenario, repository administrators need to be aware of how modifications to un-
versioned revision properties affect their backups. Since these changes do not themselves
generate new revisions, they will not trigger post-commit hooks, and may not even trigger the
pre-revprop-change and post-revprop-change hooks. 14 And since you can change revision
properties without respect to chronological order—you can change any revision's properties at
any time—an incremental backup of the latest few revisions might not catch a property modific-
ation to a revision that was included as part of a previous backup.

Generally speaking, only the truly paranoid would need to backup their entire repository, say,
every time a commit occurred. However, assuming that a given repository has some other re-
dundancy mechanism in place with relatively fine granularity (like per-commit emails or incre-
mental dumps), a hot backup of the database might be something that a repository adminis-
trator would want to include as part of a system-wide nightly backup. It's your data—protect it
as much as you'd like.

Often, the best approach to repository backups is a diversified one which leverages combina-
tions of the methods described here. The Subversion developers, for example, back up the
Subversion source code repository nightly using hot-backup.py and an offsite rsync of those
full backups; keep multiple archives of all the commit and property change notification emails;
and have repository mirrors maintained by various volunteers using svnsync. Your solution
might be similar, but should be catered to your needs and that delicate balance of convenience
with paranoia. And whatever you do, validate your backups from time to time—what good is a
spare tire that has a hole in it? While all of this might not save your hardware from the iron fist
of Fate, 15 it should certainly help you recover from those trying times.

Summary
By now you should have a basic understanding of how to create, configure, and maintain Sub-
version repositories. We've introduced you to the various tools that will assist you with this
task. Throughout the chapter, we've noted common administration pitfalls, and suggestions for
avoiding them.

All that remains is for you to decide what exciting data to store in your repository, and finally,
how to make it available over a network. The next chapter is all about networking.

Repository Administration

140

Chapter 6. Server Configuration
A Subversion repository can be accessed simultaneously by clients running on the same ma-
chine on which the repository resides using the file:// method. But the typical Subversion
setup involves a single server machine being accessed from clients on computers all over the
office—or, perhaps, all over the world.

This chapter describes how to get your Subversion repository exposed outside its host ma-
chine for use by remote clients. We will cover Subversion's currently available server mechan-
isms, discussing the configuration and use of each. After reading this section, you should be
able to decide which networking setup is right for your needs, and understand how to enable
such a setup on your host computer.

Overview
Subversion was designed with an abstract network layer. This means that a repository can be
programmatically accessed by any sort of server process, and the client “repository access”
API allows programmers to write plugins that speak relevant network protocols. In theory, Sub-
version can use an infinite number of network implementations. In practice, there are only two
servers at the time of this writing.

Apache is an extremely popular webserver; using the mod_dav_svn module, Apache can ac-
cess a repository and make it available to clients via the WebDAV/DeltaV protocol, which is an
extension of HTTP. Because Apache is an extremely extensible web server, it provides a num-
ber of features “for free”, such as encrypted SSL communication, logging, integration with a
number of third-party authentication systems, and limited built-in web browsing of repositories.

In the other corner is svnserve: a small, lightweight server program that speaks a custom pro-
tocol with clients. Because its protocol is explicitly designed for Subversion and is stateful
(unlike HTTP), it provides significantly faster network operations—but at the cost of some fea-
tures as well. It only understands CRAM-MD5 authentication, has no logging, no web-
browsing, and no option to encrypt network traffic. It is, however, extremely easy to set up and
is often the best option for small teams just starting out with Subversion.

A third option is to use svnserve tunneled over an SSH connection. Even though this scenario
still uses svnserve, it differs quite a bit in features from a traditional svnserve deployment.
SSH is used to encrypt all communication. SSH is also used exclusively to authenticate, so
real system accounts are required on the server host (unlike vanilla svnserve, which has its
own private user accounts.) Finally, because this setup requires that each user spawn a
private, temporary svnserve process, it's equivalent (from a permissions point of view) to al-
lowing a group of local users to all access the repository via file:// URLs. Path-based ac-
cess control has no meaning, since each user is accessing the repository database files dir-
ectly.

Here's a quick summary of the three typical server deployments.

Table 6.1. Comparison of Subversion Server Options

Feature Apache +
mod_dav_svn

svnserve svnserve over SSH

Authentication options HTTP(S) basic auth,
X.509 certificates,
LDAP, NTLM, or any

CRAM-MD5 SSH

141

Feature Apache +
mod_dav_svn

svnserve svnserve over SSH

other mechanism
available to Apache
httpd

User account options private 'users' file private 'users' file system accounts

Authorization options read/write access can
be granted over whole
repository, or specified
per-path.

read/write access can
be granted over whole
repository, or specified
per-path.

read/write access only
grantable over whole
repository

Encryption via optional SSL none SSH tunneled

Logging full Apache logs of
each HTTP request,
with optional
“high-level” logging of
general client opera-
tions

no logging no logging

Interoperability partially usable by oth-
er WebDAV clients

only talks to svn cli-
ents

only talks to svn cli-
ents

Web viewing limited built-in support,
or via 3rd-party tools
such as ViewVC

only via 3rd-party tools
such as ViewVC

only via 3rd-party tools
such as ViewVC

Speed somewhat slower somewhat faster somewhat faster

Initial setup somewhat complex extremely simple moderately simple

Choosing a Server Configuration
So, which server should you use? Which is best?

Obviously, there's no right answer to that question. Every team has different needs, and the
different servers all represent different sets of tradeoffs. The Subversion project itself doesn't
endorse one server or another, or consider either server more “official” than another.

Here are some reasons why you might choose one deployment over another, as well as reas-
ons you might not choose one.

The svnserve Server

Why you might want to use it:

• Quick and easy to set up.

• Network protocol is stateful and noticeably faster than WebDAV.

• No need to create system accounts on server.

• Password is not passed over the network.

Why you might want to avoid it:

• Network protocol is not encrypted.

Server Configuration

142

• Only one choice of authentication method.

• Password is stored in the clear on the server.

• No logging of any kind, not even errors.

svnserve over SSH

Why you might want to use it:

• Network protocol is stateful and noticeably faster than WebDAV.

• You can take advantage of existing ssh accounts and user infrastructure.

• All network traffic is encrypted.

Why you might want to avoid it:

• Only one choice of authentication method.

• No logging of any kind, not even errors.

• Requires users to be in same system group, or use a shared ssh key.

• If used improperly, can lead to file permissions problems.

The Apache HTTP Server

Why you might want to use it:

• Allows Subversion to use any of the numerous authentication systems already integ-
rated with Apache.

• No need to create system accounts on server.

• Full Apache logging.

• Network traffic can be encrypted via SSL.

• HTTP(S) can usually go through corporate firewalls.

• Built-in repository browsing via web browser.

• Repository can be mounted as a network drive for transparent version control. (See the
section called “Autoversioning”.)

Why you might want to avoid it:

• Noticeably slower than svnserve, because HTTP is a stateless protocol and requires
more turnarounds.

• Initial setup can be complex.

Server Configuration

143

Recommendations
In general, the authors of this book recommend a vanilla svnserve installation for small teams
just trying to get started with a Subversion server; it's the simplest to set up, and has the few-
est maintenance issues. You can always switch to a more complex server deployment as your
needs change.

Here are some general recommendations and tips, based on years of supporting users:

• If you're trying to set up the simplest possible server for your group, then a vanilla svnserve
installation is the easiest, fastest route. Note, however, that your repository data will be
transmitted in the clear over the network. If your deployment is entirely within your com-
pany's LAN or VPN, this isn't an issue. If the repository is exposed to the wide-open internet,
then you might want to make sure the repository's contents aren't sensitive (e.g. it contains
only open-source code.)

• If you need to integrate with existing identity systems (LDAP, Active Directory, NTLM, X.509,
etc.), then an Apache-based server is your only real option. Similarly, if you absolutely need
server-side logs of either server errors or client activities, then an Apache-based server is re-
quired.

• If you've decided to use either Apache or stock svnserve, create a single svn user on your
system and run the server process as that user. Be sure to make the repository directory
wholly owned by the svn user as well. From a security point of view, this keeps the reposit-
ory data nicely siloed and protected by operating system filesystem permissions, change-
able by only the Subversion server process itself.

• If you have an existing infrastructure heavily based on SSH accounts, and if your users
already have system accounts on your server machine, then it makes sense to deploy an
svnserve-over-ssh solution. Otherwise, we don't widely recommend this option to the public.
It's generally considered safer to have your users access the repository via (imaginary) ac-
counts managed by svnserve or Apache, rather than by full-blown system accounts. If your
deep desire for encrypted communication still draws you to this option, we recommend using
Apache with SSL instead.

• Do not be seduced by the simple idea of having all of your users access a repository directly
via file:// URLs. Even if the repository is readily available to everyone via network share,
this is a bad idea. It removes any layers of protection between the users and the repository:
users can accidentally (or intentionally) corrupt the repository database, it becomes hard to
take the repository offline for inspection or upgrade, and it can lead to a mess of file-
permissions problems (see the section called “Supporting Multiple Repository Access Meth-
ods”.) Note that this is also one of the reasons we warn against accessing repositories via
svn+ssh:// URLs—from a security standpoint, it's effectively the same as local users ac-
cessing via file://, and can entail all the same problems if the administrator isn't careful.

svnserve, a custom server
The svnserve program is a lightweight server, capable of speaking to clients over TCP/IP us-
ing a custom, stateful protocol. Clients contact an svnserve server by using URLs that begin
with the svn:// or svn+ssh:// scheme. This section will explain the different ways of run-
ning svnserve, how clients authenticate themselves to the server, and how to configure appro-
priate access control to your repositories.

Invoking the Server

Server Configuration

144

There are a few different ways to run the svnserve program:

• Run svnserve as a standalone daemon, listening for requests.

• Have the Unix inetd daemon temporarily spawn svnserve whenever a request comes in on
a certain port.

• Have SSH invoke a temporary svnserve over an encrypted tunnel.

• Run svnserve as a Windows service.

svnserve as Daemon

The easiest option is to run svnserve as a standalone “daemon” process. Use the -d option
for this:

$ svnserve -d
$ # svnserve is now running, listening on port 3690

When running svnserve in daemon mode, you can use the --listen-port= and -
-listen-host= options to customize the exact port and hostname to “bind” to.

Once we successfully start svnserve as above, it makes every repository on your system
available to the network. A client needs to specify an absolute path in the repository URL. For
example, if a repository is located at /usr/local/repositories/project1, then a client
would reach it via svn://host.example.com/usr/local/repositories/project1.
To increase security, you can pass the -r option to svnserve, which restricts it to exporting
only repositories below that path. For example:

$ svnserve -d -r /usr/local/repositories
…

Using the -r option effectively modifies the location that the program treats as the root of the
remote filesystem space. Clients then use URLs that have that path portion removed from
them, leaving much shorter (and much less revealing) URLs:

$ svn checkout svn://host.example.com/project1
…

svnserve via inetd

If you want inetd to launch the process, then you need to pass the -i (--inetd) option. In
the example, we've shown the output from running svnserve -i at the command line, but
note that isn't how you actually start the daemon; see the paragraphs following the example for
how to configure inetd to start svnserve.

$ svnserve -i
(success (1 2 (ANONYMOUS) (edit-pipeline)))

Server Configuration

145

When invoked with the --inetd option, svnserve attempts to speak with a Subversion client
via stdin and stdout using a custom protocol. This is the standard behavior for a program being
run via inetd. The IANA has reserved port 3690 for the Subversion protocol, so on a Unix-like
system you can add lines to /etc/services like these (if they don't already exist):

svn 3690/tcp # Subversion
svn 3690/udp # Subversion

And if your system is using a classic Unix-like inetd daemon, you can add this line to /
etc/inetd.conf:

svn stream tcp nowait svnowner /usr/bin/svnserve svnserve -i

Make sure “svnowner” is a user which has appropriate permissions to access your repositor-
ies. Now, when a client connection comes into your server on port 3690, inetd will spawn an
svnserve process to service it. Of course, you may also want to add -r to the configuration
line as well, to restrict which repositories are exported.

svnserve over a Tunnel

A third way to invoke svnserve is in “tunnel mode”, with the -t option. This mode assumes
that a remote-service program such as RSH or SSH has successfully authenticated a user and
is now invoking a private svnserve process as that user. (Note that you, the user, will rarely, if
ever, have reason to invoke svnserve with the -t at the command line; instead, the SSH dae-
mon does so for you.) The svnserve program behaves normally (communicating via stdin and
stdout), and assumes that the traffic is being automatically redirected over some sort of tunnel
back to the client. When svnserve is invoked by a tunnel agent like this, be sure that the au-
thenticated user has full read and write access to the repository database files. It's essentially
the same as a local user accessing the repository via file:// URLs.

This option is described in much more detail in the section called “Tunneling over SSH”.

svnserve as Windows Service

If your Windows system is a descendant of Windows NT (2000, 2003, XP, Vista), then you can
run svnserve as a standard Windows service. This is typically a much nicer experience than
running it as a standalone daemon with the --daemon (-d) option. Using daemon-mode re-
quires launching a console, typing a command, and then leaving the console window running
indefinitely. A Windows service, however, runs in the background, can start at boot time auto-
matically, and can be started and stopped using the same consistent administration interface
as other Windows services.

You'll need to define the new service using the command-line tool SC.EXE. Much like the in-
etd configuration line, you must specify an exact invocation of svnserve for Windows to run at
start-up time:

C:\> sc create svn
binpath= "C:\svn\bin\svnserve.exe --service -r C:\repos"
displayname= "Subversion Server"
depend= Tcpip
start= auto

Server Configuration

146

This defines a new Windows service named “svn”, and which executes a particular svn-
serve.exe command when started (in this case, rooted at C:\repos.) There are a number of
caveats in the prior example, however.

First, notice that the svnserve.exe program must always be invoked with the --service op-
tion. Any other options to svnserve must then be specified on the same line, but you cannot
add conflicting options such as --daemon (-d), --tunnel, or --inetd (-i). Options
such as -r or --listen-port are fine, though. Second, be careful about spaces when in-
voking the SC.EXE command: the key= value patterns must have no spaces between key=
and exactly one space before the value. Lastly, be careful about spaces in your command-
line to be invoked. If a directory name contains spaces (or other characters that need escap-
ing), place the entire inner value of binpath in double-quotes, by escaping them:

C:\> sc create svn
binpath= "\"C:\program files\svn\bin\svnserve.exe\" --service -r C:\repos"
displayname= "Subversion Server"
depend= Tcpip
start= auto

Also note that the word binpath is misleading—its value is a command line, not the path to
an executable. That's why you need to surround it with quote marks if it contains embedded
spaces.

Once the service is defined, it can stopped, started, or queried using standard GUI tools (the
Services administrative control panel), or at the command line as well:

C:\> net stop svn
C:\> net start svn

The service can also be uninstalled (i.e. undefined) by deleting its definition: sc delete svn.
Just be sure to stop the service first! The SC.EXE program has many other subcommands and
options; run sc /? to learn more about it.

Built-in authentication and authorization
When a client connects to an svnserve process, the following things happen:

• The client selects a specific repository.

• The server processes the repository's conf/svnserve.conf file, and begins to enforce
any authentication and authorization policies defined therein.

• Depending on the situation and authorization policies,

• the client may be allowed to make requests anonymously, without ever receiving an au-
thentication challenge, OR

• the client may be challenged for authentication at any time, OR

• if operating in “tunnel mode”, the client will declare itself to be already externally authentic-
ated.

At the time of writing, the server only knows how to send a CRAM-MD5 1 authentication chal-

Server Configuration

147

1See RFC 2195.

lenge. In essence, the server sends a small amount of data to the client. The client uses the
MD5 hash algorithm to create a fingerprint of the data and password combined, then sends the
fingerprint as a response. The server performs the same computation with the stored pass-
word to verify that the result is identical. At no point does the actual password travel over the
network.

It's also possible, of course, for the client to be externally authenticated via a tunnel agent,
such as SSH. In that case, the server simply examines the user it's running as, and uses it as
the authenticated username. For more on this, see the section called “Tunneling over SSH”.

As you've already guessed, a repository's svnserve.conf file is the central mechanism for
controlling authentication and authorization policies. The file has the same format as other con-
figuration files (see the section called “Runtime Configuration Area”): section names are
marked by square brackets ([and]), comments begin with hashes (#), and each section con-
tains specific variables that can be set (variable = value). Let's walk through these files
and learn how to use them.

Create a 'users' file and realm

For now, the [general] section of the svnserve.conf has all the variables you need. Be-
gin by changing the values of those variables: choose a name for a file which will contain your
usernames and passwords, and choose an authentication realm:

[general]
password-db = userfile
realm = example realm

The realm is a name that you define. It tells clients which sort of “authentication namespace”
they're connecting to; the Subversion client displays it in the authentication prompt, and uses it
as a key (along with the server's hostname and port) for caching credentials on disk (see the
section called “Client Credentials Caching”). The password-db variable points to a separate
file that contains a list of usernames and passwords, using the same familiar format. For ex-
ample:

[users]
harry = foopassword
sally = barpassword

The value of password-db can be an absolute or relative path to the users file. For many ad-
mins, it's easy to keep the file right in the conf/ area of the repository, alongside svn-
serve.conf. On the other hand, it's possible you may want to have two or more repositories
share the same users file; in that case, the file should probably live in a more public place. The
repositories sharing the users file should also be configured to have the same realm, since the
list of users essentially defines an authentication realm. Wherever the file lives, be sure to set
the file's read and write permissions appropriately. If you know which user(s) svnserve will run
as, restrict read access to the user file as necessary.

Set access controls

There are two more variables to set in the svnserve.conf file: they determine what unau-
thenticated (anonymous) and authenticated users are allowed to do. The variables anon-
access and auth-access can be set to the values none, read, or write. Setting the value
to none prohibits both reading and writing; read allows read-only access to the repository,

Server Configuration

148

and write allows complete read/write access to the repository. For example:

[general]
password-db = userfile
realm = example realm

anonymous users can only read the repository
anon-access = read

authenticated users can both read and write
auth-access = write

The example settings are, in fact, the default values of the variables, should you forget to
define them. If you want to be even more conservative, you can block anonymous access
completely:

[general]
password-db = userfile
realm = example realm

anonymous users aren't allowed
anon-access = none

authenticated users can both read and write
auth-access = write

The server process not only understands these “blanket” access controls to the repository, but
also finer-grained access restrictions placed on specific files and directories within the reposit-
ory. To make use of this feature, you need to define a file containing more detailed rules, and
then set the authz-db variable to point to it:

[general]
password-db = userfile
realm = example realm

Specific access rules for specific locations
authz-db = authzfile

The syntax of the authzfile file is discussed in detail in the section called “Path-Based Au-
thorization”. Note that the authz-db variable isn't mutually exclusive with the anon-access
and auth-access variables; if all the variables are defined at once, then all of the rules must
be satisfied before access is allowed.

Tunneling over SSH
svnserve's built-in authentication can be very handy, because it avoids the need to create real
system accounts. On the other hand, some administrators already have well-established SSH
authentication frameworks in place. In these situations, all of the project's users already have
system accounts and the ability to “SSH into” the server machine.

It's easy to use SSH in conjunction with svnserve. The client simply uses the svn+ssh://
URL scheme to connect:

$ whoami

Server Configuration

149

2Note that using any sort of svnserve-enforced access control at all is a bit pointless; the user already has direct ac-
cess to the repository database.
3We don't actually recommend this, since RSH is notably less secure than SSH.

harry

$ svn list svn+ssh://host.example.com/repos/project
harry@host.example.com's password: *****

foo
bar
baz
…

In this example, the Subversion client is invoking a local ssh process, connecting to
host.example.com, authenticating as the user harry, then spawning a private svnserve
process on the remote machine running as the user harry. The svnserve command is being
invoked in tunnel mode (-t) and its network protocol is being “tunneled” over the encrypted
connection by ssh, the tunnel-agent. svnserve is aware that it's running as the user harry,
and if the client performs a commit, the authenticated username will be used as the author of
the new revision.

The important thing to understand here is that the Subversion client is not connecting to a run-
ning svnserve daemon. This method of access doesn't require a daemon, nor does it notice
one if present. It relies wholly on the ability of ssh to spawn a temporary svnserve process,
which then terminates when the network connection is closed.

When using svn+ssh:// URLs to access a repository, remember that it's the ssh program
prompting for authentication, and not the svn client program. That means there's no automatic
password caching going on (see the section called “Client Credentials Caching”). The Subver-
sion client often makes multiple connections to the repository, though users don't normally no-
tice this due to the password caching feature. When using svn+ssh:// URLs, however,
users may be annoyed by ssh repeatedly asking for a password for every outbound connec-
tion. The solution is to use a separate SSH password-caching tool like ssh-agent on a Unix-
like system, or pageant on Windows.

When running over a tunnel, authorization is primarily controlled by operating system permis-
sions to the repository's database files; it's very much the same as if Harry were accessing the
repository directly via a file:// URL. If multiple system users are going to be accessing the
repository directly, you may want to place them into a common group, and you'll need to be
careful about umasks. (Be sure to read the section called “Supporting Multiple Repository Ac-
cess Methods”.) But even in the case of tunneling, the svnserve.conf file can still be used
to block access, by simply setting auth-access = read or auth-access = none. 2

You'd think that the story of SSH tunneling would end here, but it doesn't. Subversion allows
you to create custom tunnel behaviors in your run-time config file (see the section called
“Runtime Configuration Area”). For example, suppose you want to use RSH instead of SSH3.
In the [tunnels] section of your config file, simply define it like this:

[tunnels]
rsh = rsh

And now, you can use this new tunnel definition by using a URL scheme that matches the
name of your new variable: svn+rsh://host/path. When using the new URL scheme, the
Subversion client will actually be running the command rsh host svnserve -t behind the
scenes. If you include a username in the URL (for example,

Server Configuration

150

svn+rsh://username@host/path) the client will also include that in its command (rsh
username@host svnserve -t). But you can define new tunneling schemes to be much more
clever than that:

[tunnels]
joessh = $JOESSH /opt/alternate/ssh -p 29934

This example demonstrates a couple of things. First, it shows how to make the Subversion cli-
ent launch a very specific tunneling binary (the one located at /opt/alternate/ssh) with
specific options. In this case, accessing a svn+joessh:// URL would invoke the particular
SSH binary with -p 29934 as arguments—useful if you want the tunnel program to connect to
a non-standard port.

Second, it shows how to define a custom environment variable that can override the name of
the tunneling program. Setting the SVN_SSH environment variable is a convenient way to over-
ride the default SSH tunnel agent. But if you need to have several different overrides for differ-
ent servers, each perhaps contacting a different port or passing a different set of options to
SSH, you can use the mechanism demonstrated in this example. Now if we were to set the
JOESSH environment variable, its value would override the entire value of the tunnel
variable—$JOESSH would be executed instead of /opt/alternate/ssh -p 29934.

SSH configuration tricks
It's not only possible to control the way in which the client invokes ssh, but also to control the
behavior of sshd on your server machine. In this section, we'll show how to control the exact
svnserve command executed by sshd, as well as how to have multiple users share a single
system account.

Initial setup

To begin, locate the home directory of the account you'll be using to launch svnserve. Make
sure the account has an SSH public/private keypair installed, and that the user can log in via
public-key authentication. Password authentication will not work, since all of the following SSH
tricks revolve around using the SSH authorized_keys file.

If it doesn't already exist, create the authorized_keys file (on Unix, typically
~/.ssh/authorized_keys). Each line in this file describes a public key that is allowed to
connect. The lines are typically of the form:

ssh-dsa AAAABtce9euch… user@example.com

The first field describes the type of key, the second field is the base64-encoded key itself, and
the third field is a comment. However, it's a lesser known fact that the entire line can be pre-
ceded by a command field:

command="program" ssh-dsa AAAABtce9euch… user@example.com

When the command field is set, the SSH daemon will run the named program instead of the
typical svnserve -t invocation that the Subversion client asks for. This opens the door to a
number of server-side tricks. In the following examples, we abbreviate the lines of the file as:

command="program" TYPE KEY COMMENT

Server Configuration

151

4They really hate doing that.

Controlling the invoked command

Because we can specify the executed server-side command, it's easy to name a specific svn-
serve binary to run and to pass it extra arguments:

command="/path/to/svnserve -t -r /virtual/root" TYPE KEY COMMENT

In this example, /path/to/svnserve might be a custom wrapper script around svnserve
which sets the umask (see the section called “Supporting Multiple Repository Access
Methods”). It also shows how to anchor svnserve in a virtual root directory, just as one often
does when running svnserve as a daemon process. This might be done either to restrict ac-
cess to parts of the system, or simply to relieve the user of having to type an absolute path in
the svn+ssh:// URL.

It's also possible to have multiple users share a single account. Instead of creating a separate
system account for each user, generate a public/private keypair for each person. Then place
each public key into the authorized_users file, one per line, and use the --tunnel-user
option:

command="svnserve -t --tunnel-user=harry" TYPE1 KEY1 harry@example.com
command="svnserve -t --tunnel-user=sally" TYPE2 KEY2 sally@example.com

This example allows both Harry and Sally to connect to the same account via public-key au-
thentication. Each of them has a custom command that will be executed; the --tunnel-user
option tells svnserve -t to assume that the named argument is the authenticated user. Without
--tunnel-user, it would appear as though all commits were coming from the one shared
system account.

A final word of caution: giving a user access to the server via public-key in a shared account
might still allow other forms of SSH access, even if you've set the command value in author-
ized_keys. For example, the user may still get shell access through SSH, or be able to per-
form X11 or general port-forwarding through your server. To give the user as little permission
as possible, you may want to specify a number of restrictive options immediately after the
command:

command="svnserve -t --tunnel-user=harry",no-port-forwarding,\
no-agent-forwarding,no-X11-forwarding,no-pty \
TYPE1 KEY1 harry@example.com

httpd, the Apache HTTP server
The Apache HTTP Server is a “heavy duty” network server that Subversion can leverage. Via
a custom module, httpd makes Subversion repositories available to clients via the WebDAV/
DeltaV protocol, which is an extension to HTTP 1.1 (see http://www.webdav.org/ for more in-
formation). This protocol takes the ubiquitous HTTP protocol that is the core of the World Wide
Web, and adds writing—specifically, versioned writing—capabilities. The result is a standard-
ized, robust system that is conveniently packaged as part of the Apache 2.0 software, is sup-
ported by numerous operating systems and third-party products, and doesn't require network
administrators to open up yet another custom port. 4 While an Apache-Subversion server has

Server Configuration

152

http://www.webdav.org/

more features than svnserve, it's also a bit more difficult to set up. With flexibility often comes
more complexity.

Much of the following discussion includes references to Apache configuration directives. While
some examples are given of the use of these directives, describing them in full is outside the
scope of this chapter. The Apache team maintains excellent documentation, publicly available
on their website at http://httpd.apache.org. For example, a general reference for the configura-
tion directives is located at http://httpd.apache.org/docs-2.0/mod/directives.html.

Also, as you make changes to your Apache setup, it is likely that somewhere along the way a
mistake will be made. If you are not already familiar with Apache's logging subsystem, you
should become aware of it. In your httpd.conf file are directives that specify the on-disk loc-
ations of the access and error logs generated by Apache (the CustomLog and ErrorLog dir-
ectives, respectively). Subversion's mod_dav_svn uses Apache's error logging interface as
well. You can always browse the contents of those files for information that might reveal the
source of a problem that is not clearly noticeable otherwise.

Why Apache 2?

If you're a system administrator, it's very likely that you're already running the Apache
web server and have some prior experience with it. At the time of writing, Apache 1.3 is
by far the most popular version of Apache. The world has been somewhat slow to up-
grade to the Apache 2.X series for various reasons: some people fear change, especially
changing something as critical as a web server. Other people depend on plug-in modules
that only work against the Apache 1.3 API, and are waiting for a 2.X port. Whatever the
reason, many people begin to worry when they first discover that Subversion's Apache
module is written specifically for the Apache 2 API.

The proper response to this problem is: don't worry about it. It's easy to run Apache 1.3
and Apache 2 side-by-side; simply install them to separate places, and use Apache 2 as
a dedicated Subversion server that runs on a port other than 80. Clients can access the
repository by placing the port number into the URL:

$ svn checkout http://host.example.com:7382/repos/project
…

Prerequisites
To network your repository over HTTP, you basically need four components, available in two
packages. You'll need Apache httpd 2.0, the mod_dav DAV module that comes with it, Sub-
version, and the mod_dav_svn filesystem provider module distributed with Subversion. Once
you have all of those components, the process of networking your repository is as simple as:

• getting httpd 2.0 up and running with the mod_dav module,

• installing the mod_dav_svn plugin to mod_dav, which uses Subversion's libraries to access
the repository, and

• configuring your httpd.conf file to export (or expose) the repository.

You can accomplish the first two items either by compiling httpd and Subversion from source
code, or by installing pre-built binary packages of them on your system. For the most up-

Server Configuration

153

http://httpd.apache.org
 http://httpd.apache.org/docs-2.0/mod/directives.html

to-date information on how to compile Subversion for use with the Apache HTTP Server, as
well as how to compile and configure Apache itself for this purpose, see the INSTALL file in
the top level of the Subversion source code tree.

Basic Apache Configuration
Once you have all the necessary components installed on your system, all that remains is the
configuration of Apache via its httpd.conf file. Instruct Apache to load the mod_dav_svn
module using the LoadModule directive. This directive must precede any other Subversion-re-
lated configuration items. If your Apache was installed using the default layout, your
mod_dav_svn module should have been installed in the modules subdirectory of the Apache
install location (often /usr/local/apache2). The LoadModule directive has a simple syn-
tax, mapping a named module to the location of a shared library on disk:

LoadModule dav_svn_module modules/mod_dav_svn.so

Note that if mod_dav was compiled as a shared object (instead of statically linked directly to
the httpd binary), you'll need a similar LoadModule statement for it, too. Be sure that it comes
before the mod_dav_svn line:

LoadModule dav_module modules/mod_dav.so
LoadModule dav_svn_module modules/mod_dav_svn.so

At a later location in your configuration file, you now need to tell Apache where you keep your
Subversion repository (or repositories). The Location directive has an XML-like notation,
starting with an opening tag, and ending with a closing tag, with various other configuration dir-
ectives in the middle. The purpose of the Location directive is to instruct Apache to do
something special when handling requests that are directed at a given URL or one of its chil-
dren. In the case of Subversion, you want Apache to simply hand off support for URLs that
point at versioned resources to the DAV layer. You can instruct Apache to delegate the hand-
ling of all URLs whose path portions (the part of the URL that follows the server's name and
the optional port number) begin with /repos/ to a DAV provider whose repository is located
at /absolute/path/to/repository using the following httpd.conf syntax:

<Location /repos>
DAV svn
SVNPath /absolute/path/to/repository

</Location>

If you plan to support multiple Subversion repositories that will reside in the same parent dir-
ectory on your local disk, you can use an alternative directive, the SVNParentPath directive,
to indicate that common parent directory. For example, if you know you will be creating mul-
tiple Subversion repositories in a directory /usr/local/svn that would be accessed via
URLs like http://my.server.com/svn/repos1, ht-
tp://my.server.com/svn/repos2, and so on, you could use the httpd.conf configura-
tion syntax in the following example:

<Location /svn>
DAV svn

any "/svn/foo" URL will map to a repository /usr/local/svn/foo
SVNParentPath /usr/local/svn

</Location>

Server Configuration

154

Using the previous syntax, Apache will delegate the handling of all URLs whose path portions
begin with /svn/ to the Subversion DAV provider, which will then assume that any items in
the directory specified by the SVNParentPath directive are actually Subversion repositories.
This is a particularly convenient syntax in that, unlike the use of the SVNPath directive, you
don't have to restart Apache in order to create and network new repositories.

Be sure that when you define your new Location, it doesn't overlap with other exported Loc-
ations. For example, if your main DocumentRoot is exported to /www, do not export a Subver-
sion repository in <Location /www/repos>. If a request comes in for the URI /
www/repos/foo.c, Apache won't know whether to look for a file repos/foo.c in the Docu-
mentRoot, or whether to delegate mod_dav_svn to return foo.c from the Subversion repos-
itory. The result is often an error from the server of the form 301 Moved Permanently.

Server Names and the COPY Request

Subversion makes use of the COPY request type to perform server-side copies of files
and directories. As part of the sanity checking done by the Apache modules, the source
of the copy is expected to be located on the same machine as the destination of the
copy. To satisfy this requirement, you might need to tell mod_dav the name you use as
the hostname of your server. Generally, you can use the ServerName directive in ht-
tpd.conf to accomplish this.

ServerName svn.example.com

If you are using Apache's virtual hosting support via the NameVirtualHost directive,
you may need to use the ServerAlias directive to specify additional names that your
server is known by. Again, refer to the Apache documentation for full details.

At this stage, you should strongly consider the question of permissions. If you've been running
Apache for some time now as your regular web server, you probably already have a collection
of content—web pages, scripts and such. These items have already been configured with a set
of permissions that allows them to work with Apache, or more appropriately, that allows
Apache to work with those files. Apache, when used as a Subversion server, will also need the
correct permissions to read and write to your Subversion repository.

You will need to determine a permission system setup that satisfies Subversion's requirements
without messing up any previously existing web page or script installations. This might mean
changing the permissions on your Subversion repository to match those in use by other things
that Apache serves for you, or it could mean using the User and Group directives in ht-
tpd.conf to specify that Apache should run as the user and group that owns your Subversion
repository. There is no single correct way to set up your permissions, and each administrator
will have different reasons for doing things a certain way. Just be aware that permission-re-
lated problems are perhaps the most common oversight when configuring a Subversion repos-
itory for use with Apache.

Authentication Options
At this point, if you configured httpd.conf to contain something like

<Location /svn>

Server Configuration

155

DAV svn
SVNParentPath /usr/local/svn

</Location>

…then your repository is “anonymously” accessible to the world. Until you configure some au-
thentication and authorization policies, the Subversion repositories you make available via the
Location directive will be generally accessible to everyone. In other words,

• anyone can use their Subversion client to check out a working copy of a repository URL (or
any of its subdirectories),

• anyone can interactively browse the repository's latest revision simply by pointing their web
browser to the repository URL, and

• anyone can commit to the repository.

Of course, you might have already set up a pre-commit hook script to prevent commits (see
the section called “Implementing Repository Hooks”). But as you read on, you'll see that it's
also possible use Apache's built-in methods to restrict access in specific ways.

Basic HTTP Authentication

The easiest way to authenticate a client is via the HTTP Basic authentication mechanism,
which simply uses a username and password to verify that a user is who she says she is.
Apache provides an htpasswd utility for managing the list of acceptable usernames and pass-
words. Let's grant commit access to Sally and Harry. First, we need to add them to the pass-
word file.

$ ### First time: use -c to create the file
$ ### Use -m to use MD5 encryption of the password, which is more secure
$ htpasswd -cm /etc/svn-auth-file harry
New password: *****
Re-type new password: *****
Adding password for user harry
$ htpasswd -m /etc/svn-auth-file sally
New password: *******
Re-type new password: *******
Adding password for user sally
$

Next, you need to add some more httpd.conf directives inside your Location block to tell
Apache what to do with your new password file. The AuthType directive specifies the type of
authentication system to use. In this case, we want to specify the Basic authentication sys-
tem. AuthName is an arbitrary name that you give for the authentication domain. Most
browsers will display this name in the pop-up dialog box when the browser is querying the user
for his name and password. Finally, use the AuthUserFile directive to specify the location of
the password file you created using htpasswd.

After adding these three directives, your <Location> block should look something like this:

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn
AuthType Basic

Server Configuration

156

5While self-signed server certificates are still vulnerable to a “man in the middle” attack, such an attack is much more
difficult for a casual observer to pull off, compared to sniffing unprotected passwords.

AuthName "Subversion repository"
AuthUserFile /etc/svn-auth-file

</Location>

This <Location> block is not yet complete, and will not do anything useful. It's merely telling
Apache that whenever authorization is required, Apache should harvest a username and pass-
word from the Subversion client. What's missing here, however, are directives that tell Apache
which sorts of client requests require authorization. Wherever authorization is required,
Apache will demand authentication as well. The simplest thing to do is protect all requests.
Adding Require valid-user tells Apache that all requests require an authenticated user:

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn
AuthType Basic
AuthName "Subversion repository"
AuthUserFile /etc/svn-auth-file
Require valid-user

</Location>

Be sure to read the next section (the section called “Authorization Options”) for more detail on
the Require directive and other ways to set authorization policies.

One word of warning: HTTP Basic Auth passwords pass in very nearly plain-text over the net-
work, and thus are extremely insecure. If you're worried about password snooping, it may be
best to use some sort of SSL encryption, so that clients authenticate via https:// instead of
http://; at a bare minimum, you can configure Apache to use a self-signed server certificate.
5 Consult Apache's documentation (and OpenSSL documentation) about how to do that.

SSL Certificate Management

Businesses that need to expose their repositories for access outside the company firewall
should be conscious of the possibility that unauthorized parties could be “sniffing” their network
traffic. SSL makes that kind of unwanted attention less likely to result in sensitive data leaks.

If a Subversion client is compiled to use OpenSSL, then it gains the ability to speak to an
Apache server via https:// URLs. The Neon library used by the Subversion client is not only
able to verify server certificates, but can also supply client certificates when challenged. When
the client and server have exchanged SSL certificates and successfully authenticated one an-
other, all further communication is encrypted via a session key.

It's beyond the scope of this book to describe how to generate client and server certificates,
and how to configure Apache to use them. Many other books, including Apache's own docu-
mentation, describe this task. But what can be covered here is how to manage server and cli-
ent certificates from an ordinary Subversion client.

When speaking to Apache via https://, a Subversion client can receive two different types
of information:

• a server certificate

• a demand for a client certificate

Server Configuration

157

If the client receives a server certificate, it needs to verify that it trusts the certificate: is the
server really who it claims to be? The OpenSSL library does this by examining the signer of
the server certificate, or certifying authority (CA). If OpenSSL is unable to automatically trust
the CA, or if some other problem occurs (such as an expired certificate or hostname mis-
match), the Subversion command-line client will ask you whether you want to trust the server
certificate anyway:

$ svn list https://host.example.com/repos/project

Error validating server certificate for 'https://host.example.com:443':
- The certificate is not issued by a trusted authority. Use the
fingerprint to validate the certificate manually!

Certificate information:
- Hostname: host.example.com
- Valid: from Jan 30 19:23:56 2004 GMT until Jan 30 19:23:56 2006 GMT
- Issuer: CA, example.com, Sometown, California, US
- Fingerprint: 7d:e1:a9:34:33:39:ba:6a:e9:a5:c4:22:98:7b:76:5c:92:a0:9c:7b

(R)eject, accept (t)emporarily or accept (p)ermanently?

This dialogue should look familiar; it's essentially the same question you've probably seen
coming from your web browser (which is just another HTTP client like Subversion). If you
choose the (p)ermanent option, the server certificate will be cached in your private run-time
auth/ area in just the same way your username and password are cached (see the section
called “Client Credentials Caching”). If cached, Subversion will automatically trust this certific-
ate in future negotiations.

Your run-time servers file also gives you the ability to make your Subversion client automat-
ically trust specific CAs, either globally or on a per-host basis. Simply set the ssl-au-
thority-files variable to a semicolon-separated list of PEM-encoded CA certificates:

[global]
ssl-authority-files = /path/to/CAcert1.pem;/path/to/CAcert2.pem

Many OpenSSL installations also have a pre-defined set of “default” CAs that are nearly uni-
versally trusted. To make the Subversion client automatically trust these standard authorities,
set the ssl-trust-default-ca variable to true.

When talking to Apache, a Subversion client might also receive a challenge for a client certific-
ate. Apache is asking the client to identify itself: is the client really who it says it is? If all goes
correctly, the Subversion client sends back a private certificate signed by a CA that Apache
trusts. A client certificate is usually stored on disk in encrypted format, protected by a local
password. When Subversion receives this challenge, it will ask you for both a path to the certi-
ficate and the password which protects it:

$ svn list https://host.example.com/repos/project

Authentication realm: https://host.example.com:443
Client certificate filename: /path/to/my/cert.p12
Passphrase for '/path/to/my/cert.p12': ********
…

Notice that the client certificate is a “p12” file. To use a client certificate with Subversion, it
must be in PKCS#12 format, which is a portable standard. Most web browsers are already

Server Configuration

158

6More security-conscious folk might not want to store the client certificate password in the runtime servers file.

able to import and export certificates in that format. Another option is to use the OpenSSL
command-line tools to convert existing certificates into PKCS#12.

Again, the runtime servers file allows you to automate this challenge on a per-host basis.
Either or both pieces of information can be described in runtime variables:

[groups]
examplehost = host.example.com

[examplehost]
ssl-client-cert-file = /path/to/my/cert.p12
ssl-client-cert-password = somepassword

Once you've set the ssl-client-cert-file and ssl-client-cert-password vari-
ables, the Subversion client can automatically respond to a client certificate challenge without
prompting you. 6

Authorization Options
At this point, you've configured authentication, but not authorization. Apache is able to chal-
lenge clients and confirm identities, but it has not been told how to allow or restrict access to
the clients bearing those identities. This section describes two strategies for controlling access
to your repositories.

Blanket Access Control

The simplest form of access control is to authorize certain users for either read-only access to
a repository, or read/write access to a repository.

You can restrict access on all repository operations by adding the Require valid-user dir-
ective to your <Location> block. Using our previous example, this would mean that only cli-
ents that claimed to be either harry or sally, and provided the correct password for their re-
spective username, would be allowed to do anything with the Subversion repository:

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn

how to authenticate a user
AuthType Basic
AuthName "Subversion repository"
AuthUserFile /path/to/users/file

only authenticated users may access the repository
Require valid-user

</Location>

Sometimes you don't need to run such a tight ship. For example, Subversion's own source
code repository at http://svn.collab.net/repos/svn allows anyone in the world to perform read-
only repository tasks (like checking out working copies and browsing the repository with a web
browser), but restricts all write operations to authenticated users. To do this type of selective
restriction, you can use the Limit and LimitExcept configuration directives. Like the Loca-
tion directive, these blocks have starting and ending tags, and you would nest them inside

Server Configuration

159

http://svn.collab.net/repos/svn

your <Location> block.

The parameters present on the Limit and LimitExcept directives are HTTP request types
that are affected by that block. For example, if you wanted to disallow all access to your repos-
itory except the currently supported read-only operations, you would use the LimitExcept
directive, passing the GET, PROPFIND, OPTIONS, and REPORT request type parameters. Then
the previously mentioned Require valid-user directive would be placed inside the
<LimitExcept> block instead of just inside the <Location> block.

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn

how to authenticate a user
AuthType Basic
AuthName "Subversion repository"
AuthUserFile /path/to/users/file

For any operations other than these, require an authenticated user.
<LimitExcept GET PROPFIND OPTIONS REPORT>
Require valid-user

</LimitExcept>
</Location>

These are only a few simple examples. For more in-depth information about Apache access
control and the Require directive, take a look at the Security section of the Apache docu-
mentation's tutorials collection at http://httpd.apache.org/docs-2.0/misc/tutorials.html.

Per-Directory Access Control

It's possible to set up finer-grained permissions using a second Apache httpd module,
mod_authz_svn. This module grabs the various opaque URLs passing from client to server,
asks mod_dav_svn to decode them, and then possibly vetoes requests based on access
policies defined in a configuration file.

If you've built Subversion from source code, mod_authz_svn is automatically built and in-
stalled alongside mod_dav_svn. Many binary distributions install it automatically as well. To
verify that it's installed correctly, make sure it comes right after mod_dav_svn's LoadModule
directive in httpd.conf:

LoadModule dav_module modules/mod_dav.so
LoadModule dav_svn_module modules/mod_dav_svn.so
LoadModule authz_svn_module modules/mod_authz_svn.so

To activate this module, you need to configure your Location block to use the AuthzSVNAc-
cessFile directive, which specifies a file containing the permissions policy for paths within
your repositories. (In a moment, we'll discuss the format of that file.)

Apache is flexible, so you have the option to configure your block in one of three general pat-
terns. To begin, choose one of these basic configuration patterns. (The examples below are
very simple; look at Apache's own documentation for much more detail on Apache authentica-
tion and authorization options.)

The simplest block is to allow open access to everyone. In this scenario, Apache never sends
authentication challenges, so all users are treated as “anonymous”.

Server Configuration

160

http://httpd.apache.org/docs-2.0/misc/tutorials.html

Example 6.1. A sample configuration for anonymous access.

<Location /repos>
DAV svn
SVNParentPath /usr/local/svn

our access control policy
AuthzSVNAccessFile /path/to/access/file

</Location>

On the opposite end of the paranoia scale, you can configure your block to demand authentic-
ation from everyone. All clients must supply credentials to identify themselves. Your block un-
conditionally requires authentication via the Require valid-user directive, and defines a
means to authenticate.

Example 6.2. A sample configuration for authenticated access.

<Location /repos>
DAV svn
SVNParentPath /usr/local/svn

our access control policy
AuthzSVNAccessFile /path/to/access/file

only authenticated users may access the repository
Require valid-user

how to authenticate a user
AuthType Basic
AuthName "Subversion repository"
AuthUserFile /path/to/users/file

</Location>

A third very popular pattern is to allow a combination of authenticated and anonymous access.
For example, many administrators want to allow anonymous users to read certain repository
directories, but want only authenticated users to read (or write) more sensitive areas. In this
setup, all users start out accessing the repository anonymously. If your access control policy
demands a real username at any point, Apache will demand authentication from the client. To
do this, you use both the Satisfy Any and Require valid-user directives together.

Example 6.3. A sample configuration for mixed authenticated/anonymous
access.

<Location /repos>
DAV svn
SVNParentPath /usr/local/svn

Server Configuration

161

our access control policy
AuthzSVNAccessFile /path/to/access/file

try anonymous access first, resort to real
authentication if necessary.
Satisfy Any
Require valid-user

how to authenticate a user
AuthType Basic
AuthName "Subversion repository"
AuthUserFile /path/to/users/file

</Location>

Once you've settled on one of these three basic httpd.conf templates, you need to create
your file containing access rules for particular paths within the repository. This is described in
the section called “Path-Based Authorization”.

Disabling Path-based Checks

The mod_dav_svn module goes through a lot of work to make sure that data you've marked
“unreadable” doesn't get accidentally leaked. This means that it needs to closely monitor all of
the paths and file-contents returned by commands like svn checkout or svn update com-
mands. If these commands encounter a path that isn't readable according to some authoriza-
tion policy, then the path is typically omitted altogether. In the case of history or rename tra-
cing—e.g. running a command like svn cat -r OLD foo.c on a file that was renamed long
ago—the rename tracking will simply halt if one of the object's former names is determined to
be read-restricted.

All of this path-checking can sometimes be quite expensive, especially in the case of svn log.
When retrieving a list of revisions, the server looks at every changed path in each revision and
checks it for readability. If an unreadable path is discovered, then it's omitted from the list of
the revision's changed paths (normally seen with the --verbose option), and the whole log
message is suppressed. Needless to say, this can be time-consuming on revisions that affect
a large number of files. This is the cost of security: even if you haven't configured a module like
mod_authz_svn at all, the mod_dav_svn module is still asking Apache httpd to run authoriz-
ation checks on every path. The mod_dav_svn module has no idea what authorization mod-
ules have been installed, so all it can do is ask Apache to invoke whatever might be present.

On the other hand, there's also an escape-hatch of sorts, one which allows you to trade secur-
ity features for speed. If you're not enforcing any sort of per-directory authorization (i.e. not us-
ing mod_authz_svn or similar module), then you can disable all of this path-checking. In your
httpd.conf file, use the SVNPathAuthz directive:

Example 6.4. Disabling path checks altogether

<Location /repos>
DAV svn
SVNParentPath /usr/local/svn

SVNPathAuthz off
</Location>

Server Configuration

162

7Back then, it was called “ViewCVS”.

The SVNPathAuthz directive is “on” by default. When set “off”, all path-based authorization
checking is disabled; mod_dav_svn stops invoking authorization checks on every path it dis-
covers.

Extra Goodies
We've covered most of the authentication and authorization options for Apache and
mod_dav_svn. But there are a few other nice features that Apache provides.

Repository Browsing

One of the most useful benefits of an Apache/WebDAV configuration for your Subversion re-
pository is that the youngest revisions of your versioned files and directories are immediately
available for viewing via a regular web browser. Since Subversion uses URLs to identify ver-
sioned resources, those URLs used for HTTP-based repository access can be typed directly
into a Web browser. Your browser will issue an HTTP GET request for that URL, and based on
whether that URL represents a versioned directory or file, mod_dav_svn will respond with a
directory listing or with file contents.

Since the URLs do not contain any information about which version of the resource you wish to
see, mod_dav_svn will always answer with the youngest version. This functionality has the
wonderful side-effect that you can pass around Subversion URLs to your peers as references
to documents, and those URLs will always point at the latest manifestation of that document.
Of course, you can even use the URLs as hyperlinks from other web sites, too.

Can I view older revisions?

With an ordinary web browser? In one word: nope. At least, not with mod_dav_svn as
your only tool.

Your web browser only speaks ordinary HTTP. That means it only knows how to GET
public URLs, which represent the latest versions of files and directories. According to the
WebDAV/DeltaV specification, each server defines a private URL syntax for older ver-
sions of resources, and that syntax is opaque to clients. To find an older version of a file,
a client must follow a specific procedure to “discover” the proper URL; the procedure in-
volves issuing a series of WebDAV PROPFIND requests and understanding DeltaV con-
cepts. This is something your web browser simply can't do.

So to answer the question, one obvious way to see older revisions of files and directories
is by passing the --revision (-r) argument to the svn list and svn cat commands.
To browse old revisions with your web browser, however, you can use third-party soft-
ware. A good example of this is ViewVC (http://viewvc.tigris.org/). ViewVC was originally
written to display CVS repositories through the web, 7 and the latest releases are able to
understand Subversion repositories as well.

Proper MIME Type

When browsing a Subversion repository, the web browser gets a clue about how to render a
file's contents by looking at the Content-Type: header returned in Apache's response to the
HTTP GET request. The value of this header is some sort of MIME type. By default, Apache
will tell the web browsers that all repository files are of the “default” MIME type, typically text/
plain. This can be frustrating, however, if a user wishes repository files to render as

Server Configuration

163

http://viewvc.tigris.org/

something more meaningful—for example, it might be nice to have a foo.html file in the re-
pository actually render as HTML when browsing.

To make this happen, you only need to make sure that your files have the proper
svn:mime-type set. This is discussed in more detail in the section called “File Content
Type”, and you can even configure your client to automatically attach proper svn:mime-type
properties to files entering the repository for the first time; see the section called “Automatic
Property Setting”.

So in our example, if one were to set the svn:mime-type property to text/html on file
foo.html, then Apache would properly tell your web browser to render the file as HTML. One
could also attach proper image/* mime-type properties to images, and by doing this, ulti-
mately get an entire web site to be viewable directly from a repository! There's generally no
problem with doing this, as long as the website doesn't contain any dynamically-generated
content.

Customizing the Look

You generally will get more use out of URLs to versioned files—after all, that's where the inter-
esting content tends to lie. But you might have occasion to browse a Subversion directory list-
ing, where you'll quickly note that the generated HTML used to display that listing is very basic,
and certainly not intended to be aesthetically pleasing (or even interesting). To enable custom-
ization of these directory displays, Subversion provides an XML index feature. A single
SVNIndexXSLT directive in your repository's Location block of httpd.conf will instruct
mod_dav_svn to generate XML output when displaying a directory listing, and to reference the
XSLT stylesheet of your choice:

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn
SVNIndexXSLT "/svnindex.xsl"
…

</Location>

Using the SVNIndexXSLT directive and a creative XSLT stylesheet, you can make your direct-
ory listings match the color schemes and imagery used in other parts of your website. Or, if
you'd prefer, you can use the sample stylesheets provided in the Subversion source distribu-
tion's tools/xslt/ directory. Keep in mind that the path provided to the SVNIndexXSLT dir-
ectory is actually a URL path—browsers need to be able to read your stylesheets in order to
make use of them!

Listing Repositories

If you're serving a collection of repositories from a single URL via the SVNParentPath direct-
ive, then it's also possible to have Apache display all available repositories to a web browser.
Just activate the SVNListParentPath directive:

<Location /svn>
DAV svn
SVNParentPath /usr/local/svn
SVNListParentPath on
…

</Location>

If a user now points her web browser to the URL http://host.example.com/svn/, she'll
see list of all Subversion repositories sitting in /usr/local/svn. Obviously, this can be a se-

Server Configuration

164

curity problem, so this feature is turned off by default.

Apache Logging

Because Apache is an HTTP server at heart, it contains fantastically flexible logging features.
It's beyond the scope of this book to discuss all ways logging can be configured, but we should
point out that even the most generic httpd.conf file will cause Apache to produce two logs:
error_log and access_log. These logs may appear in different places, but are typically
created in the logging area of your Apache installation. (On Unix, they often live in /
usr/local/apache2/logs/.)

The error_log describes any internal errors that Apache runs into as it works. The ac-
cess_log file records every incoming HTTP request received by Apache. This makes it easy
to see, for example, which IP addresses Subversion clients are coming from, how often partic-
ular clients use the server, which users are authenticating properly, and which requests suc-
ceed or fail.

Unfortunately, because HTTP is a stateless protocol, even the simplest Subversion client oper-
ation generates multiple network requests. It's very difficult to look at the access_log and de-
duce what the client was doing—most operations look like a series of cryptic PROPPATCH, GET,
PUT, and REPORT requests. To make things worse, many client operations send nearly-
identical series of requests, so it's even harder to tell them apart.

mod_dav_svn, however, can come to your aid. By activating an “operational logging” feature,
you can ask mod_dav_svn to create a separate log file describing what sort of high-level op-
erations your clients are performing.

To do this, you need to make use of Apache's CustomLog directive (which is explained in
more detail in Apache's own documentation). Be sure to invoke this directive outside of your
Subversion Location block:

<Location /svn>
DAV svn
…

</Location>

CustomLog logs/svn_logfile "%t %u %{SVN-ACTION}e" env=SVN-ACTION

In this example, we're asking Apache to create a special logfile svn_logfile in the standard
Apache logs directory. The %t and %u variables are replaced by the time and username of
the request, respectively. The really important part are the two instances of SVN-ACTION.
When Apache sees that variable, it substitutes the value of the SVN-ACTION environment vari-
able, which is automatically set by mod_dav_svn whenever it detects a high-level client ac-
tion.

So instead of having to interpret a traditional access_log like this:

[26/Jan/2007:22:25:29 -0600] "PROPFIND /svn/calc/!svn/vcc/default HTTP/1.1" 207 398
[26/Jan/2007:22:25:29 -0600] "PROPFIND /svn/calc/!svn/bln/59 HTTP/1.1" 207 449
[26/Jan/2007:22:25:29 -0600] "PROPFIND /svn/calc HTTP/1.1" 207 647
[26/Jan/2007:22:25:29 -0600] "REPORT /svn/calc/!svn/vcc/default HTTP/1.1" 200 607
[26/Jan/2007:22:25:31 -0600] "OPTIONS /svn/calc HTTP/1.1" 200 188
[26/Jan/2007:22:25:31 -0600] "MKACTIVITY /svn/calc/!svn/act/e6035ef7-5df0-4ac0-b811-4be7c823f998 HTTP/1.1" 201 227
…

… you can instead peruse a much more intelligible svn_logfile like this:

Server Configuration

165

[26/Jan/2007:22:24:20 -0600] - list-dir '/'
[26/Jan/2007:22:24:27 -0600] - update '/'
[26/Jan/2007:22:25:29 -0600] - remote-status '/'
[26/Jan/2007:22:25:31 -0600] sally commit r60

Other Features

Several of the features already provided by Apache in its role as a robust Web server can be
leveraged for increased functionality or security in Subversion as well. Subversion communic-
ates with Apache using Neon, which is a generic HTTP/WebDAV library with support for such
mechanisms as SSL (the Secure Socket Layer, discussed earlier). If your Subversion client is
built to support SSL, then it can access your Apache server using https://.

Equally useful are other features of the Apache and Subversion relationship, such as the ability
to specify a custom port (instead of the default HTTP port 80) or a virtual domain name by
which the Subversion repository should be accessed, or the ability to access the repository
through an HTTP proxy. These things are all supported by Neon, so Subversion gets that sup-
port for free.

Finally, because mod_dav_svn is speaking a subset of the WebDAV/DeltaV protocol, it's pos-
sible to access the repository via third-party DAV clients. Most modern operating systems
(Win32, OS X, and Linux) have the built-in ability to mount a DAV server as a standard net-
work share. This is a complicated topic; for details, read Appendix C, WebDAV and Autover-
sioning.

Path-Based Authorization
Both Apache and svnserve are capable of granting (or denying) permissions to users. Typic-
ally this is done over the entire repository: a user can read the repository (or not), and she can
write to the repository (or not). It's also possible, however, to define finer-grained access rules.
One set of users may have permission to write to a certain directory in the repository, but not
others; another directory might not even be readable by all but a few special people.

Both servers use a common file format to describe these path-based access rules. In the case
of Apache, one needs to load the mod_authz_svn module and then add the AuthzSVNAc-
cessFile directive (within the httpd.conf file) pointing to your own rules-file. (For a full ex-
planation, see the section called “Per-Directory Access Control”.) If you're using svnserve,
then you need to make the authz-db variable (within svnserve.conf) point to your rules-
file.

Do you really need path-based access control?

A lot of administrators setting up Subversion for the first time tend to jump into path-
based access control without giving it a lot of thought. The administrator usually knows
which teams of people are working on which projects, so it's easy to jump in and grant
certain teams access to certain directories and not others. It seems like a natural thing,
and it appeases the administrator's desire to maintain tight control of the repository.

Note, though, that there are often invisible (and visible!) costs associated with this fea-
ture. In the visible category, the server needs to do a lot more work to ensure that the
user has the right to read or write each specific path; in certain situations, there's very no-
ticeable performance loss. In the invisible category, consider the culture you're creating.
Most of the time, while certain users shouldn't be committing changes to certain parts of

Server Configuration

166

8A common theme in this book!

the repository, that social contract doesn't need to be technologically enforced. Teams
can sometimes spontaneously collaborate with each other; someone may want to help
someone else out by committing to an area she doesn't normally work on. By preventing
this sort of thing at the server level, you're setting up barriers to unexpected collaboration.
You're also creating a bunch of rules that need to be maintained as projects develop,
new users are added, and so on. It's a bunch of extra work to maintain.

Remember that this is a version control system! Even if somebody accidentally commits
a change to something they shouldn't, it's easy to undo the change. And if a user com-
mits to the wrong place with deliberate malice, then it's a social problem anyway, and that
the problem needs to be dealt with outside of Subversion.

So before you begin restricting users' access rights, ask yourself if there's a real, honest
need for this, or if it's just something that “sounds good” to an administrator. Decide
whether it's worth sacrificing some server speed for, and remember that there's very little
risk involved; it's bad to become dependent on technology as a crutch for social prob-
lems.8.

As an example to ponder, consider that the Subversion project itself has always had a
notion of who is allowed to commit where, but it's always been enforced socially. This is a
good model of community trust, especially for open-source projects. Of course, some-
times there are truly legitimate needs for path-based access control; within corporations,
for example, certain types of data really can be sensitive, and access needs to be genu-
inely restricted to small groups of people.

Once your server knows where to find your rules-file, it's time to define the rules.

The syntax of the file is the same familiar one used by svnserve.conf and the runtime config-
uration files. Lines that start with a hash (#) are ignored. In its simplest form, each section
names a repository and path within it, and the authenticated usernames are the option names
within each section. The value of each option describes the user's level of access to the repos-
itory path: either r (read-only) or rw (read-write). If the user is not mentioned at all, no access
is allowed.

To be more specific: the value of the section-names are either of the form
[repos-name:path] or the form [path]. If you're using the SVNParentPath directive,
then it's important to specify the repository names in your sections. If you omit them, then a
section like [/some/dir] will match the path /some/dir in every repository. If you're using
the SVNPath directive, however, then it's fine to only define paths in your sections—after all,
there's only one repository.

[calc:/branches/calc/bug-142]
harry = rw
sally = r

In this first example, the user harry has full read and write access on the /
branches/calc/bug-142 directory in the calc repository, but the user sally has read-
only access. Any other users are blocked from accessing this directory.

Of course, permissions are inherited from parent to child directory. That means that we can
specify a subdirectory with a different access policy for Sally:

Server Configuration

167

[calc:/branches/calc/bug-142]
harry = rw
sally = r

give sally write access only to the 'testing' subdir
[calc:/branches/calc/bug-142/testing]
sally = rw

Now Sally can write to the testing subdirectory of the branch, but can still only read other
parts. Harry, meanwhile, continues to have complete read-write access to the whole branch.

It's also possible to explicitly deny permission to someone via inheritance rules, by setting the
username variable to nothing:

[calc:/branches/calc/bug-142]
harry = rw
sally = r

[calc:/branches/calc/bug-142/secret]
harry =

In this example, Harry has read-write access to the entire bug-142 tree, but has absolutely no
access at all to the secret subdirectory within it.

The thing to remember is that the most specific path always matches first. The server tries to
match the path itself, and then the parent of the path, then the parent of that, and so on. The
net effect is that mentioning a specific path in the accessfile will always override any permis-
sions inherited from parent directories.

By default, nobody has any access to the repository at all. That means that if you're starting
with an empty file, you'll probably want to give at least read permission to all users at the root
of the repository. You can do this by using the asterisk variable (*), which means “all users”:

[/]
* = r

This is a common setup; notice that there's no repository name mentioned in the section name.
This makes all repositories world readable to all users. Once all users have read-access to the
repositories, you can give explicit rw permission to certain users on specific subdirectories
within specific repositories.

The asterisk variable (*) is also worth special mention here: it's the only pattern which matches
an anonymous user. If you've configured your server block to allow a mixture of anonymous
and authenticated access, all users start out accessing anonymously. The server looks for a *
value defined for the path being accessed; if it can't find one, then it demands real authentica-
tion from the client.

The access file also allows you to define whole groups of users, much like the Unix /
etc/group file:

[groups]
calc-developers = harry, sally, joe
paint-developers = frank, sally, jane
everyone = harry, sally, joe, frank, sally, jane

Server Configuration

168

Groups can be granted access control just like users. Distinguish them with an “at” (@) prefix:

[calc:/projects/calc]
@calc-developers = rw

[paint:/projects/paint]
@paint-developers = rw
jane = r

Groups can also be defined to contain other groups:

[groups]
calc-developers = harry, sally, joe
paint-developers = frank, sally, jane
everyone = @calc-developers, @paint-developers

Partial Readability and Checkouts

If you're using Apache as your Subversion server and have made certain subdirectories
of your repository unreadable to certain users, then you need to be aware of a possible
non-optimal behavior with svn checkout.

When the client requests a checkout or update over HTTP, it makes a single server re-
quest, and receives a single (often large) server response. When the server receives the
request, that is the only opportunity Apache has to demand user authentication. This has
some odd side-effects. For example, if a certain subdirectory of the repository is only
readable by user Sally, and user Harry checks out a parent directory, his client will re-
spond to the initial authentication challenge as Harry. As the server generates the large
response, there's no way it can re-send an authentication challenge when it reaches the
special subdirectory; thus the subdirectory is skipped altogether, rather than asking the
user to re-authenticate as Sally at the right moment. In a similar way, if the root of the re-
pository is anonymously world-readable, then the entire checkout will be done without au-
thentication—again, skipping the unreadable directory, rather than asking for authentica-
tion partway through.

Supporting Multiple Repository Access Meth-
ods

You've seen how a repository can be accessed in many different ways. But is it possible—or
safe—for your repository to be accessed by multiple methods simultaneously? The answer is
yes, provided you use a bit of foresight.

At any given time, these processes may require read and write access to your repository:

• regular system users using a Subversion client (as themselves) to access the repository dir-
ectly via file:// URLs;

• regular system users connecting to SSH-spawned private svnserve processes (running as

Server Configuration

169

themselves) which access the repository;

• an svnserve process—either a daemon or one launched by inetd—running as a particular
fixed user;

• an Apache httpd process, running as a particular fixed user.

The most common problem administrators run into is repository ownership and permissions.
Does every process (or user) in the previous list have the rights to read and write the Berkeley
DB files? Assuming you have a Unix-like operating system, a straightforward approach might
be to place every potential repository user into a new svn group, and make the repository
wholly owned by that group. But even that's not enough, because a process may write to the
database files using an unfriendly umask—one that prevents access by other users.

So the next step beyond setting up a common group for repository users is to force every re-
pository-accessing process to use a sane umask. For users accessing the repository directly,
you can make the svn program into a wrapper script that first sets umask 002 and then runs
the real svn client program. You can write a similar wrapper script for the svnserve program,
and add a umask 002 command to Apache's own startup script, apachectl. For example:

$ cat /usr/bin/svn

#!/bin/sh

umask 002
/usr/bin/svn-real "$@"

Another common problem is often encountered on Unix-like systems. As a repository is used,
Berkeley DB occasionally creates new log files to journal its actions. Even if the repository is
wholly owned by the svn group, these newly created files won't necessarily be owned by that
same group, which then creates more permissions problems for your users. A good work-
around is to set the group SUID bit on the repository's db directory. This causes all newly-
created log files to have the same group owner as the parent directory.

Once you've jumped through these hoops, your repository should be accessible by all the ne-
cessary processes. It may seem a bit messy and complicated, but the problems of having mul-
tiple users sharing write-access to common files are classic ones that are not often elegantly
solved.

Fortunately, most repository administrators will never need to have such a complex configura-
tion. Users who wish to access repositories that live on the same machine are not limited to
using file:// access URLs—they can typically contact the Apache HTTP server or svn-
serve using localhost for the server name in their http:// or svn:// URLs. And to main-
tain multiple server processes for your Subversion repositories is likely to be more of a head-
ache than necessary. We recommend you choose the server that best meets your needs and
stick with it!

The svn+ssh:// server checklist

It can be quite tricky to get a bunch of users with existing SSH accounts to share a repos-
itory without permissions problems. If you're confused about all the things that you (as an
administrator) need to do on a Unix-like system, here's a quick checklist that resummar-
izes some of things discussed in this section:

Server Configuration

170

• All of your SSH users need to be able to read and write to the repository, so: put all the
SSH users into a single group.

• Make the repository wholly owned by that group.

• Set the group permissions to read/write.

• Your users need to use a sane umask when accessing the repository, so: make sure
that svnserve (/usr/bin/svnserve, or wherever it lives in $PATH) is actually a
wrapper script which sets umask 002 and executes the real svnserve binary.

• Take similar measures when using svnlook and svnadmin. Either run them with a
sane umask, or wrap them as described above.

Server Configuration

171

1The APPDATA environment variable points to the Application Data area, so you can always refer to this folder as
%APPDATA%\Subversion.

Chapter 7. Customizing Your
Subversion Experience

Version control can be a complex subject, as much art as science, and offering myriad ways of
getting stuff done. Throughout this book you've read of the various Subversion command-line
client subcommands and the options which modify their behavior. In this chapter, we'll look into
still more ways to customize the way Subversion works for you—setting up the Subversion
runtime configuration, using external helper applications, Subversion's interaction with the op-
erating system's configured locale, and so on.

Runtime Configuration Area
Subversion provides many optional behaviors that can be controlled by the user. Many of
these options are of the kind that a user would wish to apply to all Subversion operations. So,
rather than forcing users to remember command-line arguments for specifying these options,
and to use them for every operation they perform, Subversion uses configuration files, segreg-
ated into a Subversion configuration area.

The Subversion configuration area is a two-tiered hierarchy of option names and their values.
Usually, this boils down to a special directory that contains configuration files (the first tier),
which are just text files in standard INI format (with “sections” providing the second tier). These
files can be easily edited using your favorite text editor (such as Emacs or vi), and contain dir-
ectives read by the client to determine which of several optional behaviors the user prefers.

Configuration Area Layout
The first time that the svn command-line client is executed, it creates a per-user configuration
area. On Unix-like systems, this area appears as a directory named .subversion in the
user's home directory. On Win32 systems, Subversion creates a folder named Subversion,
typically inside the Application Data area of the user's profile directory (which, by the way,
is usually a hidden directory). However, on this platform the exact location differs from system
to system, and is dictated by the Windows registry. 1 We will refer to the per-user configuration
area using its Unix name, .subversion.

In addition to the per-user configuration area, Subversion also recognizes the existence of a
system-wide configuration area. This gives system administrators the ability to establish de-
faults for all users on a given machine. Note that the system-wide configuration area does not
alone dictate mandatory policy—the settings in the per-user configuration area override those
in the system-wide one, and command-line arguments supplied to the svn program have the
final word on behavior. On Unix-like platforms, the system-wide configuration area is expected
to be the /etc/subversion directory; on Windows machines, it looks for a Subversion dir-
ectory inside the common Application Data location (again, as specified by the Windows
Registry). Unlike the per-user case, the svn program does not attempt to create the system-
wide configuration area.

The per-user configuration area currently contains three files—two configuration files (config
and servers), and a README.txt file which describes the INI format. At the time of their cre-
ation, the files contain default values for each of the supported Subversion options, mostly
commented out and grouped with textual descriptions about how the values for the key affect
Subversion's behavior. To change a certain behavior, you need only to load the appropriate

172

configuration file into a text editor, and modify the desired option's value. If at any time you
wish to have the default configuration settings restored, you can simply remove (or rename)
your configuration directory and then run some innocuous svn command, such as svn -
-version. A new configuration directory with the default contents will be created.

The per-user configuration area also contains a cache of authentication data. The auth direct-
ory holds a set of subdirectories that contain pieces of cached information used by Subver-
sion's various supported authentication methods. This directory is created in such a way that
only the user herself has permission to read its contents.

Configuration and the Windows Registry
In addition to the usual INI-based configuration area, Subversion clients running on Windows
platforms may also use the Windows registry to hold the configuration data. The option names
and their values are the same as in the INI files. The “file/section” hierarchy is preserved as
well, though addressed in a slightly different fashion—in this schema, files and sections are
just levels in the registry key tree.

Subversion looks for system-wide configuration values under the
HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion key. For example, the
global-ignores option, which is in the miscellany section of the config file, would be
found at
HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion\Config\Miscellany\gl
obal-ignores. Per-user configuration values should be stored under
HKEY_CURRENT_USER\Software\Tigris.org\Subversion.

Registry-based configuration options are parsed before their file-based counterparts, so are
overridden by values found in the configuration files. In other words, Subversion looks for con-
figuration information in the following locations on a Windows system; lower-numbered loca-
tions take precedence over higher-numbered locations:

1. Command-line options

2. The per-user INI files

3. The per-user Registry values

4. The system-wide INI files

5. The system-wide Registry values

Also, the Windows Registry doesn't really support the notion of something being “commented
out”. However, Subversion will ignore any option key whose name begins with a hash (#) char-
acter. This allows you to effectively comment out a Subversion option without deleting the en-
tire key from the Registry, obviously simplifying the process of restoring that option.

The svn command-line client never attempts to write to the Windows Registry, and will not at-
tempt to create a default configuration area there. You can create the keys you need using the
REGEDIT program. Alternatively, you can create a .reg file, and then double-click on that file
from the Explorer shell, which will cause the data to be merged into your registry.

Example 7.1. Sample Registration Entries (.reg) File.

Customizing Your Subversion Experience

173

REGEDIT4

[HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion\Servers\groups]

[HKEY_LOCAL_MACHINE\Software\Tigris.org\Subversion\Servers\global]
"#http-proxy-host"=""
"#http-proxy-port"=""
"#http-proxy-username"=""
"#http-proxy-password"=""
"#http-proxy-exceptions"=""
"#http-timeout"="0"
"#http-compression"="yes"
"#neon-debug-mask"=""
"#ssl-authority-files"=""
"#ssl-trust-default-ca"=""
"#ssl-client-cert-file"=""
"#ssl-client-cert-password"=""

[HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\auth]
"#store-passwords"="yes"
"#store-auth-creds"="yes"

[HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\helpers]
"#editor-cmd"="notepad"
"#diff-cmd"=""
"#diff3-cmd"=""
"#diff3-has-program-arg"=""

[HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\tunnels]

[HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\miscellany]
"#global-ignores"="*.o *.lo *.la #*# .*.rej *.rej .*~ *~ .#* .DS_Store"
"#log-encoding"=""
"#use-commit-times"=""
"#no-unlock"=""
"#enable-auto-props"=""

[HKEY_CURRENT_USER\Software\Tigris.org\Subversion\Config\auto-props]

The previous example shows the contents of a .reg file which contains some of the most
commonly used configuration options and their default values. Note the presence of both sys-
tem-wide (for network proxy-related options) and per-user settings (editor programs and pass-
word storage, among others). Also note that all the options are effectively commented out. You
need only to remove the hash (#) character from the beginning of the option names, and set
the values as you desire.

Configuration Options
In this section, we will discuss the specific run-time configuration options that are currently sup-
ported by Subversion.

Servers

The servers file contains Subversion configuration options related to the network layers.
There are two special section names in this file—groups and global. The groups section is
essentially a cross-reference table. The keys in this section are the names of other sections in
the file; their values are globs—textual tokens which possibly contain wildcard characters—that
are compared against the hostnames of the machine to which Subversion requests are sent.

Customizing Your Subversion Experience

174

[groups]
beanie-babies = *.red-bean.com
collabnet = svn.collab.net

[beanie-babies]
…

[collabnet]
…

When Subversion is used over a network, it attempts to match the name of the server it is try-
ing to reach with a group name under the groups section. If a match is made, Subversion
then looks for a section in the servers file whose name is the matched group's name. From
that section it reads the actual network configuration settings.

The global section contains the settings that are meant for all of the servers not matched by
one of the globs under the groups section. The options available in this section are exactly
the same as those valid for the other server sections in the file (except, of course, the special
groups section), and are as follows:

http-proxy-exceptions
This specifies a comma-separated list of patterns for repository hostnames that should ac-
cessed directly, without using the proxy machine. The pattern syntax is the same as is
used in the Unix shell for filenames. A repository hostname matching any of these patterns
will not be proxied.

http-proxy-host
This specifies the hostname of the proxy computer through which your HTTP-based Sub-
version requests must pass. It defaults to an empty value, which means that Subversion
will not attempt to route HTTP requests through a proxy computer, and will instead attempt
to contact the destination machine directly.

http-proxy-port
This specifies the port number on the proxy host to use. It defaults to an empty value.

http-proxy-username
This specifies the username to supply to the proxy machine. It defaults to an empty value.

http-proxy-password
This specifies the password to supply to the proxy machine. It defaults to an empty value.

http-timeout
This specifies the amount of time, in seconds, to wait for a server response. If you experi-
ence problems with a slow network connection causing Subversion operations to time out,
you should increase the value of this option. The default value is 0, which instructs the un-
derlying HTTP library, Neon, to use its default timeout setting.

http-compression
This specifies whether or not Subversion should attempt to compress network requests
made to DAV-ready servers. The default value is yes (though compression will only occur
if that capability is compiled into the network layer). Set this to no to disable compression,
such as when debugging network transmissions.

neon-debug-mask
This is an integer mask that the underlying HTTP library, Neon, uses for choosing what
type of debugging output to yield. The default value is 0, which will silence all debugging

Customizing Your Subversion Experience

175

output. For more information about how Subversion makes use of Neon, see Chapter 8,
Embedding Subversion.

ssl-authority-files
This is a semicolon-delimited list of paths to files containing certificates of the certificate
authorities (or CAs) that are accepted by the Subversion client when accessing the reposit-
ory over HTTPS.

ssl-trust-default-ca
Set this variable to yes if you want Subversion to automatically trust the set of default CAs
that ship with OpenSSL.

ssl-client-cert-file
If a host (or set of hosts) requires an SSL client certificate, you'll normally be prompted for
a path to your certificate. By setting this variable to that same path, Subversion will be able
to find your client certificate automatically without prompting you. There's no standard
place to store your certificate on disk; Subversion will grab it from any path you specify.

ssl-client-cert-password
If your SSL client certificate file is encrypted by a passphrase, Subversion will prompt you
for the passphrase whenever the certificate is used. If you find this annoying (and don't
mind storing the password in the servers file), then you can set this variable to the certi-
ficate's passphrase. You won't be prompted anymore.

Config

The config file contains the rest of the currently available Subversion run-time options, those
not related to networking. There are only a few options in use as of this writing, but they are
again grouped into sections in expectation of future additions.

The auth section contains settings related to Subversion's authentication and authorization
against the repository. It contains:

store-passwords
This instructs Subversion to cache, or not to cache, passwords that are supplied by the
user in response to server authentication challenges. The default value is yes. Set this to
no to disable this on-disk password caching. You can override this option for a single in-
stance of the svn command using the --no-auth-cache command-line parameter (for
those subcommands that support it). For more information, see the section called “Client
Credentials Caching”.

store-auth-creds
This setting is the same as store-passwords, except that it enables or disables disk-
caching of all authentication information: usernames, passwords, server certificates, and
any other types of cacheable credentials.

The helpers section controls which external applications Subversion uses to accomplish its
tasks. Valid options in this section are:

editor-cmd
This specifies the program Subversion will use to query the user for a log message during
a commit operation, such as when using svn commit without either the --message (-m)
or --file (-F) options. This program is also used with the svn propedit command—a
temporary file is populated with the current value of the property the user wishes to edit,

Customizing Your Subversion Experience

176

2Anyone for potluck dinner?

and the edits take place right in the editor program (see the section called “Properties”).
This option's default value is empty. The order of priority for determining the editor com-
mand (where lower-numbered locations take precedence over higher-numbered locations)
is:

1. Command-line option --editor-cmd

2. Environment variable SVN_EDITOR

3. Configuration option editor-cmd

4. Environment variable VISUAL

5. Environment variable EDITOR

6. Possibly, a default value built in to Subversion (not present in the official builds)

The value of any of these options or variables is (unlike diff-cmd) the beginning of a
command line to be executed by the shell. Subversion appends a space and the pathname
of the temporary file to be edited. The editor should modify the temporary file and return a
zero exit code to indicate success.

diff-cmd
This specifies the absolute path of a differencing program, used when Subversion gener-
ates “diff” output (such as when using the svn diff command). By default Subversion uses
an internal differencing library—setting this option will cause it to perform this task using an
external program. See the section called “Using External Differencing Tools” for more de-
tails on using such programs.

diff3-cmd
This specifies the absolute path of a three-way differencing program. Subversion uses this
program to merge changes made by the user with those received from the repository. By
default Subversion uses an internal differencing library—setting this option will cause it to
perform this task using an external program. See the section called “Using External Differ-
encing Tools” for more details on using such programs.

diff3-has-program-arg
This flag should be set to true if the program specified by the diff3-cmd option accepts
a --diff-program command-line parameter.

The tunnels section allows you to define new tunnel schemes for use with svnserve and
svn:// client connections. For more details, see the section called “Tunneling over SSH”.

The miscellany section is where everything that doesn't belong elsewhere winds up. 2 In
this section, you can find:

global-ignores
When running the svn status command, Subversion lists unversioned files and directories
along with the versioned ones, annotating them with a ? character (see the section called
“See an overview of your changes”). Sometimes, it can be annoying to see uninteresting,
unversioned items—for example, object files that result from a program's compilation—in
this display. The global-ignores option is a list of whitespace-delimited globs which de-
scribe the names of files and directories that Subversion should not display unless they are
versioned. The default value is *.o *.lo *.la #*# .*.rej *.rej .*~ *~ .#*
.DS_Store.

Customizing Your Subversion Experience

177

As well as svn status, the svn add and svn import commands also ignore files that
match the list when they are scanning a directory. You can override this behaviour for a
single instance of any of these commands by explicitly specifying the file name, or by using
the --no-ignore command-line flag.

For information on more fine-grained control of ignored items, see the section called
“Ignoring Unversioned Items”.

enable-auto-props
This instructs Subversion to automatically set properties on newly added or imported files.
The default value is no, so set this to yes to enable Auto-props. The auto-props section
of this file specifies which properties are to be set on which files.

log-encoding
This variable sets the default character set encoding for commit log messages. It's a per-
manent form of the --encoding option (see the section called “svn Options”). The Sub-
version repository stores log messages in UTF-8, and assumes that your log message is
written using your operating system's native locale. You should specify a different encod-
ing if your commit messages are written in any other encoding.

use-commit-times
Normally your working copy files have timestamps that reflect the last time they were
touched by any process, whether that be your own editor or by some svn subcommand.
This is generally convenient for people developing software, because build systems often
look at timestamps as a way of deciding which files need to be recompiled.

In other situations, however, it's sometimes nice for the working copy files to have
timestamps that reflect the last time they were changed in the repository. The svn export
command always places these “last-commit timestamps” on trees that it produces. By set-
ting this config variable to yes, the svn checkout, svn update, svn switch, and svn re-
vert commands will also set last-commit timestamps on files that they touch.

The auto-props section controls the Subversion client's ability to automatically set properties
on files when they are added or imported. It contains any number of key-value pairs in the
format PATTERN = PROPNAME=PROPVALUE where PATTERN is a file pattern that matches a
set of filenames and the rest of the line is the property and its value. Multiple matches on a file
will result in multiple propsets for that file; however, there is no guarantee that auto-props will
be applied in the order in which they are listed in the config file, so you can't have one rule
“override” another. You can find several examples of auto-props usage in the config file.
Lastly, don't forget to set enable-auto-props to yes in the miscellany section if you
want to enable auto-props.

Localization
Localization is the act of making programs behave in a region-specific way. When a program
formats numbers or dates in a way specific to your part of the world, or prints messages (or ac-
cepts input) in your native language, the program is said to be localized. This section describes
steps Subversion has made towards localization.

Understanding locales
Most modern operating systems have a notion of the “current locale”—that is, the region or
country whose localization conventions are honored. These conventions—typically chosen by
some runtime configuration mechanism on the computer—affect the way in which programs
present data to the user, as well as the way in which they accept user input.

Customizing Your Subversion Experience

178

On most Unix-like systems, you can check the values of the locale-related runtime configura-
tion options by running the locale command:

$ locale
LANG=
LC_COLLATE="C"
LC_CTYPE="C"
LC_MESSAGES="C"
LC_MONETARY="C"
LC_NUMERIC="C"
LC_TIME="C"
LC_ALL="C"

The output is a list of locale-related environment variables and their current values. In this ex-
ample, the variables are all set to the default C locale, but users can set these variables to spe-
cific country/language code combinations. For example, if one were to set the LC_TIME vari-
able to fr_CA, then programs would know to present time and date information formatted ac-
cording a French-speaking Canadian's expectations. And if one were to set the LC_MESSAGES
variable to zh_TW, then programs would know to present human-readable messages in Tradi-
tional Chinese. Setting the LC_ALL variable has the effect of changing every locale variable to
the same value. The value of LANG is used as a default value for any locale variable that is un-
set. To see the list of available locales on a Unix system, run the command locale -a.

On Windows, locale configuration is done via the “Regional and Language Options” control
panel item. There you can view and select the values of individual settings from the available
locales, and even customize (at a sickening level of detail) several of the display formatting
conventions.

Subversion's use of locales
The Subversion client, svn, honors the current locale configuration in two ways. First, it notices
the value of the LC_MESSAGES variable and attempts to print all messages in the specified lan-
guage. For example:

$ export LC_MESSAGES=de_DE
$ svn help cat
cat: Gibt den Inhalt der angegebenen Dateien oder URLs aus.
Aufruf: cat ZIEL[@REV]...
…

This behavior works identically on both Unix and Windows systems. Note, though, that while
your operating system might have support for a certain locale, the Subversion client still may
not be able to speak the particular language. In order to produce localized messages, human
volunteers must provide translations for each language. The translations are written using the
GNU gettext package, which results in translation modules that end with the .mo filename ex-
tension. For example, the German translation file is named de.mo. These translation files are
installed somewhere on your system. On Unix, they typically live in /usr/share/locale/,
while on Windows they're often found in the \share\locale\ folder in Subversion's installa-
tion area. Once installed, a module is named after the program it provides translations for. For
example, the de.mo file may ultimately end up installed as /
usr/share/locale/de/LC_MESSAGES/subversion.mo. By browsing the installed .mo
files, you can see which languages the Subversion client is able to speak.

The second way in which the locale is honored involves how svn interprets your input. The re-
pository stores all paths, filenames, and log messages in Unicode, encoded as UTF-8. In that

Customizing Your Subversion Experience

179

3Subversion developers are good, but even the best make mistakes.

sense, the repository is internationalized—that is, the repository is ready to accept input in any
human language. This means, however, that the Subversion client is responsible for sending
only UTF-8 filenames and log messages into the repository. In order to do this, it must convert
the data from the native locale into UTF-8.

For example, suppose you create a file named caffè.txt, and then when committing the file,
you write the log message as “Adesso il caffè è più forte”. Both the filename and log message
contain non-ASCII characters, but because your locale is set to it_IT, the Subversion client
knows to interpret them as Italian. It uses an Italian character set to convert the data to UTF-8
before sending them off to the repository.

Note that while the repository demands UTF-8 filenames and log messages, it does not pay at-
tention to file contents. Subversion treats file contents as opaque strings of bytes, and neither
client nor server makes an attempt to understand the character set or encoding of the con-
tents.

Character set conversion errors

While using Subversion, you might get hit with an error related to character set conver-
sions:

svn: Can't convert string from native encoding to 'UTF-8':
…
svn: Can't convert string from 'UTF-8' to native encoding:
…

Errors like this typically occur when the Subversion client has received a UTF-8 string
from the repository, but not all of the characters in that string can be represented using
the encoding of the current locale. For example, if your locale is en_US but a collaborator
has committed a Japanese filename, you're likely to see this error when you receive the
file during an svn update.

The solution is either to set your locale to something which can represent the incoming
UTF-8 data, or to change the filename or log message in the repository. (And don't forget
to slap your collaborator's hand—projects should decide on common languages ahead of
time, so that all participants are using the same locale.)

Using External Differencing Tools
The presence of --diff-cmd and --diff3-cmd options, and similarly named runtime con-
figuration parameters (see the section called “Config”), can lead to a false notion of how easy it
is to use external differencing (or “diff”) and merge tools with Subversion. While Subversion
can use most of popular such tools available, the effort invested in setting this up often turns
out to be non-trivial.

The interface between Subversion and external diff and merge tools harkens back to a time
when Subversion's only contextual differencing capabilities were built around invocations of the
GNU diffutils toolchain, specifically the diff and diff3 utilities. To get the kind of behavior Sub-
version needed, it called these utilities with more than a handful of options and parameters,
most of which were quite specific to the utilities. Some time later, Subversion grew its own in-
ternal differencing library, and as a failover mechanism, 3 the --diff-cmd and --diff3-cmd
options were added to the Subversion command-line client so users could more easily indicate

Customizing Your Subversion Experience

180

4The GNU diff manual page puts it this way: “An exit status of 0 means no differences were found, 1 means some dif-
ferences were found, and 2 means trouble.”

that they preferred to use the GNU diff and diff3 utilities instead of the newfangled internal diff
library. If those options were used, Subversion would simply ignore the internal diff library, and
fall back to running those external programs, lengthy argument lists and all. And that's where
things remain today.

It didn't take long for folks to realize that having such easy configuration mechanisms for spe-
cifying that Subversion should use the external GNU diff and diff3 utilities located at a particu-
lar place on the system could be applied toward the use of other diff and merge tools, too.
After all, Subversion didn't actually verify that the things it was being told to run were members
of the GNU diffutils toolchain. But the only configurable aspect of using those external tools is
their location on the system—not the option set, parameter order, etc. Subversion continues
throwing all those GNU utility options at your external diff tool regardless of whether or not that
program can understand those options. And that's where things get unintuitive for most users.

The key to using external diff and merge tools (other than GNU diff and diff3, of course) with
Subversion is to use wrapper scripts which convert the input from Subversion into something
that your differencing tool can understand, and then to convert the output of your tool back into
a format which Subversion expects—the format that the GNU tools would have used. The fol-
lowing sections cover the specifics of those expectations.

The decision on when to fire off a contextual diff or merge as part of a larger Sub-
version operation is made entirely by Subversion, and is affected by, among other
things, whether or not the files being operated on are human-readable as determ-
ined by their svn:mime-type property. This means, for example, that even if you
had the niftiest Microsoft Word-aware differencing or merging tool in the Universe,
it would never be invoked by Subversion so long as your versioned Word docu-
ments had a configured MIME type that denoted that they were not human-read-
able (such as application/msword). For more about MIME type settings, see
the section called “File Content Type”

External diff
Subversion calls external diff programs with parameters suitable for the GNU diff utility, and
expects only that the external program return with a successful error code. For most alternative
diff programs, only the sixth and seventh arguments—the paths of the files which represent the
left and right sides of the diff, respectively—are of interest. Note that Subversion runs the diff
program once per modified file covered by the Subversion operation, so if your program runs in
an asynchronous fashion (or “backgrounded”), you might have several instances of it all run-
ning simultaneously. Finally, Subversion expects that your program return an error code of 1 if
your program detected differences, or 0 if it did not—any other error code is considered a fatal
error. 4

Example 7.2, “diffwrap.sh” and Example 7.3, “diffwrap.bat” are templates for external diff tool
wrappers in the Bourne shell and Windows batch scripting languages, respectively.

Example 7.2. diffwrap.sh

#!/bin/sh

Configure your favorite diff program here.

Customizing Your Subversion Experience

181

DIFF="/usr/local/bin/my-diff-tool"

Subversion provides the paths we need as the sixth and seventh
parameters.
LEFT=${6}
RIGHT=${7}

Call the diff command (change the following line to make sense for
your merge program).
$DIFF --left $LEFT --right $RIGHT

Return an errorcode of 0 if no differences were detected, 1 if some were.
Any other errorcode will be treated as fatal.

Example 7.3. diffwrap.bat

@ECHO OFF

REM Configure your favorite diff program here.
SET DIFF="C:\Program Files\Funky Stuff\My Diff Tool.exe"

REM Subversion provides the paths we need as the sixth and seventh
REM parameters.
SET LEFT=%6
SET RIGHT=%7

REM Call the diff command (change the following line to make sense for
REM your merge program).
%DIFF% --left %LEFT% --right %RIGHT%

REM Return an errorcode of 0 if no differences were detected, 1 if some were.
REM Any other errorcode will be treated as fatal.

External diff3
Subversion calls external merge programs with parameters suitable for the GNU diff3 utility,
expecting that the external program return with a successful error code and that the full file
contents which result from the completed merge operation are printed on the standard output
stream (so that Subversion can redirect them into the appropriate version controlled file). For
most alternative merge programs, only the ninth, tenth, and eleventh arguments, the paths of
the files which represent the “mine”, “older”, and “yours” inputs, respectively, are of interest.
Note that because Subversion depends on the output of your merge program, you wrapper
script must not exit before that output has been delivered to Subversion. When it finally does
exit, it should return an error code of 0 if the merge was successful, or 1 if unresolved conflicts
remain in the output—any other error code is considered a fatal error.

Example 7.4, “diff3wrap.sh” and Example 7.5, “diff3wrap.bat” are templates for external merge
tool wrappers in the Bourne shell and Windows batch scripting languages, respectively.

Example 7.4. diff3wrap.sh

Customizing Your Subversion Experience

182

#!/bin/sh

Configure your favorite diff3/merge program here.
DIFF3="/usr/local/bin/my-merge-tool"

Subversion provides the paths we need as the ninth, tenth, and eleventh
parameters.
MINE=${9}
OLDER=${10}
YOURS=${11}

Call the merge command (change the following line to make sense for
your merge program).
$DIFF3 --older $OLDER --mine $MINE --yours $YOURS

After performing the merge, this script needs to print the contents
of the merged file to stdout. Do that in whatever way you see fit.
Return an errorcode of 0 on successful merge, 1 if unresolved conflicts
remain in the result. Any other errorcode will be treated as fatal.

Example 7.5. diff3wrap.bat

@ECHO OFF

REM Configure your favorite diff3/merge program here.
SET DIFF3="C:\Program Files\Funky Stuff\My Merge Tool.exe"

REM Subversion provides the paths we need as the ninth, tenth, and eleventh
REM parameters. But we only have access to nine parameters at a time, so we
REM shift our nine-parameter window twice to let us get to what we need.
SHIFT
SHIFT
SET MINE=%7
SET OLDER=%8
SET YOURS=%9

REM Call the merge command (change the following line to make sense for
REM your merge program).
%DIFF3% --older %OLDER% --mine %MINE% --yours %YOURS%

REM After performing the merge, this script needs to print the contents
REM of the merged file to stdout. Do that in whatever way you see fit.
REM Return an errorcode of 0 on successful merge, 1 if unresolved conflicts
REM remain in the result. Any other errorcode will be treated as fatal.

Customizing Your Subversion Experience

183

Chapter 8. Embedding Subversion
Subversion has a modular design: it's implemented as a collection of libraries written in C.
Each library has a well-defined purpose and Application Programming Interface (API), and that
interface is available not only for Subversion itself to use, but for any software that wishes to
embed or otherwise programmatically control Subversion. Additionally, Subversion's API is
available not only to other C programs, but also to programs written in higher-level languages
such as Python, Perl, Java, or Ruby.

This chapter is for those who wish to interact with Subversion through its public API or its vari-
ous language bindings. If you wish to write robust wrapper scripts around Subversion function-
ality to simplify your own life, are trying to develop more complex integrations between Subver-
sion and other pieces of software, or just have an interest in Subversion's various library mod-
ules and what they offer, this chapter is for you. If, however, you don't foresee yourself particip-
ating with Subversion at such a level, feel free to skip this chapter with the confidence that your
experience as a Subversion user will not be affected.

Layered Library Design
Each of Subversion's core libraries can be said to exist in one of three main layers—the Re-
pository Layer, the Repository Access (RA) Layer, or the Client Layer (see Figure 1,
“Subversion's Architecture”). We will examine these layers shortly, but first, let's briefly sum-
marize Subversion's various libraries. For the sake of consistency, we will refer to the libraries
by their extensionless Unix library names (libsvn_fs, libsvn_wc, mod_dav_svn, etc.).

libsvn_client
Primary interface for client programs

libsvn_delta
Tree and byte-stream differencing routines

libsvn_diff
Contextual differencing and merging routines

libsvn_fs
Filesystem commons and module loader

libsvn_fs_base
The Berkeley DB filesystem back-end

libsvn_fs_fs
The native filesystem (FSFS) back-end

libsvn_ra
Repository Access commons and module loader

libsvn_ra_dav
The WebDAV Repository Access module

libsvn_ra_local
The local Repository Access module

libsvn_ra_serf
Another (experimental) WebDAV Repository Access module

184

libsvn_ra_svn
The custom protocol Repository Access module

libsvn_repos
Repository interface

libsvn_subr
Miscellaneous helpful subroutines

libsvn_wc
The working copy management library

mod_authz_svn
Apache authorization module for Subversion repositories access via WebDAV

mod_dav_svn
Apache module for mapping WebDAV operations to Subversion ones

The fact that the word “miscellaneous” only appears once in the previous list is a good sign.
The Subversion development team is serious about making sure that functionality lives in the
right layer and libraries. Perhaps the greatest advantage of the modular design is its lack of
complexity from a developer's point of view. As a developer, you can quickly formulate that
kind of “big picture” that allows you to pinpoint the location of certain pieces of functionality with
relative ease.

Another benefit of modularity is the ability to replace a given module with a whole new library
that implements the same API without affecting the rest of the code base. In some sense, this
happens within Subversion already. The libsvn_ra_dav, libsvn_ra_local, libsvn_ra_serf, and
libsvn_ra_svn libraries each implement the same interface, all working as plugins to libsvn_ra.
And all four communicate with the Repository Layer—libsvn_ra_local connects to the reposit-
ory directly; the other three do so over a network. The libsvn_fs_base and libsvn_fs_fs libraries
are another pair of libraries that implement the same functionality in different ways—both are
plugins to the common libsvn_fs library.

The client itself also highlights the benefits of modularity in the Subversion design. Subver-
sion's libsvn_client library is a one-stop shop for most of the functionality necessary for design-
ing a working Subversion client (see the section called “Client Layer”). So while the Subversion
distribution provides only the svn command-line client program, there are several third-party
programs which provide various forms of graphical client UI. These GUIs use the same APIs
that the stock command-line client does. This type of modularity has played a large role in the
proliferation of available Subversion clients and IDE integrations and, by extension, to the tre-
mendous adoption rate of Subversion itself.

Repository Layer
When referring to Subversion's Repository Layer, we're generally talking about two basic con-
cepts—the versioned filesystem implementation (accessed via libsvn_fs, and supported by its
libsvn_fs_base and libsvn_fs_fs plugins), and the repository logic that wraps it (as implemen-
ted in libsvn_repos). These libraries provide the storage and reporting mechanisms for the
various revisions of your version-controlled data. This layer is connected to the Client Layer via
the Repository Access Layer, and is, from the perspective of the Subversion user, the stuff at
the “other end of the line.”

The Subversion Filesystem is not a kernel-level filesystem that one would install in an operat-
ing system (like the Linux ext2 or NTFS), but a virtual filesystem. Rather than storing “files” and
“directories” as real files and directories (as in, the kind you can navigate through using your

Embedding Subversion

185

favorite shell program), it uses one of two available abstract storage backends—either a
Berkeley DB database environment, or a flat-file representation. (To learn more about the two
repository back-ends, see the section called “Choosing a Data Store”.) There has even been
considerable interest by the development community in giving future releases of Subversion
the ability to use other back-end database systems, perhaps through a mechanism such as
Open Database Connectivity (ODBC). In fact, Google did something similar to this before
launching the Google Code Project Hosting service: they announced in mid-2006 that mem-
bers of its Open Source team had written a new proprietary Subversion filesystem plugin which
used their ultra-scalable Bigtable database for its storage.

The filesystem API exported by libsvn_fs contains the kinds of functionality you would expect
from any other filesystem API—you can create and remove files and directories, copy and
move them around, modify file contents, and so on. It also has features that are not quite as
common, such as the ability to add, modify, and remove metadata (“properties”) on each file or
directory. Furthermore, the Subversion Filesystem is a versioning filesystem, which means that
as you make changes to your directory tree, Subversion remembers what your tree looked like
before those changes. And before the previous changes. And the previous ones. And so on, all
the way back through versioning time to (and just beyond) the moment you first started adding
things to the filesystem.

All the modifications you make to your tree are done within the context of a Subversion commit
transaction. The following is a simplified general routine for modifying your filesystem:

1. Begin a Subversion commit transaction.

2. Make your changes (adds, deletes, property modifications, etc.).

3. Commit your transaction.

Once you have committed your transaction, your filesystem modifications are permanently
stored as historical artifacts. Each of these cycles generates a single new revision of your tree,
and each revision is forever accessible as an immutable snapshot of “the way things were.”

The Transaction Distraction

The notion of a Subversion transaction can become easily confused with the transaction
support provided by the underlying database itself, especially given the former's close
proximity to the Berkeley DB database code in libsvn_fs_base. Both types of transaction
exist to provide atomicity and isolation. In other words, transactions give you the ability to
perform a set of actions in an all-or-nothing fashion—either all the actions in the set com-
plete with success, or they all get treated as if none of them ever happened—and in a
way that does not interfere with other processes acting on the data.

Database transactions generally encompass small operations related specifically to the
modification of data in the database itself (such as changing the contents of a table row).
Subversion transactions are larger in scope, encompassing higher-level operations like
making modifications to a set of files and directories which are intended to be stored as
the next revision of the filesystem tree. If that isn't confusing enough, consider the fact
that Subversion uses a database transaction during the creation of a Subversion transac-
tion (so that if the creation of Subversion transaction fails, the database will look as if we
had never attempted that creation in the first place)!

Fortunately for users of the filesystem API, the transaction support provided by the data-
base system itself is hidden almost entirely from view (as should be expected from a

Embedding Subversion

186

1We understand that this may come as a shock to sci-fi fans who have long been under the impression that Time was
actually the fourth dimension, and we apologize for any emotional trauma induced by our assertion of a different the-
ory.

properly modularized library scheme). It is only when you start digging into the imple-
mentation of the filesystem itself that such things become visible (or interesting).

Most of the functionality provided by the filesystem interface deals with actions that occur on
individual filesystem paths. That is, from outside of the filesystem, the primary mechanism for
describing and accessing the individual revisions of files and directories comes through the
use of path strings like /foo/bar, just as if you were addressing files and directories through
your favorite shell program. You add new files and directories by passing their paths-to-be to
the right API functions. You query for information about them by the same mechanism.

Unlike most filesystems, though, a path alone is not enough information to identify a file or dir-
ectory in Subversion. Think of a directory tree as a two-dimensional system, where a node's
siblings represent a sort of left-and-right motion, and descending into subdirectories a down-
ward motion. Figure 8.1, “Files and directories in two dimensions” shows a typical representa-
tion of a tree as exactly that.

Figure 8.1. Files and directories in two dimensions

The difference here is that the Subversion filesystem has a nifty third dimension that most
filesystems do not have—Time! 1 In the filesystem interface, nearly every function that has a
path argument also expects a root argument. This svn_fs_root_t argument describes either
a revision or a Subversion transaction (which is simply a revision-in-the-making), and provides
that third-dimensional context needed to understand the difference between /foo/bar in revi-
sion 32, and the same path as it exists in revision 98. Figure 8.2, “Versioning time—the third
dimension!” shows revision history as an added dimension to the Subversion filesystem uni-
verse.

Figure 8.2. Versioning time—the third dimension!

Embedding Subversion

187

As we mentioned earlier, the libsvn_fs API looks and feels like any other filesystem, except
that it has this wonderful versioning capability. It was designed to be usable by any program in-
terested in a versioning filesystem. Not coincidentally, Subversion itself is interested in that
functionality. But while the filesystem API should be sufficient for basic file and directory ver-
sioning support, Subversion wants more—and that is where libsvn_repos comes in.

The Subversion repository library (libsvn_repos) sits (logically speaking) atop the libsvn_fs
API, providing additional functionality beyond that of the underlying versioned filesystem logic.
It does not completely wrap each and every filesystem function—only certain major steps in
the general cycle of filesystem activity are wrapped by the repository interface. Some of these
include the creation and commit of Subversion transactions, and the modification of revision
properties. These particular events are wrapped by the repository layer because they have
hooks associated with them. A repository hook system is not strictly related to implementing a
versioning filesystem, so it lives in the repository wrapper library.

The hooks mechanism is but one of the reasons for the abstraction of a separate repository lib-
rary from the rest of the filesystem code. The libsvn_repos API provides several other import-
ant utilities to Subversion. These include the abilities to:

• create, open, destroy, and perform recovery steps on a Subversion repository and the
filesystem included in that repository.

• describe the differences between two filesystem trees.

• query for the commit log messages associated with all (or some) of the revisions in which a
set of files was modified in the filesystem.

• generate a human-readable “dump” of the filesystem, a complete representation of the revi-
sions in the filesystem.

• parse that dump format, loading the dumped revisions into a different Subversion repository.

As Subversion continues to evolve, the repository library will grow with the filesystem library to
offer increased functionality and configurable option support.

Embedding Subversion

188

Repository Access Layer
If the Subversion Repository Layer is at “the other end of the line”, the Repository Access (RA)
Layer is the line itself. Charged with marshaling data between the client libraries and the re-
pository, this layer includes the libsvn_ra module loader library, the RA modules themselves
(which currently includes libsvn_ra_dav, libsvn_ra_local, libsvn_ra_serf, and libsvn_ra_svn),
and any additional libraries needed by one or more of those RA modules (such as the
mod_dav_svn Apache module or libsvn_ra_svn's server, svnserve).

Since Subversion uses URLs to identify its repository resources, the protocol portion of the
URL scheme (usually file://, http://, https://, svn://, or svn+ssh://) is used to
determine which RA module will handle the communications. Each module registers a list of
the protocols it knows how to “speak” so that the RA loader can, at runtime, determine which
module to use for the task at hand. You can determine which RA modules are available to the
Subversion command-line client, and what protocols they claim to support, by running svn -
-version:

$ svn --version
svn, version 1.4.3 (r23084)

compiled Jan 18 2007, 07:47:40

Copyright (C) 2000-2006 CollabNet.
Subversion is open source software, see http://subversion.tigris.org/
This product includes software developed by CollabNet (http://www.Collab.Net/).

The following repository access (RA) modules are available:

* ra_dav : Module for accessing a repository via WebDAV (DeltaV) protocol.
- handles 'http' scheme
- handles 'https' scheme

* ra_svn : Module for accessing a repository using the svn network protocol.
- handles 'svn' scheme

* ra_local : Module for accessing a repository on local disk.
- handles 'file' scheme

$

The public API exported by the RA Layer contains functionality necessary for sending and re-
ceiving versioned data to and from the repository. And each of the available RA plugins is able
to perform that task using a specific protocol—libsvn_ra_dav speaks HTTP/WebDAV
(optionally using SSL encryption) with an Apache HTTP Server that is running the
mod_dav_svn Subversion server module; libsvn_ra_svn speaks a custom network protocol
with the svnserve program; and so on.

And for those who wish to access a Subversion repository using still another protocol, that is
precisely why the Repository Access Layer is modularized! Developers can simply write a new
library that implements the RA interface on one side and communicates with the repository on
the other. Your new library can use existing network protocols, or you can invent your own.
You could use inter-process communication (IPC) calls, or—let's get crazy, shall we?—you
could even implement an email-based protocol. Subversion supplies the APIs; you supply the
creativity.

Client Layer
On the client side, the Subversion working copy is where all the action takes place. The bulk of
functionality implemented by the client-side libraries exists for the sole purpose of managing
working copies—directories full of files and other subdirectories which serve as a sort of local,

Embedding Subversion

189

editable “reflection” of one or more repository locations—and propagating changes to and from
the Repository Access layer.

Subversion's working copy library, libsvn_wc, is directly responsible for managing the data in
the working copies. To accomplish this, the library stores administrative information about each
working copy directory within a special subdirectory. This subdirectory, named .svn, is
present in each working copy directory and contains various other files and directories which
record state and provide a private workspace for administrative action. For those familiar with
CVS, this .svn subdirectory is similar in purpose to the CVS administrative directories found in
CVS working copies. For more information about the .svn administrative area, see the section
called “Inside the Working Copy Administration Area”in this chapter.

The Subversion client library, libsvn_client, has the broadest responsibility; its job is to mingle
the functionality of the working copy library with that of the Repository Access Layer, and then
to provide the highest-level API to any application that wishes to perform general revision con-
trol actions. For example, the function svn_client_checkout() takes a URL as an argu-
ment. It passes this URL to the RA layer and opens an authenticated session with a particular
repository. It then asks the repository for a certain tree, and sends this tree into the working
copy library, which then writes a full working copy to disk (.svn directories and all).

The client library is designed to be used by any application. While the Subversion source code
includes a standard command-line client, it should be very easy to write any number of GUI cli-
ents on top of the client library. New GUIs (or any new client, really) for Subversion need not
be clunky wrappers around the included command-line client—they have full access via the
libsvn_client API to same functionality, data, and callback mechanisms that the command-line
client uses. In fact, the Subversion source code tree contains a small C program (which can be
found at tools/examples/minimal_client.c that exemplifies how to wield the Subver-
sion API to create a simple client program

Binding Directly—A Word About Correctness

Why should your GUI program bind directly with a libsvn_client instead of acting as a
wrapper around a command-line program? Besides simply being more efficient, it can be
more correct as well. A command-line program (like the one supplied with Subversion)
that binds to the client library needs to effectively translate feedback and requested data
bits from C types to some form of human-readable output. This type of translation can be
lossy. That is, the program may not display all of the information harvested from the API,
or may combine bits of information for compact representation.

If you wrap such a command-line program with yet another program, the second program
has access only to already-interpreted (and as we mentioned, likely incomplete) informa-
tion, which it must again translate into its representation format. With each layer of wrap-
ping, the integrity of the original data is potentially tainted more and more, much like the
result of making a copy of a copy (of a copy …) of a favorite audio or video cassette.

But the most compelling argument for binding directly to the APIs instead of wrapping
other programs is that the Subversion project makes compatibility promises regarding its
APIs. Across minor versions of those APIs (such as between 1.3 and 1.4), no function's
prototype will change. In other words, you aren't forced to update your program's source
code simply because you've upgraded to a new version of Subversion. Certain functions
might be deprecated, but they still work, and this gives you a buffer of time to eventually
embrace the newer APIs. These kinds of compatibility promises do not exist for Subver-
sion command-line program output, which is subject to change from release to release.

Embedding Subversion

190

Inside the Working Copy Administration Area
As we mentioned earlier, each directory of a Subversion working copy contains a special sub-
directory called .svn which houses administrative data about that working copy directory.
Subversion uses the information in .svn to keep track of things like:

• Which repository location(s) are represented by the files and subdirectories in the working
copy directory.

• What revision of each of those files and directories are currently present in the working copy.

• Any user-defined properties that might be attached to those files and directories.

• Pristine (un-edited) copies of the working copy files.

The Subversion working copy administration area's layout and contents are considered imple-
mentation details not really intended for human consumption. Developers are encouraged to
use Subversion's public APIs, or the tools that Subversion provides, to access and manipulate
the working copy data, instead of directly reading or modifying those files. The file formats em-
ployed by the working copy library for its administrative data do change from time to time—a
fact that the public APIs do a great job of hiding from the average user. In this section, we ex-
pose some of these implementation details sheerly to appease your overwhelming curiosity.

The Entries File
Perhaps the single most important file in the .svn directory is the entries file. It contains the
bulk of the administrative information about the versioned items in a working copy directory. It
is this one file which tracks the repository URLs, pristine revision, file checksums, pristine text
and property timestamps, scheduling and conflict state information, last-known commit inform-
ation (author, revision, timestamp), local copy history—practically everything that a Subversion
client is interested in knowing about a versioned (or to-be-versioned) resource!

Folks familiar with CVS's administrative directories will have recognized at this point that Sub-
version's .svn/entries file serves the purposes of, among other things, CVS's CVS/
Entries, CVS/Root, and CVS/Repository files combined.

The format of the .svn/entries file has changed over time. Originally an XML file, it now
uses a custom—though still human-readable—file format. While XML was a great choice for
early developers of Subversion who were frequently debugging the file's contents (and Subver-
sion's behavior in light of them), the need for easy developer debugging has diminished as
Subversion has matured, and has been replaced by the user's need for snappier performance.
Be aware that Subversion's working copy library automatically upgrades working copies from
one format to another—it reads the old formats, and writes the new—which saves you the
hassle of checking out a new working copy, but can also complicate situations where different
versions of Subversion might be trying to use the same working copy.

Pristine Copies and Property Files
As mentioned before, the .svn directory also holds the pristine “text-base” versions of files.
Those can be found in .svn/text-base. The benefits of these pristine copies are mul-
tiple—network-free checks for local modifications and difference reporting, network-free rever-
sion of modified or missing files, more efficient transmission of changes to the server—but
comes at the cost of having each versioned file stored at least twice on disk. These days, this
seems to be a negligible penalty for most files. However, the situation gets uglier as the size of

Embedding Subversion

191

2After all, Subversion uses Subversion's APIs, too.
3Subversion uses ANSI system calls and datatypes as much as possible.

your versioned files grows. Some attention is being given to making the presence of the
“text-base” an option. Ironically though, it is as your versioned files' sizes get larger that the ex-
istence of the “text-base” becomes more crucial—who wants to transmit a huge file across a
network just because they want to commit a tiny change to it?

Similar in purpose to the “text-base” files are the property files and their pristine “prop-base”
copies, located in .svn/props and .svn/prop-base respectively. Since directories can
have properties, too, there are also .svn/dir-props and .svn/dir-prop-base files.

Using the APIs
Developing applications against the Subversion library APIs is fairly straightforward. Subver-
sion is primarily a set of C libraries, with header (.h) files that live in the subversion/in-
clude directory of the source tree. These headers are copied into your system locations (for
example, /usr/local/include) when you build and install Subversion itself from source.
These headers represent the entirety of the functions and types meant to be accessible by
users of the Subversion libraries. The Subversion developer community is meticulous about
ensuring that the public API is well-documented—refer directly to the header files for that docu-
mentation.

When examining the public header files, the first thing you might notice is that Subversion's
datatypes and functions are namespace protected. That is, every public Subversion symbol
name begins with svn_, followed by a short code for the library in which the symbol is defined
(such as wc, client, fs, etc.), followed by a single underscore (_) and then the rest of the
symbol name. Semi-public functions (used among source files of a given library but not by
code outside that library, and found inside the library directories themselves) differ from this
naming scheme in that instead of a single underscore after the library code, they use a double
underscore (__). Functions that are private to a given source file have no special prefixing, and
are declared static. Of course, a compiler isn't interested in these naming conventions, but
they help to clarify the scope of a given function or datatype.

Another good source of information about programming against the Subversion APIs is the
project's own hacking guidelines, which can be found at ht-
tp://subversion.tigris.org/hacking.html. This document contains useful information which, while
aimed at developers and would-be developers of Subversion itself, is equally applicable to
folks developing against Subversion as a set of third-party libraries. 2

The Apache Portable Runtime Library
Along with Subversion's own datatypes, you will see many references to datatypes that begin
with apr_—symbols from the Apache Portable Runtime (APR) library. APR is Apache's port-
ability library, originally carved out of its server code as an attempt to separate the OS-specific
bits from the OS-independent portions of the code. The result was a library that provides a
generic API for performing operations that differ mildly—or wildly—from OS to OS. While the
Apache HTTP Server was obviously the first user of the APR library, the Subversion de-
velopers immediately recognized the value of using APR as well. This means that there is
practically no OS-specific code in Subversion itself. Also, it means that the Subversion client
compiles and runs anywhere that Apache HTTP Server itself does. Currently this list includes
all flavors of Unix, Win32, BeOS, OS/2, and Mac OS X.

In addition to providing consistent implementations of system calls that differ across operating
systems, 3 APR gives Subversion immediate access to many custom datatypes, such as dy-
namic arrays and hash tables. Subversion uses these types extensively. But perhaps the most
pervasive APR datatype, found in nearly every Subversion API prototype, is the

Embedding Subversion

192

http://subversion.tigris.org/hacking.html
http://subversion.tigris.org/hacking.html

4Neon and Berkeley DB are examples of such libraries.
5Or at least make it something you only toy with when doing extremely tight program optimization.

apr_pool_t—the APR memory pool. Subversion uses pools internally for all its memory alloca-
tion needs (unless an external library requires a different memory management mechanism for
data passed through its API), 4 and while a person coding against the Subversion APIs is not
required to do the same, they are required to provide pools to the API functions that need
them. This means that users of the Subversion API must also link against APR, must call
apr_initialize() to initialize the APR subsystem, and then must create and manage
pools for use with Subversion API calls, typically by using svn_pool_create(),
svn_pool_clear(), and svn_pool_destroy().

Programming with Memory Pools

Almost every developer who has used the C programming language has at some point
sighed at the daunting task of managing memory usage. Allocating enough memory to
use, keeping track of those allocations, freeing the memory when you no longer need
it—these tasks can be quite complex. And of course, failure to do those things properly
can result in a program that crashes itself, or worse, crashes the computer.

Higher-level languages, on the other hand, take the job of memory management away
from the developer completely. 5 Languages like Java and Python use garbage
collection, allocating memory for objects when needed, and automatically freeing that
memory when the object is no longer in use.

APR provides a middle-ground approach called pool-based memory management. It al-
lows the developer to control memory usage at a lower resolution—per chunk (or “pool”)
of memory, instead of per allocated object. Rather than using malloc() and friends to
allocate enough memory for a given object, you ask APR to allocate the memory from a
memory pool. When you're finished using the objects you've created in the pool, you des-
troy the entire pool, effectively de-allocating the memory consumed by all the objects you
allocated from it. Thus, rather than keeping track of individual objects which need to be
de-allocated, your program simply considers the general lifetimes of those objects, and
allocates the objects in a pool whose lifetime (the time between the pool's creation and its
deletion) matches the object's needs.

URL and Path Requirements
With remote version control operation as the whole point of Subversion's existence, it makes
sense that some attention has been paid to internationalization (i18n) support. After all, while
“remote” might mean “across the office”, it could just as well mean “across the globe.” To facil-
itate this, all of Subversion's public interfaces that accept path arguments expect those paths
to be canonicalized, and encoded in UTF-8. This means, for example, that any new client bin-
ary that drives the libsvn_client interface needs to first convert paths from the locale-specific
encoding to UTF-8 before passing those paths to the Subversion libraries, and then re-convert
any resultant output paths from Subversion back into the locale's encoding before using those
paths for non-Subversion purposes. Fortunately, Subversion provides a suite of functions (see
subversion/include/svn_utf.h) that can be used by any program to do these conver-
sions.

Also, Subversion APIs require all URL parameters to be properly URI-encoded. So, instead of
passing file:///home/username/My File.txt as the URL of a file named My
File.txt, you need to pass file:///home/username/My%20File.txt. Again, Subver-
sion supplies helper functions that your application can use—svn_path_uri_encode() and
svn_path_uri_decode(), for URI encoding and decoding, respectively.

Embedding Subversion

193

Using Languages Other than C and C++
If you are interested in using the Subversion libraries in conjunction with something other than
a C program—say a Python or Perl script—Subversion has some support for this via the Sim-
plified Wrapper and Interface Generator (SWIG). The SWIG bindings for Subversion are loc-
ated in subversion/bindings/swig. They are still maturing, but they are usable. These
bindings allow you to call Subversion API functions indirectly, using wrappers that translate the
datatypes native to your scripting language into the datatypes needed by Subversion's C librar-
ies.

Significant efforts have been made towards creating functional SWIG-generated bindings for
Python, Perl, and Ruby. To some extent, the work done preparing the SWIG interface files for
these languages is reusable in efforts to generate bindings for other languages supported by
SWIG (which include versions of C#, Guile, Java, MzScheme, OCaml, PHP, and Tcl, among
others). However, some extra programming is required to compensate for complex APIs that
SWIG needs some help translating between languages. For more information on SWIG itself,
see the project's website at http://www.swig.org/.

Subversion also has language bindings for Java. The JavaJL bindings (located in subver-
sion/bindings/java in the Subversion source tree) aren't SWIG-based, but are instead a
mixture of javah and hand-coded JNI. JavaHL most covers Subversion client-side APIs, and is
specifically targeted at implementors of Java-based Subversion clients and IDE integrations.

Subversion's language bindings tend to lack the level of developer attention given to the core
Subversion modules, but can generally be trusted as production-ready. A number of scripts
and applications, alternative Subversion GUI clients and other third-party tools are successfully
using Subversion's language bindings today to accomplish their Subversion integrations.

It's worth noting here that there are other options for interfacing with Subversion using other
languages: alternative bindings for Subversion which aren't provided by the Subversion devel-
opment community at all. You can find links to these alternative bindings on the Subversion
project's links page (at http://subversion.tigris.org/links.html), but there are a couple of popular
ones we feel are especially noteworthy. First, Barry Scott's PySVN bindings (ht-
tp://pysvn.tigris.org/) are a popular option for binding with Python. PySVN boasts of a more Py-
thonic interface than the more C-like APIs provided by Subversion's own Python bindings. For
folks looking for a pure Java implementation of Subversion, check out SVNKit (ht-
tp://svnkit.com/), which is Subversion re-written from the ground up in Java. You should exer-
cise caution here, though—because SVNKit doesn't use the core Subversion libraries, it's be-
havior is not guaranteed to match that of Subversion itself.

Code Samples
Example 8.1, “Using the Repository Layer” contains a code segment (written in C) that illus-
trates some of the concepts we've been discussing. It uses both the repository and filesystem
interfaces (as can be determined by the prefixes svn_repos_ and svn_fs_ of the function
names, respectively) to create a new revision in which a directory is added. You can see the
use of an APR pool, which is passed around for memory allocation purposes. Also, the code
reveals a somewhat obscure fact about Subversion error handling—all Subversion errors must
be explicitly handled to avoid memory leakage (and in some cases, application failure).

Example 8.1. Using the Repository Layer

/* Convert a Subversion error into a simple boolean error code.
*

Embedding Subversion

194

http://www.swig.org/
http://subversion.tigris.org/links.html
http://pysvn.tigris.org/
http://pysvn.tigris.org/
http://svnkit.com/
http://svnkit.com/

* NOTE: Subversion errors must be cleared (using svn_error_clear())
* because they are allocated from the global pool, else memory
* leaking occurs.
*/
#define INT_ERR(expr) \
do { \
svn_error_t *__temperr = (expr); \
if (__temperr) \
{ \
svn_error_clear(__temperr); \
return 1; \

} \
return 0; \

} while (0)

/* Create a new directory at the path NEW_DIRECTORY in the Subversion
* repository located at REPOS_PATH. Perform all memory allocation in
* POOL. This function will create a new revision for the addition of
* NEW_DIRECTORY. Return zero if the operation completes
* successfully, non-zero otherwise.
*/
static int
make_new_directory(const char *repos_path,

const char *new_directory,
apr_pool_t *pool)

{
svn_error_t *err;
svn_repos_t *repos;
svn_fs_t *fs;
svn_revnum_t youngest_rev;
svn_fs_txn_t *txn;
svn_fs_root_t *txn_root;
const char *conflict_str;

/* Open the repository located at REPOS_PATH.
*/
INT_ERR(svn_repos_open(&repos, repos_path, pool));

/* Get a pointer to the filesystem object that is stored in REPOS.
*/
fs = svn_repos_fs(repos);

/* Ask the filesystem to tell us the youngest revision that
* currently exists.
*/
INT_ERR(svn_fs_youngest_rev(&youngest_rev, fs, pool));

/* Begin a new transaction that is based on YOUNGEST_REV. We are
* less likely to have our later commit rejected as conflicting if we
* always try to make our changes against a copy of the latest snapshot
* of the filesystem tree.
*/
INT_ERR(svn_fs_begin_txn(&txn, fs, youngest_rev, pool));

/* Now that we have started a new Subversion transaction, get a root
* object that represents that transaction.
*/
INT_ERR(svn_fs_txn_root(&txn_root, txn, pool));

/* Create our new directory under the transaction root, at the path
* NEW_DIRECTORY.
*/
INT_ERR(svn_fs_make_dir(txn_root, new_directory, pool));

Embedding Subversion

195

/* Commit the transaction, creating a new revision of the filesystem
* which includes our added directory path.
*/
err = svn_repos_fs_commit_txn(&conflict_str, repos,

&youngest_rev, txn, pool);
if (! err)
{
/* No error? Excellent! Print a brief report of our success.
*/
printf("Directory '%s' was successfully added as new revision "

"'%ld'.\n", new_directory, youngest_rev);
}

else if (err->apr_err == SVN_ERR_FS_CONFLICT)
{
/* Uh-oh. Our commit failed as the result of a conflict
* (someone else seems to have made changes to the same area
* of the filesystem that we tried to modify). Print an error
* message.
*/
printf("A conflict occurred at path '%s' while attempting "

"to add directory '%s' to the repository at '%s'.\n",
conflict_str, new_directory, repos_path);

}
else
{
/* Some other error has occurred. Print an error message.
*/
printf("An error occurred while attempting to add directory '%s' "

"to the repository at '%s'.\n",
new_directory, repos_path);

}

INT_ERR(err);
}

Note that in Example 8.1, “Using the Repository Layer”, the code could just as easily have
committed the transaction using svn_fs_commit_txn(). But the filesystem API knows noth-
ing about the repository library's hook mechanism. If you want your Subversion repository to
automatically perform some set of non-Subversion tasks every time you commit a transaction
(like, for example, sending an email that describes all the changes made in that transaction to
your developer mailing list), you need to use the libsvn_repos-wrapped version of that function,
which adds the hook triggering functionality—in this case, svn_repos_fs_commit_txn().
(For more information regarding Subversion's repository hooks, see the section called
“Implementing Repository Hooks”.)

Now let's switch languages. Example 8.2, “Using the Repository Layer with Python” is a
sample program that uses Subversion's SWIG Python bindings to recursively crawl the young-
est repository revision, and print the various paths reached during the crawl.

Example 8.2. Using the Repository Layer with Python

#!/usr/bin/python

"""Crawl a repository, printing versioned object path names."""

import sys
import os.path

Embedding Subversion

196

import svn.fs, svn.core, svn.repos

def crawl_filesystem_dir(root, directory):
"""Recursively crawl DIRECTORY under ROOT in the filesystem, and return
a list of all the paths at or below DIRECTORY."""

Print the name of this path.
print directory + "/"

Get the directory entries for DIRECTORY.
entries = svn.fs.svn_fs_dir_entries(root, directory)

Loop over the entries.
names = entries.keys()
for name in names:

Calculate the entry's full path.
full_path = directory + '/' + name

If the entry is a directory, recurse. The recursion will return
a list with the entry and all its children, which we will add to
our running list of paths.
if svn.fs.svn_fs_is_dir(root, full_path):

crawl_filesystem_dir(root, full_path)
else:

Else it's a file, so print its path here.
print full_path

def crawl_youngest(repos_path):
"""Open the repository at REPOS_PATH, and recursively crawl its
youngest revision."""

Open the repository at REPOS_PATH, and get a reference to its
versioning filesystem.
repos_obj = svn.repos.svn_repos_open(repos_path)
fs_obj = svn.repos.svn_repos_fs(repos_obj)

Query the current youngest revision.
youngest_rev = svn.fs.svn_fs_youngest_rev(fs_obj)

Open a root object representing the youngest (HEAD) revision.
root_obj = svn.fs.svn_fs_revision_root(fs_obj, youngest_rev)

Do the recursive crawl.
crawl_filesystem_dir(root_obj, "")

if __name__ == "__main__":
Check for sane usage.
if len(sys.argv) != 2:

sys.stderr.write("Usage: %s REPOS_PATH\n"
% (os.path.basename(sys.argv[0])))

sys.exit(1)

Canonicalize the repository path.
repos_path = svn.core.svn_path_canonicalize(sys.argv[1])

Do the real work.
crawl_youngest(repos_path)

This same program in C would need to deal with APR's memory pool system. But Python
handles memory usage automatically, and Subversion's Python bindings adhere to that con-
vention. In C, you'd be working with custom datatypes (such as those provided by the APR lib-
rary) for representing the hash of entries and the list of paths, but Python has hashes (called

Embedding Subversion

197

“dictionaries”) and lists as built-in datatypes, and provides a rich collection of functions for op-
erating on those types. So SWIG (with the help of some customizations in Subversion's lan-
guage bindings layer) takes care of mapping those custom datatypes into the native datatypes
of the target language. This provides a more intuitive interface for users of that language.

The Subversion Python bindings can be used for working copy operations, too. In the previous
section of this chapter, we mentioned the libsvn_client interface, and how it exists for the
sole purpose of simplifying the process of writing a Subversion client. Example 8.3, “A Python
Status Crawler” is a brief example of how that library can be accessed via the SWIG Python
bindings to recreate a scaled-down version of the svn status command.

Example 8.3. A Python Status Crawler

#!/usr/bin/env python

"""Crawl a working copy directory, printing status information."""

import sys
import os.path
import getopt
import svn.core, svn.client, svn.wc

def generate_status_code(status):
"""Translate a status value into a single-character status code,
using the same logic as the Subversion command-line client."""
code_map = { svn.wc.svn_wc_status_none : ' ',

svn.wc.svn_wc_status_normal : ' ',
svn.wc.svn_wc_status_added : 'A',
svn.wc.svn_wc_status_missing : '!',
svn.wc.svn_wc_status_incomplete : '!',
svn.wc.svn_wc_status_deleted : 'D',
svn.wc.svn_wc_status_replaced : 'R',
svn.wc.svn_wc_status_modified : 'M',
svn.wc.svn_wc_status_merged : 'G',
svn.wc.svn_wc_status_conflicted : 'C',
svn.wc.svn_wc_status_obstructed : '~',
svn.wc.svn_wc_status_ignored : 'I',
svn.wc.svn_wc_status_external : 'X',
svn.wc.svn_wc_status_unversioned : '?',

}
return code_map.get(status, '?')

def do_status(wc_path, verbose):
Calculate the length of the input working copy path.
wc_path_len = len(wc_path)

Build a client context baton.
ctx = svn.client.svn_client_ctx_t()

def _status_callback(path, status, root_path_len=wc_path_len):
"""A callback function for svn_client_status."""

Print the path, minus the bit that overlaps with the root of
the status crawl
text_status = generate_status_code(status.text_status)
prop_status = generate_status_code(status.prop_status)
print '%s%s %s' % (text_status, prop_status, path[wc_path_len + 1:])

Do the status crawl, using _status_callback() as our callback function.

Embedding Subversion

198

svn.client.svn_client_status(wc_path, None, _status_callback,
1, verbose, 0, 0, ctx)

def usage_and_exit(errorcode):
"""Print usage message, and exit with ERRORCODE."""
stream = errorcode and sys.stderr or sys.stdout
stream.write("""Usage: %s OPTIONS WC-PATH

Options:
--help, -h : Show this usage message
--verbose, -v : Show all statuses, even uninteresting ones

""" % (os.path.basename(sys.argv[0])))
sys.exit(errorcode)

if __name__ == '__main__':
Parse command-line options.
try:

opts, args = getopt.getopt(sys.argv[1:], "hv", ["help", "verbose"])
except getopt.GetoptError:

usage_and_exit(1)
verbose = 0
for opt, arg in opts:

if opt in ("-h", "--help"):
usage_and_exit(0)

if opt in ("-v", "--verbose"):
verbose = 1

if len(args) != 1:
usage_and_exit(2)

Canonicalize the repository path.
wc_path = svn.core.svn_path_canonicalize(args[0])

Do the real work.
try:

do_status(wc_path, verbose)
except svn.core.SubversionException, e:

sys.stderr.write("Error (%d): %s\n" % (e[1], e[0]))
sys.exit(1)

As was the case in Example 8.2, “Using the Repository Layer with Python”, this program is
pool-free and uses, for the most part, normal Python data types. The call to
svn_client_ctx_t() is deceiving because the public Subversion API has no such func-
tion—this just happens to be a case where SWIG's automatic language generation bleeds
through a little bit (the function is a sort of factory function for Python's version of the corres-
ponding complex C structure). Also note that the path passed to this program (like the last one)
gets run through svn_path_canonicalize(), because to not do so runs the risk of trigger-
ing the underlying Subversion C library's assertions about such things, which translate into
rather immediate and unceremonious program abortion.

Embedding Subversion

199

1Yes, yes, you don't need a subcommand to use the --version option, but we'll get to that in just a minute.

Chapter 9. Subversion Complete
Reference

This chapter is intended to be a complete reference to using Subversion. This includes the
command line client (svn) and all its subcommands, as well as the repository administration
programs (svnadmin and svnlook) and their respective subcommands.

The Subversion Command Line Client: svn
To use the command line client, you type svn, the subcommand you wish to use 1, and any
options or targets that you wish to operate on—there is no specific order that the subcommand
and the options must appear in. For example, all of the following are valid ways to use svn
status:

$ svn -v status
$ svn status -v
$ svn status -v myfile

You can find many more examples of how to use most client commands in Chapter 2, Basic
Usage and commands for managing properties in the section called “Properties”.

svn Options
While Subversion has different options for its subcommands, all options are global—that is,
each option is guaranteed to mean the same thing regardless of the subcommand you use it
with. For example, --verbose (-v) always means “verbose output”, regardless of the sub-
command you use it with.

--auto-props
Enables auto-props, overriding the enable-auto-props directive in the config file.

--change (-c) ARG
Used as a means to refer to a specific “change” (aka a revision), this option is syntactic
sugar for “-r ARG-1:ARG”.

--config-dir DIR
Instructs Subversion to read configuration information from the specified directory instead
of the default location (.subversion in the user's home directory).

--diff-cmd CMD
Specifies an external program to use to show differences between files. When svn diff is
invoked without this option, it uses Subversion's internal diff engine, which provides unified
diffs by default. If you want to use an external diff program, use --diff-cmd. You can
pass options to the diff program with the --extensions option (more on that later in this
section).

--diff3-cmd CMD
Specifies an external program to use to merge files.

200

--dry-run
Goes through all the motions of running a command, but makes no actual changes—either
on disk or in the repository.

--editor-cmd CMD
Specifies an external program to use to edit a log message or a property value. See the
editor-cmd section in the section called “Config” for ways to specify a default editor.

--encoding ENC
Tells Subversion that your commit message is encoded in the charset provided. The de-
fault is your operating system's native locale, and you should specify the encoding if your
commit message is in any other encoding.

--extensions (-x) ARGS
Specifies an argument or arguments that Subversion should pass to an external diff com-
mand. This option is valid only when used with the svn diff or svn merge commands, with
the --diff-cmd option. If you wish to pass multiple arguments, you must enclose all of
them in quotes (for example, svn diff --diff-cmd /usr/bin/diff -x "-b -E").

--file (-F) FILENAME
Uses the contents of the named file for the specified subcommand, though different sub-
commands do different things with this content. For example, svn commit uses the con-
tent as a commit log, whereas svn propset uses it as a property value.

--force
Forces a particular command or operation to run. There are some operations that Subver-
sion will prevent you from doing in normal usage, but you can pass the force option to tell
Subversion “I know what I'm doing as well as the possible repercussions of doing it, so let
me at 'em”. This option is the programmatic equivalent of doing your own electrical work
with the power on—if you don't know what you're doing, you're likely to get a nasty shock.

--force-log
Forces a suspicious parameter passed to the --message (-m) or --file (-F) options to
be accepted as valid. By default, Subversion will produce an error if parameters to these
options look like they might instead be targets of the subcommand. For example, if you
pass a versioned file's path to the --file (-F) option, Subversion will assume you've
made a mistake, that the path was instead intended as the target of the operation, and that
you simply failed to provide some other—unversioned—file as the source of your log mes-
sage. To assert your intent and override these types of errors, pass the --force-log op-
tion to subcommands that accept log messages.

--help (-h or -?)
If used with one or more subcommands, shows the built-in help text for each subcom-
mand. If used alone, it displays the general client help text.

--ignore-ancestry
Tells Subversion to ignore ancestry when calculating differences (rely on path contents
alone).

--ignore-externals
Tells Subversion to ignore external definitions and the external working copies managed
by them.

--incremental
Prints output in a format suitable for concatenation.

--limit NUM

Subversion Complete Reference

201

Show only the first NUM log messages.

--message (-m) MESSAGE
Indicates that you will specify a either a log message or a lock comment on the command
line, following this option. For example:

$ svn commit -m "They don't make Sunday."

--new ARG
Uses ARG as the newer target (for use with svn diff).

--no-auth-cache
Prevents caching of authentication information (e.g. username and password) in the Sub-
version administrative directories.

--no-auto-props
Disables auto-props, overriding the enable-auto-props directive in the config file.

--no-diff-added
Prevents Subversion from printing differences for added files. The default behavior when
you add a file is for svn diff to print the same differences that you would see if you had ad-
ded the entire contents of an existing (empty) file.

--no-diff-deleted
Prevents Subversion from printing differences for deleted files. The default behavior when
you remove a file is for svn diff to print the same differences that you would see if you had
left the file but removed all the content.

--no-ignore
Shows files in the status listing that would normally be omitted since they match a pattern
in the global-ignores configuration option or the svn:ignore property. See the sec-
tion called “Config” and the section called “Ignoring Unversioned Items” for more informa-
tion.

--no-unlock
Don't automatically unlock files (the default commit behavior is to unlock all files listed as
part of the commit). See the section called “Locking” for more information.

--non-interactive
In the case of an authentication failure, or insufficient credentials, prevents prompting for
credentials (e.g. username or password). This is useful if you're running Subversion inside
of an automated script and it's more appropriate to have Subversion fail than to prompt for
more information.

--non-recursive (-N)
Stops a subcommand from recursing into subdirectories. Most subcommands recurse by
default, but some subcommands—usually those that have the potential to remove or undo
your local modifications—do not.

--notice-ancestry
Pay attention to ancestry when calculating differences.

--old ARG
Uses ARG as the older target (for use with svn diff).

--password PASS
Indicates that you are providing your password for authentication on the command

Subversion Complete Reference

202

line—otherwise, if it is needed, Subversion will prompt you for it.

--quiet (-q)
Requests that the client print only essential information while performing an operation.

--recursive (-R)
Makes a subcommand recurse into subdirectories. Most subcommands recurse by default.

--relocate FROM TO [PATH...]
Used with the svn switch subcommand, changes the location of the repository that your
working copy references. This is useful if the location of your repository changes and you
have an existing working copy that you'd like to continue to use. See svn switch for an ex-
ample.

--revision (-r) REV
Indicates that you're going to supply a revision (or range of revisions) for a particular oper-
ation. You can provide revision numbers, revision keywords or dates (in curly braces), as
arguments to the revision option. If you wish to provide a range of revisions, you can
provide two revisions separated by a colon. For example:

$ svn log -r 1729
$ svn log -r 1729:HEAD
$ svn log -r 1729:1744
$ svn log -r {2001-12-04}:{2002-02-17}
$ svn log -r 1729:{2002-02-17}

See the section called “Revision Keywords” for more information.

--revprop
Operates on a revision property instead of a property specific to a file or directory. This op-
tion requires that you also pass a revision with the --revision (-r) option.

--show-updates (-u)
Causes the client to display information about which files in your working copy are out-
of-date. This doesn't actually update any of your files—it just shows you which files will be
updated if you run svn update.

--stop-on-copy
Causes a Subversion subcommand which is traversing the history of a versioned resource
to stop harvesting that historical information when a copy—that is, a location in history
where that resource was copied from another location in the repository—is encountered.

--strict
Causes Subversion to use strict semantics, a notion which is rather vague unless talking
about specific subcommands (namely, svn propget).

--targets FILENAME
Tells Subversion to get the list of files that you wish to operate on from the filename you
provide instead of listing all the files on the command line.

--username NAME
Indicates that you are providing your username for authentication on the command
line—otherwise, if it is needed, Subversion will prompt you for it.

--verbose (-v)
Requests that the client print out as much information as it can while running any subcom-
mand. This may result in Subversion printing out additional fields, detailed information

Subversion Complete Reference

203

about every file, or additional information regarding its actions.

--version
Prints the client version info. This information not only includes the version number of the
client, but also a listing of all repository access modules that the client can use to access a
Subversion repository. With --quiet (-q) it prints only the version number in a compact
form.

--xml
Prints output in XML format.

svn Subcommands
Here are the various subcommands:

Subversion Complete Reference

204

Name
svn add — Add files, directories, or symbolic links.

Synopsis

svn add PATH...

Description

Schedule files, directories, or symbolic links in your working copy for addition to the repository.
They will be uploaded and added to the repository on your next commit. If you add something
and change your mind before committing, you can unschedule the addition using svn revert.

Alternate Names

None

Changes

Working Copy

Accesses Repository

No

Options

--targets FILENAME
--non-recursive (-N)
--quiet (-q)
--config-dir DIR
--no-ignore
--auto-props
--no-auto-props
--force

Examples

To add a file to your working copy:

$ svn add foo.c
A foo.c

When adding a directory, the default behavior of svn add is to recurse:

$ svn add testdir
A testdir
A testdir/a
A testdir/b
A testdir/c
A testdir/d

Subversion Complete Reference

205

You can add a directory without adding its contents:

$ svn add --non-recursive otherdir
A otherdir

Normally, the command svn add * will skip over any directories that are already under version
control. Sometimes, however, you may want to add every unversioned object in your working
copy, including those hiding deeper down. Passing the --force option makes svn add re-
curse into versioned directories:

$ svn add * --force
A foo.c
A somedir/bar.c
A otherdir/docs/baz.doc
…

Subversion Complete Reference

206

Name
svn blame — Show author and revision information in-line for the specified files or URLs.

Synopsis

svn blame TARGET[@REV]...

Description

Show author and revision information in-line for the specified files or URLs. Each line of text is
annotated at the beginning with the author (username) and the revision number for the last
change to that line.

Alternate Names

praise, annotate, ann

Changes

Nothing

Accesses Repository

Yes

Options

--revision (-r) ARG
--verbose (-v)
--incremental
--xml
--extensions (-x) ARG
--force
--username ARG
--password ARG
--no-auth-cache
--non-interactive
--config-dir ARG

Examples

If you want to see blame annotated source for readme.txt in your test repository:

$ svn blame http://svn.red-bean.com/repos/test/readme.txt
3 sally This is a README file.
5 harry You should read this.

Even if svn blame says that Harry last modified readme.txt in revision 5, you'll have to exam-
ine exactly what the revision changed to be sure that Harry changed the context of the
line—he may have just adjusted the whitespace.

Subversion Complete Reference

207

Name
svn cat — Output the contents of the specified files or URLs.

Synopsis

svn cat TARGET[@REV]...

Description

Output the contents of the specified files or URLs. For listing the contents of directories, see
svn list.

Alternate Names

None

Changes

Nothing

Accesses Repository

Yes

Options

--revision (-r) REV
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Examples

If you want to view readme.txt in your repository without checking it out:

$ svn cat http://svn.red-bean.com/repos/test/readme.txt
This is a README file.
You should read this.

If your working copy is out of date (or you have local modifications) and you want
to see the HEAD revision of a file in your working copy, svn cat will automatically
fetch the HEAD revision when you give it a path:

$ cat foo.c
This file is in my local working copy
and has changes that I've made.

$ svn cat foo.c

Subversion Complete Reference

208

Latest revision fresh from the repository!

Subversion Complete Reference

209

Name
svn checkout — Check out a working copy from a repository.

Synopsis

svn checkout URL[@REV]... [PATH]

Description

Check out a working copy from a repository. If PATH is omitted, the basename of the URL will
be used as the destination. If multiple URLs are given each will be checked out into a subdir-
ectory of PATH, with the name of the subdirectory being the basename of the URL.

Alternate Names

co

Changes

Creates a working copy.

Accesses Repository

Yes

Options

--revision (-r) REV
--quiet (-q)
--non-recursive (-N)
--username USER
--password PASS
--no-auth-cache
--non-interactive
--ignore-externals
--config-dir DIR

Examples

Check out a working copy into a directory called mine:

$ svn checkout file:///tmp/repos/test mine
A mine/a
A mine/b
Checked out revision 2.
$ ls
mine

Check out two different directories into two separate working copies:

$ svn checkout file:///tmp/repos/test file:///tmp/repos/quiz
A test/a

Subversion Complete Reference

210

A test/b
Checked out revision 2.
A quiz/l
A quiz/m
Checked out revision 2.
$ ls
quiz test

Check out two different directories into two separate working copies, but place both into a dir-
ectory called working-copies:

$ svn checkout file:///tmp/repos/test file:///tmp/repos/quiz working-copies
A working-copies/test/a
A working-copies/test/b
Checked out revision 2.
A working-copies/quiz/l
A working-copies/quiz/m
Checked out revision 2.
$ ls
working-copies

If you interrupt a checkout (or something else interrupts your checkout, like loss of connectivity,
etc.), you can restart it either by issuing the identical checkout command again, or by updating
the incomplete working copy:

$ svn checkout file:///tmp/repos/test test
A test/a
A test/b
^C
svn: The operation was interrupted
svn: caught SIGINT

$ svn checkout file:///tmp/repos/test test
A test/c
A test/d
^C
svn: The operation was interrupted
svn: caught SIGINT

$ cd test
$ svn update
A test/e
A test/f
Updated to revision 3.

Subversion Complete Reference

211

Name
svn cleanup — Recursively clean up the working copy.

Synopsis

svn cleanup [PATH...]

Description

Recursively clean up the working copy, removing working copy locks and resuming unfinished
operations. If you ever get a “working copy locked” error, run this command to remove stale
locks and get your working copy into a usable state again.

If, for some reason, an svn update fails due to a problem running an external diff program
(e.g. user input or network failure), pass the --diff3-cmd to allow cleanup to complete any
merging with your external diff program. You can also specify any configuration directory with
the --config-dir option, but you should need these options extremely infrequently.

Alternate Names

None

Changes

Working copy

Accesses Repository

No

Options

--diff3-cmd CMD
--config-dir DIR

Examples

Well, there's not much to the examples here as svn cleanup generates no output. If you pass
no PATH, “.” is used.

$ svn cleanup

$ svn cleanup /path/to/working-copy

Subversion Complete Reference

212

Name
svn commit — Send changes from your working copy to the repository.

Synopsis

svn commit [PATH...]

Description

Send changes from your working copy to the repository. If you do not supply a log message
with your commit by using either the --file or --message option, svn will launch your editor
for you to compose a commit message. See the editor-cmd section in the section called
“Config”.

svn commit will send any lock tokens that it finds and will release locks on all PATHS commit-
ted (recursively), unless --no-unlock is passed.

If you begin a commit and Subversion launches your editor to compose the com-
mit message, you can still abort without committing your changes. If you want to
cancel your commit, just quit your editor without saving your commit message and
Subversion will prompt you to either abort the commit, continue with no message,
or edit the message again.

Alternate Names

ci (short for “check in”; not “co”, which is short for “checkout”)

Changes

Working copy, repository

Accesses Repository

Yes

Options

--message (-m) TEXT
--file (-F) FILE
--quiet (-q)
--no-unlock
--non-recursive (-N)
--targets FILENAME
--force-log
--username USER
--password PASS
--no-auth-cache
--non-interactive
--encoding ENC
--config-dir DIR

Examples

Subversion Complete Reference

213

Commit a simple modification to a file with the commit message on the command line and an
implicit target of your current directory (“.”):

$ svn commit -m "added howto section."
Sending a
Transmitting file data .
Committed revision 3.

Commit a modification to the file foo.c (explicitly specified on the command line) with the
commit message in a file named msg:

$ svn commit -F msg foo.c
Sending foo.c
Transmitting file data .
Committed revision 5.

If you want to use a file that's under version control for your commit message with --file,
you need to pass the --force-log option:

$ svn commit --file file_under_vc.txt foo.c
svn: The log message file is under version control
svn: Log message file is a versioned file; use '--force-log' to override

$ svn commit --force-log --file file_under_vc.txt foo.c
Sending foo.c
Transmitting file data .
Committed revision 6.

To commit a file scheduled for deletion:

$ svn commit -m "removed file 'c'."
Deleting c

Committed revision 7.

Subversion Complete Reference

214

Name
svn copy — Copy a file or directory in a working copy or in the repository.

Synopsis

svn copy SRC DST

Description

Copy a file in a working copy or in the repository. SRC and DST can each be either a working
copy (WC) path or URL:

WC -> WC
Copy and schedule an item for addition (with history).

WC -> URL
Immediately commit a copy of WC to URL.

URL -> WC
Check out URL into WC, and schedule it for addition.

URL -> URL
Complete server-side copy. This is usually used to branch and tag.

You can only copy files within a single repository. Subversion does not support
cross-repository copying.

Alternate Names

cp

Changes

Repository if destination is a URL.

Working copy if destination is a WC path.

Accesses Repository

If source or destination is in the repository, or if needed to look up the source revision number.

Options

--message (-m) TEXT
--file (-F) FILE
--revision (-r) REV
--quiet (-q)
--username USER
--password PASS
--no-auth-cache
--non-interactive

Subversion Complete Reference

215

--force-log
--editor-cmd EDITOR
--encoding ENC
--config-dir DIR

Examples

Copy an item within your working copy (just schedules the copy—nothing goes into the reposit-
ory until you commit):

$ svn copy foo.txt bar.txt
A bar.txt
$ svn status
A + bar.txt

Copy an item in your working copy to a URL in the repository (an immediate commit, so you
must supply a commit message):

$ svn copy near.txt file:///tmp/repos/test/far-away.txt -m "Remote copy."

Committed revision 8.

Copy an item from the repository to your working copy (just schedules the copy—nothing goes
into the repository until you commit):

This is the recommended way to resurrect a dead file in your repository!

$ svn copy file:///tmp/repos/test/far-away near-here
A near-here

And finally, copying between two URLs:

$ svn copy file:///tmp/repos/test/far-away file:///tmp/repos/test/over-there -m "remote copy."

Committed revision 9.

This is the easiest way to “tag” a revision in your repository—just svn copy that
revision (usually HEAD) into your tags directory.

$ svn copy file:///tmp/repos/test/trunk file:///tmp/repos/test/tags/0.6.32-prerelease -m "tag tree"

Committed revision 12.

And don't worry if you forgot to tag—you can always specify an older revision and tag anytime:

$ svn copy -r 11 file:///tmp/repos/test/trunk file:///tmp/repos/test/tags/0.6.32-prerelease -m "Forgot to tag at rev 11"

Subversion Complete Reference

216

Committed revision 13.

Subversion Complete Reference

217

Name
svn delete — Delete an item from a working copy or the repository.

Synopsis

svn delete PATH...

svn delete URL...

Description

Items specified by PATH are scheduled for deletion upon the next commit. Files (and director-
ies that have not been committed) are immediately removed from the working copy. The com-
mand will not remove any unversioned or modified items; use the --force option to override
this behavior.

Items specified by URL are deleted from the repository via an immediate commit. Multiple
URLs are committed atomically.

Alternate Names

del, remove, rm

Changes

Working copy if operating on files, repository if operating on URLs

Accesses Repository

Only if operating on URLs

Options

--force
--force-log
--message (-m) TEXT
--file (-F) FILE
--quiet (-q)
--targets FILENAME
--username USER
--password PASS
--no-auth-cache
--non-interactive
--editor-cmd EDITOR
--encoding ENC
--config-dir DIR

Examples

Using svn to delete a file from your working copy deletes your local copy of the file, but merely
schedules it to be deleted from the repository. When you commit, the file is deleted in the re-
pository.

Subversion Complete Reference

218

$ svn delete myfile
D myfile

$ svn commit -m "Deleted file 'myfile'."
Deleting myfile
Transmitting file data .
Committed revision 14.

Deleting a URL, however, is immediate, so you have to supply a log message:

$ svn delete -m "Deleting file 'yourfile'" file:///tmp/repos/test/yourfile

Committed revision 15.

Here's an example of how to force deletion of a file that has local mods:

$ svn delete over-there
svn: Attempting restricted operation for modified resource
svn: Use --force to override this restriction
svn: 'over-there' has local modifications

$ svn delete --force over-there
D over-there

Subversion Complete Reference

219

Name
svn diff — Display the differences between two revisions or paths.

Synopsis

diff [-c M | -r N[:M]] [TARGET[@REV]...]

diff [-r N[:M]] --old=OLD-TGT[@OLDREV] [--new=NEW-TGT[@NEWREV]] [PATH...]

diff OLD-URL[@OLDREV] NEW-URL[@NEWREV]

Description

Display the differences between two paths. The ways you can use svn diff are:

Use just svn diff'to display local modifications in a working copy.

Display the changes made to TARGETs as they are seen in REV between two revisions. TAR-
GETs may be all working copy paths or all URLs. If TARGETs are working copy paths, N defaults
to BASE and M to the working copy; if URLs, N must be specified and M defaults to HEAD. The
“-c M” option is equivalent to “-r N:M” where N = M-1. Using “-c -M” does the reverse: “-r M:N”
where N = M-1.

Display the differences between OLD-TGT as it was seen in OLDREV and NEW-TGT as it was
seen ain NEWREV. PATHs, if given, are relative to OLD-TGT and NEW-TGT and restrict the out-
put to differences for those paths. OLD-TGT and NEW-TGT may be working copy paths or
URL[@REV]. NEW-TGT defaults to OLD-TGT if not specified. “-r N” makes OLDREV default to
N, -r N:M makes OLDREV default to N and NEWREV default to M.

Shorthand for svn diff --old=OLD-URL[@OLDREV] --new=NEW-URL[@NEWREV]

svn diff -r N:M URL is shorthand for svn diff -r N:M --old=URL --new=URL.

svn diff [-r N[:M]] URL1[@N] URL2[@M] is shorthand for svn diff [-r N[:M]] --old=URL1 -
-new=URL2.

If TARGET is a URL, then revs N and M can be given either via the --revision or by using
“@” notation as described earlier.

If TARGET is a working copy path, then the --revision option means:

--revision N:M
The server compares TARGET@N and TARGET@M.

--revision N
The client compares TARGET@N against working copy.

(no --revision)
The client compares base and working copies of TARGET.

If the alternate syntax is used, the server compares URL1 and URL2 at revisions N and M re-
spectively. If either N or M are omitted, a value of HEAD is assumed.

Subversion Complete Reference

220

By default, svn diff ignores the ancestry of files and merely compares the contents of the two
files being compared. If you use --notice-ancestry, the ancestry of the paths in question
will be taken into consideration when comparing revisions (that is, if you run svn diff on two
files with identical contents but different ancestry you will see the entire contents of the file as
having been removed and added again).

Alternate Names

di

Changes

Nothing

Accesses Repository

For obtaining differences against anything but BASE revision in your working copy

Options

--revision (-r) ARG
--change (-c) ARG
--old ARG
--new ARG
--non-recursive (-N)
--diff-cmd CMD
--extensions (-x) "ARGS"
--no-diff-deleted
--notice-ancestry
--summarize
--force
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Examples

Compare BASE and your working copy (one of the most popular uses of svn diff):

$ svn diff COMMITTERS
Index: COMMITTERS
===
--- COMMITTERS (revision 4404)
+++ COMMITTERS (working copy)

See what changed in the file COMMITTERS revision 9115:

$ svn diff -c 9115 COMMITTERS
Index: COMMITTERS
===
--- COMMITTERS (revision 3900)
+++ COMMITTERS (working copy)

Subversion Complete Reference

221

See how your working copy's modifications compare against an older revision:

$ svn diff -r 3900 COMMITTERS
Index: COMMITTERS
===
--- COMMITTERS (revision 3900)
+++ COMMITTERS (working copy)

Compare revision 3000 to revision 3500 using “@” syntax:

$ svn diff http://svn.collab.net/repos/svn/trunk/COMMITTERS@3000 http://svn.collab.net/repos/svn/trunk/COMMITTERS@3500
Index: COMMITTERS
===
--- COMMITTERS (revision 3000)
+++ COMMITTERS (revision 3500)
…

Compare revision 3000 to revision 3500 using range notation (you only pass the one URL in
this case):

$ svn diff -r 3000:3500 http://svn.collab.net/repos/svn/trunk/COMMITTERS
Index: COMMITTERS
===
--- COMMITTERS (revision 3000)
+++ COMMITTERS (revision 3500)

Compare revision 3000 to revision 3500 of all files in trunk using range notation:

$ svn diff -r 3000:3500 http://svn.collab.net/repos/svn/trunk

Compare revision 3000 to revision 3500 of only three files in trunk using range notation:

$ svn diff -r 3000:3500 --old http://svn.collab.net/repos/svn/trunk COMMITTERS README HACKING

If you have a working copy, you can obtain the differences without typing in the long URLs:

$ svn diff -r 3000:3500 COMMITTERS
Index: COMMITTERS
===
--- COMMITTERS (revision 3000)
+++ COMMITTERS (revision 3500)

Use --diff-cmd CMD -x to pass arguments directly to the external diff program

$ svn diff --diff-cmd /usr/bin/diff -x "-i -b" COMMITTERS
Index: COMMITTERS
===
0a1,2

Subversion Complete Reference

222

> This is a test
>

Subversion Complete Reference

223

Name
svn export — Export a clean directory tree.

Synopsis

svn export [-r REV] URL[@PEGREV] [PATH]

svn export [-r REV] PATH1[@PEGREV] [PATH2]

Description

The first form exports a clean directory tree from the repository specified by URL, at revision
REV if it is given, otherwise at HEAD, into PATH. If PATH is omitted, the last component of the
URL is used for the local directory name.

The second form exports a clean directory tree from the working copy specified by PATH1 into
PATH2. All local changes will be preserved, but files not under version control will not be
copied.

Alternate Names

None

Changes

Local disk

Accesses Repository

Only if exporting from a URL

Options

--revision (-r) REV
--quiet (-q)
--force
--username USER
--password PASS
--no-auth-cache
--non-interactive
--non-recursive (-N)
--config-dir DIR
--native-eol EOL
--ignore-externals

Examples

Export from your working copy (doesn't print every file and directory):

$ svn export a-wc my-export
Export complete.

Subversion Complete Reference

224

Export directly from the repository (prints every file and directory):

$ svn export file:///tmp/repos my-export
A my-export/test
A my-export/quiz
…
Exported revision 15.

When rolling operating-system-specific release packages, it can be useful to export a tree
which uses a specific EOL character for line endings. The --native-eol option will do this,
but it only affects files that have svn:eol-style = native properties attached to them. For
example, to export a tree with all CRLF line endings (possibly for a Windows .zip file distribu-
tion):

$ svn export file:///tmp/repos my-export --native-eol CRLF
A my-export/test
A my-export/quiz
…
Exported revision 15.

You can specify LR, CR, or CRLF as a line ending type with the --native-eol option.

Subversion Complete Reference

225

Name
svn help — Help!

Synopsis

svn help [SUBCOMMAND...]

Description

This is your best friend when you're using Subversion and this book isn't within reach!

Alternate Names

?, h

The options -?, -h and --help have the same effect as using the help subcommand.

Changes

Nothing

Accesses Repository

No

Options

--config-dir DIR

Subversion Complete Reference

226

Name
svn import — Commit an unversioned file or tree into the repository.

Synopsis

svn import [PATH] URL

Description

Recursively commit a copy of PATH to URL. If PATH is omitted “.” is assumed. Parent director-
ies are created in the repository as necessary.

Alternate Names

None

Changes

Repository

Accesses Repository

Yes

Options

--message (-m) TEXT
--file (-F) FILE
--quiet (-q)
--non-recursive (-N)
--username USER
--password PASS
--no-auth-cache
--non-interactive
--force-log
--editor-cmd EDITOR
--encoding ENC
--config-dir DIR
--auto-props
--no-auto-props
--ignore-externals

Examples

This imports the local directory myproj into trunk/misc in your repository. The directory
trunk/misc need not exist before you import into it—svn import will recursively create dir-
ectories for you.

$ svn import -m "New import" myproj http://svn.red-bean.com/repos/trunk/misc
Adding myproj/sample.txt
…
Transmitting file data
Committed revision 16.

Subversion Complete Reference

227

Be aware that this will not create a directory named myproj in the repository. If that's what you
want, simply add myproj to the end of the URL:

$ svn import -m "New import" myproj http://svn.red-bean.com/repos/trunk/misc/myproj
Adding myproj/sample.txt
…
Transmitting file data
Committed revision 16.

After importing data, note that the original tree is not under version control. To start working,
you still need to svn checkout a fresh working copy of the tree.

Subversion Complete Reference

228

Name
svn info — Display information about a local or remote item.

Synopsis

svn info [TARGET[@REV]...]

Description

Print information about the working copy paths or URLs specified. The information shown for
both may include:

• Path

• Name

• URL

• Repository Root

• Repository UUID

• Revision

• Node Kind

• Last Changed Author

• Last Changed Revision

• Last Changed Date

• Lock Token

• Lock Owner

• Lock Created (date)

• Lock Expires (date)

Additional kinds of information available only for working copy paths are:

• Schedule

• Copied From URL

• Copied From Rev

• Text Last Updated

• Properties Last Updated

• Checksum

Subversion Complete Reference

229

• Conflict Previous Base File

• Conflict Previous Working File

• Conflict Current Base File

• Conflict Properties File

Alternate Names

None

Changes

Nothing

Accesses Repository

Only if operating on URLs

Options

--revision (-r) REV
--recursive (-R)
--targets FILENAME
--incremental
--xml
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Examples

svn info will show you all the useful information that it has for items in your working copy. It
will show information for files:

$ svn info foo.c
Path: foo.c
Name: foo.c
URL: http://svn.red-bean.com/repos/test/foo.c
Repository Root: http://svn.red-bean.com/repos/test
Repository UUID: 5e7d134a-54fb-0310-bd04-b611643e5c25
Revision: 4417
Node Kind: file
Schedule: normal
Last Changed Author: sally
Last Changed Rev: 20
Last Changed Date: 2003-01-13 16:43:13 -0600 (Mon, 13 Jan 2003)
Text Last Updated: 2003-01-16 21:18:16 -0600 (Thu, 16 Jan 2003)
Properties Last Updated: 2003-01-13 21:50:19 -0600 (Mon, 13 Jan 2003)
Checksum: d6aeb60b0662ccceb6bce4bac344cb66

It will also show information for directories:

Subversion Complete Reference

230

$ svn info vendors
Path: vendors
URL: http://svn.red-bean.com/repos/test/vendors
Repository Root: http://svn.red-bean.com/repos/test
Repository UUID: 5e7d134a-54fb-0310-bd04-b611643e5c25
Revision: 19
Node Kind: directory
Schedule: normal
Last Changed Author: harry
Last Changed Rev: 19
Last Changed Date: 2003-01-16 23:21:19 -0600 (Thu, 16 Jan 2003)
Properties Last Updated: 2003-01-16 23:39:02 -0600 (Thu, 16 Jan 2003)

svn info also acts on URLs (also note that the file readme.doc in this example is locked, so
lock information is also provided):

$ svn info http://svn.red-bean.com/repos/test/readme.doc
Path: readme.doc
Name: readme.doc
URL: http://svn.red-bean.com/repos/test/readme.doc
Repository Root: http://svn.red-bean.com/repos/test
Repository UUID: 5e7d134a-54fb-0310-bd04-b611643e5c25
Revision: 1
Node Kind: file
Schedule: normal
Last Changed Author: sally
Last Changed Rev: 42
Last Changed Date: 2003-01-14 23:21:19 -0600 (Tue, 14 Jan 2003)
Lock Token: opaquelocktoken:14011d4b-54fb-0310-8541-dbd16bd471b2
Lock Owner: harry
Lock Created: 2003-01-15 17:35:12 -0600 (Wed, 15 Jan 2003)
Lock Comment (1 line):
My test lock comment

Subversion Complete Reference

231

Name
svn list — List directory entries in the repository.

Synopsis

svn list [TARGET[@REV]...]

Description

List each TARGET file and the contents of each TARGET directory as they exist in the reposit-
ory. If TARGET is a working copy path, the corresponding repository URL will be used.

The default TARGET is “.”, meaning the repository URL of the current working copy directory.

With --verbose, svn list shows the following fields for each item:

• Revision number of the last commit

• Author of the last commit

• If locked, the letter “O” (See svn info for details).

• Size (in bytes)

• Date and time of the last commit

With --xml, output is in XML format (with a header and an enclosing document element un-
less --incremental is also specified). All of the information is present; the --verbose op-
tion is not accepted.

Alternate Names

ls

Changes

Nothing

Accesses Repository

Yes

Options

--revision (-r) REV
--verbose (-v)
--recursive (-R)
--incremental
--xml
--username USER
--password PASS
--no-auth-cache
--non-interactive

Subversion Complete Reference

232

--config-dir DIR

Examples

svn list is most useful if you want to see what files a repository has without downloading a
working copy:

$ svn list http://svn.red-bean.com/repos/test/support
README.txt
INSTALL
examples/
…

You can pass the --verbose option for additional information, rather like the UNIX command
ls -l:

$ svn list --verbose file:///tmp/repos
16 sally 28361 Jan 16 23:18 README.txt
27 sally 0 Jan 18 15:27 INSTALL
24 harry Jan 18 11:27 examples/

For further details, see the section called “svn list”.

Subversion Complete Reference

233

Name
svn lock — Lock working copy paths or URLs in the repository, so that no other user can com-
mit changes to them.

Synopsis

svn lock TARGET...

Description

Lock each TARGET. If any TARGET is already locked by another user, print a warning and con-
tinue locking the rest of the TARGETs. Use --force to steal a lock from another user or work-
ing copy.

Alternate Names

None

Changes

Working Copy, Repository

Accesses Repository

Yes

Options

--targets FILENAME
--message (-m) TEXT
--file (-F) FILE
--force-log
--encoding ENC
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR
--force

Examples

Lock two files in your working copy:

$ svn lock tree.jpg house.jpg
'tree.jpg' locked by user 'harry'.
'house.jpg' locked by user 'harry'.

Lock a file in your working copy that is currently locked by another user:

$ svn lock tree.jpg

Subversion Complete Reference

234

svn: warning: Path '/tree.jpg is already locked by user 'sally in \
filesystem '/svn/repos/db'

$ svn lock --force tree.jpg
'tree.jpg' locked by user 'harry'.

Lock a file without a working copy:

$ svn lock http://svn.red-bean.com/repos/test/tree.jpg
'tree.jpg' locked by user 'harry'.

For further details, see the section called “Locking”.

Subversion Complete Reference

235

Name
svn log — Display commit log messages.

Synopsis

svn log [PATH]

svn log URL [PATH...]

svn log URL[@REV] [PATH...]

Description

Shows log messages from the repository. If no arguments are supplied, svn log shows the log
messages for all files and directories inside of (and including) the current working directory of
your working copy. You can refine the results by specifying a path, one or more revisions, or
any combination of the two. The default revision range for a local path is BASE:1.

If you specify a URL alone, then it prints log messages for everything that the URL contains. If
you add paths past the URL, only messages for those paths under that URL will be printed.
The default revision range for a URL is HEAD:1.

With --verbose, svn log will also print all affected paths with each log message. With -
-quiet, svn log will not print the log message body itself (this is compatible with
--verbose).

Each log message is printed just once, even if more than one of the affected paths for that re-
vision were explicitly requested. Logs follow copy history by default. Use --stop-on-copy to
disable this behavior, which can be useful for determining branch points.

Alternate Names

None

Changes

Nothing

Accesses Repository

Yes

Options

--revision (-r) REV
--quiet (-q)
--verbose (-v)
--targets FILENAME
--stop-on-copy
--incremental
--limit NUM
--xml
--username USER

Subversion Complete Reference

236

--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Examples

You can see the log messages for all the paths that changed in your working copy by running
svn log from the top:

$ svn log
--
r20 | harry | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003) | 1 line

Tweak.
--
r17 | sally | 2003-01-16 23:21:19 -0600 (Thu, 16 Jan 2003) | 2 lines
…

Examine all log messages for a particular file in your working copy:

$ svn log foo.c
--
r32 | sally | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) | 1 line

Added defines.
--
r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines
…

If you don't have a working copy handy, you can log a URL:

$ svn log http://svn.red-bean.com/repos/test/foo.c
--
r32 | sally | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) | 1 line

Added defines.
--
r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines
…

If you want several distinct paths underneath the same URL, you can use the URL
[PATH...] syntax.

$ svn log http://svn.red-bean.com/repos/test/ foo.c bar.c
--
r32 | sally | 2003-01-13 00:43:13 -0600 (Mon, 13 Jan 2003) | 1 line

Added defines.
--
r31 | harry | 2003-01-10 12:25:08 -0600 (Fri, 10 Jan 2003) | 1 line

Added new file bar.c
--
r28 | sally | 2003-01-07 21:48:33 -0600 (Tue, 07 Jan 2003) | 3 lines

Subversion Complete Reference

237

…

When you're concatenating the results of multiple calls to the log command, you may want to
use the --incremental option. svn log normally prints out a dashed line at the beginning of
a log message, after each subsequent log message, and following the final log message. If
you ran svn log on a range of two revisions, you would get this:

$ svn log -r 14:15
--
r14 | …

--
r15 | …

--

However, if you wanted to gather 2 non-sequential log messages into a file, you might do
something like this:

$ svn log -r 14 > mylog
$ svn log -r 19 >> mylog
$ svn log -r 27 >> mylog
$ cat mylog
--
r14 | …

--
--
r19 | …

--
--
r27 | …

--

You can avoid the clutter of the double dashed lines in your output by using the incremental
option:

$ svn log --incremental -r 14 > mylog
$ svn log --incremental -r 19 >> mylog
$ svn log --incremental -r 27 >> mylog
$ cat mylog
--
r14 | …

--
r19 | …

--
r27 | …

The --incremental option provides similar output control when using the --xml option.

Subversion Complete Reference

238

If you run svn log on a specific path and provide a specific revision and get no
output at all

$ svn log -r 20 http://svn.red-bean.com/untouched.txt
--

That just means that the path was not modified in that revision. If you log from the
top of the repository, or know the file that changed in that revision, you can specify
it explicitly:

$ svn log -r 20 touched.txt
--
r20 | sally | 2003-01-17 22:56:19 -0600 (Fri, 17 Jan 2003) | 1 line

Made a change.
--

Subversion Complete Reference

239

Name
svn merge — Apply the differences between two sources to a working copy path.

Synopsis

svn merge [-c M | -r N:M] SOURCE[@REV] [WCPATH]

svn merge sourceURL1[@N] sourceURL2[@M] [WCPATH]

svn merge sourceWCPATH1@N sourceWCPATH2@M [WCPATH]

Description

In the first and second forms, the source paths (URLs in the first form, working copy paths in
the second) are specified at revisions N and M. These are the two sources to be compared.
The revisions default to HEAD if omitted.

The -c M option is equivalent to -r N:M where N = M-1. Using -c -M does the reverse: -r
M:N where N = M-1.

In the third form, SOURCE can be a URL or working copy item, in which case the corresponding
URL is used. This URL, at revisions N and M, defines the two sources to be compared.

WCPATH is the working copy path that will receive the changes. If WCPATH is omitted, a default
value of “.” is assumed, unless the sources have identical basenames that match a file within
“.”: in which case, the differences will be applied to that file.

Unlike svn diff, the merge command takes the ancestry of a file into consideration when per-
forming a merge operation. This is very important when you're merging changes from one
branch into another and you've renamed a file on one branch but not the other.

Alternate Names

None

Changes

Working copy

Accesses Repository

Only if working with URLs

Options

--revision (-r) REV
--change (-c) REV
--non-recursive (-N)
--quiet (-q)
--force
--dry-run
--diff3-cmd CMD
--extensions (-x) ARG

Subversion Complete Reference

240

--ignore-ancestry
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Examples

Merge a branch back into the trunk (assuming that you have a working copy of the trunk, and
that the branch was created in revision 250):

$ svn merge -r 250:HEAD http://svn.red-bean.com/repos/branches/my-branch
U myproj/tiny.txt
U myproj/thhgttg.txt
U myproj/win.txt
U myproj/flo.txt

If you branched at revision 23, and you want to merge changes on trunk into your branch, you
could do this from inside the working copy of your branch:

$ svn merge -r 23:30 file:///tmp/repos/trunk/vendors
U myproj/thhgttg.txt
…

To merge changes to a single file:

$ cd myproj
$ svn merge -r 30:31 thhgttg.txt
U thhgttg.txt

Subversion Complete Reference

241

Name
svn mkdir — Create a new directory under version control.

Synopsis

svn mkdir PATH...

svn mkdir URL...

Description

Create a directory with a name given by the final component of the PATH or URL. A directory
specified by a working copy PATH is scheduled for addition in the working copy. A directory
specified by a URL is created in the repository via an immediate commit. Multiple directory
URLs are committed atomically. In both cases all the intermediate directories must already ex-
ist.

Alternate Names

None

Changes

Working copy, repository if operating on a URL

Accesses Repository

Only if operating on a URL

Options

--message (-m) TEXT
--file (-F) FILE
--quiet (-q)
--username USER
--password PASS
--no-auth-cache
--non-interactive
--editor-cmd EDITOR
--encoding ENC
--force-log
--config-dir DIR

Examples

Create a directory in your working copy:

$ svn mkdir newdir
A newdir

Create one in the repository (instant commit, so a log message is required):

Subversion Complete Reference

242

$ svn mkdir -m "Making a new dir." http://svn.red-bean.com/repos/newdir

Committed revision 26.

Subversion Complete Reference

243

Name
svn move — Move a file or directory.

Synopsis

svn move SRC DST

Description

This command moves a file or directory in your working copy or in the repository.

This command is equivalent to an svn copy followed by svn delete.

Subversion does not support moving between working copies and URLs. In addi-
tion, you can only move files within a single repository—Subversion does not sup-
port cross-repository moving.

WC -> WC
Move and schedule a file or directory for addition (with history).

URL -> URL
Complete server-side rename.

Alternate Names

mv, rename, ren

Changes

Working copy, repository if operating on a URL

Accesses Repository

Only if operating on a URL

Options

--message (-m) TEXT
--file (-F) FILE
--revision (-r) REV (Deprecated)
--quiet (-q)
--force
--username USER
--password PASS
--no-auth-cache
--non-interactive
--editor-cmd EDITOR
--encoding ENC
--force-log
--config-dir DIR

Subversion Complete Reference

244

Examples

Move a file in your working copy:

$ svn move foo.c bar.c
A bar.c
D foo.c

Move a file in the repository (an immediate commit, so it requires a commit message):

$ svn move -m "Move a file" http://svn.red-bean.com/repos/foo.c \
http://svn.red-bean.com/repos/bar.c

Committed revision 27.

Subversion Complete Reference

245

Name
svn propdel — Remove a property from an item.

Synopsis

svn propdel PROPNAME [PATH...]

svn propdel PROPNAME --revprop -r REV [TARGET]

Description

This removes properties from files, directories, or revisions. The first form removes versioned
properties in your working copy, while the second removes unversioned remote properties on
a repository revision (TARGET only determines which repository to access).

Alternate Names

pdel, pd

Changes

Working copy, repository only if operating on a URL

Accesses Repository

Only if operating on a URL

Options

--quiet (-q)
--recursive (-R)
--revision (-r) REV
--revprop
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Examples

Delete a property from a file in your working copy

$ svn propdel svn:mime-type some-script
property 'svn:mime-type' deleted from 'some-script'.

Delete a revision property:

$ svn propdel --revprop -r 26 release-date
property 'release-date' deleted from repository revision '26'

Subversion Complete Reference

246

Name
svn propedit — Edit the property of one or more items under version control.

Synopsis

svn propedit PROPNAME PATH...

svn propedit PROPNAME --revprop -r REV [TARGET]

Description

Edit one or more properties using your favorite editor. The first form edits versioned properties
in your working copy, while the second edits unversioned remote properties on a repository re-
vision (TARGET only determines which repository to access).

Alternate Names

pedit, pe

Changes

Working copy, repository only if operating on a URL

Accesses Repository

Only if operating on a URL

Options

--revision (-r) REV
--revprop
--username USER
--password PASS
--no-auth-cache
--non-interactive
--encoding ENC
--editor-cmd EDITOR
--config-dir DIR

Examples

svn propedit makes it easy to modify properties that have multiple values:

$ svn propedit svn:keywords foo.c
<svn will launch your favorite editor here, with a buffer open
containing the current contents of the svn:keywords property. You
can add multiple values to a property easily here by entering one
value per line.>

Set new value for property 'svn:keywords' on 'foo.c'

Subversion Complete Reference

247

Name
svn propget — Print the value of a property.

Synopsis

svn propget PROPNAME [TARGET[@REV]...]

svn propget PROPNAME --revprop -r REV [URL]

Description

Print the value of a property on files, directories, or revisions. The first form prints the ver-
sioned property of an item or items in your working copy, while the second prints unversioned
remote property on a repository revision. See the section called “Properties” for more informa-
tion on properties.

Alternate Names

pget, pg

Changes

Working copy, repository only if operating on a URL

Accesses Repository

Only if operating on a URL

Options

--recursive (-R)
--revision (-r) REV
--revprop
--strict
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Examples

Examine a property of a file in your working copy:

$ svn propget svn:keywords foo.c
Author
Date
Rev

The same goes for a revision property:

Subversion Complete Reference

248

$ svn propget svn:log --revprop -r 20
Began journal.

Subversion Complete Reference

249

Name
svn proplist — List all properties.

Synopsis

svn proplist [TARGET[@REV]...]

svn proplist --revprop -r REV [TARGET]

Description

List all properties on files, directories, or revisions. The first form lists versioned properties in
your working copy, while the second lists unversioned remote properties on a repository revi-
sion (TARGET only determines which repository to access).

Alternate Names

plist, pl

Changes

Working copy, repository only if operating on a URL

Accesses Repository

Only if operating on a URL

Options

--verbose (-v)
--recursive (-R)
--revision (-r) REV
--quiet (-q)
--revprop
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Examples

You can use proplist to see the properties on an item in your working copy:

$ svn proplist foo.c
Properties on 'foo.c':
svn:mime-type
svn:keywords
owner

But with the --verbose flag, svn proplist is extremely handy as it also shows you the values
for the properties:

Subversion Complete Reference

250

$ svn proplist --verbose foo.c
Properties on 'foo.c':
svn:mime-type : text/plain
svn:keywords : Author Date Rev
owner : sally

Subversion Complete Reference

251

Name
svn propset — Set PROPNAME to PROPVAL on files, directories, or revisions.

Synopsis

svn propset PROPNAME [PROPVAL | -F VALFILE] PATH...

svn propset PROPNAME --revprop -r REV [PROPVAL | -F VALFILE] [TARGET]

Description

Set PROPNAME to PROPVAL on files, directories, or revisions. The first example creates a ver-
sioned, local property change in the working copy, and the second creates an unversioned, re-
mote property change on a repository revision (TARGET only determines which repository to
access).

Subversion has a number of “special” properties that affect its behavior. See the
section called “Subversion properties” for more on these properties.

Alternate Names

pset, ps

Changes

Working copy, repository only if operating on a URL

Accesses Repository

Only if operating on a URL

Options

--file (-F) FILE
--quiet (-q)
--revision (-r) REV
--targets FILENAME
--recursive (-R)
--revprop
--username USER
--password PASS
--no-auth-cache
--non-interactive
--encoding ENC
--force
--config-dir DIR

Examples

Set the mime type on a file:

Subversion Complete Reference

252

$ svn propset svn:mime-type image/jpeg foo.jpg
property 'svn:mime-type' set on 'foo.jpg'

On a UNIX system, if you want a file to have the executable permission set:

$ svn propset svn:executable ON somescript
property 'svn:executable' set on 'somescript'

Perhaps you have an internal policy to set certain properties for the benefit of your coworkers:

$ svn propset owner sally foo.c
property 'owner' set on 'foo.c'

If you made a mistake in a log message for a particular revision and want to change it, use -
-revprop and set svn:log to the new log message:

$ svn propset --revprop -r 25 svn:log "Journaled about trip to New York."
property 'svn:log' set on repository revision '25'

Or, if you don't have a working copy, you can provide a URL.

$ svn propset --revprop -r 26 svn:log "Document nap." http://svn.red-bean.com/repos
property 'svn:log' set on repository revision '25'

Lastly, you can tell propset to take its input from a file. You could even use this to set the con-
tents of a property to something binary:

$ svn propset owner-pic -F sally.jpg moo.c
property 'owner-pic' set on 'moo.c'

By default, you cannot modify revision properties in a Subversion repository. Your
repository administrator must explicitly enable revision property modifications by
creating a hook named pre-revprop-change. See the section called
“Implementing Repository Hooks” for more information on hook scripts.

Subversion Complete Reference

253

Name
svn resolved — Remove “conflicted” state on working copy files or directories.

Synopsis

svn resolved PATH...

Description

Remove “conflicted” state on working copy files or directories. This routine does not semantic-
ally resolve conflict markers; it merely removes conflict-related artifact files and allows PATH to
be committed again; that is, it tells Subversion that the conflicts have been “resolved”. See the
section called “Resolve Conflicts (Merging Others' Changes)” for an in-depth look at resolving
conflicts.

Alternate Names

None

Changes

Working copy

Accesses Repository

No

Options

--targets FILENAME
--recursive (-R)
--quiet (-q)
--config-dir DIR

Examples

If you get a conflict on an update, your working copy will sprout three new files:

$ svn update
C foo.c
Updated to revision 31.
$ ls
foo.c
foo.c.mine
foo.c.r30
foo.c.r31

Once you've resolved the conflict and foo.c is ready to be committed, run svn resolved to let
your working copy know you've taken care of everything.

Subversion Complete Reference

254

You can just remove the conflict files and commit, but svn resolved fixes up some
bookkeeping data in the working copy administrative area in addition to removing
the conflict files, so we recommend that you use this command.

Subversion Complete Reference

255

Name
svn revert — Undo all local edits.

Synopsis

svn revert PATH...

Description

Reverts any local changes to a file or directory and resolves any conflicted states. svn revert
will not only revert the contents of an item in your working copy, but also any property
changes. Finally, you can use it to undo any scheduling operations that you may have done
(e.g. files scheduled for addition or deletion can be “unscheduled”).

Alternate Names

None

Changes

Working copy

Accesses Repository

No

Options

--targets FILENAME
--recursive (-R)
--quiet (-q)
--config-dir DIR

Examples

Discard changes to a file:

$ svn revert foo.c
Reverted foo.c

If you want to revert a whole directory of files, use the --recursive flag:

$ svn revert --recursive .
Reverted newdir/afile
Reverted foo.c
Reverted bar.txt

Lastly, you can undo any scheduling operations:

$ svn add mistake.txt whoops

Subversion Complete Reference

256

A mistake.txt
A whoops
A whoops/oopsie.c

$ svn revert mistake.txt whoops
Reverted mistake.txt
Reverted whoops

$ svn status
? mistake.txt
? whoops

svn revert is inherently dangerous, since its entire purpose is to throw away
data—namely, your uncommitted changes. Once you've reverted, Subversion
provides no way to get back those uncommitted changes.

If you provide no targets to svn revert, it will do nothing—to protect you from acci-
dentally losing changes in your working copy, svn revert requires you to provide
at least one target.

Subversion Complete Reference

257

Name
svn status — Print the status of working copy files and directories.

Synopsis

svn status [PATH...]

Description

Print the status of working copy files and directories. With no arguments, it prints only locally
modified items (no repository access). With --show-updates, it adds working revision and
server out-of-date information. With --verbose, it prints full revision information on every
item.

The first six columns in the output are each one character wide, and each column gives you in-
formation about different aspects of each working copy item.

The first column indicates that an item was added, deleted, or otherwise changed.

' '
No modifications.

'A'
Item is scheduled for Addition.

'D'
Item is scheduled for Deletion.

'M'
Item has been modified.

'R'
Item has been replaced in your working copy. This means the file was scheduled for dele-
tion, and then a new file with the same name was scheduled for addition in its place.

'C'
The contents (as opposed to the properties) of the item conflict with updates received from
the repository.

'X'
Item is present because of an externals definition.

'I'
Item is being ignored (e.g. with the svn:ignore property).

'?'
Item is not under version control.

'!'
Item is missing (e.g. you moved or deleted it without using svn). This also indicates that a
directory is incomplete (a checkout or update was interrupted).

'~'
Item is versioned as one kind of object (file, directory, link), but has been replaced by dif-

Subversion Complete Reference

258

ferent kind of object.

The second column tells the status of a file's or directory's properties.

' '
No modifications.

'M'
Properties for this item have been modified.

'C'
Properties for this item are in conflict with property updates received from the repository.

The third column is populated only if the working copy directory is locked. (See the section
called “Sometimes You Just Need to Clean Up”.)

' '
Item is not locked.

'L'
Item is locked.

The fourth column is populated only if the item is scheduled for addition-with-history.

' '
No history scheduled with commit.

'+'
History scheduled with commit.

The fifth column is populated only if the item is switched relative to its parent (see the section
called “Traversing Branches”).

' '
Item is a child of its parent directory.

'S'
Item is switched.

The sixth column is populated with lock information.

' '
When --show-updates is used, the file is not locked. If --show-updates is not used,
this merely means that the file is not locked in this working copy.

K
File is locked in this working copy.

O
File is locked either by another user or in another working copy. This only appears when -

Subversion Complete Reference

259

-show-updates is used.

T
File was locked in this working copy, but the lock has been “stolen” and is invalid. The file
is currently locked in the repository. This only appears when --show-updates is used.

B
File was locked in this working copy, but the lock has been “broken” and is invalid. The file
is no longer locked This only appears when --show-updates is used.

The out-of-date information appears in the seventh column (only if you pass the -
-show-updates option).

' '
The item in your working copy is up-to-date.

'*'
A newer revision of the item exists on the server.

The remaining fields are variable width and delimited by spaces. The working revision is the
next field if the --show-updates or --verbose options are passed.

If the --verbose option is passed, the last committed revision and last committed author are
displayed next.

The working copy path is always the final field, so it can include spaces.

Alternate Names

stat, st

Changes

Nothing

Accesses Repository

Only if using --show-updates

Options

--show-updates (-u)
--verbose (-v)
--non-recursive (-N)
--quiet (-q)
--no-ignore
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR
--ignore-externals

Examples

Subversion Complete Reference

260

This is the easiest way to find out what changes you have made to your working copy:

$ svn status wc
M wc/bar.c
A + wc/qax.c

If you want to find out what files in your working copy are out-of-date, pass the -
-show-updates option (this will not make any changes to your working copy). Here you can
see that wc/foo.c has changed in the repository since we last updated our working copy:

$ svn status --show-updates wc
M 965 wc/bar.c

* 965 wc/foo.c
A + 965 wc/qax.c
Status against revision: 981

--show-updates only places an asterisk next to items that are out of date (that
is, items that will be updated from the repository if you run svn update). -
-show-updates does not cause the status listing to reflect the repository's ver-
sion of the item (although you can see the revision number in the repository by
passing the --verbose option).

And finally, the most information you can get out of the status subcommand:

$ svn status --show-updates --verbose wc
M 965 938 sally wc/bar.c

* 965 922 harry wc/foo.c
A + 965 687 harry wc/qax.c

965 687 harry wc/zig.c
Head revision: 981

For many more examples of svn status, see the section called “See an overview of your
changes”.

Subversion Complete Reference

261

Name
svn switch — Update working copy to a different URL.

Synopsis

svn switch URL [PATH]

switch --relocate FROM TO [PATH...]

Description

The first variant of this subcommand (without the --relocate option) updates your working
copy to point to a new URL—usually a URL which shares a common ancestor with your work-
ing copy, although not necessarily. This is the Subversion way to move a working copy to a
new branch. See the section called “Traversing Branches” for an in-depth look at switching.

The --relocate option causes svn switch to do something different: it updates your working
copy to point to the same repository directory, only at a different URL (typically because an ad-
ministrator has moved the repository to another server, or to another URL on the same server).

Alternate Names

sw

Changes

Working copy

Accesses Repository

Yes

Options

--revision (-r) REV
--non-recursive (-N)
--quiet (-q)
--diff3-cmd CMD
--relocate FROM TO
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR

Examples

If you're currently inside the directory vendors, which was branched to vendors-with-fix,
and you'd like to switch your working copy to that branch:

$ svn switch http://svn.red-bean.com/repos/branches/vendors-with-fix .
U myproj/foo.txt

Subversion Complete Reference

262

U myproj/bar.txt
U myproj/baz.c
U myproj/qux.c
Updated to revision 31.

And to switch back, just provide the URL to the location in the repository from which you origin-
ally checked out your working copy:

$ svn switch http://svn.red-bean.com/repos/trunk/vendors .
U myproj/foo.txt
U myproj/bar.txt
U myproj/baz.c
U myproj/qux.c
Updated to revision 31.

You can just switch part of your working copy to a branch if you don't want to
switch your entire working copy.

Sometimes an administrator might change the “base location” of your repository—in other
words, the contents of the repository doesn't change, but the main URL used to reach the root
of the repository does. For example, the hostname may change, the URL scheme may
change, or any part of the URL which leads to the repository itself may change. Rather than
check out a new working copy, you can have the svn switch command “rewrite” the begin-
nings of all the URLs in your working copy. Use the --relocate option to do the substitution.
No file contents are changed, nor is the repository contacted. It's similar to running a Perl script
over your working copy .svn/ directories which runs s/OldRoot/NewRoot/.

$ svn checkout file:///tmp/repos test
A test/a
A test/b
…

$ mv repos newlocation
$ cd test/

$ svn update
svn: Unable to open an ra_local session to URL
svn: Unable to open repository 'file:///tmp/repos'

$ svn switch --relocate file:///tmp/repos file:///tmp/newlocation .
$ svn update
At revision 3.

Be careful when using the --relocate option. If you mistype the argument, you
might end up creating nonsensical URLs within your working copy that render the
whole workspace unusable and tricky to fix. It's also important to understand ex-
actly when one should or shouldn't use --relocate. Here's the rule of thumb:

• If the working copy needs to reflect a new directory within the repository, then
use just svn switch.

• If the working copy still reflects the same repository directory, but the location of

Subversion Complete Reference

263

the repository itself has changed, then use svn switch --relocate.

Subversion Complete Reference

264

Name
svn unlock — Unlock working copy paths or URLs.

Synopsis

svn unlock TARGET...

Description

Unlock each TARGET. If any TARGET is either locked by another user or no valid lock token ex-
ists in the working copy, print a warning and continue unlocking the rest of the TARGETs. Use -
-force to break a lock belonging to another user or working copy.

Alternate Names

None

Changes

Working Copy, Repository

Accesses Repository

Yes

Options

--targets FILENAME
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR
--force

Examples

Unlock two files in your working copy:

$ svn unlock tree.jpg house.jpg
'tree.jpg' unlocked.
'house.jpg' unlocked.

Unlock a file in your working copy that is currently locked by another user:

$ svn unlock tree.jpg
svn: 'tree.jpg' is not locked in this working copy
$ svn unlock --force tree.jpg
'tree.jpg' unlocked.

Subversion Complete Reference

265

Unlock a file without a working copy:

$ svn unlock http://svn.red-bean.com/repos/test/tree.jpg
'tree.jpg unlocked.

For further details, see the section called “Locking”.

Subversion Complete Reference

266

Name
svn update — Update your working copy.

Synopsis

svn update [PATH...]

Description

svn update brings changes from the repository into your working copy. If no revision is given,
it brings your working copy up-to-date with the HEAD revision. Otherwise, it synchronizes the
working copy to the revision given by the --revision option. As part of the synchronization,
svn update also removes any stale locks (see the section called “Sometimes You Just Need
to Clean Up”) found in the working copy.

For each updated item, it prints a line that starts with a character reporting the action taken.
These characters have the following meaning:

A
Added

D
Deleted

U
Updated

C
Conflicted

G
Merged

A character in the first column signifies an update to the actual file, while updates to the file's
properties are shown in the second column.

Alternate Names

up

Changes

Working copy

Accesses Repository

Yes

Options

--revision (-r) REV
--non-recursive (-N)

Subversion Complete Reference

267

--quiet (-q)
--no-ignore
--incremental
--diff3-cmd CMD
--username USER
--password PASS
--no-auth-cache
--non-interactive
--config-dir DIR
--ignore-externals

Examples

Pick up repository changes that have happened since your last update:

$ svn update
A newdir/toggle.c
A newdir/disclose.c
A newdir/launch.c
D newdir/README
Updated to revision 32.

You can also “update” your working copy to an older revision (Subversion doesn't have the
concept of “sticky” files like CVS does; see Appendix B, Subversion for CVS Users):

$ svn update -r30
A newdir/README
D newdir/toggle.c
D newdir/disclose.c
D newdir/launch.c
U foo.c
Updated to revision 30.

If you want to examine an older revision of a single file, you may want to use svn
cat instead—it won't change your working copy.

svnadmin
svnadmin is the administrative tool for monitoring and repairing your Subversion repository.
For detailed information, see the section called “svnadmin”.

Since svnadmin works via direct repository access (and thus can only be used on the ma-
chine that holds the repository), it refers to the repository with a path, not a URL.

svnadmin Options

--bdb-log-keep
(Berkeley DB specific) Disable automatic log removal of database log files. Having these
log files around can be convenient if you need to restore from a catastrophic repository fail-
ure.

Subversion Complete Reference

268

--bdb-txn-nosync
(Berkeley DB specific) Disables fsync when committing database transactions. Used with
the svnadmin create command to create a Berkeley DB backed repository with
DB_TXN_NOSYNC enabled (which improves speed but has some risks associated with it).

--bypass-hooks
Bypass the repository hook system.

--clean-logs
Removes unused Berkeley DB logs.

--force-uuid
By default, when loading data into repository that already contains revisions, svnadmin
will ignore the UUID from the dump stream. This option will cause the repository's UUID to
be set to the UUID from the stream.

--ignore-uuid
By default, when loading an empty repository, svnadmin will ignore the UUID from the
dump stream. This option will force that UUID to be ignored (useful for overriding your con-
figuration file if it has --force-uuid set).

--incremental
Dump a revision only as a diff against the previous revision, instead of the usual fulltext.

--parent-dir DIR
When loading a dump file, root paths at DIR instead of /.

--revision (-r) ARG
Specify a particular revision to operate on.

--quiet
Do not show normal progress—show only errors.

--use-post-commit-hook
When loading a dump file, run the repository's post-commit hook after finalizing each
newly loaded revision.

--use-pre-commit-hook
When loading a dump file, run the repository's pre-commit hook before finalizing each
newly loaded revision. If the hook fails, abort the commit and terminate the load process.

svnadmin Subcommands

Subversion Complete Reference

269

1Remember, svnadmin works only with local paths, not URLs.

Name
svnadmin create — Create a new, empty repository.

Synopsis

svnadmin create REPOS_PATH

Description

Create a new, empty repository at the path provided. If the provided directory does not exist, it
will be created for you.1 As of Subversion 1.2, svnadmin creates new repositories with the
fsfs filesystem backend by default.

Options

--bdb-txn-nosync
--bdb-log-keep
--config-dir DIR
--fs-type TYPE

Examples

Creating a new repository is just this easy:

$ svnadmin create /usr/local/svn/repos

In Subversion 1.0, a Berkeley DB repository is always created. In Subversion 1.1, a Berkeley
DB repository is the default repository type, but an FSFS repository can be created using the -
-fs-type option:

$ svnadmin create /usr/local/svn/repos --fs-type fsfs

Subversion Complete Reference

270

Name
svnadmin deltify — Deltify changed paths in a revision range.

Synopsis

svnadmin deltify [-r LOWER[:UPPER]] REPOS_PATH

Description

svnadmin deltify exists in current versions of Subversion only for historical reasons. This
command is deprecated and no longer needed.

It dates from a time when Subversion offered administrators greater control over compression
strategies in the repository. This turned out to be a lot of complexity for very little gain, and this
“feature” was deprecated.

Options

--revision (-r) REV
--quiet (-q)

Subversion Complete Reference

271

Name
svnadmin dump — Dump the contents of filesystem to stdout.

Synopsis

svnadmin dump REPOS_PATH [-r LOWER[:UPPER]] [--incremental]

Description

Dump the contents of filesystem to stdout in a “dumpfile” portable format, sending feedback to
stderr. Dump revisions LOWER rev through UPPER rev. If no revisions are given, dump all revi-
sion trees. If only LOWER is given, dump that one revision tree. See the section called
“Migrating Repository Data Elsewhere” for a practical use.

By default, the Subversion dumpfile stream contains a single revision (the first revision in the
requested revision range) in which every file and directory in the repository in that revision is
presented as if that whole tree was added at once, followed by other revisions (the remainder
of the revisions in the requested range) which contain only the files and directories which were
modified in those revisions. For a modified file, the complete fulltext representation of its con-
tents, as well as all of its properties, are presented in the dumpfile; for a directory, all of its
properties are presented.

There are two useful options which modify the dumpfile generator's behavior. The first is the -
-incremental option, which simply causes that first revision in the dumpfile stream to con-
tain only the files and directories modified in that revision, instead of being presented as the
addition of a new tree, and in exactly the same way that every other revision in the dumpfile is
presented. This is useful for generating a relatively small dumpfile to be loaded into another re-
pository which already has the files and directories that exist in the original repository.

The second useful option is --deltas. This option causes svnadmin dump to, instead of
emitting fulltext representations of file contents and property lists, emit only deltas of those
items against their previous versions. This reduces (in some cases, drastically) the size of the
dumpfile that svnadmin dump creates. There are, however, disadvantages to using this op-
tion—deltified dumpfiles are more CPU intensive to create, cannot be operated on by svn-
dumpfilter, and tend not to compress as well as their non-deltified counterparts when using
third-party tools like gzip and bzip2.

Options

--revision (-r) REV
--incremental
--quiet (-q)
--deltas

Examples

Dump your whole repository:

$ svnadmin dump /usr/local/svn/repos
SVN-fs-dump-format-version: 1
Revision-number: 0
* Dumped revision 0.
Prop-content-length: 56

Subversion Complete Reference

272

Content-length: 56
…

Incrementally dump a single transaction from your repository:

$ svnadmin dump /usr/local/svn/repos -r 21 --incremental
* Dumped revision 21.
SVN-fs-dump-format-version: 1
Revision-number: 21
Prop-content-length: 101
Content-length: 101
…

Subversion Complete Reference

273

Name
svnadmin help — Help!

Synopsis

svnadmin help [SUBCOMMAND...]

Description

This subcommand is useful when you're trapped on a desert island with neither a net connec-
tion nor a copy of this book.

Alternate Names

?, h

Subversion Complete Reference

274

Name
svnadmin hotcopy — Make a hot copy of a repository.

Synopsis

svnadmin hotcopy REPOS_PATH NEW_REPOS_PATH

Description

This subcommand makes a full “hot” backup of your repository, including all hooks, configura-
tion files, and, of course, database files. If you pass the --clean-logs option, svnadmin will
perform a hotcopy of your repository, and then remove unused Berkeley DB logs from the ori-
ginal repository. You can run this command at any time and make a safe copy of the reposit-
ory, regardless of whether other processes are using the repository.

Options

--clean-logs

As described in the section called “Berkeley DB”, hot-copied Berkeley DB reposit-
ories are not portable across operating systems, nor will they work on machines
with a different “endianness” than the machine where they were created.

Subversion Complete Reference

275

Name
svnadmin list-dblogs — Ask Berkeley DB which log files exist for a given Subversion repository
(applies only to repositories using the bdb backend).

Synopsis

svnadmin list-dblogs REPOS_PATH

Description

Berkeley DB creates logs of all changes to the repository, which allow it to recover in the face
of catastrophe. Unless you enable DB_LOG_AUTOREMOVE, the log files accumulate, although
most are no longer used and can be deleted to reclaim disk space. See the section called
“Managing Disk Space” for more information.

Subversion Complete Reference

276

Name
svnadmin list-unused-dblogs — Ask Berkeley DB which log files can be safely deleted (applies
only to repositories using the bdb backend).

Synopsis

svnadmin list-unused-dblogs REPOS_PATH

Description

Berkeley DB creates logs of all changes to the repository, which allow it to recover in the face
of catastrophe. Unless you enable DB_LOG_AUTOREMOVE, the log files accumulate, although
most are no longer used and can be deleted to reclaim disk space. See the section called
“Managing Disk Space” for more information.

Examples

Remove all unused log files from a repository:

$ svnadmin list-unused-dblogs /path/to/repos
/path/to/repos/log.0000000031
/path/to/repos/log.0000000032
/path/to/repos/log.0000000033

$ svnadmin list-unused-dblogs /path/to/repos | xargs rm
disk space reclaimed!

Subversion Complete Reference

277

Name
svnadmin load — Read a “dumpfile”-formatted stream from stdin.

Synopsis

svnadmin load REPOS_PATH

Description

Read a “dumpfile”-formatted stream from stdin, committing new revisions into the repository's
filesystem. Send progress feedback to stdout.

Options

--quiet (-q)
--ignore-uuid
--force-uuid
--use-pre-commit-hook
--use-post-commit-hook
--parent-dir

Example

This shows the beginning of loading a repository from a backup file (made, of course, with
svnadmin dump):

$ svnadmin load /usr/local/svn/restored < repos-backup
<<< Started new txn, based on original revision 1

* adding path : test ... done.
* adding path : test/a ... done.

…

Or if you want to load into a subdirectory:

$ svnadmin load --parent-dir new/subdir/for/project /usr/local/svn/restored < repos-backup
<<< Started new txn, based on original revision 1

* adding path : test ... done.
* adding path : test/a ... done.

…

Subversion Complete Reference

278

Name
svnadmin lslocks — Print descriptions of all locks.

Synopsis

svnadmin lslocks REPOS_PATH

Description

Print descriptions of all locks in a repository.

Options

None

Example

This lists the one locked file in the repository at /svn/repos:

$ svnadmin lslocks /svn/repos
Path: /tree.jpg
UUID Token: opaquelocktoken:ab00ddf0-6afb-0310-9cd0-dda813329753
Owner: harry
Created: 2005-07-08 17:27:36 -0500 (Fri, 08 Jul 2005)
Expires:
Comment (1 line):
Rework the uppermost branches on the bald cypress in the foreground.

Subversion Complete Reference

279

Name
svnadmin lstxns — Print the names of all uncommitted transactions.

Synopsis

svnadmin lstxns REPOS_PATH

Description

Print the names of all uncommitted transactions. See the section called “Removing dead trans-
actions” for information on how uncommitted transactions are created and what you should do
with them.

Examples

List all outstanding transactions in a repository.

$ svnadmin lstxns /usr/local/svn/repos/
1w
1x

Subversion Complete Reference

280

Name
svnadmin recover — Bring a repository database back into a consistent state (applies only to
repositories using the bdb backend). In addition, if repos/conf/passwd does not exist, it will
create a default password file .

Synopsis

svnadmin recover REPOS_PATH

Description

Run this command if you get an error indicating that your repository needs to be recovered.

Options

--wait

Examples

Recover a hung repository:

$ svnadmin recover /usr/local/svn/repos/
Repository lock acquired.
Please wait; recovering the repository may take some time...

Recovery completed.
The latest repos revision is 34.

Recovering the database requires an exclusive lock on the repository. (This is a “database
lock”; see The three meanings of “lock”.) If another process is accessing the repository, then
svnadmin recover will error:

$ svnadmin recover /usr/local/svn/repos
svn: Failed to get exclusive repository access; perhaps another process
such as httpd, svnserve or svn has it open?

$

The --wait option, however, will cause svnadmin recover to wait indefinitely for other pro-
cesses to disconnect:

$ svnadmin recover /usr/local/svn/repos --wait
Waiting on repository lock; perhaps another process has it open?

time goes by…

Repository lock acquired.
Please wait; recovering the repository may take some time...

Recovery completed.
The latest repos revision is 34.

Subversion Complete Reference

281

Subversion Complete Reference

282

Name
svnadmin rmlocks — Unconditionally remove one or more locks from a repository.

Synopsis

svnadmin rmlocks REPOS_PATH LOCKED_PATH...

Description

Remove lock from each LOCKED_PATH.

Options

None

Example

This deletes the locks on tree.jpg and house.jpg in the repository at /svn/repos

$ svnadmin rmlocks /svn/repos tree.jpg house.jpg
Removed lock on '/tree.jpg.
Removed lock on '/house.jpg.

Subversion Complete Reference

283

Name
svnadmin rmtxns — Delete transactions from a repository.

Synopsis

svnadmin rmtxns REPOS_PATH TXN_NAME...

Description

Delete outstanding transactions from a repository. This is covered in detail in the section called
“Removing dead transactions”.

Options

--quiet (-q)

Examples

Remove named transactions:

$ svnadmin rmtxns /usr/local/svn/repos/ 1w 1x

Fortunately, the output of lstxns works great as the input for rmtxns:

$ svnadmin rmtxns /usr/local/svn/repos/ `svnadmin lstxns /usr/local/svn/repos/`

Which will remove all uncommitted transactions from your repository.

Subversion Complete Reference

284

Name
svnadmin setlog — Set the log-message on a revision.

Synopsis

svnadmin setlog REPOS_PATH -r REVISION FILE

Description

Set the log-message on revision REVISION to the contents of FILE.

This is similar to using svn propset --revprop to set the svn:log property on a revision, ex-
cept that you can also use the option --bypass-hooks to avoid running any pre- or post-
commit hooks, which is useful if the modification of revision properties has not been enabled in
the pre-revprop-change hook.

Revision properties are not under version control, so this command will perman-
ently overwrite the previous log message.

Options

--revision (-r) REV
--bypass-hooks

Examples

Set the log message for revision 19 to the contents of the file msg:

$ svnadmin setlog /usr/local/svn/repos/ -r 19 msg

Subversion Complete Reference

285

Name
svnadmin verify — Verify the data stored in the repository.

Synopsis

svnadmin verify REPOS_PATH

Description

Run this command if you wish to verify the integrity of your repository. This basically iterates
through all revisions in the repository by internally dumping all revisions and discarding the out-
put—it's a good idea to run this on a regular basis to guard against latent hard disk failures and
“bitrot”. If this command fails—which it will do at the first sign of a problem—that means that
your repository has at least one corrupted revision and you should restore the corrupted revi-
sion from a backup (you did make a backup, didn't you?).

Examples

Verify a hung repository:

$ svnadmin verify /usr/local/svn/repos/
* Verified revision 1729.

svnlook
svnlook is a command-line utility for examining different aspects of a Subversion repository. It
does not make any changes to the repository—it's just used for “peeking”. svnlook is typically
used by the repository hooks, but a repository administrator might find it useful for diagnostic
purposes.

Since svnlook works via direct repository access (and thus can only be used on the machine
that holds the repository), it refers to the repository with a path, not a URL.

If no revision or transaction is specified, svnlook defaults to the youngest (most recent) revi-
sion of the repository.

svnlook Options
Options in svnlook are global, just like in svn and svnadmin; however, most options only ap-
ply to one subcommand since the functionality of svnlook is (intentionally) limited in scope.

--no-diff-deleted
Prevents svnlook from printing differences for deleted files. The default behavior when a
file is deleted in a transaction/revision is to print the same differences that you would see if
you had left the file but removed all the content.

--revision (-r)
Specify a particular revision number that you wish to examine.

--revprop
Operates on a revision property instead of a property specific to a file or directory. This op-

Subversion Complete Reference

286

tion requires that you also pass a revision with the --revision (-r) option.

--transaction (-t)
Specify a particular transaction ID that you wish to examine.

--show-ids
Show the filesystem node revision IDs for each path in the filesystem tree.

svnlook Subcommands

Subversion Complete Reference

287

Name
svnlook author — Print the author.

Synopsis

svnlook author REPOS_PATH

Description

Print the author of a revision or transaction in the repository.

Options

--revision (-r) REV
--transaction (-t)

Examples

svnlook author is handy, but not very exciting:

$ svnlook author -r 40 /usr/local/svn/repos
sally

Subversion Complete Reference

288

Name
svnlook cat — Print the contents of a file.

Synopsis

svnlook cat REPOS_PATH PATH_IN_REPOS

Description

Print the contents of a file.

Options

--revision (-r) REV
--transaction (-t)

Examples

This shows the contents of a file in transaction ax8, located at /trunk/README:

$ svnlook cat -t ax8 /usr/local/svn/repos /trunk/README

Subversion, a version control system.
=====================================

$LastChangedDate: 2003-07-17 10:45:25 -0500 (Thu, 17 Jul 2003) $

Contents:

I. A FEW POINTERS
II. DOCUMENTATION
III. PARTICIPATING IN THE SUBVERSION COMMUNITY

…

Subversion Complete Reference

289

Name
svnlook changed — Print the paths that were changed.

Synopsis

svnlook changed REPOS_PATH

Description

Print the paths that were changed in a particular revision or transaction, as well as “svn up-
date-style” status letters in the first two columns:

'A '
Item added to repository.

'D '
Item deleted from repository.

'U '
File contents changed.

' U'
Properties of item changed. Note the leading space.

'UU'
File contents and properties changed.

Files and directories can be distinguished, as directory paths are displayed with a trailing '/'
character.

Options

--revision (-r) REV
--transaction (-t)

Examples

This shows a list of all the changed files and directories in revision 39 of a test repository. Note
that the first changed item is a directory, as evidenced by the trailing /:

$ svnlook changed -r 39 /usr/local/svn/repos
A trunk/vendors/deli/
A trunk/vendors/deli/chips.txt
A trunk/vendors/deli/sandwich.txt
A trunk/vendors/deli/pickle.txt
U trunk/vendors/baker/bagel.txt
U trunk/vendors/baker/croissant.txt
UU trunk/vendors/baker/pretzel.txt
D trunk/vendors/baker/baguette.txt

Subversion Complete Reference

290

Name
svnlook date — Print the datestamp.

Synopsis

svnlook date REPOS_PATH

Description

Print the datestamp of a revision or transaction in a repository.

Options

--revision (-r) REV
--transaction (-t)

Examples

This shows the date of revision 40 of a test repository:

$ svnlook date -r 40 /tmp/repos/
2003-02-22 17:44:49 -0600 (Sat, 22 Feb 2003)

Subversion Complete Reference

291

Name
svnlook diff — Print differences of changed files and properties.

Synopsis

svnlook diff REPOS_PATH

Description

Print GNU-style differences of changed files and properties in a repository.

Options

--revision (-r) REV
--transaction (-t)
--no-diff-added
--no-diff-deleted

Examples

This shows a newly added (empty) file, a deleted file, and a copied file:

$ svnlook diff -r 40 /usr/local/svn/repos/
Copied: egg.txt (from rev 39, trunk/vendors/deli/pickle.txt)

Added: trunk/vendors/deli/soda.txt
==

Modified: trunk/vendors/deli/sandwich.txt
==
--- trunk/vendors/deli/sandwich.txt (original)
+++ trunk/vendors/deli/sandwich.txt 2003-02-22 17:45:04.000000000 -0600
@@ -0,0 +1 @@
+Don't forget the mayo!

Modified: trunk/vendors/deli/logo.jpg
==
(Binary files differ)

Deleted: trunk/vendors/deli/chips.txt
==

Deleted: trunk/vendors/deli/pickle.txt
==

If a file has a non-textual svn:mime-type property, then the differences are not explicitly
shown.

Subversion Complete Reference

292

Name
svnlook dirs-changed — Print the directories that were themselves changed.

Synopsis

svnlook dirs-changed REPOS_PATH

Description

Print the directories that were themselves changed (property edits) or whose file children were
changed.

Options

--revision (-r) REV
--transaction (-t)

Examples

This shows the directories that changed in revision 40 in our sample repository:

$ svnlook dirs-changed -r 40 /usr/local/svn/repos
trunk/vendors/deli/

Subversion Complete Reference

293

Name
svnlook help — Help!

Synopsis

Also svnlook -h and svnlook -?.

Description

Displays the help message for svnlook. This command, like its brother svn help, is also your
friend, even though you never call it anymore and forgot to invite it to your last party.

Alternate Names

?, h

Subversion Complete Reference

294

Name
svnlook history — Print information about the history of a path in the repository (or the root dir-
ectory if no path is supplied).

Synopsis

svnlook history REPOS_PATH [PATH_IN_REPOS]

Description

Print information about the history of a path in the repository (or the root directory if no path is
supplied).

Options

--revision (-r) REV
--show-ids

Examples

This shows the history output for the path /tags/1.0 as of revision 20 in our sample reposit-
ory.

$ svnlook history -r 20 /usr/local/svn/repos /tags/1.0 --show-ids
REVISION PATH <ID>
-------- ---------

19 /tags/1.0 <1.2.12>
17 /branches/1.0-rc2 <1.1.10>
16 /branches/1.0-rc2 <1.1.x>
14 /trunk <1.0.q>
13 /trunk <1.0.o>
11 /trunk <1.0.k>
9 /trunk <1.0.g>
8 /trunk <1.0.e>
7 /trunk <1.0.b>
6 /trunk <1.0.9>
5 /trunk <1.0.7>
4 /trunk <1.0.6>
2 /trunk <1.0.3>
1 /trunk <1.0.2>

Subversion Complete Reference

295

Name
svnlook info — Print the author, datestamp, log message size, and log message.

Synopsis

svnlook info REPOS_PATH

Description

Print the author, datestamp, log message size, and log message.

Options

--revision (-r) REV
--transaction (-t)

Examples

This shows the info output for revision 40 in our sample repository.

$ svnlook info -r 40 /usr/local/svn/repos
sally
2003-02-22 17:44:49 -0600 (Sat, 22 Feb 2003)
15
Rearrange lunch.

Subversion Complete Reference

296

Name
svnlook lock — If a lock exists on a path in the repository, describe it.

Synopsis

svnlook lock REPOS_PATH PATH_IN_REPOS

Description

Print all information available for the lock at PATH_IN_REPOS. If PATH_IN_REPOS is not
locked, print nothing.

Options

None

Examples

This describes the lock on the file tree.jpg.

$ svnlook lock /svn/repos tree.jpg
UUID Token: opaquelocktoken:ab00ddf0-6afb-0310-9cd0-dda813329753
Owner: harry
Created: 2005-07-08 17:27:36 -0500 (Fri, 08 Jul 2005)
Expires:
Comment (1 line):
Rework the uppermost branches on the bald cypress in the foreground.

Subversion Complete Reference

297

Name
svnlook log — Print the log message.

Synopsis

svnlook log REPOS_PATH

Description

Print the log message.

Options

--revision (-r) REV
--transaction (-t)

Examples

This shows the log output for revision 40 in our sample repository:

$ svnlook log /tmp/repos/
Rearrange lunch.

Subversion Complete Reference

298

Name
svnlook propget — Print the raw value of a property on a path in the repository.

Synopsis

svnlook propget REPOS_PATH PROPNAME [PATH_IN_REPOS]

Description

List the value of a property on a path in the repository.

Alternate Names

pg, pget

Options

--revision (-r) REV
--transaction (-t)
--revprop

Examples

This shows the value of the “seasonings” property on the file /trunk/sandwich in the HEAD
revision:

$ svnlook pg /usr/local/svn/repos seasonings /trunk/sandwich
mustard

Subversion Complete Reference

299

Name
svnlook proplist — Print the names and values of versioned file and directory properties.

Synopsis

svnlook proplist REPOS_PATH [PATH_IN_REPOS]

Description

List the properties of a path in the repository. With --verbose, show the property values too.

Alternate Names

pl, plist

Options

--revision (-r) REV
--transaction (-t)
--verbose (-v)
--revprop

Examples

This shows the names of properties set on the file /trunk/README in the HEAD revision:

$ svnlook proplist /usr/local/svn/repos /trunk/README
original-author
svn:mime-type

This is the same command as in the previous example, but this time showing the property val-
ues as well:

$ svnlook --verbose proplist /usr/local/svn/repos /trunk/README
original-author : fitz
svn:mime-type : text/plain

Subversion Complete Reference

300

Name
svnlook tree — Print the tree.

Synopsis

svnlook tree REPOS_PATH [PATH_IN_REPOS]

Description

Print the tree, starting at PATH_IN_REPOS (if supplied, at the root of the tree otherwise), op-
tionally showing node revision IDs.

Options

--revision (-r) REV
--transaction (-t)
--show-ids

Examples

This shows the tree output (with node-IDs) for revision 40 in our sample repository:

$ svnlook tree -r 40 /usr/local/svn/repos --show-ids
/ <0.0.2j>
trunk/ <p.0.2j>
vendors/ <q.0.2j>
deli/ <1g.0.2j>
egg.txt <1i.e.2j>
soda.txt <1k.0.2j>
sandwich.txt <1j.0.2j>

Subversion Complete Reference

301

Name
svnlook uuid — Print the repository's UUID.

Synopsis

svnlook uuid REPOS_PATH

Description

Print the UUID for the repository. the UUID is the repository's universal unique identifier. The
Subversion client uses this identifier to differentiate between one repository and another.

Examples

$ svnlook uuid /usr/local/svn/repos
e7fe1b91-8cd5-0310-98dd-2f12e793c5e8

Subversion Complete Reference

302

Name
svnlook youngest — Print the youngest revision number.

Synopsis

svnlook youngest REPOS_PATH

Description

Print the youngest revision number of a repository.

Examples

This shows the youngest revision of our sample repository:

$ svnlook youngest /tmp/repos/
42

svnsync
svnsync is the Subversion remote repository mirroring tool. Put simply, it allows you to replay
the revisions of one repository into another one.

In any mirroring scenario, there are two repositories: the source repository, and the mirror (or
“sink”) repository. The source repository is the repository from which svnsync pulls revisions.
The mirror repository is the destination for the revisions pulled from the source repository.
Each of the repositories may be local or remote—they are only ever addressed by their URLs.

The svnsync process requires only read access to the source repository; it never attempts to
modify it. But obviously, svnsync requires both read and write access to the mirror repository.

svnsync is very sensitive to changes made in the mirror repository that weren't
made as part of a mirroring operation. To prevent this from happening, it's best if
the svnsync process is the only process permitted to modify the mirror repository.

svnsync Options

--config-dir DIR
Instructs Subversion to read configuration information from the specified directory instead
of the default location (.subversion in the user's home directory).

--no-auth-cache
Prevents caching of authentication information (e.g. username and password) in the Sub-
version administrative directories.

--non-interactive
In the case of an authentication failure, or insufficient credentials, prevents prompting for
credentials (e.g. username or password). This is useful if you're running Subversion inside
of an automated script and it's more appropriate to have Subversion fail than to prompt for

Subversion Complete Reference

303

more information.

--password PASS
Indicates that you are providing your password for authentication on the command
line—otherwise, if it is needed, Subversion will prompt you for it.

--username NAME
Indicates that you are providing your username for authentication on the command
line—otherwise, if it is needed, Subversion will prompt you for it.

svnsync Subcommands
Here are the various subcommands:

Subversion Complete Reference

304

Name
svnsync copy-revprops — Copy all revision properties for a given revision from the source re-
pository to the mirror repository.

Synopsis

svnsync copy-revprops DEST_URL REV

Description

Because Subversion revision properties can be changed at any time, it's possible that the
properties for some revision might be changed after that revision has already been synchron-
ized to another repository. Because the svnsync synchronize command operates only on the
range of revisions that have not yet been synchronized, it won't notice a revision property
change outside that range. Left as is, this causes a deviation in the values of that revision's
properties between the source and mirror repositories. svnsync copy-revprops is the answer
to this problem. Use it to re-synchronize the revision properties for a particular revision.

Alternate Names

None

Options

--non-interactive
--no-auth-cache
--username NAME
--password PASS
--config-dir DIR

Examples

Re-synchronize revision properties for a single revision:

$ svnsync copy-revprops file:///opt/svn/repos-mirror 6
Copied properties for revision 6.
$

Subversion Complete Reference

305

Name
svnsync initialize — Initialize a destination repository for synchronization from another reposit-
ory.

Synopsis

svnsync initialize DEST_URL SOURCE_URL

Description

svnsync initialize verifies that a repository meets the requirements of a new mirror reposit-
ory—that it has no previous existing version history, and that it allows revision property modi-
fications—and records the initial administrative information which associates the mirror reposit-
ory with the source repository. This is the first svnsync operation you run on a would-be mirror
repository.

Alternate Names

init

Options

--non-interactive
--no-auth-cache
--username NAME
--password PASS
--config-dir DIR

Examples

Fail to initialize a mirror repository due to inability to modify revision properties:

$ svnsync initialize file:///opt/svn/repos-mirror http://svn.example.com/repos
svnsync: Repository has not been enabled to accept revision propchanges;
ask the administrator to create a pre-revprop-change hook
$

Initialize a repository as a mirror, having already created a pre-revprop-change hook which
permits all revision property changes:

$ svnsync initialize file:///opt/svn/repos-mirror http://svn.example.com/repos
Copied properties for revision 0.
$

Subversion Complete Reference

306

Name
svnsync synchronize — Transfer all pending revisions from the source repository to the mirror
repository.

Synopsis

svnsync synchronize DEST_URL

Description

The svnsync synchronize command does all the heavy lifting of a repository mirroring opera-
tion. After consulting with the mirror repository to see which revisions have already been
copied into it, it then begins copying any not-yet-mirrored revisions from the source repository.

svnsync synchronize can be gracefully cancelled and restarted.

Alternate Names

sync

Options

--non-interactive
--no-auth-cache
--username NAME
--password PASS
--config-dir DIR

Examples

Copy unsynchronized revisions from the source repository to the mirror repository:

$ svnsync synchronize file:///opt/svn/repos-mirror
Committed revision 1.
Copied properties for revision 1.
Committed revision 2.
Copied properties for revision 2.
Committed revision 3.
Copied properties for revision 3.
…
Committed revision 45.
Copied properties for revision 45.
Committed revision 46.
Copied properties for revision 46.
Committed revision 47.
Copied properties for revision 47.
$

svnserve
svnserve allows access to Subversion repositories using Subversion's custom network pro-
tocol.

Subversion Complete Reference

307

You can run svnserve as a standalone server process (for clients that are using the svn://
access method); you can have a daemon such as inetd or xinetd launch it for you on demand
(also for svn://), or you can have sshd launch it on demand for the svn+ssh:// access
method.

Regardless of the access method, once the client has selected a repository by transmitting its
URL, svnserve reads a file named conf/svnserve.conf in the repository directory to de-
termine repository-specific settings such as what authentication database to use and what au-
thorization policies to apply. See the section called “svnserve, a custom server” for details of
the svnserve.conf file.

svnserve Options
Unlike the previous commands we've described, svnserve has no subcommands—svnserve
is controlled exclusively by options.

--daemon (-d)
Causes svnserve to run in daemon mode. svnserve backgrounds itself and accepts and
serves TCP/IP connections on the svn port (3690, by default).

--listen-port=PORT
Causes svnserve to listen on PORT when run in daemon mode. (FreeBSD daemons only
listen on tcp6 by default—this option tells them to also listen on tcp4.)

--listen-host=HOST
Causes svnserve to listen on the interface specified by HOST, which may be either a host-
name or an IP address.

--foreground
When used together with -d, this option causes svnserve to stay in the foreground. This
option is mainly useful for debugging.

--inetd (-i)
Causes svnserve to use the stdin/stdout file descriptors, as is appropriate for a daemon
running out of inetd.

--help (-h)
Displays a usage summary and exits.

--version
Displays version information, a list of repository back-end modules available, and exits.

--root=ROOT (-r=ROOT)
Sets the virtual root for repositories served by svnserve. The pathname in URLs provided
by the client will be interpreted relative to this root, and will not be allowed to escape this
root.

--tunnel (-t)
Causes svnserve to run in tunnel mode, which is just like the inetd mode of operation
(both modes serve one connection over stdin/stdout, then exit), except that the connection
is considered to be pre-authenticated with the username of the current uid. This flag is
automatically passed for you by the client when running over a tunnel agent such as ssh.
That means there's rarely any need for you to pass this option to svnserve. So if you find
yourself typing svnserve --tunnel on the command line, and wondering what to do
next, see the section called “Tunneling over SSH”.

Subversion Complete Reference

308

--tunnel-user NAME
Used in conjunction with the --tunnel option; tells svnserve to assume that NAME is the
authenticated user, rather than the UID of the svnserve process. Useful for users wishing
to share a single system account over SSH, but maintaining separate commit identities.

--threads (-T)
When running in daemon mode, causes svnserve to spawn a thread instead of a process
for each connection (e.g. for when running on Windows). The svnserve process still back-
grounds itself at startup time.

--listen-once (-X)
Causes svnserve to accept one connection on the svn port, serve it, and exit. This option
is mainly useful for debugging.

svnversion

Subversion Complete Reference

309

Name
svnversion — Summarize the local revision(s) of a working copy.

Synopsis

svnversion [OPTIONS] [WC_PATH [TRAIL_URL]]

Description

svnversion is a program for summarizing the revision mixture of a working copy. The resultant
revision number, or revision range, is written to standard output.

It's common to use this output in your build process when defining the version number of your
program.

TRAIL_URL, if present, is the trailing portion of the URL used to determine if WC_PATH itself is
switched (detection of switches within WC_PATH does not rely on TRAIL_URL).

When WC_PATH is not defined, the current directory will be used as the working copy path.
TRAIL_URL cannot be defined if WC_PATH is not explicitly given.

Options

Like svnserve, svnversion has no subcommands, it only has options.

--no-newline (-n)
Omit the usual trailing newline from the output.

--committed (-c)
Use the last-changed revisions rather than the current (i.e., highest locally available) revi-
sions.

--help (-h)
Print a help summary.

--version
Print the version of svnversion and exit with no error.

Examples

If the working copy is all at the same revision (for example, immediately after an update), then
that revision is printed out:

$ svnversion
4168

You can add TRAIL_URL to make sure that the working copy is not switched from what you
expect. Note that the WC_PATH is required in this command:

$ svnversion . /repos/svn/trunk

Subversion Complete Reference

310

4168

For a mixed-revision working copy, the range of revisions present is printed:

$ svnversion
4123:4168

If the working copy contains modifications, a trailing "M" is added:

$ svnversion
4168M

If the working copy is switched, a trailing "S" is added:

$ svnversion
4168S

Thus, here is a mixed-revision, switched working copy containing some local modifications:

$ svnversion
4212:4168MS

If invoked on a directory that is not a working copy, svnversion assumes it is an exported
working copy and prints "exported":

$ svnversion
exported

mod_dav_svn

Subversion Complete Reference

311

Name
mod_dav_svn Configuration Directives — Apache configuration directives for serving Subver-
sion repositories through Apache HTTP Server.

Description

This section briefly describes each of the Subversion Apache configuration directives. For an
in-depth description of configuring Apache with Subversion, see the section called “httpd, the
Apache HTTP server”.)

Directives

DAV svn
This directive must be included in any Directory or Location block for a Subversion
repository. It tells httpd to use the Subversion backend for mod_dav to handle all requests.

SVNAutoversioning On
This directive allows write requests from WebDAV clients to result in automatic commits. A
generic log message is auto-generated and attached to each revision. If you enable
Autoversioning, you'll likely want to set ModMimeUsePathInfo On so that mod_mime can
set svn:mime-type to the correct mime-type automatically (as best as mod_mime is able
to, of course). For more information, see Appendix C, WebDAV and Autoversioning

SVNPath
This directive specifies the location in the filesystem for a Subversion repository's files. In a
configuration block for a Subversion repository, either this directive or SVNParentPath
must be present, but not both.

SVNSpecialURI
Specifies the URI component (namespace) for special Subversion resources. The default
is “!svn”, and most administrators will never use this directive. Only set this if there is a
pressing need to have a file named !svn in your repository. If you change this on a server
already in use, it will break all of the outstanding working copies and your users will hunt
you down with pitchforks and flaming torches.

SVNReposName
Specifies the name of a Subversion repository for use in HTTP GET responses. This value
will be prepended to the title of all directory listings (which are served when you navigate to
a Subversion repository with a web browser). This directive is optional.

SVNIndexXSLT
Specifies the URI of an XSL transformation for directory indexes. This directive is optional.

SVNParentPath
Specifies the location in the filesystem of a parent directory whose child directories are
Subversion repositories. In a configuration block for a Subversion repository, either this dir-
ective or SVNPath must be present, but not both.

SVNPathAuthz
Control path-based authorization by enabling or disabling subrequests. See the section
called “Disabling Path-based Checks” for details.

Subversion Complete Reference

312

1As of this writing, symbolic links are indeed the only “special” objects. But there might be more in future releases of
Subversion.

Subversion properties
Subversion allows users to invent arbitrarily-named versioned properties on files and director-
ies, as well as unversioned properties on revisions. The only restriction is on properties whose
names begin with svn: (those are reserved for Subversion's own use). While these properties
may be set by users to control Subversion's behavior, users may not invent new svn: proper-
ties.

Versioned Properties

svn:executable
If present on a file, the client will make the file executable in Unix-hosted working copies.
See the section called “File Executability”.

svn:mime-type
If present on a file, the value indicates the file's mime-type. This allows the client to decide
whether line-based contextual merging is safe to perform during updates, and can also af-
fect how the file behaves when fetched via web browser. See the section called “File Con-
tent Type”.

svn:ignore
If present on a directory, the value is a list of unversioned file patterns to be ignored by svn
status and other subcommands. See the section called “Ignoring Unversioned Items”

svn:keywords
If present on a file, the value tells the client how to expand particular keywords within the
file. See the section called “Keyword Substitution”.

svn:eol-style
If present on a file, the value tells the client how to manipulate the file's line-endings in the
working copy, and in exported trees. See the section called “End-of-Line Character Se-
quences” and svn export.

svn:externals
If present on a directory, the value is a multi-line list of other paths and URLs the client
should check out. See the section called “Externals Definitions”.

svn:special
If present on a file, indicates that the file is not an ordinary file, but a symbolic link or other
special object1.

svn:needs-lock
If present on a file, tells the client to make the file read-only in the working copy, as a re-
minder that the file should be locked before editing begins. See the section called “Lock
Communication”.

Unversioned Properties

svn:author
If present, contains the authenticated username of the person who created the revision. (If
not present, then the revision was committed anonymously.)

Subversion Complete Reference

313

svn:date
Contains the UTC time the revision was created, in ISO 8601 format. The value comes
from the server machine's clock, not the client's.

svn:log
Contains the log message describing the revision.

svn:autoversioned
If present, the revision was created via the autoversioning feature. See the section called
“Autoversioning”.

Repository Hooks

Subversion Complete Reference

314

Name
start-commit — Notification of the beginning of a commit.

Description

The start-commit hook is run before the commit transaction is even created. It is typically used
to decide if the user has commit privileges at all.

If the start-commit hook program returns a non-zero exit value, the commit is stopped before
the commit transaction is even created, and anything printed to stderr is marshalled back to
the client.

Input Parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. repository path

2. authenticated username attempting the commit

Common Uses

access control

Subversion Complete Reference

315

Name
pre-commit — Notification just prior to commit completion.

Description

The pre-commit hook is run just before a commit transaction is promoted to a new revision.
Typically, this hook is used to protect against commits that are disallowed due to content or
location (for example, your site might require that all commits to a certain branch include a tick-
et number from the bug tracker, or that the incoming log message is non-empty).

If the pre-commit hook program returns a non-zero exit value, the commit is aborted, the com-
mit transaction is removed, and anything printed to stderr is marshalled back to the client.

Input Parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. repository path

2. commit transaction name

Common Uses

change validation and control

Subversion Complete Reference

316

Name
post-commit — Notification of a successful commit.

Description

The post-commit hook is run after the transaction is committed, and a new revision created.
Most people use this hook to send out descriptive emails about the commit or to notify some
other tool (such as an issue tracker) that a commit has happened. Some configurations also
use this hook to trigger backup processes.

The output from, and exit value returned by the post-commit hook program are ignored.

Input Parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. repository path

2. revision number created by the commit

Common Uses

commit notification, tool integration

Subversion Complete Reference

317

Name
pre-revprop-change — Notification of a revision property change attempt.

Description

The pre-revprop-change hook is run immediately prior to the modification of a revision property
when performed outside the scope of a normal commit. Unlike the other hooks, the default
state of this one is to deny the proposed action. The hook must actually exist and return a zero
exit value before a revision property modification can happen.

If the pre-revprop-change hook doesn't exist, isn't executable, or returns a non-zero exit value,
no change to the property will be made, and anything printed to stderr is marshalled back to
the client.

Input Parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. repository path

2. revision whose property is about to be modified

3. authenticated username attempting the propchange

4. name of the property changed

5. change description: A (added), D (deleted), or M (modified)

Additionally, Subversion passes to the hook program via standard input the proposed value of
the property.

Common Uses

access control, change validation and control

Subversion Complete Reference

318

Name
post-revprop-change — Notification of a successful revision property change.

Description

The post-revprop-change hook is run immediately after to the modification of a revision prop-
erty when performed outside the scope of a normal commit. As can be derived from the de-
scription of its counterpart, the pre-revprop-change hook, this hook will not run at all unless the
pre-revprop-change hook is implemented. It is typically used to send email notification of the
property change.

The output from, and exit value returned by, the post-revprop-change hook program are ig-
nored.

Input Parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. repository path

2. revision whose property was modified

3. authenticated username of the person making the change

4. name of the property changed

5. change description: A (added), D (deleted), or M (modified)

Additionally, Subversion passes to the hook program, via standard input, the previous value of
the property.

Common Uses

propchange notification

Subversion Complete Reference

319

Name
pre-lock — Notification of a path lock attempt.

Description

The pre-lock hook runs whenever someone attempts to lock a path. It can be used to prevent
locks altogether, or to create a more complex policy specifying exactly which users are allowed
to lock particular paths. If the hook notices a pre-existing lock, then it can also decide whether
a user is allowed to “steal” the existing lock.

If the pre-lock hook program returns a non-zero exit value, the lock action is aborted and any-
thing printed to stderr is marshalled back to the client.

Input Parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. repository path

2. versioned path which is to be locked

3. authenticated username of the person attempting the lock

Common Uses

access control

Subversion Complete Reference

320

Name
post-lock — Notification of a successful path lock.

Description

The post-lock hook runs after one or more paths has been locked. It is typically used to send
email notification of the lock event.

The output from and exit value returned by the post-lock hook program are ignored.

Input Parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. repository path

2. authenticated username of the person who locked the paths

Additionally, the list of paths locked is passed to the hook program via standard input, one path
per line.

Common Uses

lock notification

Subversion Complete Reference

321

Name
pre-unlock — Notification of a path unlock attempt.

Description

The pre-unlock hook runs whenever someone attempts to remove a lock on a file. It can be
used to create policies that specify which users are allowed to unlock particular paths. It's par-
ticularly important for determining policies about lock breakage. If user A locks a file, is user B
allowed to break the lock? What if the lock is more than a week old? These sorts of things can
be decided and enforced by the hook.

If the pre-unlock hook program returns a non-zero exit value, the unlock action is aborted and
anything printed to stderr is marshalled back to the client.

Input Parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. repository path

2. versioned path which is to be locked

3. authenticated username of the person attempting the lock

Common Uses

access control

Subversion Complete Reference

322

Name
post-unlock — Notification of a successful path unlock.

Description

The post-unlock hook runs after one or more paths has been unlocked. It is typically used to
send email notification of the unlock event.

The output from and exit value returned by, the post-unlock hook program are ignored.

Input Parameter(s)

The command-line arguments passed to the hook program, in order, are:

1. repository path

2. authenticated username of the person who unlocked the paths

Additionally, the list of paths unlocked is passed to the hook program via standard input, one
path per line.

Common Uses

unlock notification

Subversion Complete Reference

323

1Note that the URL checked out in the example above ends not with svn, but with a subdirectory thereof called
trunk. See our discussion of Subversion's branching and tagging model for the reasoning behind this.

Appendix A. Subversion Quick-Start
Guide

If you're eager to get Subversion up and running (and you enjoy learning by experimentation),
this chapter will show you how to create a repository, import code, and then check it back out
again as a working copy. Along the way, we give links to the relevant chapters of this book.

If you're new to the entire concept of version control or to the “copy-modify-merge”
model used by both CVS and Subversion, then you should read Chapter 1, Funda-
mental Concepts before going any further.

Installing Subversion
Subversion is built on a portability layer called APR—the Apache Portable Runtime library. The
APR library provides all the interfaces that Subversion needs to function on different operating
systems: disk access, network access, memory management, and so on. While Subversion is
able to use Apache as one of its network server programs, its dependence on APR does not
mean that Apache is a required component. APR is a standalone library useable by any applic-
ation. It does mean, however, that like Apache, Subversion clients and servers run on any op-
erating system that the Apache httpd server runs on: Windows, Linux, all flavors of BSD, Mac
OS X, Netware, and others.

The easiest way to get Subversion is to download a binary package built for your operating
system. Subversion's website (http://subversion.tigris.org) often has these packages available
for download, posted by volunteers. The site usually contains graphical installer packages for
users of Microsoft operating systems. If you run a Unix-like operating system, you can use
your system's native package distribution system (RPMs, DEBs, the ports tree, etc.) to get
Subversion.

Alternately, you can build Subversion directly from source code, though it's not always an easy
task. (If you're not experienced at building open source software packages, you're probably
better off downloading a binary distribution instead!) From the Subversion website, download
the latest source-code release. After unpacking it, follow the instructions in the INSTALL file to
build it. Note that a released source package may not contain everything you need to build a
command-line client capable of talking to a remote repository. Starting with Subversion 1.4 and
later, the libraries Subversion depends on (apr, apr-util, and neon) are distributed in a separate
source package suffixed with -deps. These libraries are now common enough that they may
already be installed on your system. If not, you'll need to unpack the dependency package into
the same directory where you unpacked the main Subversion source. Regardless, it's possible
that you may want to fetch other optional dependencies such as Berkeley DB and possibly
Apache httpd. If you want to do a complete build, make sure you have all of the packages doc-
umented in the INSTALL file.

If you're one of those folks that likes to use bleeding-edge software, you can also get the Sub-
version source code from the Subversion repository in which it lives. Obviously, you'll need to
already have a Subversion client on hand to do this. But once you do, you can check out a
working copy of the Subversion source repository from http://svn.collab.net/repos/svn/trunk/: 1

324

http://subversion.tigris.org
http://svn.collab.net/repos/svn/trunk/

$ svn checkout http://svn.collab.net/repos/svn/trunk subversion
A subversion/HACKING
A subversion/INSTALL
A subversion/README
A subversion/autogen.sh
A subversion/build.conf
…

The above command will create a working copy of the latest (unreleased) Subversion source
code into a subdirectory named subversion in your current working directory. You can adjust
that last argument as you see fit. Regardless of what you call the new working copy directory,
though, after this operation completes, you will now have the Subversion source code. Of
course, you will still need to fetch a few helper libraries (apr, apr-util, etc.)—see the INSTALL
file in the top level of the working copy for details.

High-speed Tutorial
“Please make sure your seat backs are in their full, upright position, and that
your tray tables are stored. Flight attendants, prepare for take-off….”

What follows is a quick tutorial that walks you through some basic Subversion configuration
and operation. When you finish it, you should have a basic understanding of Subversion's typ-
ical usage.

The examples used in this appendix assume that you have svn, the Subversion
command-line client, and svnadmin, the administrative tool, ready to go on a
Unix-like operating system. (This tutorial also works at the Windows commandline
prompt, assuming you make some obvious tweaks.) We also assume you are us-
ing Subversion 1.2 or later (run svn --version to check.)

Subversion stores all versioned data in a central repository. To begin, create a new repository:

$ svnadmin create /path/to/repos
$ ls /path/to/repos
conf/ dav/ db/ format hooks/ locks/ README.txt

This command creates a new directory /path/to/repos which contains a Subversion repos-
itory. This new directory contains (among other things) a collection of database files. You won't
see your versioned files if you peek inside. For more information about repository creation and
maintenance, see Chapter 5, Repository Administration.

Subversion has no concept of a “project”. The repository is just a virtual versioned filesystem, a
large tree that can hold anything you wish. Some administrators prefer to store only one
project in a repository, and others prefer to store multiple projects in a repository by placing
them into separate directories. The merits of each approach are discussed in the section called
“Planning Your Repository Organization”. Either way, the repository only manages files and
directories, so it's up to humans to interpret particular directories as “projects”. So while you
might see references to projects throughout this book, keep in mind that we're only ever talking
about some directory (or collection of directories) in the repository.

In this example, we assume that you already have some sort of project (a collection of files and
directories) that you wish to import into your newly created Subversion repository. Begin by or-

Subversion Quick-Start Guide

325

ganizing your data into a single directory called myproject (or whatever you wish). For reas-
ons that will be clear later (see Chapter 4, Branching and Merging), your project's tree struc-
ture should contain three top-level directories named branches, tags, and trunk. The
trunk directory should contain all of your data, while branches and tags directories are
empty:

/tmp/myproject/branches/
/tmp/myproject/tags/
/tmp/myproject/trunk/

foo.c
bar.c
Makefile
…

The branches, tags, and trunk subdirectories aren't actually required by Subversion.
They're merely a popular convention that you'll most likely want to use later on.

Once you have your tree of data ready to go, import it into the repository with the svn import
command (see the section called “Getting Data into your Repository”):

$ svn import /tmp/myproject file:///path/to/repos/myproject -m "initial import"
Adding /tmp/myproject/branches
Adding /tmp/myproject/tags
Adding /tmp/myproject/trunk
Adding /tmp/myproject/trunk/foo.c
Adding /tmp/myproject/trunk/bar.c
Adding /tmp/myproject/trunk/Makefile
…
Committed revision 1.
$

Now the repository contains this tree of data. As mentioned earlier, you won't see your files by
directly peeking into the repository; they're all stored within a database. But the repository's
imaginary filesystem now contains a top-level directory named myproject, which in turn con-
tains your data.

Note that the original /tmp/myproject directory is unchanged; Subversion is unaware of it.
(In fact, you can even delete that directory if you wish.) In order to start manipulating repository
data, you need to create a new “working copy” of the data, a sort of private workspace. Ask
Subversion to “check out” a working copy of the myproject/trunk directory in the reposit-
ory:

$ svn checkout file:///path/to/repos/myproject/trunk myproject
A myproject/foo.c
A myproject/bar.c
A myproject/Makefile
…
Checked out revision 1.

Now you have a personal copy of part of the repository in a new directory named myproject.
You can edit the files in your working copy and then commit those changes back into the re-
pository.

• Enter your working copy and edit a file's contents.

Subversion Quick-Start Guide

326

• Run svn diff to see unified diff output of your changes.

• Run svn commit to commit the new version of your file to the repository.

• Run svn update to bring your working copy “up-to-date” with the repository.

For a full tour of all the things you can do with your working copy, read Chapter 2, Basic
Usage.

At this point, you have the option of making your repository available to others over a network.
See Chapter 6, Server Configuration to learn about the different sorts of server processes
available and how to configure them.

Subversion Quick-Start Guide

327

Appendix B. Subversion for CVS Users
This appendix is a guide for CVS users new to Subversion. It's essentially a list of differences
between the two systems as “viewed from 10,000 feet”. For each section, we provide back-
references to relevant chapters when possible.

Although the goal of Subversion is to take over the current and future CVS user base, some
new features and design changes were required to fix certain “broken” behaviors that CVS
had. This means that, as a CVS user, you may need to break habits—ones that you forgot
were odd to begin with.

Revision Numbers Are Different Now
In CVS, revision numbers are per-file. This is because CVS stores its data in RCS files; each
file has a corresponding RCS file in the repository, and the repository is roughly laid out ac-
cording to the structure of your project tree.

In Subversion, the repository looks like a single filesystem. Each commit results in an entirely
new filesystem tree; in essence, the repository is an array of trees. Each of these trees is
labeled with a single revision number. When someone talks about “revision 54”, they're talking
about a particular tree (and indirectly, the way the filesystem looked after the 54th commit).

Technically, it's not valid to talk about “revision 5 of foo.c”. Instead, one would say “foo.c as
it appears in revision 5”. Also, be careful when making assumptions about the evolution of a
file. In CVS, revisions 5 and 6 of foo.c are always different. In Subversion, it's most likely that
foo.c did not change between revisions 5 and 6.

Similarly, in CVS a tag or branch is an annotation on the file, or on the version information for
that individual file, whereas in Subversion a tag or branch is a copy of an entire tree (by con-
vention, into the /branches or /tags directories that appear at the top level of the repository,
beside /trunk). In the repository as a whole, many versions of each file may be visible: the
latest version on each branch, every tagged version, and of course the latest version on the
trunk itself. So, to refine the terms even further, one would often say “foo.c as it appears in /
branches/REL1 in revision 5.”

For more details on this topic, see the section called “Revisions”.

Directory Versions
Subversion tracks tree structures, not just file contents. It's one of the biggest reasons Subver-
sion was written to replace CVS.

Here's what this means to you, as a former CVS user:

• The svn add and svn delete commands work on directories now, just as they work on files.
So do svn copy and svn move. However, these commands do not cause any kind of imme-
diate change in the repository. Instead, the working items are simply “scheduled” for addition
or deletion. No repository changes happen until you run svn commit.

• Directories aren't dumb containers anymore; they have revision numbers like files. (Or more
properly, it's correct to talk about “directory foo/ in revision 5”.)

328

Let's talk more about that last point. Directory versioning is a hard problem; because we want
to allow mixed-revision working copies, there are some limitations on how far we can abuse
this model.

From a theoretical point of view, we define “revision 5 of directory foo” to mean a specific col-
lection of directory-entries and properties. Now suppose we start adding and removing files
from foo, and then commit. It would be a lie to say that we still have revision 5 of foo.
However, if we bumped foo's revision number after the commit, that would be a lie too; there
may be other changes to foo we haven't yet received, because we haven't updated yet.

Subversion deals with this problem by quietly tracking committed adds and deletes in the .svn
area. When you eventually run svn update, all accounts are settled with the repository, and
the directory's new revision number is set correctly. Therefore, only after an update is it truly
safe to say that you have a “perfect” revision of a directory. Most of the time, your working
copy will contain “imperfect” directory revisions.

Similarly, a problem arises if you attempt to commit property changes on a directory. Normally,
the commit would bump the working directory's local revision number. But again, that would be
a lie, because there may be adds or deletes that the directory doesn't yet have, because no
update has happened. Therefore, you are not allowed to commit property-changes on a direct-
ory unless the directory is up-to-date.

For more discussion about the limitations of directory versioning, see the section called “Mixed
Revision Working Copies”.

More Disconnected Operations
In recent years, disk space has become outrageously cheap and abundant, but network band-
width has not. Therefore, the Subversion working copy has been optimized around the scarcer
resource.

The .svn administrative directory serves the same purpose as the CVS directory, except that it
also stores read-only, “pristine” copies of your files. This allows you to do many things off-line:

svn status
Shows you any local changes you've made (see the section called “See an overview of
your changes”)

svn diff
Shows you the details of your changes (see the section called “Examine the details of your
local modifications”)

svn revert
Removes your local changes (see the section called “Undoing Working Changes”)

Also, the cached pristine files allow the Subversion client to send differences when committing,
which CVS cannot do.

The last subcommand in the list is new; it will not only remove local changes, but it will un-
schedule operations such as adds and deletes. It's the preferred way to revert a file; running
rm file; svn update will still work, but it blurs the purpose of updating. And, while we're on this
subject…

Distinction Between Status and Update

Subversion for CVS Users

329

In Subversion, we've tried to erase a lot of the confusion between the cvs status and cvs up-
date commands.

The cvs status command has two purposes: first, to show the user any local modifications in
the working copy, and second, to show the user which files are out-of-date. Unfortunately, be-
cause of CVS's hard-to-read status output, many CVS users don't take advantage of this com-
mand at all. Instead, they've developed a habit of running cvs update or cvs -n update to
quickly see their changes. If users forget to use the -n option, this has the side effect of mer-
ging repository changes they may not be ready to deal with.

With Subversion, we've tried to remove this muddle by making the output of svn status easy
to read for both humans and parsers. Also, svn update only prints information about files that
are updated, not local modifications.

Status
svn status prints all files that have local modifications. By default, the repository is not contac-
ted. While this subcommand accepts a fair number of options, the following are the most com-
monly used ones:

-u
Contact the repository to determine, and then display, out-of-dateness information.

-v
Show all entries under version control.

-N
Run non-recursively (do not descend into subdirectories).

The status command has two output formats. In the default “short” format, local modifications
look like this:

$ svn status
M foo.c
M bar/baz.c

If you specify the --show-updates (-u) option, a longer output format is used:

$ svn status -u
M 1047 foo.c

* 1045 faces.html
* bloo.png

M 1050 bar/baz.c
Status against revision: 1066

In this case, two new columns appear. The second column contains an asterisk if the file or dir-
ectory is out-of-date. The third column shows the working-copy's revision number of the item.
In the example above, the asterisk indicates that faces.html would be patched if we up-
dated, and that bloo.png is a newly added file in the repository. (The absence of any revision
number next to bloo.png means that it doesn't yet exist in the working copy.)

At this point, you should take a quick look at the list of all possible status codes in svn status.
Here are a few of the more common status codes you'll see:

Subversion for CVS Users

330

1That is, providing you don't run out of disk space before your checkout finishes.

A Resource is scheduled for Addition
D Resource is scheduled for Deletion
M Resource has local Modifications
C Resource has Conflicts (changes have not been completely merged

between the repository and working copy version)
X Resource is eXternal to this working copy (may come from another

repository). See the section called “Externals Definitions”
? Resource is not under version control
! Resource is missing or incomplete (removed by another tool than

Subversion)

For a more detailed discussion of svn status, see the section called “See an overview of your
changes”.

Update
svn update updates your working copy, and only prints information about files that it updates.

Subversion has combined the CVS P and U codes into just U. When a merge or conflict occurs,
Subversion simply prints G or C, rather than a whole sentence about it.

For a more detailed discussion of svn update, see the section called “Update Your Working
Copy”.

Branches and Tags
Subversion doesn't distinguish between filesystem space and “branch” space; branches and
tags are ordinary directories within the filesystem. This is probably the single biggest mental
hurdle a CVS user will need to climb. Read all about it in Chapter 4, Branching and Merging.

Since Subversion treats branches and tags as ordinary directories, always remem-
ber to check out the trunk (ht-
tp://svn.example.com/repos/calc/trunk/) of your project, and not the
project itself (http://svn.example.com/repos/calc/). If you make the mis-
take of checking out the project itself, you'll wind up with a working copy that con-
tains a copy of your project for every branch and tag you have.1

Metadata Properties
A new feature of Subversion is that you can attach arbitrary metadata (or “properties”) to files
and directories. Properties are arbitrary name/value pairs associated with files and directories
in your working copy.

To set or get a property name, use the svn propset and svn propget subcommands. To list
all properties on an object, use svn proplist.

For more information, see the section called “Properties”.

Conflict Resolution

Subversion for CVS Users

331

CVS marks conflicts with in-line “conflict markers”, and prints a C during an update. Historic-
ally, this has caused problems, because CVS isn't doing enough. Many users forget about (or
don't see) the C after it whizzes by on their terminal. They often forget that the conflict-markers
are even present, and then accidentally commit files containing conflict-markers.

Subversion solves this problem by making conflicts more tangible. It remembers that a file is in
a state of conflict, and won't allow you to commit your changes until you run svn resolved.
See the section called “Resolve Conflicts (Merging Others' Changes)” for more details.

Binary Files and Translation
In the most general sense, Subversion handles binary files more gracefully than CVS does.
Because CVS uses RCS, it can only store successive full copies of a changing binary file. Sub-
version, however, expresses differences between files using a binary-differencing algorithm,
regardless of whether they contain textual or binary data. That means that all files are stored
differentially (compressed) in the repository.

CVS users have to mark binary files with -kb flags, to prevent data from being garbled (due to
keyword expansion and line-ending translations). They sometimes forget to do this.

Subversion takes the more paranoid route—first, it never performs any kind of keyword or line-
ending translation unless you explicitly ask it do so (see the section called “Keyword Substitu-
tion” and the section called “End-of-Line Character Sequences” for more details). By default,
Subversion treats all file data as literal byte strings, and files are always stored in the reposit-
ory in an untranslated state.

Second, Subversion maintains an internal notion of whether a file is “text” or “binary” data, but
this notion is only extant in the working copy. During an svn update, Subversion will perform
contextual merges on locally modified text files, but will not attempt to do so for binary files.

To determine whether a contextual merge is possible, Subversion examines the
svn:mime-type property. If the file has no svn:mime-type property, or has a mime-type
that is textual (e.g. text/*), Subversion assumes it is text. Otherwise, Subversion assumes
the file is binary. Subversion also helps users by running a binary-detection algorithm in the
svn import and svn add commands. These commands will make a good guess and then
(possibly) set a binary svn:mime-type property on the file being added. (If Subversion
guesses wrong, the user can always remove or hand-edit the property.)

Versioned Modules
Unlike CVS, a Subversion working copy is aware that it has checked out a module. That
means that if somebody changes the definition of a module (e.g. adds or removes compon-
ents), then a call to svn update will update the working copy appropriately, adding and remov-
ing components.

Subversion defines modules as a list of directories within a directory property: see the section
called “Externals Definitions”.

Authentication
With CVS's pserver, you are required to “login” to the server before any read or write opera-
tion—you sometimes even have to login for anonymous operations. With a Subversion reposit-
ory using Apache httpd or svnserve as the server, you don't provide any authentication cre-
dentials at the outset—if an operation that you perform requires authentication, the server will

Subversion for CVS Users

332

challenge you for your credentials (whether those credentials are username and password, a
client certificate, or even both). So if your repository is world-readable, you will not be required
to authenticate at all for read operations.

As with CVS, Subversion still caches your credentials on disk (in your
~/.subversion/auth/ directory) unless you tell it not to by using the --no-auth-cache
option.

The exception to this behavior, however, is in the case of accessing an svnserve server over
an SSH tunnel, using the svn+ssh:// URL scheme. In that case, the ssh program uncondi-
tionally demands authentication just to start the tunnel.

Converting a Repository from CVS to Subver-
sion

Perhaps the most important way to familiarize CVS users with Subversion is to let them contin-
ue to work on their projects using the new system. And while that can be somewhat accom-
plished using a flat import into a Subversion repository of an exported CVS repository, the
more thorough solution involves transferring not just the latest snapshot of their data, but all
the history behind it as well, from one system to another. This is an extremely difficult problem
to solve that involves deducing changesets in the absence of atomicity, and translating
between the systems' completely orthogonal branching policies, among other complications.
Still, there are a handful of tools claiming to at least partially support the ability to convert exist-
ing CVS repositories into Subversion ones.

The most popular (and likely the most mature) conversion tool is cvs2svn (ht-
tp://cvs2svn.tigris.org/), a Python script originally created by members of Subversion's own de-
velopment community. This tool is meant to run exactly once: it scans your CVS repository
multiple times and attempts to deduce commits, branches, and tags as best it can. When it fin-
ishes, the result is a either a Subversion repository or a portable Subversion dumpfile repres-
enting your code's history. See the website for detailed instructions and caveats.

Subversion for CVS Users

333

http://cvs2svn.tigris.org/
http://cvs2svn.tigris.org/

Appendix C. WebDAV and
Autoversioning

WebDAV is an extension to HTTP, and is growing more and more popular as a standard for
file-sharing. Today's operating systems are becoming extremely Web-aware, and many now
have built-in support for mounting “shares” exported by WebDAV servers.

If you use Apache as your Subversion network server, then to some extent you are also run-
ning a WebDAV server. This appendix gives some background on the nature of this protocol,
how Subversion uses it, and how well Subversion interoperates with other software that is
WebDAV-aware.

What is WebDAV?
DAV stands for “Distributed Authoring and Versioning”. RFC 2518 defines a set of concepts
and accompanying extension methods to HTTP 1.1 that make the web into a more universal
read/write medium. The basic idea is that a WebDAV-compliant web server can act like a gen-
eric file server; clients can “mount” shared folders over HTTP that behave much like other net-
work filesystems (such as NFS or SMB.)

The tragedy, though, is that despite the acronym, the RFC specification doesn't actually de-
scribe any sort of version control. Basic WebDAV clients and servers assume only one version
of each file or directory exists, and can be repeatedly overwritten.

Because RFC 2518 left out versioning concepts, another committee was left with the respons-
ibility of writing RFC 3253 a few years later. The new RFC adds versioning concepts to Web-
DAV, placing the “V” back in “DAV” — hence the term “DeltaV”. WebDAV/DeltaV clients and
servers are often called just “DeltaV” programs, since DeltaV implies the existence of basic
WebDAV.

The original WebDAV standard has been widely successful. Every modern computer operating
system has a general WebDAV client built-in (details to follow), and a number of popular stan-
dalone applications are also able to speak WebDAV— Microsoft Office, Dreamweaver, and
Photoshop to name a few. On the server end, the Apache webserver has been able to provide
WebDAV services since 1998 and is considered the de-facto open-source standard. There are
several other commercial WebDAV servers available, including Microsoft's own IIS.

DeltaV, unfortunately, has not been so successful. It's very difficult to find any DeltaV clients or
servers. The few that do exist are relatively unknown commercial products, and thus it's very
difficult to test interoperability. It's not entirely clear as to why DeltaV has remained stagnant.
Some argue that the specification is just too complex, others argue that while WebDAV's fea-
tures have mass appeal (even the least technical users appreciate network file-sharing), ver-
sion control features aren't interesting or necessary for most users. Finally, some have argued
that DeltaV remains unpopular because there's still no open-source server product which im-
plements it well.

When Subversion was still in its design phase, it seemed like a great idea to use Apache as a
network server. It already had a module to provide WebDAV services. DeltaV was a relatively
new specification. The hope was that the Subversion server module (mod_dav_svn) would
eventually evolve into an open-source DeltaV reference implementation. Unfortunately, DeltaV
has a very specific versioning model that doesn't quite line up with Subversion's model. Some
concepts were mappable, others were not.

334

What does this mean, then?

First, the Subversion client is not a fully-implemented DeltaV client. It needs certain types of
things from the server that DeltaV itself cannot provide, and thus is largely dependent on a
number of Subversion-specific HTTP REPORT requests that only mod_dav_svn understands.

Second, mod_dav_svn is not a fully-realized DeltaV server. Many portions of the DeltaV spe-
cification were irrelevant to Subversion, and thus left unimplemented.

There is still some debate in the developer community as to whether or not it's worthwhile to
remedy either of these situations. It's fairly unrealistic to change Subversion's design to match
DeltaV, so there's probably no way the client can ever learn to get everything it needs from a
general DeltaV server. On the other hand, mod_dav_svn could be further developed to imple-
ment all of DeltaV, but it's hard to find motivation to do so—there are almost no DeltaV clients
to interoperate with.

Autoversioning
While the Subversion client is not a full DeltaV client, nor the Subversion server a full DeltaV
server, there's still a glimmer of WebDAV interoperability to be happy about: it's called autover-
sioning.

Autoversioning is an optional feature defined in the DeltaV standard. A typical DeltaV server
will reject an ignorant WebDAV client attempting to do a PUT to a file that's under version con-
trol. To change a version-controlled file, the server expects a series of proper versioning re-
quests: something like MKACTIVITY, CHECKOUT, PUT, CHECKIN. But if the DeltaV server sup-
ports autoversioning, then write-requests from basic WebDAV clients are accepted. The server
behaves as if the client had issued the proper series of versioning requests, performing a com-
mit under the hood. In other words, it allows a DeltaV server to interoperate with ordinary Web-
DAV clients that don't understand versioning.

Because so many operating systems already have integrated WebDAV clients, the use case
for this feature can be incredibly appealing to administrators working with non-technical users:
imagine an office of ordinary users running Microsoft Windows or Mac OS. Each user “mounts”
the Subversion repository, which appears to be an ordinary network folder. They use the
shared folder as they always do: open files, edit them, save them. Meanwhile, the server is
automatically versioning everything. Any administrator (or knowledgeable user) can still use a
Subversion client to search history and retrieve older versions of data.

This scenario isn't fiction: it's real and it works, as of Subversion 1.2 and later. To activate
autoversioning in mod_dav_svn, use the SVNAutoversioning directive within the ht-
tpd.conf Location block, like so:

<Location /repos>
DAV svn
SVNPath /path/to/repository
SVNAutoversioning on

</Location>

When SVNAutoversioning is active, write requests from WebDAV clients result in automatic
commits. A generic log message is auto-generated and attached to each revision.

Before activating this feature, however, understand what you're getting into. WebDAV clients
tend to do many write requests, resulting in a huge number of automatically committed revi-
sions. For example, when saving data, many clients will do a PUT of a 0-byte file (as a way of

WebDAV and Autoversioning

335

reserving a name) followed by another PUT with the real file data. The single file-write results in
two separate commits. Also consider that many applications auto-save every few minutes, res-
ulting in even more commits.

If you have a post-commit hook program that sends email, you may want to disable email gen-
eration either altogether, or on certain sections of the repository; it depends on whether you
think the influx of emails will still prove to be valuable notifications or not. Also, a smart post-
commit hook program can distinguish between a transaction created via autoversioning and
one created through a normal svn commit. The trick is to look for a revision property named
svn:autoversioned. If present, the commit was made by a generic WebDAV client.

Another feature that may be a useful complement for SVNAutoversioning comes from
Apache's mod_mime module. If a WebDAV client adds a new file to the repository, there's no
opportunity for the user to set the the svn:mime-type property. This might cause the file to
appear as generic icon when viewed within a WebDAV shared folder, not having an associ-
ation with any application. One remedy is to have a sysadmin (or other Subversion-know-
ledgeable person) check out a working copy and manually set the svn:mime-type property
on necessary files. But there's potentially no end to such cleanup tasks. Instead, you can use
the ModMimeUsePathInfo directive in your Subversion <Location> block:

<Location /repos>
DAV svn
SVNPath /path/to/repository
SVNAutoversioning on

ModMimeUsePathInfo on

</Location>

This directive allows mod_mime to attempt automatic deduction of the mime-type on new files
that enter the repository via autoversioning. The module looks at the file's named extension
and possibly the contents as well; if the file matches some common patterns, then the the file's
svn:mime-type property will be set automatically.

Client Interoperability
All WebDAV clients fall into one of three categories—standalone applications, file-explorer ex-
tensions, or filesystem implementations. These categories broadly define the types of Web-
DAV functionality available to users. Table C.1, “Common WebDAV Clients” gives our categor-
ization and a quick description of some common pieces of WebDAV-enabled software. More
details about these software offerings, as well as their general category, can be found in the
sections that follow.

Table C.1. Common WebDAV Clients

Software Type Windows Mac Linux Description

Adobe Pho-
toshop

Standalone
WebDAV ap-
plication

X Image editing
software, al-
lowing direct
opening from,
and writing to,
WebDAV
URLs

Cadaver Standalone X X Command-line

WebDAV and Autoversioning

336

Software Type Windows Mac Linux Description

WebDAV ap-
plication

WebDAV cli-
ent supporting
file transfer,
tree, and lock-
ing operations

DAV Explorer Standalone
WebDAV ap-
plication

X X X Java GUI tool
for exploring
WebDAV
shares

Macromedia
Dreamweaver

Standalone
WebDAV ap-
plication

X Web produc-
tion software
able to directly
read from and
write to Web-
DAV URLs

Microsoft Of-
fice

Standalone
WebDAV ap-
plication

X Office pro-
ductivity suite
with several
components
able to directly
read from and
write to Web-
DAV URLs

Microsoft Web
Folders

File-explorer
WebDAV ex-
tension

X GUI file ex-
plorer program
able to per-
form tree op-
erations on a
WebDAV
share

GNOME
Nautilus

File-explorer
WebDAV ex-
tension

X GUI file ex-
plorer able to
perform tree
operations on
a WebDAV
share

KDE Konquer-
or

File-explorer
WebDAV ex-
tension

X GUI file ex-
plorer able to
perform tree
operations on
a WebDAV
share

Mac OS X WebDAV
filesystem im-
plementation

X Operating sys-
tem has built-
in support for
mounting
WebDAV
shares.

Novell Net-
Drive

WebDAV
filesystem im-
plementation

X Drive-mapping
program for
assigning Win-
dows drive let-
ters to a

WebDAV and Autoversioning

337

1WebDAV support was removed from Microsoft Access for some reason, but exists in the rest of the Office suite.

Software Type Windows Mac Linux Description

mounted re-
mote Web-
DAV share

SRT Web-
Drive

WebDAV
filesystem im-
plementation

X File transfer
software
which, among
other things,
allows the as-
signment of
Windows drive
letters to a
mounted re-
mote Web-
DAV share

davfs2 WebDAV
filesystem im-
plementation

X Linux file sys-
tem driver that
allows you to
mount a Web-
DAV share

Standalone WebDAV applications
A WebDAV application is a program which speakes WebDAV protocols with a WebDAV serv-
er. We'll cover some of the most popular programs with this kind of WebDAV support.

Microsoft Office, Dreamweaver, Photoshop

On Windows, there are several well-known applications that contain integrated WebDAV client
functionality, such as Microsoft's Office, 1 Adobe's Photoshop, and Macromedia's Dream-
weaver programs. They're able to directly open and save to URLs, and tend to make heavy
use of WebDAV locks when editing a file.

Note that while many of these programs also exist for the Mac OS X, they do not appear to
support WebDAV directly on that platform. In fact, on Mac OS X, the File->Open dialog box
doesn't allow one to type a path or URL at all. It's likely that the WebDAV features were delib-
erately left out of Macintosh versions of these programs, since OS X already provides such ex-
cellent low-level filesystem support for WebDAV.

Cadaver, DAV Explorer

Cadaver is a bare-bones Unix commandline program for browsing and changing WebDAV
shares. Like the Subversion client, it uses the neon HTTP library—not surprisingly, since both
neon and cadaver are written by the same author. Cadaver is free software (GPL license) and
is available at http://www.webdav.org/cadaver/.

Using cadaver is similar to using a commandline FTP program, and thus it's extremely useful
for basic WebDAV debugging. It can be used to upload or download files in a pinch, and also
to examine properties, and to copy, move, lock or unlock files:

$ cadaver http://host/repos

WebDAV and Autoversioning

338

http://www.webdav.org/cadaver/

dav:/repos/> ls
Listing collection `/repos/': succeeded.
Coll: > foobar 0 May 10 16:19

> playwright.el 2864 May 4 16:18
> proofbypoem.txt 1461 May 5 15:09
> westcoast.jpg 66737 May 5 15:09

dav:/repos/> put README
Uploading README to `/repos/README':
Progress: [=============================>] 100.0% of 357 bytes succeeded.

dav:/repos/> get proofbypoem.txt
Downloading `/repos/proofbypoem.txt' to proofbypoem.txt:
Progress: [=============================>] 100.0% of 1461 bytes succeeded.

DAV Explorer is another standalone WebDAV client, written in Java. It's under a free Apache-
like license and is available at http://www.ics.uci.edu/~webdav/. DAV Explorer does everything
cadaver does, but has the advantages of being portable and being a more user-friendly GUI
application. It's also one of the first clients to support the new WebDAV Access Control Pro-
tocol (RFC 3744).

Of course, DAV Explorer's ACL support is useless in this case, since mod_dav_svn doesn't
support it. The fact that both Cadaver and DAV Explorer support some limited DeltaV com-
mands isn't particularly useful either, since they don't allow MKACTIVITY requests. But it's not
relevant anyway; we're assuming all of these clients are operating against an autoversioning
repository.

File-explorer WebDAV extensions
Some popular file explorer GUI programs support WebDAV extensions which allow a user to
browse a DAV share as if it was just another directory on the local computer, and to perform
basic tree editing operations on the items in that share. For example, Windows Explorer is able
to browse a WebDAV server as a “network place”. Users can drag files to and from the
desktop, or can rename, copy, or delete files in the usual way. But because it's only a feature
of the file-explorer, the DAV share isn't visible to ordinary applications. All DAV interaction
must happen through the explorer interface.

Microsoft Web Folders

Microsoft was one of the original backers of the WebDAV specification, and first started ship-
ping a client in Windows 98, known as “Web Folders”. This client was also shipped in Windows
NT4 and 2000.

The original Web Folders client was an extension to Explorer, the main GUI program used to
browse filesystems. It works well enough. In Windows 98, the feature might need to be expli-
citly installed if Web Folders aren't already visible inside “My Computer”. In Windows 2000,
simply add a new “network place”, enter the URL, and the WebDAV share will pop up for
browsing.

With the release of Windows XP, Microsoft started shipping a new implementation of Web
Folders, known as the “WebDAV mini-redirector”. The new implementation is a filesystem-level
client, allowing WebDAV shares to be mounted as drive letters. Unfortunately, this implement-
ation is incredibly buggy. The client usually tries to convert http URLs (http://host/repos)
into UNC share notation (\\host\repos); it also often tries to use Windows Domain authen-
tication to respond to basic-auth HTTP challenges, sending usernames as HOST\username.
These interoperability problems are severe and documented in numerous places around the
web, to the frustration of many users. Even Greg Stein, the original author of Apache's Web-

WebDAV and Autoversioning

339

http://www.ics.uci.edu/~webdav/

DAV module, recommends against trying to use XP Web Folders against an Apache server.

It turns out that the original “Explorer-only” Web Folders implementation isn't dead in XP, it's
just buried. It's still possible to find it by using this technique:

1. Go to 'Network Places'.

2. Add a new network place.

3. When prompted, enter the URL of the repository, but include a port number in the URL. For
example, http://host/repos would be entered as http://host:80/repos instead.

4. Respond to any authentication prompts.

There are a number of other rumored workarounds to the problems, but none of them seem to
work on all versions and patchlevels of Windows XP. In our tests, only the previous algorithm
seems to work consistently on every system. The general consensus of the WebDAV com-
munity is that you should avoid the new Web Folders implementation and use the old one in-
stead, and that if you need a real filesystem-level client for Windows XP, then use a third-party
program like WebDrive or NetDrive.

A final tip: if you're attempting to use XP Web Folders, make sure you have the absolute latest
version from Microsoft. For example, Microsoft released a bug-fixed version in January 2005,
available at http://support.microsoft.com/?kbid=892211. In particular, this release is known to
fix a bug whereby browsing a DAV share shows an unexpected infinite recursion.

Nautilus, Konqueror

Nautilus is the official file manager/browser for the GNOME desktop (http://www.gnome.org),
and Konqueror is the manager/browser for the KDE desktop (http://www.kde.org). Both of
these applications have an explorer-level WebDAV client built-in, and operate just fine against
an autoversioning repository.

In GNOME's Nautilus, from the File menu, select Open location and enter the URL. The repos-
itory should then be displayed like any other filesystem.

In KDE's Konqueror, you need to use the webdav:// scheme when entering the URL in the
location bar. If you enter an http:// URL, Konqueror will behave like an ordinary web
browser. You'll likely see the generic HTML directory listing produced by mod_dav_svn. By
entering webdav://host/repos instead of http://host/repos, Konqueror becomes a
WebDAV client and displays the repository as a filesystem.

WebDAV filesystem implementation
The WebDAV filesystem implementation is arguably the best sort of WebDAV client. It's imple-
mented as a low-level filesystem module, typically within the operating system's kernel. This
means that the DAV share is mounted like any other network filesystem, similar to mounting an
NFS share on Unix, or attaching an SMB share as drive letter in Windows. As a result, this sort
of client provides completely transparent read/write WebDAV access to all programs. Applica-
tions aren't even aware that WebDAV requests are happening.

WebDrive, NetDrive

Both WebDrive and NetDrive are excellent commercial products which allow a WebDAV share
to be attached as drive letters in Windows. We've had nothing but success with these

WebDAV and Autoversioning

340

http://support.microsoft.com/?kbid=892211
http://www.gnome.org
http://www.kde.org

products. At the time of writing, WebDrive can be purchased from South River Technologies
(http://www.southrivertech.com). NetDrive ships with Netware, is free of charge, and can be
found by searching the web for “netdrive.exe”. Though it is freely available online, users are re-
quired to have a Netware license. (If any of that sounds odd to you, you're not alone. See this
page on Novell's website: http://www.novell.com/coolsolutions/qna/999.html)

Mac OS X

Apple's OS X operating system has an integrated filesystem-level WebDAV client. From the
Finder, select the Connect to Server item from the Go menu. Enter a WebDAV URL, and it ap-
pears as a disk on the desktop, just like any other mounted volume. You can also mount a
WebDAV share from the Darwin terminal by using the webdav filesystem type with the mount
command:

$ mount -t webdav http://svn.example.com/repos/project /some/mountpoint
$

Note that if your mod_dav_svn is older than version 1.2, OS X will refuse to mount the share
as read-write; it will appear as read-only. This is because OS X insists on locking support for
read-write shares, and the ability to lock files first appeared in Subversion 1.2.

One more word of warning: OS X's WebDAV client can sometimes be overly sensitive to HTTP
redirects. If OS X is unable to mount the repository at all, you may need to enable the Browser-
Match directive in the Apache server's httpd.conf:

BrowserMatch "^WebDAVFS/1.[012]" redirect-carefully

Linux davfs2

Linux davfs2 is a filesystem module for the Linux kernel, whose development is located at ht-
tp://dav.sourceforge.net/. Once installed, a WebDAV network share can be mounted with the
usual Linux mount command:

$ mount.davfs http://host/repos /mnt/dav

WebDAV and Autoversioning

341

http://www.southrivertech.com
http://www.novell.com/coolsolutions/qna/999.html
http://dav.sourceforge.net/
http://dav.sourceforge.net/

Appendix D. Third Party Tools
Subversion's modular design (covered in the section called “Layered Library Design”) and the
availability of language bindings (as described in the section called “Using Languages Other
than C and C++”) make it a likely candidate for use as an extension or backend to other pieces
of software. For a listing of many third-party tools that are using Subversion functionality under-
the-hood, check out the Links page on the Subversion website (ht-
tp://subversion.tigris.org/project_links.html).

342

http://subversion.tigris.org/project_links.html
http://subversion.tigris.org/project_links.html

Appendix E. Copyright

Copyright (c) 2002-2007
Ben Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato.

This work is licensed under the Creative Commons Attribution License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by/2.0/ or send a letter to
Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305,
USA.

A summary of the license is given below, followed by the full legal
text.

--

You are free:

* to copy, distribute, display, and perform the work
* to make derivative works
* to make commercial use of the work

Under the following conditions:

Attribution. You must give the original author credit.

* For any reuse or distribution, you must make clear to others the
license terms of this work.

* Any of these conditions can be waived if you get permission from
the author.

Your fair use and other rights are in no way affected by the above.

The above is a summary of the full license below.

==

Creative Commons Legal Code
Attribution 2.0

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS
PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. THE LICENSOR GRANTS
YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.

343

1. Definitions

a. "Collective Work" means a work, such as a periodical issue,
anthology or encyclopedia, in which the Work in its entirety in
unmodified form, along with a number of other contributions,
constituting separate and independent works in themselves, are
assembled into a collective whole. A work that constitutes a
Collective Work will not be considered a Derivative Work (as
defined below) for the purposes of this License.

b. "Derivative Work" means a work based upon the Work or upon the
Work and other pre-existing works, such as a translation,
musical arrangement, dramatization, fictionalization, motion
picture version, sound recording, art reproduction, abridgment,
condensation, or any other form in which the Work may be recast,
transformed, or adapted, except that a work that constitutes a
Collective Work will not be considered a Derivative Work for the
purpose of this License. For the avoidance of doubt, where the
Work is a musical composition or sound recording, the
synchronization of the Work in timed-relation with a moving
image ("synching") will be considered a Derivative Work for the
purpose of this License.

c. "Licensor" means the individual or entity that offers the Work
under the terms of this License.

d. "Original Author" means the individual or entity who created the Work.

e. "Work" means the copyrightable work of authorship offered under
the terms of this License.

f. "You" means an individual or entity exercising rights under this
License who has not previously violated the terms of this
License with respect to the Work, or who has received express
permission from the Licensor to exercise rights under this
License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce,
limit, or restrict any rights arising from fair use, first sale or
other limitations on the exclusive rights of the copyright owner
under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License,
Licensor hereby grants You a worldwide, royalty-free,
non-exclusive, perpetual (for the duration of the applicable
copyright) license to exercise the rights in the Work as stated
below:

a. to reproduce the Work, to incorporate the Work into one or more
Collective Works, and to reproduce the Work as incorporated in
the Collective Works;

b. to create and reproduce Derivative Works;

c. to distribute copies or phonorecords of, display publicly,
perform publicly, and perform publicly by means of a digital
audio transmission the Work including as incorporated in
Collective Works;

d. to distribute copies or phonorecords of, display publicly,
perform publicly, and perform publicly by means of a digital
audio transmission Derivative Works.

Copyright

344

e.

For the avoidance of doubt, where the work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor
waives the exclusive right to collect, whether
individually or via a performance rights society
(e.g. ASCAP, BMI, SESAC), royalties for the public
performance or public digital performance (e.g. webcast)
of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives
the exclusive right to collect, whether individually or
via a music rights agency or designated agent (e.g. Harry
Fox Agency), royalties for any phonorecord You create from
the Work ("cover version") and distribute, subject to the
compulsory license created by 17 USC Section 115 of the US
Copyright Act (or the equivalent in other jurisdictions).

f. Webcasting Rights and Statutory Royalties. For the avoidance of
doubt, where the Work is a sound recording, Licensor waives the
exclusive right to collect, whether individually or via a
performance-rights society (e.g. SoundExchange), royalties for
the public digital performance (e.g. webcast) of the Work,
subject to the compulsory license created by 17 USC Section 114
of the US Copyright Act (or the equivalent in other
jurisdictions).

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights
in other media and formats. All rights not expressly granted by
Licensor are hereby reserved.

4. Restrictions.The license granted in Section 3 above is expressly
made subject to and limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or
publicly digitally perform the Work only under the terms of this
License, and You must include a copy of, or the Uniform Resource
Identifier for, this License with every copy or phonorecord of
the Work You distribute, publicly display, publicly perform, or
publicly digitally perform. You may not offer or impose any
terms on the Work that alter or restrict the terms of this
License or the recipients' exercise of the rights granted
hereunder. You may not sublicense the Work. You must keep intact
all notices that refer to this License and to the disclaimer of
warranties. You may not distribute, publicly display, publicly
perform, or publicly digitally perform the Work with any
technological measures that control access or use of the Work in
a manner inconsistent with the terms of this License
Agreement. The above applies to the Work as incorporated in a
Collective Work, but this does not require the Collective Work
apart from the Work itself to be made subject to the terms of
this License. If You create a Collective Work, upon notice from
any Licensor You must, to the extent practicable, remove from
the Collective Work any reference to such Licensor or the
Original Author, as requested. If You create a Derivative Work,
upon notice from any Licensor You must, to the extent
practicable, remove from the Derivative Work any reference to
such Licensor or the Original Author, as requested.

b. If you distribute, publicly display, publicly perform, or
publicly digitally perform the Work or any Derivative Works or

Copyright

345

Collective Works, You must keep intact all copyright notices for
the Work and give the Original Author credit reasonable to the
medium or means You are utilizing by conveying the name (or
pseudonym if applicable) of the Original Author if supplied; the
title of the Work if supplied; to the extent reasonably
practicable, the Uniform Resource Identifier, if any, that
Licensor specifies to be associated with the Work, unless such
URI does not refer to the copyright notice or licensing
information for the Work; and in the case of a Derivative Work,
a credit identifying the use of the Work in the Derivative Work
(e.g., "French translation of the Work by Original Author," or
"Screenplay based on original Work by Original Author"). Such
credit may be implemented in any reasonable manner; provided,
however, that in the case of a Derivative Work or Collective
Work, at a minimum such credit will appear where any other
comparable authorship credit appears and in a manner at least as
prominent as such other comparable authorship credit.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF
TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY,
OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE
OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE
WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this
License. Individuals or entities who have received Derivative
Works or Collective Works from You under this License, however,
will not have their licenses terminated provided such
individuals or entities remain in full compliance with those
licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any
termination of this License.

b. Subject to the above terms and conditions, the license granted
here is perpetual (for the duration of the applicable copyright
in the Work). Notwithstanding the above, Licensor reserves the
right to release the Work under different license terms or to
stop distributing the Work at any time; provided, however that
any such election will not serve to withdraw this License (or
any other license that has been, or is required to be, granted
under the terms of this License), and this License will continue
in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work
or a Collective Work, the Licensor offers to the recipient a
license to the Work on the same terms and conditions as the
license granted to You under this License.

Copyright

346

b. Each time You distribute or publicly digitally perform a
Derivative Work, Licensor offers to the recipient a license to
the original Work on the same terms and conditions as the
license granted to You under this License.

c. If any provision of this License is invalid or unenforceable
under applicable law, it shall not affect the validity or
enforceability of the remainder of the terms of this License,
and without further action by the parties to this agreement,
such provision shall be reformed to the minimum extent necessary
to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and
no breach consented to unless such waiver or consent shall be in
writing and signed by the party to be charged with such waiver
or consent.

e. This License constitutes the entire agreement between the
parties with respect to the Work licensed here. There are no
understandings, agreements or representations with respect to
the Work not specified here. Licensor shall not be bound by any
additional provisions that may appear in any communication from
You. This License may not be modified without the mutual written
agreement of the Licensor and You.

Creative Commons is not a party to this License, and makes no warranty
whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever, including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, neither party will use the trademark
"Creative Commons" or any related trademark or logo of Creative
Commons without the prior written consent of Creative Commons. Any
permitted use will be in compliance with Creative Commons'
then-current trademark usage guidelines, as may be published on its
website or otherwise made available upon request from time to time.

Creative Commons may be contacted at http://creativecommons.org/.

==

Copyright

347

Index
B
BASE, 38

C
COMMITTED, 38
Concurrent Versions System (CVS), xiii

H
HEAD, 38

P
PREV, 38
properties, 40

R
repository

hooks
post-commit, 317
post-lock, 321
post-revprop-change, 319
post-unlock, 323
pre-commit, 316
pre-lock, 320
pre-revprop-change, 318
pre-unlock, 322
start-commit, 315

revisions
revision keywords, 38
specified as dates, 39

S
Subversion

history of, xix
svn

subcommands
add, 205
blame, 207
cat, 208
checkout, 210
cleanup, 212
commit, 213
copy, 215
delete, 218
diff, 220
export, 224
help, 226
import, 227
info, 229
list, 232
lock, 234
log, 236

merge, 240
mkdir, 242
move, 244
propdel, 246
propedit, 247
propget, 248
proplist, 250
propset, 252
resolved, 254
revert, 256
status, 258
switch, 262
unlock, 265
update, 267

svnadmin
subcommands

create, 270
deltify, 271
dump, 272
help, 274
hotcopy, 275
list-dblogs, 276
list-unused-dblogs, 277
load, 278
lslocks, 279
lstxns, 280
recover, 281
rmlocks, 283
rmtxns, 284
setlog, 285
verify, 286

svnlook
subcommands

author, 288
cat, 289
changed, 290
date, 291
diff, 292
dirs-changed, 293
help, 294
history, 295
info, 296
lock, 297
log, 298
propget, 299
proplist, 300
tree, 301
uuid, 302
youngest, 303

svnsync
subcommands

copy-revprops, 305
initialize, 306
synchronize, 307

svnversion, 310

348

	Version Control with Subversion
	Table of Contents
	Foreword
	Preface
	Audience
	How to Read this Book
	Conventions Used in This Book
	Typographic Conventions
	Icons

	Organization of This Book
	This Book is Free
	Acknowledgments
	From Ben Collins-Sussman
	From Brian W. Fitzpatrick
	From C. Michael Pilato

	What is Subversion?
	Subversion's History
	Subversion's Features
	Subversion's Architecture
	Subversion's Components

	Chapter 1. Fundamental Concepts
	The Repository
	Versioning Models
	The Problem of File-Sharing
	The Lock-Modify-Unlock Solution
	The Copy-Modify-Merge Solution

	Subversion in Action
	Subversion Repository URLs
	Working Copies
	Revisions
	How Working Copies Track the Repository
	Mixed Revision Working Copies
	Updates and Commits are Separate
	Mixed revisions are normal
	Mixed revisions are useful
	Mixed revisions have limitations

	Summary

	Chapter 2. Basic Usage
	Help!
	Getting Data into your Repository
	svn import
	Recommended repository layout

	Initial Checkout
	Disabling Password Caching
	Authenticating as a Different User

	Basic Work Cycle
	Update Your Working Copy
	Make Changes to Your Working Copy
	Examine Your Changes
	See an overview of your changes
	Examine the details of your local modifications

	Undoing Working Changes
	Resolve Conflicts (Merging Others' Changes)
	Merging Conflicts by Hand
	Copying a File Onto Your Working File
	Punting: Using svn revert

	Commit Your Changes

	Examining History
	Generating a list of historical changes
	Examining the details of historical changes
	Examining Local Changes
	Comparing Working Copy to Repository
	Comparing Repository to Repository

	Browsing the repository
	svn cat
	svn list

	Fetching older repository snapshots

	Sometimes You Just Need to Clean Up
	Summary

	Chapter 3. Advanced Topics
	Revision Specifiers
	Revision Keywords
	Revision Dates

	Properties
	Why Properties?
	Manipulating Properties
	Properties and the Subversion Workflow
	Automatic Property Setting

	File Portability
	File Content Type
	File Executability
	End-of-Line Character Sequences

	Ignoring Unversioned Items
	Keyword Substitution
	Locking
	Creating locks
	Discovering locks
	Breaking and stealing locks
	Lock Communication

	Externals Definitions
	Peg and Operative Revisions
	Network Model
	Requests and Responses
	Client Credentials Caching

	Chapter 4. Branching and Merging
	What's a Branch?
	Using Branches
	Creating a Branch
	Working with Your Branch
	The Key Concepts Behind Branches

	Copying Changes Between Branches
	Copying Specific Changes
	The Key Concept Behind Merging
	Best Practices for Merging
	Tracking Merges Manually
	Previewing Merges
	Merge Conflicts
	Noticing or Ignoring Ancestry
	Merges and Moves

	Common Use-Cases
	Merging a Whole Branch to Another
	Undoing Changes
	Resurrecting Deleted Items
	Common Branching Patterns
	Release Branches
	Feature Branches

	Traversing Branches
	Tags
	Creating a Simple Tag
	Creating a Complex Tag

	Branch Maintenance
	Repository Layout
	Data Lifetimes

	Vendor branches
	General Vendor Branch Management Procedure
	svn_load_dirs.pl

	Summary

	Chapter 5. Repository Administration
	The Subversion Repository, Defined
	Strategies for Repository Deployment
	Planning Your Repository Organization
	Deciding Where and How to Host Your Repository
	Choosing a Data Store
	Berkeley DB
	FSFS

	Creating and Configuring Your Repository
	Creating the Repository
	Implementing Repository Hooks
	Berkeley DB Configuration

	Repository Maintenance
	An Administrator's Toolkit
	svnadmin
	svnlook
	svndumpfilter
	svnsync
	Berkeley DB Utilities

	Commit Log Message Correction
	Managing Disk Space
	How Subversion saves disk space
	Removing dead transactions
	Purging unused Berkeley DB logfiles

	Berkeley DB Recovery
	Migrating Repository Data Elsewhere
	Filtering Repository History
	Repository Replication
	Repository Backup

	Summary

	Chapter 6. Server Configuration
	Overview
	Choosing a Server Configuration
	The svnserve Server
	svnserve over SSH
	The Apache HTTP Server
	Recommendations

	svnserve, a custom server
	Invoking the Server
	svnserve as Daemon
	svnserve via inetd
	svnserve over a Tunnel
	svnserve as Windows Service

	Built-in authentication and authorization
	Create a 'users' file and realm
	Set access controls

	Tunneling over SSH
	SSH configuration tricks
	Initial setup
	Controlling the invoked command

	httpd, the Apache HTTP server
	Prerequisites
	Basic Apache Configuration
	Authentication Options
	Basic HTTP Authentication
	SSL Certificate Management

	Authorization Options
	Blanket Access Control
	Per-Directory Access Control
	Disabling Path-based Checks

	Extra Goodies
	Repository Browsing
	Proper MIME Type
	Customizing the Look
	Listing Repositories

	Apache Logging
	Other Features

	Path-Based Authorization
	Supporting Multiple Repository Access Methods

	Chapter 7. Customizing Your Subversion Experience
	Runtime Configuration Area
	Configuration Area Layout
	Configuration and the Windows Registry
	Configuration Options
	Servers
	Config

	Localization
	Understanding locales
	Subversion's use of locales

	Using External Differencing Tools
	External diff
	External diff3

	Chapter 8. Embedding Subversion
	Layered Library Design
	Repository Layer
	Repository Access Layer
	Client Layer

	Inside the Working Copy Administration Area
	The Entries File
	Pristine Copies and Property Files

	Using the APIs
	The Apache Portable Runtime Library
	URL and Path Requirements
	Using Languages Other than C and C++
	Code Samples

	Chapter 9. Subversion Complete Reference
	The Subversion Command Line Client: svn
	svn Options
	svn Subcommands
	svn add
	svn blame
	svn cat
	svn checkout
	svn cleanup
	svn commit
	svn copy
	svn delete
	svn diff
	svn export
	svn help
	svn import
	svn info
	svn list
	svn lock
	svn log
	svn merge
	svn mkdir
	svn move
	svn propdel
	svn propedit
	svn propget
	svn proplist
	svn propset
	svn resolved
	svn revert
	svn status
	svn switch
	svn unlock
	svn update

	svnadmin
	svnadmin Options
	svnadmin Subcommands
	svnadmin create
	svnadmin deltify
	svnadmin dump
	svnadmin help
	svnadmin hotcopy
	svnadmin list-dblogs
	svnadmin list-unused-dblogs
	svnadmin load
	svnadmin lslocks
	svnadmin lstxns
	svnadmin recover
	svnadmin rmlocks
	svnadmin rmtxns
	svnadmin setlog
	svnadmin verify

	svnlook
	svnlook Options
	svnlook Subcommands
	svnlook author
	svnlook cat
	svnlook changed
	svnlook date
	svnlook diff
	svnlook dirs-changed
	svnlook help
	svnlook history
	svnlook info
	svnlook lock
	svnlook log
	svnlook propget
	svnlook proplist
	svnlook tree
	svnlook uuid
	svnlook youngest

	svnsync
	svnsync Options
	svnsync Subcommands
	svnsync copy-revprops
	svnsync initialize
	svnsync synchronize

	svnserve
	svnserve Options

	svnversion
	svnversion

	mod_dav_svn
	mod_dav_svn Configuration Directives

	Subversion properties
	Versioned Properties
	Unversioned Properties

	Repository Hooks
	start-commit
	pre-commit
	post-commit
	pre-revprop-change
	post-revprop-change
	pre-lock
	post-lock
	pre-unlock
	post-unlock

	Appendix A. Subversion Quick-Start Guide
	Installing Subversion
	High-speed Tutorial

	Appendix B. Subversion for CVS Users
	Revision Numbers Are Different Now
	Directory Versions
	More Disconnected Operations
	Distinction Between Status and Update
	Status
	Update

	Branches and Tags
	Metadata Properties
	Conflict Resolution
	Binary Files and Translation
	Versioned Modules
	Authentication
	Converting a Repository from CVS to Subversion

	Appendix C. WebDAV and Autoversioning
	What is WebDAV?
	Autoversioning
	Client Interoperability
	Standalone WebDAV applications
	Microsoft Office, Dreamweaver, Photoshop
	Cadaver, DAV Explorer

	File-explorer WebDAV extensions
	Microsoft Web Folders
	Nautilus, Konqueror

	WebDAV filesystem implementation
	WebDrive, NetDrive
	Mac OS X
	Linux davfs2

	Appendix D. Third Party Tools
	Appendix E. Copyright
	Index

