
Performance Tuning, Sizing, and
Scaling Guide

Sun™ ONE Web Server

Version 6.1

817-1836-10
August 2003

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.

Copyright 2003 Sun Microsystems, Inc. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Java, JavaServer Pages, JSP, J2EE, JDBC, NetBeans, Solaris, Sun Fire, Sun ONE, iPlanet, and all
Sun, Java, and Sun ONE based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Netscape is a trademark or registered trademark of Netscape Communications Corporation in the United States and other countries.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of the product or this document may be reproduced in any form by any means without prior written authorization of Sun
Microsystems, Inc. and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

__

Copyright 2003 Sun Microsystems, Inc. Tous droits réservés.

Sun, Sun Microsystems, le logo Sun, Java, JavaServer Pages, JSP, J2EE, JDBC, NetBeans, Solaris, Sun Fire, Sun ONE, et iPlanet sont
des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et d’autre pays.

UNIX est une marque enregistree aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company Ltd.

Netscape est une marque de Netscape Communications Corporation aux Etats-Unis et dans d'autres pays.

Le produit décrit dans ce document est distribué selon des conditions de licence qui en restreignent l'utilisation, la copie, la
distribution et la décompilation. Aucune partie de ce produit ni de ce document ne peut être reproduite sous quelque forme ou par
quelque moyen que ce soit sans l’autorisation écrite préalable de Sun Microsystems, Inc. et, le cas échéant, de ses bailleurs de licence.

CETTE DOCUMENTATION EST FOURNIE “EN L'ÉTAT”, ET TOUTES CONDITIONS EXPRESSES OU IMPLICITES, TOUTES
REPRÉSENTATIONS ET TOUTES GARANTIES, Y COMPRIS TOUTE GARANTIE IMPLICITE D'APTITUDE À LA VENTE, OU À
UN BUT PARTICULIER OU DE NON CONTREFAÇON SONT EXCLUES, EXCEPTÉ DANS LA MESURE OÙ DE TELLES
EXCLUSIONS SERAIENT CONTRAIRES À LA LOI.

3

Contents

About This Guide . 9

Who Should Use This Guide . 9
Using the Documentation . 10
How This Guide Is Organized . 12
Documentation Conventions . 13
Product Support . 14

Chapter 1 Performance and Monitoring Overview . 15
Performance Issues . 15
Virtual Servers . 16
Monitoring Server Performance . 17

Monitoring Current Activity Using the Server Manager . 17
Activating Statistics . 17
Monitoring Statistics . 19
Virtual Server Statistics . 19

Monitoring Current Activity Using the perfdump Utility . 20
Installing the perfdump Utility . 20
Sample perfdump Output . 21

Using Performance Buckets . 22
Configuration . 23
Performance Report . 24

Chapter 2 Tuning Sun ONE Web Server . 27
General Tuning Tips . 27
Using Statistics to Tune Your Server . 28

Connection Queue Information . 29
Current /Peak /Limit . 30

4 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Total Connections Queued . 30
Average Queuing Delay . 30

Listen Socket Information . 30
Address . 31
Acceptor Threads . 32
Default Virtual Server . 32

Keep-Alive/Persistent Connection Information . 33
KeepAliveThreads . 34
KeepAliveCount . 34
KeepAliveHits . 35
KeepAliveFlushes . 35
KeepAliveRefusals . 35
KeepAliveTimeout . 35
KeepAliveTimeouts . 35
UseNativePoll . 35

Session Creation Information . 36
Cache Information . 37

enabled . 37
CacheEntries . 38
Hit Ratio (CacheHits / CacheLookups) . 38
Maximum Age . 38

Thread Pools . 39
Thread Pools (UNIX/Linux Only) . 39
Native Thread Pools (Windows Only) . 39
Generic Thread Pools (Windows Only) . 40
Idle /Peak /Limit . 40
Work Queue Length /Peak /Limit . 40
NativePoolStackSize . 41
NativePoolQueueSize . 41
NativePoolMaxThreads . 42
NativePoolMinThreads . 42

DNS Cache Information . 43
enabled . 43
CacheEntries (CurrentCacheEntries / MaxCacheEntries) . 43
HitRatio (CacheHits / CacheLookups) . 43

Busy Functions . 44
Threads, Processes, and Connections . 45

Connection-Handling Overview . 45
Process Modes . 46

Single-Process Mode . 46
Multi-Process Mode . 47
MaxProcs (UNIX/Linux) . 47

Listen Socket Acceptor Threads . 48

5

Maximum Simultaneous Requests . 48
Keep-Alive Subsystem Tuning . 50

HTTP/1.0-style Workload . 51
HTTP/1.1-style Workload . 52

Tuning the File Cache . 53
Configuring the File Cache . 54
Using the nocache Parameter . 56
Monitoring the File Cache with the Server Manager . 56
File Cache Dynamic Control and Monitoring . 57

Tuning the ACL User Cache . 59
ACL User Cache Directives . 60

ACLCacheLifetime . 60
ACLUserCacheSize . 60
ACLGroupCacheSize . 61

Verifying ACL User Cache Settings . 61
Tuning Java Web Applications Performance . 61

Using Java Heap Tuning . 62
Using Precompiled JSPs . 62
Using Servlet/JSP Caching . 63
Configuring the Java Security Manager . 63
Configuring Class Reloading . 63
Avoiding Directories in the Classpath . 64
Configuring the Web Application’s Session Settings . 64

Tuning maxLocks (UNIX/Linux) . 64
Tuning MMapSessionManager (UNIX/Linux) . 65

Configuring JDBC Connection Pooling . 65
JDBC Connection Pool Attributes . 66

name . 66
datasourceclassname . 66
steadypoolsize . 66
maxpoolsize . 66
poolresizequantity . 67
idletimeout . 67
maxwaittime . 67
connectionvalidationrequired . 67
connectionvalidationmethod . 68
validationtablename . 68
failallconnections . 68
transactionisolationlevel . 68
isolationlevelguaranteed . 68

Chapter 3 Miscellaneous Performance Topics . 69
Miscellaneous magnus.conf Directives . 69

6 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Buffer Size . 70
Tuning . 70

Connection Timeout . 70
Tuning . 70

CGIStub Processes (UNIX/Linux) . 70
Tuning . 71

Miscellaneous obj.conf Parameters . 72
find-pathinfo-forward . 72
nostat . 73

Using Quality of Service . 73
Using Load Balancing . 74

Using libloadbal . 74
Library configuration . 74
Testing . 77
Sample . 77

Chapter 4 Common Performance Problems . 79
Magnus Editor Values . 79
check-acl Server Application Functions . 80
Low-memory Situations . 80
Under-throttled Server . 81
Cache Not Utilized . 81
Keep-Alive Connections Flushed . 82
Log File Modes . 82

Chapter 5 Platform-specific Issues and Tips . 83
Solaris-specific Issues . 83

Files Open in a Single Process . 83
File Descriptor Limits . 84
Failure to Connect to HTTP Server . 84
Connection Refused Errors . 85
Tuning TCP Buffering . 86

Solaris File System Tuning . 86
High File System Page-in Rate . 86
Reduce File System Housekeeping . 87
Long Service Times on Busy Disks or Volumes . 87

Solaris-specific Performance Monitoring . 88
Short-term System Monitoring . 88
Long-term System Monitoring . 89
"Intelligent" Monitoring . 89

Tuning Solaris for Performance Benchmarking . 90

7

Chapter 6 Sizing and Scaling Your Server . 93
Processors . 93
Memory . 93
Drive Space . 94
Networking . 94

Chapter 7 Scalability Studies . 95
Study Goals . 95
General Conclusions . 96
Sun ONE Web Server Configuration . 96

Tuned Server Settings . 97
nsfc.conf Settings . 98
System Configuration . 98

Performance Results . 99
Static Content Test . 100
Dynamic Content Test: WASP Servlet . 101
Dynamic Content Test: C CGI . 102
Dynamic Content Test: Perl CGI . 103
Dynamic Content Test: NSAPI . 104
SSL Performance Test: Static Content . 105
SSL Performance Test: Perl CGI . 106
SSL Performance Test: C CGI . 107
SSL Performance Test: NSAPI . 109
JDBC Connection Pooling with OCI Driver . 110
PHP Scalability Tests . 112

FastCGI . 112
NSAPI . 113

Index . 117

8 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

9

About This Guide

This guide discusses adjustments you can make that may improve the performance
of Sun™ Open Net Environment (Sun ONE) Web Server 6.1. The guide provides
tuning, scaling, and sizing tips and suggestions; possible solutions to common
performance problems; and data from scalability studies. It also addresses
miscellaneous configuration and platform-specific issues, and describes the
perfdump performance utility and tuning parameters that are built into the server.

This preface contains the following topics:

• Who Should Use This Guide

• Using the Documentation

• How This Guide Is Organized

• Documentation Conventions

• Product Support

Who Should Use This Guide
This guide is intended for advanced administrators only. Be sure to read this guide
and other relevant server documentation before making any changes. Be very
careful when tuning your server, and always back up your configuration files
before making any changes.

Using the Documentation

10 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Using the Documentation
The Sun ONE Web Server manuals are available as online files in PDF and HTML
formats from the following location:

http://docs.sun.com/prod/sunone

The following table lists the tasks and concepts described in the Sun ONE Web
Server manuals.

Table 1 Sun ONE Web Server Documentation Roadmap

For Information About See the Following

Late-breaking information about the
software and documentation

Release Notes

Getting started with Sun ONE Web Server,
including hands-on exercises that
introduce server basics and features
(recommended for first-time users)

Getting Started Guide

Performing installation and migration
tasks:

• Installing Sun ONE Web Server and its
various components, supported
platforms, and environments

• Migrating from Sun ONE Web Server
4.1 or 6.0 to Sun ONE Web Server 6.1

Installation and Migration Guide

http://docs.sun.com/prod/sunone

Using the Documentation

About This Guide 11

Performing the following administration
tasks:

• Using the Administration and
command-line interfaces

• Configuring server preferences

• Using server instances

• Monitoring and logging server activity

• Using certificates and public key
cryptography to secure the server

• Configuring access control to secure
the server

• Using Java™ 2 Platform, Enterprise
Edition (J2EE™ platform) security
features

• Deploying applications

• Managing virtual servers

• Defining server workload and sizing
the system to meet performance needs

• Searching the contents and attributes
of server documents, and creating a
text search interface

• Configuring the server for content
compression

• Configuring the server for web
publishing and content authoring
using WebDAV

Administrator’s Guide

Using programming technologies and
APIs to do the following:

• Extend and modify Sun ONE Web
Server

• Dynamically generate content in
response to client requests

• Modify the content of the server

Programmer’s Guide

Table 1 Sun ONE Web Server Documentation Roadmap

For Information About See the Following

How This Guide Is Organized

12 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

How This Guide Is Organized
This guide is organized as follows:

• Chapter 1, “Performance and Monitoring Overview”

This chapter provides a general discussion of server performance
considerations, and more specific information about monitoring server
performance.

• Chapter 2, “Tuning Sun ONE Web Server”

This chapter describes specific adjustments you can make that may improve
Sun ONE Web Server performance.

• Chapter 3, “Miscellaneous Performance Topics”

This chapter describes miscellaneous performance topics, including discussion
of magnus.conf and obj.conf settings that can be used to improve server
performance.

• Chapter 4, “Common Performance Problems”

This chapter discusses common web site performance problems, and offers tips
and solutions.

• Chapter 5, “Platform-specific Issues and Tips”

This chapter provides platform-specific tuning tips.

Creating custom Netscape Server
Application Programmer’s Interface
(NSAPI) plugins

NSAPI Programmer’s Guide

Implementing servlets and JavaServer
Pages™ (JSP™) technology in Sun ONE
Web Server

Programmer’s Guide to Web Applications

Editing configuration files Administrator’s Configuration File Reference
Guide

Tuning Sun ONE Web Server to optimize
performance

Performance Tuning, Sizing, and Scaling
Guide

Table 1 Sun ONE Web Server Documentation Roadmap

For Information About See the Following

Documentation Conventions

About This Guide 13

• Chapter 6, “Sizing and Scaling Your Server”

This chapter examines the subsystems of your server, and provides
recommendations for optimal performance.

• Chapter 7, “Scalability Studies”

This chapter describes the results of scalability studies. You can use these
studies as examples of how you might configure your system to best take
advantage of Sun ONE Web Server’s strengths.

Documentation Conventions
This section describes the types of conventions used throughout this guide.

• File and directory paths

These are given in UNIX® format (with forward slashes separating directory
names). For Windows versions, the directory paths are the same, except that
backslashes are used to separate directories.

• URLs are given in the format:

http://server.domain/path/file.html

In these URLs, server is the server name where applications are run; domain is
your Internet domain name; path is the server's directory structure; and file is
an individual file name. Italic items in URLs are placeholders.

• Font conventions include:

❍ The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), file names,
path names, directory names, and HTML tags.

❍ Italic monospace type is used for code variables.

❍ Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

❍ Bold type is used as either a paragraph lead-in or to indicate words used in
the literal sense.

• Installation root directories are indicated by install_dir in this guide.

By default, the location of install_dir is as follows:

❍ On UNIX-based platforms: /opt/SUNWwbsvr/

Product Support

14 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

❍ On Windows: C:\Sun\WebServer6.1

Product Support
If you have problems with your system, contact customer support using one of the
following mechanisms:

• The online support web site at:

http://www.sun.com/supportraining/

• The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

• Description of the problem, including the situation where the problem occurs
and its impact on your operation.

• Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem.

• Detailed steps on the methods you have used to reproduce the problem.

• Any error logs or core dumps.

http://www.sun.com/supportraining/

15

Chapter 1

Performance and Monitoring
Overview

Sun ONE Web Server is designed to meet the needs of the most demanding,
high-traffic sites in the world. It runs flexibly on UNIX, Linux, and Windows, and
can serve both static and dynamically generated content. Sun ONE Web Server can
also run in SSL mode, enabling the secure transfer of information.

This guide helps you to define your server workload and size a system to meet
your performance needs. Your environment is unique, however, so the impacts of
the suggestions provided here also depend on your specific environment.
Ultimately you must rely on your own judgement and observations to select the
adjustments that are best for you.

This chapter provides a general discussion of server performance considerations,
and more specific information about monitoring server performance.

This chapter includes the following topics:

• Performance Issues

• Virtual Servers

• Monitoring Server Performance

Performance Issues
The first step toward sizing your server is to determine your requirements.
Performance means different things to users than to webmasters. Users want fast
response times (typically less than 100 milliseconds), high availability (no
“connection refused” messages), and as much interface control as possible.
Webmasters and system administrators, on the other hand, want to see high

Virtual Servers

16 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

connection rates, high data throughput, and uptime approaching 100%. In
addition, for virtual servers the goal might be to provide a targeted level of
performance at different price points. You need to define what performance means
for your particular situation.

Here are some areas to consider:

• The number of peak concurrent users

• Security requirements

Encrypting your Sun ONE Web Server’s data streams with SSL makes an
enormous difference to your site’s credibility for electronic commerce and
other security conscious applications, but it can also seriously impact your
CPU load. SSL always has a significant impact on throughput, so for best
performance minimize your use of SSL, or consider using a multi-CPU server
to handle it.

• The size of the document tree

• Dynamic versus static content

The content you serve affects your server’s performance. A Sun ONE Web
Server delivering mostly static HTML can run much faster than a server that
must execute CGIs for every query.

Virtual Servers
Virtual servers add another layer to the performance improvement process.
Certain settings are tunable for the entire server, while others are based on an
individual virtual server. You can also use the quality of service (QOS) features to
set resource utilization constraints for an individual virtual server or class of
virtual servers. For example, you can use QOS features to limit the number of
connections allowed for a virtual server or class of virtual servers.

For more information about using the quality of service features, see the Sun ONE
Web Server 6.1 Administrator’s Guide.

Monitoring Server Performance

Chapter 1 Performance and Monitoring Overview 17

Monitoring Server Performance
Making the adjustments described in this guide without measuring their effects
doesn’t make sense. If you don’t measure the system’s behavior before and after
making a change, you won’t know whether the change was a good idea, a bad idea,
or merely irrelevant. You can monitor the performance of Sun ONE Web Server in
several different ways, as discussed in the following topics:

• Monitoring Current Activity Using the Server Manager

• Monitoring Current Activity Using the perfdump Utility

• Using Performance Buckets

See Also
General Tuning Tips
Solaris-specific Performance Monitoring

Monitoring Current Activity Using the Server
Manager
You can monitor many performance statistics through the Server Manager user
interface, and through stats-xml. Once statistics are activated, you can monitor
the following areas:

• Connections

• DNS

• Keep-alive

• Cache

• Virtual Server

Activating Statistics
You must activate statistics on Sun ONE Web Server before you can monitor
performance. This can be done through the Server Manager, or by editing the
obj.conf and magnus.conf files.

CAUTION When you activate statistics/profiling, statistics information is made
available to any user of your server.

Monitoring Server Performance

18 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Activating Statistics from the Server Manager
To activate statistics from the user interface:

1. From the Server Manager, click the Monitor tab, and then click Monitor
Current Activity.

The Enable Statistics/profiling page displays.

2. Select Yes to activate statistics/profiling.

3. Click OK, click Apply, and then click the Apply Changes button to activate
statistics/profiling.

Activating Statistics with stats-xml
You can also activate statistics directly by editing the obj.conf and magnus.conf
files. Users who create automated tools or write customized programs for
monitoring and tuning may prefer to work directly with stats-xml.

To activate statistics using stats-xml:

1. Under the default object in obj.conf, add the following line:

NameTrans fn="assign-name" from="/stats-xml/*" name="stats-xml"

2. Add the following Service function to obj.conf:

<Object name="stats-xml">

Service fn="stats-xml"

</Object>

3. Add the stats-init SAF to magnus.conf.

Here's an example of stats-init in magnus.conf:

Init fn="stats-init" update-interval="5" virtual-servers="2000"

profiling="yes"

The above example shows you can also designate the following:

• update-interval. The period in seconds between statistics updates. A higher
setting (less frequent) will be better for performance. The minimum value is 1;
the default value is 5.

• virtual-servers. The maximum number of virtual servers for which you track
statistics. This number should be set equal to or higher than the number of
virtual servers configured. Smaller numbers result in lower memory usage.
The minimum value is 1; the default is 1000.

Monitoring Server Performance

Chapter 1 Performance and Monitoring Overview 19

• profiling. Activate NSAPI performance profiling. The default is "no," which
results in slightly better server performance. However, if you activate statistics
through the user interface, profiling is turned on by default.

Monitoring Statistics
Once you’ve activated statistics, you can get a variety of information on how your
server instance and your virtual servers are running. The statistics are broken up
into functional areas.

To monitor statistics from the Server Manager:

1. From the Server Manager, click the Monitor tab, and then click Monitor
Current Activity.

2. Make sure that statistics/profiling is activated ("Yes" is selected and applied
for "Activate Statistics/Profiling?").

3. From the drop-down list, select a refresh interval.

This is the interval, in seconds, that updated statistics will be displayed on
your browser.

4. From the drop-down list, select the type of web server statistics to display.

5. Click Submit.

A page appears displaying the type of statistics you selected. The page is
updated every 5-15 seconds, depending on the refresh interval. All pages will
display a bar graph of activity, except for Connections.

6. Select the process ID from the drop-down list.

You can view current activity through the Server Manager, but these categories are
not fully relevant for tuning your server. The perfdump statistics are recommended
for tuning your server. For more information, see “Using Statistics to Tune Your
Server” on page 28.

Virtual Server Statistics
Virtual server statistics can be viewed from the Server Manager. You can choose to
display statistics for the server instance, for an individual virtual server, or for all.
This information is not provided through perfdump.

Monitoring Server Performance

20 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Monitoring Current Activity Using the perfdump
Utility
The perfdump utility is a Server Application Function (SAF) built into Sun ONE
Web Server that collects various pieces of performance data from the Web Server
internal statistics and displays them in ASCII text. The perfdump utility allows you
to monitor a greater variety of statistics than those available through the Server
Manager.

With perfdump, the statistics are unified. Rather than monitoring a single process,
statistics are multiplied by the number of processes, which gives you a more
accurate view of the server as a whole.

Installing the perfdump Utility
To install perfdump, make the following modifications in obj.conf:

1. Add the following object to your obj.conf file after the default object:

<Object name="perf">
Service fn="service-dump"
</Object>

2. Add the following to the default object:

NameTrans fn=assign-name from="/.perf" name="perf"

Make sure that the .perf NameTrans directive is specified before the
document-root NameTrans directive in the default object.

3. If not already activated, activate stats-xml.

For more information, see “Activating Statistics” on page 17.

4. Restart your server software.

5. Access perfdump by entering this URL:

http://yourhost/.perf

You can request the perfdump statistics and specify how frequently (in seconds) the
browser should automatically refresh. The following example sets the refresh to
every 5 seconds:

http://yourhost/.perf?refresh=5

See Also
“Using Statistics to Tune Your Server”

Monitoring Server Performance

Chapter 1 Performance and Monitoring Overview 21

Sample perfdump Output
The following is sample perfdump output:

--

webservd pid: 2408

ConnectionQueue:

Current/Peak/Limit Queue Length 0/0/4096
Total Connections Queued 0
Average Queueing Delay 0.00 milliseconds

ListenSocket ls1:

Address http://0.0.0.0:8080
Acceptor Threads 1
Default Virtual Server https-iws-files2.red.iplanet.com

KeepAliveInfo:

KeepAliveCount 0/256
KeepAliveHits 0
KeepAliveFlushes 0
KeepAliveRefusals 0
KeepAliveTimeouts 0
KeepAliveTimeout 30 seconds

SessionCreationInfo:

Active Sessions 1
Total Sessions Created 48/128

CacheInfo:

enabled yes
CacheEntries 0/1024
Hit Ratio 0/0 (0.00%)
Maximum Age 30

Native pools:

NativePool:
Idle/Peak/Limit 1/1/128
Work Queue Length/Peak/Limit 0/0/0

Server DNS cache disabled

Monitoring Server Performance

22 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Async DNS disabled

Performance Counters:
--

Average Total Percent

Total number of requests: 0
Request processing time: 0.0000 0.0000

default-bucket (Default bucket)
Number of Requests: 0 (0.00%)
Number of Invocations: 0 (0.00%)
Latency: 0.0000 0.0000 (0.00%)
Function Processing Time: 0.0000 0.0000 (0.00%)
Total Response Time: 0.0000 0.0000 (0.00%)

Sessions:

Process Status Function

2408 response service-dump
--

Using Performance Buckets
Performance buckets allow you to define buckets and link them to various server
functions. Every time one of these functions is invoked, the server collects
statistical data and adds it to the bucket. For example, send-cgi and
NSServletService are functions used to serve the CGI and Java servlet requests
respectively. You can either define two buckets to maintain separate counters for
CGI and servlet requests, or create one bucket that counts requests for both types of
dynamic content. The cost of collecting this information is little and impact on the
server performance is usually negligible. This information can later be accessed
using the perfdump utility. The following information is stored in a bucket:

• Name of the bucket. This name is used for associating the bucket with a
function.

• Description. A description of the functions that the bucket is associated with.

• Number of requests for this function. The total number of requests that
caused this function to be called.

Monitoring Server Performance

Chapter 1 Performance and Monitoring Overview 23

• Number of times the function was invoked. This number may not coincide
with the number of requests for the function because some functions may be
executed more than once for a single request.

• Function latency or the dispatch time. The time taken by the server to invoke
the function.

• Function time. The time spent in the function itself.

The default-bucket is predefined by the server. It records statistics for the
functions not associated with any user-defined bucket.

Configuration
You must specify all configuration information for performance buckets in the
magnus.conf and obj.conf files. Only the default bucket is automatically
enabled.

First, you must enable performance measurement as described in “Monitoring
Current Activity Using the perfdump Utility” on page 20.

The following examples show how to define new buckets in magnus.conf:

The example above creates three buckets: acl-bucket, file-bucket, and
cgi-bucket. To associate these buckets with functions, add bucket=bucket-name to
the obj.conf function for which you wish to measure performance.

Init fn="define-perf-bucket" name="acl-bucket" description="ACL
bucket"

Init fn="define-perf-bucket" name="file-bucket"
description="Non-cached responses"

Init fn="define-perf-bucket" name="cgi-bucket" description="CGI
Stats"

Monitoring Server Performance

24 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Example

Performance Report
The server statistics in buckets can be accessed using the perfdump utility. The
performance buckets information is located in the last section of the report
returned by perfdump.

The report contains the following information:

• Average, Total, and Percent columns give data for each requested statistic.

• Request Processing Time is the total time required by the server to process all
requests it has received so far.

• Number of Requests is the total number of requests for the function.

• Number of Invocations is the total number of times that the function was
invoked. This differs from the number of requests in that a function could be
called multiple times while processing one request. The percentage column for
this row is calculated in reference to the total number of invocations for all of
the buckets.

• Latency is the time in seconds Sun ONE Web Server takes to prepare for
calling the function.

• Function Processing Time is the time in seconds Sun ONE Web Server spent
inside the function. The percentage of Function Processing Time and Total
Response Time is calculated with reference to the total Request Processing
Time.

PathCheck fn="check-acl" acl="default" bucket="acl-bucket"
...
Service method="(GET|HEAD|POST)" type="*~magnus-internal/*"
fn="send-file" bucket="file-bucket"
...
<Object name="cgi">
ObjectType fn="force-type" type="magnus-internal/cgi"
Service fn="send-cgi" bucket="cgi-bucket"
</Object>

Monitoring Server Performance

Chapter 1 Performance and Monitoring Overview 25

• Total Response Time is the sum in seconds of Function Processing Time and
Latency.

The following is an example of the performance bucket information available
through perfdump:

Performance Counters:
--

Average Total Percent

Total number of requests: 0
Request processing time: 0.0000 0.0000

default-bucket (Default bucket)
Number of Requests: 0 (0.00%)
Number of Invocations: 0 (0.00%)
Latency: 0.0000 0.0000 (0.00%)
Function Processing Time: 0.0000 0.0000 (0.00%)
Total Response Time: 0.0000 0.0000 (0.00%)

Monitoring Server Performance

26 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

27

Chapter 2

Tuning Sun ONE Web Server

This chapter describes specific adjustments you can make that may improve Sun
ONE Web Server performance. The chapter includes the following topics:

• General Tuning Tips

• Using Statistics to Tune Your Server

• Threads, Processes, and Connections

• Tuning the File Cache

• Tuning the ACL User Cache

• Tuning Java Web Applications Performance

General Tuning Tips
As you tune your server it is important to remember that your specific
environment is unique. The impacts of the suggestions provided in this guide will
vary, depending on your specific environment. Ultimately you must rely on your
own judgement and observations to select the adjustments that are best for you.

As you work to optimize performance, keep the following guidelines in mind:

• Work Methodically

As much as possible, make one adjustment at a time. Measure your
performance before and after each change, and rescind any change that doesn’t
produce a measurable improvement.

CAUTION Be very careful when tuning your server. Always back up your
configuration files before making any changes.

Using Statistics to Tune Your Server

28 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

• Adjust Gradually

When adjusting a quantitative parameter, make several stepwise changes in
succession, rather than trying to make a drastic change all at once. Different
systems face different circumstances, and you may leap right past your
system’s best setting if you change the value too rapidly.

• Start Fresh

At each major system change, be it a hardware or software upgrade or
deployment of a major new application, review all previous adjustments to see
whether they still apply. After a Solaris upgrade, it is strongly recommended
that you start over with an unmodified /etc/system file.

• Stay Informed

Read the Sun ONE Web Server and Solaris release notes whenever you
upgrade your system. The release notes often provide updated information
about specific adjustments.

Using Statistics to Tune Your Server
This section describes the information available through the perfdump utility, and
discusses how to tune some parameters to improve your server’s performance.

The default tuning parameters are appropriate for all sites except those with very
high volume. The only parameters that large sites may regularly need to change
are RqThrottle, MaxKeepAliveConnections, and KeepAliveTimeout, which are
tunable from magnus.conf and the Server Manager.

The perfdump utility monitors statistics in the following categories, which are
described in this section:

• Connection Queue Information

• Listen Socket Information

• Keep-Alive/Persistent Connection Information

• Session Creation Information

• Cache Information

• Thread Pools

• DNS Cache Information

• Busy Functions

Using Statistics to Tune Your Server

Chapter 2 Tuning Sun ONE Web Server 29

Once you have viewed the statistics you need, you can tune various aspects of your
server’s performance using:

• The magnus.conf file

• The Server Manager Preferences tab

The Server Manager Preferences tab includes many interfaces for setting values for
server performance, including the Performance Tuning page and the File Cache
Configuration page.

The Magnus Editor allows you to set values for numerous directives in the
following categories, which are accessible from the drop-down list:

• DNS Settings

• SSL Settings

• Performance Settings

• CGI Settings

• Keep-Alive Settings

• Logging Settings

• Language Settings

Connection Queue Information
Connection queue information shows the number of sessions in the queue, and the
average delay before the connection is accepted.

Following is an example of how these statistics are displayed in perfdump:

NOTE For general information about perfdump, see “Monitoring Current
Activity Using the perfdump Utility” on page 20.

ConnectionQueue:

Current/Peak/Limit Queue Length 0/0/4096
Total Connections Queued 0
Average Queueing Delay 0.00 milliseconds

Using Statistics to Tune Your Server

30 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Current /Peak /Limit
Current/Peak/Limit queue length shows, in order:

• The number of connections currently in the queue

• The largest number of connections that have been in the queue simultaneously

• The maximum size of the connection queue

Tuning
If the peak queue length is close to the limit, you may wish to increase the
maximum connection queue size to avoid dropping connections under heavy load.

You can increase the connection queue size by:

• Setting or changing the value of ConnQueueSize in the Magnus Editor of the
Server Manager

• Editing the ConnQueueSize directive in magnus.conf

Total Connections Queued
Total Connections Queued is the total number of times a connection has been
queued. This includes newly accepted connections and connections from the
keep-alive system.

This setting is not tunable.

Average Queuing Delay
Average Queueing Delay is the average amount of time a connection spends in
the connection queue. This represents the delay between when a request
connection is accepted by the server and when a request processing thread (also
known as a session) begins servicing the request.

This setting is not tunable.

Listen Socket Information
The following listen socket information includes the IP address, port number,
number of acceptor threads, and the default virtual server for the listen socket. For
tuning purposes, the most important field in the listen socket information is the
number of acceptor threads.

You can have many listen sockets enabled for virtual servers, but at least one will
be enabled for your default server instance (usually http://0.0.0.0:80).

Using Statistics to Tune Your Server

Chapter 2 Tuning Sun ONE Web Server 31

Tuning
You can create listen sockets through the Server Manager, and edit much of a listen
socket’s information. For more information about adding and editing listen
sockets, see the Sun ONE Web Server 6.1 Administrator’s Guide.

If you have created multiple listen sockets, perfdump displays all of them.

Set the TCP/IP listen queue size for all listen sockets by:

• Editing the ListenQ parameter in magnus.conf

• Setting or changing the ListenQ value in the Magnus Editor of the Server
Manager

• Entering the value in the Listen Queue Size field of the Performance Tuning
page of the Server Manager

Address
The Address field contains the base address that this listen socket is listening on. It
contains the IP address and the port number.

If your listen socket listens on all IP addresses for the machine, the IP part of the
address is 0.0.0.0.

Tuning
This setting is tunable when you edit a listen socket. If you specify an IP address
other than 0.0.0.0, the server will make one less system call per connection. Specify
an IP address other than 0.0.0.0 for best possible performance.

For more information about adding and editing listen sockets, see the Sun ONE
Web Server 6.1 Administrator’s Guide.

ListenSocket ls1:

Address http://0.0.0.0:8080
Acceptor Threads 1
Default Virtual Server https-iws-files2.red.iplanet.com

Using Statistics to Tune Your Server

32 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Acceptor Threads
Acceptor threads are threads that wait for connections. The threads accept
connections and put them in a queue where they are then picked up by worker
threads. Ideally, you want to have enough acceptor threads so that there is always
one available when a user needs one, but few enough so that they do not provide
too much of a burden on the system. A good rule is to have one acceptor thread per
CPU on your system. You can increase this value to about double the number of
CPUs if you find indications of TCP/IP listen queue overruns.

Tuning
You can tune this number through the user interface when you edit a listen socket.

For more information about adding and editing listen sockets, see the Sun ONE
Web Server 6.1 Administrator’s Guide.

Default Virtual Server
Software virtual servers work using the HTTP/1.1 Host header. If the end user’s
browser does not send the Host header, or if the server cannot find the virtual
server specified by the Host header, Sun ONE Web Server handles the request
using a default virtual server. Also, for hardware virtual servers, if Sun ONE Web
Server cannot find the virtual server corresponding to the IP address, it displays
the default virtual server. You can configure the default virtual server to send an
error message or serve pages from a special document root.

Tuning
You can specify a default virtual server for an individual listen socket and for the
server instance. If a given listen socket does not have a default virtual server, the
server instance’s default virtual server is used.

You can specify a default virtual server for a listen socket by:

• Setting or changing the default virtual server information using the Edit Listen
Sockets page on the Preferences tab of the Server Manger.

• Editing the defaultvs attribute of the CONNECTIONGROUP element in the
server.xml file. For more information about server.xml, see the Sun ONE
Web Server 6.1 Administrator’s Configuration File Reference.

Using Statistics to Tune Your Server

Chapter 2 Tuning Sun ONE Web Server 33

Keep-Alive/Persistent Connection Information
This section provides information about the server’s HTTP-level keep-alive system.
For additional tuning information, see “Keep-Alive Subsystem Tuning” on
page 50.

The following example shows the keep-alive statistics displayed by perfdump:

Both HTTP/1.0 and HTTP/1.1 support the ability to send multiple requests across
a single HTTP session. A web server can receive hundreds of new HTTP requests
per second. If every request was allowed to keep the connection open indefinitely,
the server could become overloaded with connections. On UNIX/Linux systems
this could lead to a file table overflow very easily.

To deal with this problem, the server maintains a "Maximum number of waiting
keep-alive connections" counter. A "waiting" keep-alive connection has fully
completed processing the previous request, and is now waiting for a new request
to arrive on the same connection. If the server has more than the maximum waiting
connections open when a new connection waits for a keep-alive request, the server
closes the oldest connection. This algorithm keeps an upper bound on the number
of open waiting keep-alive connections that the server can maintain.

Sun ONE Web Server does not always honor a keep-alive request from a client. The
following conditions cause the server to close a connection, even if the client has
requested a keep-alive connection:

KeepAliveInfo:

KeepAliveCount 0/256
KeepAliveHits 0
KeepAliveFlushes 0
KeepAliveRefusals 0
KeepAliveTimeouts 0
KeepAliveTimeout 30 seconds

NOTE The name "keep-alive" should not be confused with TCP
"keep-alives." Also, note that the name "keep-alive" was changed to
"Persistent Connections" in HTTP/1.1, but the .perf continues to
refer to them as "KeepAlive" connections.

Using Statistics to Tune Your Server

34 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

• KeepAliveTimeout is set to 0.

• MaxKeepAliveConnections count is exceeded.

• Dynamic content, such as a CGI, does not have an HTTP content-length
header set. This applies only to HTTP/1.0 requests. If the request is HTTP/1.1,
the server honors keep-alive requests even if the content-length is not set.
The server can use chunked encoding for these requests if the client can handle
them (indicated by the request header transfer-encoding: chunked). For
more information about chunked encoding, see the Sun ONE Web Server 6.1
NSAPI Programmer’s Guide.

• Request is not HTTP GET or HEAD.

• The request was determined to be bad. For example, if the client sends only
headers with no content.

KeepAliveThreads
You can configure the number of threads used in the keep-alive system by:

• Editing the KeepAliveThreads parameter in magnus.conf

• Setting or changing the KeepAliveThreads value in the Magnus Editor of the
Server Manager

KeepAliveCount
This setting has two numbers:

• Number of connections in keep-alive mode

• Maximum number of connections allowed in keep-alive mode simultaneously

Tuning
You can tune the maximum number of sessions that the server allows to wait at
one time before closing the oldest connection by:

• Editing the MaxKeepAliveConnections parameter in the magnus.conf file

• Setting or changing the MaxKeepAliveConnections value in the Magnus
Editor of the Server Manager

Using Statistics to Tune Your Server

Chapter 2 Tuning Sun ONE Web Server 35

KeepAliveHits
The number of times a request was successfully received from a connection that
had been kept alive.

This setting is not tunable.

KeepAliveFlushes
The number of times the server had to close a connection because the
KeepAliveCount exceeded the MaxKeepAliveConnections. In the current version
of the server, the server does not close existing connections when the
KeepAliveCount exceeds the MaxKeepAliveConnections. Instead, new keep-alive
connections are refused and the KeepAliveResusals count is incremented.

KeepAliveRefusals
The number of times the server could not hand off the connection to a keep-alive
thread, possibly due to too many persistent connections (or when KeepAliveCount
exceeds MaxKeepAliveConnections). Suggested tuning would be to increase
MaxKeepAliveConnections.

KeepAliveTimeout
The time (in seconds) before idle keep-alive connections are closed.

KeepAliveTimeouts
The number of times the server terminated keep-alive connections as the client
connections timed out, without any activity. This is a useful statistic to monitor; no
specific tuning is advised.

UseNativePoll
This option is not displayed in perfdump or Server Manager statistics. However,
for UNIX/Linux users, it should be enabled for maximum performance.

NOTE The number of connections specified by
MaxKeepAliveConnections is divided equally among the
keep-alive threads. If MaxKeeepAliveConnections is not equally
divisible by KeepAliveThreads, the server may allow slightly more
than MaxKeepAliveConnections simultaneous keep-alive
connections.

Using Statistics to Tune Your Server

36 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

To enable native poll for your keep-alive system from the Server Manager, follow
these steps:

1. Go to the Server Manager Preferences tab and select the Mangus Editor.

2. From the drop-down list, choose Keep-Alive Settings and click Manage.

3. Use the drop-down list to set UseNativePoll to On.

4. Click OK, and then click Apply.

5. Select Apply Changes to restart the server for your changes to take effect.

Session Creation Information
Session creation statistics are only displayed in perfdump. Following is an example
of the statistics displayed:

Active Sessions shows the number of sessions (request processing threads)
currently servicing requests.

Total Sessions Created shows both the number of sessions that have been
created and the maximum number of sessions allowed.

Reaching the maximum number of configured threads is not necessarily
undesirable, and you do not need to automatically increase the number of threads
in the server. Reaching this limit means that the server needed this many threads at
peak load, but as long as it was able to serve requests in a timely manner, the server
is adequately tuned. However, at this point connections will queue up in the
connection queue, potentially overflowing it. If you check your perfdump output
on a regular basis and notice that total sessions created is often near the
RqThrottle maximum, you should consider increasing your thread limits.

Tuning
You can increase your thread limits by:

SessionCreationInfo:

Active Sessions 1
Total Sessions Created 48/128

Using Statistics to Tune Your Server

Chapter 2 Tuning Sun ONE Web Server 37

• Editing the RqThrottle parameter in magnus.conf

• Setting or changing the RqThrottle value in the Magnus Editor of the Server
Manager

• Entering the value in the Maximum Simultaneous Requests field of the
Performance Tuning page in the Server Manager

Cache Information
The cache information section provides statistics on how your file cache is being
used. The file cache caches static content so that the server handles requests for
static content quickly. For tuning information, see “Tuning the File Cache” on
page 53.

Following is an example of how the cache statistics are displayed in perfdump:

enabled
If the cache is disabled, the rest of this section is not displayed.

Tuning
The cache is enabled by default. You can disable it by:

• Unselecting it from the File Cache Configuration page under Preferences in the
Server Manger.

• Editing the FileCacheEnable parameter in the nsfc.conf file. For more
information about this file, see the Sun ONE Web Server 6.1 Administrator’s
Configuration File Reference.

CacheInfo:

enabled yes
CacheEntries 0/1024
Hit Ratio 0/0 (0.00%)
Maximum Age 30

Using Statistics to Tune Your Server

38 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

CacheEntries
The number of current cache entries and the maximum number of cache entries are
both displayed. A single cache entry represents a single URI.

Tuning
You can set the maximum number of cached entries by:

• Entering a value in the Maximum # of Files field on the File Cache
Configuration page under Preferences in the Server Manger

• Creating or editing the MaxFiles parameter in the nsfc.conf file. For more
information about this file, see the Sun ONE Web Server 6.1 Administrator’s
Configuration File Reference.

Hit Ratio (CacheHits / CacheLookups)
The hit ratio gives you the number of file cache hits versus cache lookups.
Numbers approaching 100% indicate the file cache is operating effectively, while
numbers approaching 0% could indicate that the file cache is not serving many
requests.

This setting is not tunable.

Maximum Age
This displays the maximum age of a valid cache entry. The parameter controls how
long cached information is used after a file has been cached. An entry older than
the maximum age is replaced by a new entry for the same file.

Tuning
If your web site’s content changes infrequently, you may want to increase this
value for improved performance. You can set the maximum age by:

• Entering or changing the value in the Maximum Age field of the File Cache
Configuration page in the Server Manager.

• Editing the MaxAge parameter in the nsfc.conf file. For more information
about this file, see the Sun ONE Web Server 6.1 Administrator’s Configuration
File Reference.

Using Statistics to Tune Your Server

Chapter 2 Tuning Sun ONE Web Server 39

Thread Pools
Three types of thread pools can be configured through the Server Manager:

• Thread Pools (UNIX/Linux)

• Native Thread Pools (Windows)

• Generic Thread Pools (Windows)

Thread Pools (UNIX/Linux Only)
Since threads on UNIX/Linux are always operating system (OS)-scheduled, as
opposed to user-scheduled, UNIX/Linux users do not need to use native thread
pools, and this option is not offered in the user interface for these platforms.
However, you can edit the OS-scheduled thread pools and add new thread pools if
needed, using the Server Manager.

Native Thread Pools (Windows Only)
On Windows, the native thread pool (NativePool) is used internally by the server
to execute NSAPI functions that require a native thread for execution. Windows
users can edit native thread pool settings using the Server Manager.

Sun ONE Web Server uses NSPR, which is an underlying portability layer
providing access to the host OS services. This layer provides abstractions for
threads that are not always the same as those for the OS-provided threads. These
non-native threads have lower scheduling overhead so their use improves
performance. However, these threads are sensitive to blocking calls to the OS, such
as I/O calls. To make it easier to write NSAPI extensions that can make use of
blocking calls, the server keeps a pool of threads that safely support blocking calls.
This usually means it is a native OS thread. During request processing, any NSAPI
function that is not marked as being safe for execution on a non-native thread is
scheduled for execution on one of the threads in the native thread pool.

If you have written your own NSAPI plugins such as NameTrans, Service, or
PathCheck functions, these execute by default on a thread from the native thread
pool. If your plugin makes use of the NSAPI functions for I/O exclusively or does
not use the NSAPI I/O functions at all, then it can execute on a non-native thread.
For this to happen, the function must be loaded with a NativeThread=”no” option,
indicating that it does not require a native thread.

To do this, add the following to the "load-modules" Init line in the magnus.conf
file:

Using Statistics to Tune Your Server

40 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Init funcs="pcheck_uri_clean_fixed_init"
shlib="C:/Netscape/p186244/P186244.dll" fn="load-modules"
NativeThread="no"

The NativeThread flag affects all functions in the funcs list, so if you have more
than one function in a library, but only some of them use native threads, use
separate Init lines.

Generic Thread Pools (Windows Only)
On Windows, you can set up additional thread pools using the Server Manger. Use
thread pools to put a limit on the maximum number of requests answered by a
service function at any moment. Additional thread pools are a way to run
thread-unsafe plugins. By defining a pool with a maximum number of threads set
to 1, only one request is allowed into the specified service function.

Idle /Peak /Limit
Idle indicates the number of threads that are currently idle. Peak indicates the
peak number in the pool. Limit indicates the maximum number of native threads
allowed in the thread pool, and is determined by the setting of
NativePoolMaxThreads.

Tuning
You can modify the NativePoolMaxThreads by:

• Editing the NativePoolMaxThreads parameter in magnus.conf

• Entering or changing the value in the Maximum Threads field of the Native
Thread Pool page in the Server Manager

Work Queue Length /Peak /Limit
These numbers refer to a queue of server requests that are waiting for the use of a
native thread from the pool. The Work Queue Length is the current number of
requests waiting for a native thread.

Peak is the highest number of requests that were ever queued up simultaneously
for the use of a native thread since the server was started. This value can be viewed
as the maximum concurrency for requests requiring a native thread.

Limit is the maximum number of requests that can be queued at one time to wait
for a native thread, and is determined by the setting of NativePoolQueueSize.

Tuning
You can modify the NativePoolQueueSize by:

Using Statistics to Tune Your Server

Chapter 2 Tuning Sun ONE Web Server 41

• Editing the NativePoolQueueSize parameter in magnus.conf

• Entering or changing the value in the Queue Size field of the Native Thread
Pool page in the Server Manager

NativePoolStackSize
The NativePoolStackSize determines the stack size in bytes of each thread in the
native (kernel) thread pool.

Tuning
You can modify the NativePoolStackSize by:

• Editing the NativePoolStackSize parameter in magnus.conf

• Setting or changing the NativePoolStackSize value in the Magnus Editor of
the Server Manager

• Entering or changing the value in the Stack Size field of the Native Thread Pool
page in the Server Manager

NativePoolQueueSize
The NativePoolQueueSize determines the number of threads that can wait in the
queue for the thread pool. If all threads in the pool are busy, then the next
request-handling thread that needs to use a thread in the native pool must wait in
the queue. If the queue is full, the next request-handling thread that tries to get in
the queue is rejected, with the result that it returns a busy response to the client. It
is then free to handle another incoming request instead of being tied up waiting in
the queue.

Setting the NativePoolQueueSize lower than the RqThrottle value causes the
server to execute a busy function instead of the intended NSAPI function whenever
the number of requests waiting for service by pool threads exceeds this value. The
default returns a "503 Service Unavailable" response and logs a message if
LogVerbose is enabled. Setting the NativePoolQueueSize higher than
RqThrottle causes the server to reject connections before a busy function can
execute.

This value represents the maximum number of concurrent requests for service that
require a native thread. If your system is unable to fulfill requests due to load,
letting more requests queue up increases the latency for requests, and could result
in all available request threads waiting for a native thread. In general, set this
value to be high enough to avoid rejecting requests by anticipating the maximum
number of concurrent users who would execute requests requiring a native thread.

Using Statistics to Tune Your Server

42 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

The difference between this value and RqThrottle is the number of requests
reserved for non-native thread requests, such as static HTML and image files.
Keeping a reserve and rejecting requests ensures that your server continues to fill
requests for static files, which prevents it from becoming unresponsive during
periods of very heavy dynamic content load. If your server consistently rejects
connections, this value is either set too low, or your server hardware is overloaded.

Tuning
You can modify the NativePoolQueueSize by:

• Editing the NativePoolQueueSize parameter in magnus.conf

• Entering or changing the value in the Queue Size field of the Native Thread
Pool page in the Server Manager

NativePoolMaxThreads
NativePoolMaxThreads determine the maximum number of threads in the native
(kernel) thread pool.

A higher value allows more requests to execute concurrently, but has more
overhead due to context switching, so bigger is not always better. Typically, you
will not need to increase this number, but if you are not saturating your CPU and
you are seeing requests queue up, then you should increase this number.

Tuning
You can modify the NativePoolMaxThreads by:

• Editing the NativePoolMaxThreads parameter in magnus.conf

• Entering or changing the value in the Maximum Threads field of the Native
Thread Pool page in the Server Manager

NativePoolMinThreads
Determines the minimum number of threads in the native (kernel) thread pool.

Tuning
You can modify the NativePoolMinThreads by:

• Editing the NativePoolMinThreads parameter in magnus.conf

• Setting or changing the NativePoolMinThreads value in the Magnus Editor of
the Server Manager

• Entering or changing the value in the Minimum Threads field of the Native
Thread Pool page in the Server Manager

Using Statistics to Tune Your Server

Chapter 2 Tuning Sun ONE Web Server 43

DNS Cache Information
The DNS cache caches IP addresses and DNS names. Your server’s DNS cache is
disabled by default. Statistics are displayed in the DNS Statistics for Process ID
page under Monitor in the Server Manager.

enabled
If the DNS cache is disabled, the rest of this section is not displayed.

Tuning
By default, the DNS cache is off. You can enable DNS caching by:

• Adding the following line to magnus.conf:

Init fn=dns-cache-init

• Setting the DNS value to "on" in the Magnus Editor of the Server Manager

• Selecting DNS Enabled from the Performance Tuning page under Preferences
in the Server Manger

CacheEntries (CurrentCacheEntries / MaxCacheEntries)
The number of current cache entries and the maximum number of cache entries. A
single cache entry represents a single IP address or DNS name lookup. The cache
should be as large as the maximum number of clients that will access your web site
concurrently. Note that setting the cache size too high will waste memory and
degrade performance.

Tuning
You can set the maximum size of the DNS cache by:

• Adding the following line to the magnus.conf file:

Init fn=dns-cache-init cache-size=1024

The default cache size is 1024

• Entering or changing the value in the Size of DNS cache field of the
Performance Tuning page in the Server Manager

HitRatio (CacheHits / CacheLookups)
The hit ratio displays the number of cache hits versus the number of cache lookups.

This setting is not tunable.

Using Statistics to Tune Your Server

44 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Busy Functions
The default busy function returns a "503 Service Unavailable" response and logs a
message if LogVerbose is enabled. You may wish to modify this behavior for your
application. You can specify your own busy functions for any NSAPI function in
the obj.conf file by including a service function in the configuration file in this
format:

busy="<my-busy-function>"

For example, you could use this sample service function:

Service fn="send-cgi" busy="service-toobusy"

This allows different responses if the server become too busy in the course of
processing a request that includes a number of types (such as Service, AddLog,
and PathCheck). Note that your busy function will apply to all functions that
require a native thread to execute when the default thread type is non-native.

To use your own busy function instead of the default busy function for the entire
server, you can write an NSAPI init function that includes a func_insert call as
shown below:

Busy functions are never executed on a pool thread, so you must be careful to
avoid using function calls that could cause the thread to block.

extern "C" NSAPI_PUBLIC int my_custom_busy_function(pblock *pb,
Session *sn, Request *rq);
my_init(pblock *pb, Session *, Request *)
{
func_insert("service-toobusy", my_custom_busy_function);
}

Threads, Processes, and Connections

Chapter 2 Tuning Sun ONE Web Server 45

Threads, Processes, and Connections
This section includes the following topics:

• Connection-Handling Overview

• Process Modes

• Listen Socket Acceptor Threads

• Maximum Simultaneous Requests

• Keep-Alive Subsystem Tuning

Connection-Handling Overview
In Sun ONE Web Server, acceptor threads on a listen socket accept connections and
put them into a connection queue. Session threads then pick up connections from
the queue and service the requests. The session threads post more session threads if
required at the end of the request. The policy for adding new threads is based on
the connection queue state:

• Each time a new connection is returned, the number of connections waiting in
the queue (the backlog of connections) is compared to the number of session
threads already created. If it is greater than the number of threads, more
threads are scheduled to be added the next time a request completes.

• The previous backlog is tracked, so that if it is seen to be increasing over time,
and if the increase is greater than the ThreadIncrement value, and the number
of session threads minus the backlog is less than the ThreadIncrement value,
then another ThreadIncrement number of threads are scheduled to be added.

• The process of adding new session threads is strictly limited by the
RqThrottle value.

• To avoid creating too many threads when the backlog increases suddenly
(such as the startup of benchmark loads), the decision as to whether more
threads are needed is made only once every 16 or 32 times a connection is
made based on how many session threads already exist.

The following directives that affect the number and timeout of threads, processes,
and connections can be tuned in the Magnus Editor or magnus.conf:

• AcceptTimeout

• ConnQueueSize

• HeaderBufferSize

Threads, Processes, and Connections

46 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

• KeepAliveThreads

• KeepAliveTimeout

• KernelThreads

• ListenQ

• MaxKeepAliveConnections

• MaxProcs (UNIX Only)

• PostThreadsEarly

• RcvBufSize

• RqThrottle

• RqThrottleMin

• SndBufSize

• StackSize

• StrictHttpHeaders

• TerminateTimeout

• ThreadIncrement

• UseNativePoll (UNIX only)

For detailed information about these directives, see the Sun ONE Web Server 6.1
Administrator’s Configuration File Reference.

Process Modes
You can run Sun ONE Web Server in one of the following two modes:

• Sun ONE Web Server with a single process

• Sun ONE Web Server with multiple processes

Single-Process Mode
In the single-process mode the server receives requests from web clients to a single
process. Inside the single server process many threads are running that are waiting
for new requests to arrive. When a request arrives, it is handled by the thread
receiving the request. Because the server is multi-threaded, all NSAPI extensions
written to the server must be thread-safe. This means that if the NSAPI extension
uses a global resource, like a shared reference to a file or global variable, then the
use of that resource must be synchronized, so that only one thread accesses it at a

Threads, Processes, and Connections

Chapter 2 Tuning Sun ONE Web Server 47

time. All plugins provided by Netscape/Sun ONE are thread-safe and
thread-aware, providing good scalability and concurrency. However, your legacy
applications may be single-threaded. When the server runs the application, it can
only execute one at a time. This leads to server performance problems when put
under load. Unfortunately, in the single-process design, there is no real
workaround.

Multi-Process Mode
You can configure the server to handle requests using multiple processes with
multiple threads in each process. This flexibility provides optimal performance for
sites using threads, and also provides backward compatibility to sites running
legacy applications that are not ready to run in a threaded environment. Because
applications on Windows generally already take advantage of multi-thread
considerations, this feature applies to UNIX/Linux platforms.

The advantage of multiple processes is that legacy applications that are not
thread-aware or thread-safe can be run more effectively in Sun ONE Web Server.
However, because all of the Netscape/Sun ONE extensions are built to support a
single-process threaded environment, they may not run in the multi-process mode,
and the Search plugins will fail on startup if the server is in multi-process mode.

In the multi-process mode, the server spawns multiple server processes at startup.
Each process contains one or more threads (depending on the configuration) that
receive incoming requests. Since each process is completely independent, each one
has its own copies of global variables, caches, and other resources. Using multiple
processes requires more resources from your system. Also, if you try to install an
application that requires shared state, it has to synchronize that state across
multiple processes. NSAPI provides no helper functions for implementing
cross-process synchronization.

If you are not running any NSAPI in your server, you should use the default
settings: one process and many threads. If you are running an application that is
not scalable in a threaded environment, you should use a few processes and many
threads, for example, 4 or 8 processes and 128 or 512 threads per process.

MaxProcs (UNIX/Linux)
Use this directive to set your UNIX/Linux server in multi-process mode, which
may allow for higher scalability on multi-processor machines. If you set the value
to less than 1, it will be ignored and the default value of 1 will be used.

Threads, Processes, and Connections

48 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Tuning
You can set the value for MaxProcs by:

• Editing the MaxProcs parameter in magnus.conf

• Setting or changing the MaxProcs value in the Magnus Editor of the Server
Manager

Listen Socket Acceptor Threads
You can specify how many threads you want in accept mode on a listen socket at
any time. It’s a good practice to set this to less than or equal to the number of CPUs
in your system.

Tuning
You can set the number of listen socket acceptor threads by:

• Editing the server.xml file

• Entering the number of acceptor threads you want in the Number of Acceptor
Threads field of the Edit Listen Socket page of the Server Manager

Maximum Simultaneous Requests
The RqThrottle parameter in the magnus.conf file specifies the maximum
number of simultaneous transactions the Web Server can handle. The default value
is 128. Changes to this value can be used to throttle the server, minimizing latencies
for the transactions that are performed. The RqThrottle value acts across multiple
virtual servers, but does not attempt to load balance.

To compute the number of simultaneous requests, the server counts the number of
active requests, adding one to the number when a new request arrives, subtracting
one when it finishes the request. When a new request arrives, the server checks to
see if it is already processing the maximum number of requests. If it has reached
the limit, it defers processing new requests until the number of active requests
drops below the maximum amount.

NOTE You will receive duplicate startup messages when running your
server in MaxProcs mode.

Threads, Processes, and Connections

Chapter 2 Tuning Sun ONE Web Server 49

In theory, you could set the maximum simultaneous requests to 1 and still have a
functional server. Setting this value to 1 would mean that the server could only
handle one request at a time, but since HTTP requests for static files generally have
a very short duration (response time can be as low as 5 milliseconds), processing
one request at a time would still allow you to process up to 200 requests per
second.

However, in actuality, Internet clients frequently connect to the server and then do
not complete their requests. In these cases, the server waits 30 seconds or more for
the data before timing out. You can define this timeout period using the
AcceptTimeout directive in magnus.conf. The default value is 30 seconds. By
setting it to less than the default you can free up threads sooner, but you might also
disconnect users with slower connections. Also, some sites perform heavyweight
transactions that take minutes to complete. Both of these factors add to the
maximum simultaneous requests that are required. If your site is processing many
requests that take many seconds, you may need to increase the number of
maximum simultaneous requests. For more information about AcceptTimeout, see
the Sun ONE Web Server 6.1 Administrator’s Configuration File Reference.

Suitable RqThrottle values range from 100-500, depending on the load.

RqThrottleMin is the minimum number of threads the server initiates upon
startup. The default value is 48. RqThrottle represents a hard limit for the
maximum number of active threads that can run simultaneously, which can
become a bottleneck for performance. The default value is 128.

Tuning
You can tune the number of simultaneous requests by:

• Editing RqThrottleMin and RqThrottle in the magnus.conf file

• Entering or changing values for the RqThrottleMin and RqThrottle fields in
the Magnus Editor of the Server Manager

• Entering the desired value in the Maximum Simultaneous Requests field from
the Performance Tuning page under Preferences in the Server Manger

NOTE If you are using older NSAPI plugins that are not reentrant, they
will not work with the multi-threading model described in this
document. To continue using them, you should revise them so that
they are reentrant. If this is not possible, you can configure your
server to work with them by setting RqThrottle to 1, and then
using a high value for MaxProcs, such as 48 or greater, but this will
adversely impact your server’s performance.

Threads, Processes, and Connections

50 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Keep-Alive Subsystem Tuning
The keep-alive (or HTTP/1.1 persistent connection handling) subsystem in Sun
ONE Web Server 6.1 is designed to be massively scalable. The out-of-the-box
configuration can be less than optimal if the workload is non-persistent (that is,
HTTP/1.0 without the KeepAlive header), or for a lightly loaded system that’s
primarily servicing keep-alive connections.

There are several tuning parameters that can help improve performance. Those
parameters are listed below:

• acceptorthreads: Number of threads waiting to accept incoming connections
on a given network port. This is specified per the listen socket (LS) element in
server.xml.

• ConnQueueSize: Size of the queue of active, ready-to-process connections.

• RqThrottle: Number of worker threads in the server. Each thread parses and
services a request from an active connection. Worker threads, in contrast with
acceptor threads, service requests. The maximum number of worker threads is
configured using RqThrottle. For more information, see “Maximum
Simultaneous Requests” on page 48.

• MaxKeepAliveConnections: This controls the maximum number of keep-alive
connections the Web Server can maintain at any time. The default is 256. The
range is 0 to 32768.

• KeepAliveTimeout: This directive determines the maximum time (in seconds)
that the server holds open an HTTP keep-alive connection or a persistent
connection between the client and the server. The default is 30 seconds. The
connection will timeout if idle for more than 30 seconds. The maximum is 300
seconds (5 minutes).

• KeepAliveThreads: This directive determines the number of threads in the
keep-alive subsystem. It is recommended that this number be a small multiple
of the number of processors on the system (for example, a 2 CPU system
should have 2 or 4 keep-alive threads). The default is 1.

• KeepAliveQueryMaxSleepTime: Specifies an upper limit to the time slept (in
milliseconds) after polling keep-alive connections for further requests. The
default is 100. On lightly loaded systems that primarily service keep-alive
connections, you can lower this number to enhance performance. Doing so can
increase CPU usage, however.

Threads, Processes, and Connections

Chapter 2 Tuning Sun ONE Web Server 51

• KeepAliveQueryMeanTime: Specifies the desired keep-alive latency in
milliseconds. The default value of 100 is appropriate for almost all installations.
Note that CPU usage will increase with lower KeepAliveQueryMeanTime
values.

For more information about the Web Server’s keep-alive subsystem, see
“Keep-Alive/Persistent Connection Information” on page 33.

For information about connection queue sizing, see “Connection Queue
Information” on page 29.

HTTP/1.0-style Workload
Since HTTP/1.0 results in a large number of new incoming connections, the default
acceptor threads of 1 per listen socket would be suboptimal. Increasing this to a
higher number should improve performance for HTTP/1.0-style workloads. For
instance, for a system with 2 CPUs, you may want to set it to 2.

Example
In the following example, acceptor threads are increased, and keep-alive
connections are reduced:

In magnus.conf:

MaxKeepAliveConnections 0
RqThrottle 128
RcvBufSize 8192

In server.xml:

<SERVER legacyls="ls1">
<LS id="ls1" ip="0.0.0.0" port="8080" security="off"

blocking="no"
acceptorthreads="2"

</SERVER>

Threads, Processes, and Connections

52 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

HTTP/1.0-style workloads would have many connections established and
terminated.

If users are experiencing connection timeouts from a browser to Sun ONE Web
Server when the server is heavily loaded, you can increase the size of the HTTP
listener backlog queue by setting the ListenQ parameter in the magnus.conf file
to:

ListenQ 8192

The ListenQ parameter specifies the maximum number of pending connections on
a listen socket. Connections that time out on a listen socket whose backlog queue is
full will fail.

HTTP/1.1-style Workload
In general, it is a tradeoff between throughput and latency while tuning server
persistent connection handling. The KeepAliveQueryQuery* directives
(KeepAliveQueryMeanTime and KeepAliveQueryMaxSleepTime) control latency.
Lowering the values of these directives is intended to lower latency on lightly
loaded systems (for example, reduce page load times). Increasing the values of
these directives is intended to raise aggregate throughput on heavily loaded
systems (for example, increase the number of requests per second the server can
handle). However, if there's too much latency and too few clients, aggregate
throughput will suffer as the server sits idle unnecessarily. As a result, the general
keep-alive subsystem tuning rules at a particular load are as follows:

• If there's idle CPU time, decrease KeepAliveQueryMeanTime and/or
KeepAliveQueryMaxSleepTime.

• If there's no idle CPU time, increase KeepAliveQueryMeanTime and/or
KeepAliveQueryMaxSleepTime.

For more information about these directives, see “Keep-Alive Subsystem Tuning”
on page 50.

Also, chunked encoding could affect the performance for HTTP/1.1 workload.
Tuning the response buffer size could positively affect the performance. A higher
OutputStreamSize for a plugin would result in sending Content-length: header,
instead of chunking the response.

Tuning the File Cache

Chapter 2 Tuning Sun ONE Web Server 53

Example
In the following example, MaxKeepAliveConnections is increased, as is
UseOutputStreamSize for the nsapi_test Service function:

Tuning the File Cache
Sun ONE Web Server uses a file cache to serve static information faster. In previous
versions of the server, there was also an accelerator cache that routed requests to
the file cache, but the accelerator cache is no longer used. The file cache contains
information about files and static file content. The file cache also caches
information that is used to speed up processing of server-parsed HTML.

This section includes the following topics:

• Configuring the File Cache

• Using the nocache Parameter

• Monitoring the File Cache with the Server Manager

• File Cache Dynamic Control and Monitoring

In magnus.conf:

MaxKeepAliveConnections 8192
KeepAliveThreads 2
UseNativePoll 1
RqThrottle 128
RcvBufSize 8192

In obj.conf:

<Object name="nsapitest">
ObjectType fn="force-type" type="magnus-internal/nsapitest"
Service method=(GET) type="magnus-internal/nsapitest"
fn="nsapi_test"
UseOutputStreamSize=8192
</Object>

Tuning the File Cache

54 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Configuring the File Cache
The file cache is turned on by default. The file cache settings are contained in a file
called nsfc.conf. You can use the Server Manager to change the file cache settings.
For more information about nsfc.conf, see the Sun ONE Web Server 6.1
Administrator’s Configuration File Reference.

To configure the file cache, follow these steps:

1. From the Server Manager, select the Preferences tab.

2. Select File Cache Configuration.

3. Select Enable File Cache, if not already selected.

4. Choose whether to transmit files.

When you enable Transmit File, the server caches open file descriptors for files
in the file cache, rather than the file contents, and PR_TransmitFile is used to
send the file contents to a client. When Transmit File is enabled, the distinction
normally made by the file cache between small, medium, and large files no
longer applies, since only the open file descriptor is being cached. By default,
Transmit File is enabled on Windows, and disabled on UNIX. On UNIX, only
enable Transmit File for platforms that have native OS support for
PR_TransmitFile, which currently includes HP-UX and AIX. It is not
recommended for other UNIX/Linux platforms.

5. Enter a size for the hash table.

The default size is twice the maximum number of files plus 1. For example, if
your maximum number of files is set to 1024, the default hash table size is 2049.

6. Enter a maximum age in seconds for a valid cache entry.

By default, this is set to 30.

This setting controls how long cached information will continue to be used
once a file has been cached. An entry older than MaxAge is replaced by a new
entry for the same file, if the same file is referenced through the cache.

Set the maximum age based on whether the content is updated (existing files
are modified) on a regular schedule. For example, if content is updated four
times a day at regular intervals, you could set the maximum age to 21600
seconds (6 hours). Otherwise, consider setting the maximum age to the longest
time you are willing to serve the previous version of a content file after the file
has been modified.

Tuning the File Cache

Chapter 2 Tuning Sun ONE Web Server 55

7. Enter the Maximum Number of Files to be cached.

By default, this is set to 1024.

8. (UNIX/Linux only) Enter medium and small file size limits in bytes.

By default, the Medium File Size Limit is set to 537600.

By default, the Small File Size Limit is set to 2048.

The cache treats small, medium, and large files differently. The contents of
medium files are cached by mapping the file into virtual memory (currently
only on UNIX/Linux platforms). The contents of small files are cached by
allocating heap space and reading the file into it. The contents of large files
(larger than medium) are not cached, although information about large files is
cached.

The advantage of distinguishing between small files and medium files is to
avoid wasting part of many pages of virtual memory when there are lots of
small files. So the Small File Size Limit is typically a slightly lower value than
the VM page size.

9. (UNIX/Linux only) Set the medium and small file space.

The medium file space is the size in bytes of the virtual memory used to map
all medium sized files. By default, this is set to 10485760.

The small file space is the size of heap space in bytes used for the cache,
including heap space used to cache small files. By default, this is set to 1048576
for UNIX/Linux.

10. Click OK, and then click Apply.

11. Select Apply Changes to restart your server and put your changes into effect.

Tuning the File Cache

56 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Using the nocache Parameter
You can use the parameter nocache for the Service function send-file to specify
that files in a certain directory should not be cached. For example, if you have a set
of files that changes too rapidly for caching to be useful, you can put them into a
directory and instruct the server not to cache files in that directory by editing
obj.conf.

Example

In the above example, the server does not cache static files from /export/mydir/
when requested by the URL prefix /myurl.

Monitoring the File Cache with the Server
Manager
To view the file cache statistics with the Server Manager, do the following:

1. From the Server Manager, select Monitor.

2. Select Monitor Current Activity.

If you have not yet activated statistics, do so when the Enable
Statistics/Profiling page displays, click OK, and then restart the server and
return to this page.

3. Select a refresh interval from the drop-down list.

<Object name=default>
...
NameTrans fn="pfx2dir" from="/myurl" dir="/export/mydir"
name="myname"
...
Service method=(GET|HEAD|POST) type=*~magnus-internal/*
fn=send-file
...
</Object>
<Object name="myname">
Service method=(GET|HEAD) type=*~magnus-internal/* fn=send-file
nocache=""
</Object>

Tuning the File Cache

Chapter 2 Tuning Sun ONE Web Server 57

4. From the drop-down list of statistics to be displayed, choose Cache and then
click Submit.

5. The cache statistics display and are refreshed every 5-15 seconds, depending
on the refresh interval.

The statistics include information on your cache settings, how many hits the cache
is getting, and so on.

File Cache Dynamic Control and Monitoring
You can add an object to obj.conf to dynamically monitor and control the
nsfc.conf file cache while the server is running. To do this:

1. Add a NameTrans directive to the default object:

NameTrans fn="assign-name" from="/nsfc" name="nsfc"

2. Add an nsfc object definition:

<Object name=”nsfc”>

Service fn=service-nsfc-dump

</Object>

This enables the file cache control and monitoring function (nsfc-dump) to be
accessed via the URI, "/nsfc." By changing the "from" parameter in the NameTrans
directive, a different URI can be used.

The following is an example of the information you receive when you access the
URI:

Tuning the File Cache

58 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

You can include a query string when you access the "/nsfc" URI. The following
values are recognized:

• ?list: Lists the files in the cache.

• ?refresh=n: Causes the client to reload the page every n seconds.

• ?restart: Causes the cache to be shut down and then restarted.

• ?start: Starts the cache.

Sun ONE Web Server File Cache Status (pid 7960)

The file cache is enabled.

Cache resource utilization

Number of cached file entries = 1039 (112 bytes each, 116368 total
bytes)
Heap space used for cache = 237641/1204228 bytes
Mapped memory used for medium file contents = 5742797/10485760
bytes
Number of cache lookup hits = 435877/720427 (60.50 %)
Number of hits/misses on cached file info = 212125/128556
Number of hits/misses on cached file content = 19426/502284
Number of outdated cache entries deleted = 0
Number of cache entry replacements = 127405
Total number of cache entries deleted = 127407
Number of busy deleted cache entries = 17

Parameter settings

HitOrder: false
CacheFileInfo: true
CacheFileContent: true
TransmitFile: false
MaxAge: 30 seconds
MaxFiles: 1024 files
SmallFileSizeLimit: 2048 bytes
MediumFileSizeLimit: 537600 bytes
CopyFiles: false
Directory for temporary files:
/tmp/netscape/https-axilla.mcom.com
Hash table size: 2049 buckets

Tuning the ACL User Cache

Chapter 2 Tuning Sun ONE Web Server 59

• ?stop: Shuts down the cache.

If you choose the ?list option, the file listing includes the file name, a set of flags,
the current number of references to the cache entry, the size of the file, and an
internal file ID value. The flags are as follows:

• C: File contents are cached.

• D: Cache entry is marked for delete.

• E: PR_GetFileInfo() returned an error for this file.

• I: File information (size, modify date, and so on) is cached.

• M: File contents are mapped into virtual memory.

• O: File descriptor is cached (when TransmitFile is set to true).

• P: File has associated private data (should appear on shtml files).

• T: Cache entry has a temporary file.

• W: Cache entry is locked for write access.

For sites with scheduled updates to content, consider shutting down the cache
while the content is being updated, and starting it again after the update is
complete. Although performance will slow down, the server operates normally
when the cache is off.

Tuning the ACL User Cache
The ACL user cache is on by default. Because of the default size of the cache (200
entries), the ACL user cache can be a bottleneck, or can simply not serve its
purpose on a site with heavy traffic. On a busy site, more than 200 users can hit
ACL-protected resources in less time than the lifetime of the cache entries. When
this situation occurs, Sun ONE Web Server must query the LDAP server more
often to validate users, which impacts performance.

This bottleneck can be avoided by increasing the size of the ACL cache with the
ACLUserCacheSize directive in magnus.conf. Note that increasing the cache size
will use more resources; the larger you make the cache, the more RAM you'll need
to hold it.

Tuning the ACL User Cache

60 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

There can also be a potential (but much harder to hit) bottleneck with the number
of groups stored in a cache entry (4 by default). If a user belongs to 5 groups and
hits 5 ACLs that check for these different groups within the ACL cache lifetime, an
additional cache entry is created to hold the additional group entry. When there are
2 cache entries, the entry with the original group information is ignored.

While it would be extremely unusual to hit this possible performance problem, the
number of groups cached in a single ACL cache entry can be tuned with the
ACLGroupCacheSize directive.

This section includes the following topics:

• ACL User Cache Directives

• Verifying ACL User Cache Settings

ACL User Cache Directives
To adjust the ACL user cache values you must manually add the following
directives to your magnus.conf file:

• ACLCacheLifetime

• ACLUserCacheSize

• ACLGroupCacheSize

ACLCacheLifetime
Set this directive to a number that determines the number of seconds before the
cache entries expire. Each time an entry in the cache is referenced, its age is
calculated and checked against ACLCacheLifetime. The entry is not used if its age
is greater than or equal to the ACLCacheLifetime. The default value is 120 seconds.
If this value is set to 0, the cache is turned off. If you use a large number for this
value, you may need to restart Sun ONE Web Server when you make changes to
the LDAP entries. For example, if this value is set to 120 seconds, Sun ONE Web
Server might be out of sync with the LDAP server for as long as two minutes. If
your LDAP is not likely to change often, use a large number.

ACLUserCacheSize
Set this directive to a number that determines the size of the User Cache (default is
200).

Tuning Java Web Applications Performance

Chapter 2 Tuning Sun ONE Web Server 61

ACLGroupCacheSize
Set this directive to a number that determines how many group IDs can be cached
for a single UID/cache entry (default is 4).

Verifying ACL User Cache Settings
With LogVerbose you can verify that the ACL user cache settings are being used.
When LogVerbose is running you should expect to see these messages in your
errors log when the server starts:

User authentication cache entries expire in ### seconds.

User authentication cache holds ### users.

Up to ### groups are cached for each cached user.

Tuning
You can turn LogVerbose on by:

• Editing the LogVerbose parameter in magnus.conf

• Setting or changing the LogVerbose value to "on" in the Magnus Editor of the
Server Manager

Tuning Java Web Applications Performance
This section includes the following topics:

• Using Java Heap Tuning

• Using Precompiled JSPs

• Using Servlet/JSP Caching

• Configuring the Java Security Manager

• Configuring Class Reloading

• Avoiding Directories in the Classpath

CAUTION Do not turn on LogVerbose on a production server. Doing so
degrades performance and greatly increases the size of your error
logs.

Tuning Java Web Applications Performance

62 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

• Configuring the Web Application’s Session Settings

• Configuring JDBC Connection Pooling

• JDBC Connection Pool Attributes

Using Java Heap Tuning
As with all Java programs, the performance of the web applications in the Sun
ONE Web Server is dependent on the heap management performed by the virtual
machine (VM). There is a trade-off between pause times and throughput. A good
place to start is by reading the performance documentation for the Java HotSpot
virtual machine, which can be found at the following location:

http://java.sun.com/docs/hotspot/index.html

Java VM options are specified using the JVMOPTIONS subelement of the JAVA
element in server.xml. For more information, see the Sun ONE Web Server 6.1
Administrator’s Configuration File Reference.

Using Precompiled JSPs
Compiling JSPs is a resource-intensive and relatively time-consuming process. By
default, the Web Server periodically checks to see if your JSPs have been modified
and dynamically reloads them; this allows you to deploy modifications without
restarting the server. The reload-interval property of the jsp-config element in
sun-web.xml controls how often the server checks JSPs for modifications.
However, there is a small performance penalty for that checking.

When the server detects a change in a .jsp file, only that JSP is recompiled and
reloaded; the entire web application is not reloaded. If your JSPs don't change, you
can improve performance by precompiling your JSPs before deploying them onto
your server. For more information about jsp-config and about precompiling JSPs
for Sun ONE Web Server, see the Sun ONE Web Server 6.1 Programmer’s Guide to
Web Applications. Also see the following section, “Configuring Class Reloading.”

http://java.sun.com/docs/hotspot/index.html

Tuning Java Web Applications Performance

Chapter 2 Tuning Sun ONE Web Server 63

Using Servlet/JSP Caching
If you spend a lot of time re-running the same servlet/JSP, you can cache its results
and return results out of the cache the next time it is run. For example, this is useful
for common queries that all visitors to your site run: you want the results of the
query to be dynamic because it might change day to day, but you don't need to run
the logic for every user.

To enable caching, you configure the caching parameters in the sun-web.xml file of
your application. For more details, see information about caching servlet results in
the Sun ONE Web Server 6.1 Programmer’s Guide to Web Applications.

Configuring the Java Security Manager
Sun ONE Web Server 6.1 supports the Java Security Manager. The main drawback
of running with the Security Manager is that it negatively impacts performance.
The Java Security Manager is disabled by default when you install the product.
Running without the Security Manager may improve performance significantly for
some types of applications. Based on your application and deployment needs, you
should evaluate whether to run with or without the Security Manager. For more
information, see the Sun ONE Web Server 6.1 Programmer's Guide to Web
Applications.

Configuring Class Reloading
The dynamicreloadinterval of the JAVA element in server.xml and the
dynamic-reload-interval of the class-loader element in sun-web.xml controls
the frequency at which the server checks for changes in servlet classes. When
dynamic reloading is enabled and the server detects that a .class file has changed,
the entire web application is reloaded. In a production environment where changes
are made in a scheduled manner, set this value to -1 to prevent the server from
constantly checking for updates. The default value is -1 (that is, class reloading is
disabled). For more information about elements in server.xml, see the Sun ONE
Web Server 6.1 Administrator’s Configuration File Reference. For more information
about elements in sun-web.xml, see the Sun ONE Web Server 6.1 Programmer’s
Guide to Web Applications. Also see the previous section in this guide, “Using
Precompiled JSPs.”

Tuning Java Web Applications Performance

64 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Avoiding Directories in the Classpath
For certain applications (especially if the Java Security Manager is enabled) you can
improve performance by ensuring that there are no directories in the classpath. To
do so, ensure that there are no directories in the classpath elements in
server.xml (serverclasspath, classpathprefix, classpathsuffix). For more
information about these elements, see the Sun ONE Web Server 6.1 Administrator’s
Configuration File Reference. Also, package the web application's .class files in a
.jar archive in WEB-INF/lib instead of packaging the .class files as is in
WEB-INF/classes, and ensure that the .war archive does not contain a
WEB-INF/classes directory.

Configuring the Web Application’s Session
Settings
If you have relatively short-lived sessions, try decreasing the session timeout by
configuring the value of the timeOutSeconds property under the
session-properties element in sun-web.xml from the default value of 10
minutes.

If you have relatively long-lived sessions, you can try decreasing the frequency at
which the session reaper runs by increasing the value of the reapIntervalSeconds
property from the default value of once every minute.

For more information about these settings, and about session managers, see the
Sun ONE Web Server 6.1 Programmer’s Guide to Web Applications.

In multi-process mode when the persistence-type in sun-web.xml is configured
to be either s1ws60 or mmap, the session manager uses cross-process locks to ensure
session data integrity. These can be configured to improve performance as
described below.

Tuning maxLocks (UNIX/Linux)
The implication of the number specified in the maxLocks property can be gauged
by dividing the value of maxSessions with maxLocks. For example, if
maxSessions = 1000 and you set maxLocks = 10, then approximately 100
sessions (1000/10) will contend for the same lock. Increasing maxLocks will reduce
the number of sessions that contend for the same lock and may improve
performance and reduce latency. However, increasing the number of locks also
increases the number of open file descriptors, and reduces the number of available
descriptors that would otherwise be assigned to incoming connection requests.

Tuning Java Web Applications Performance

Chapter 2 Tuning Sun ONE Web Server 65

For more information about these settings, see the "Session Managers" chapter in
the Sun ONE Web Server 6.1 Programmer’s Guide to Web Applications.

Tuning MMapSessionManager (UNIX/Linux)
The following example describes the effect on process size when configuring the
persistence-type="mmap" using the manager-properties properties
(documented for the MMapSessionManager in the Sun ONE Web Server 6.1
Programmer’s Guide to Web Applications):

maxSessions = 1000
maxValuesPerSession = 10
maxValueSize = 4096

This example would create a memory mapped file of size 1000 X 10 X 4096 bytes, or
~40 MB. As this is a memory mapped file, the process size will increase by 40 MB
upon startup. The larger the values you set for these parameters, the greater will be
the increase in process size.

Configuring JDBC Connection Pooling
A JDBC connection pool is a named group of JDBC connections to a database.
These connections are created when the first request for connection is made on the
pool when you start Sun ONE Web Server.

The JDBC connection pool defines the properties used to create a connection pool.
Each connection pool uses a JDBC driver to establish a connection to a physical
database at server start-up.

A JDBC-based application or resource draws a connection from the pool, uses it,
and when no longer needed, returns it to the connection pool by closing the
connection. If two or more JDBC resources point to the same pool definition, they
will be using the same pool of connections at run time.

The use of connection pooling improves application performance by doing the
following:

• Creating connections in advance. The cost of establishing connections is moved
outside of the code that is critical for performance.

• Reusing connections. The number of times connections are created is
significantly lowered.

• Controlling the amount of resources a single application can use at any
moment.

Tuning Java Web Applications Performance

66 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

JDBC connection pools can be created and edited using the Administration
interface, or by editing the attributes of the JDBCCONNECTIONPOOL element in the
server.xml file. For more information, see the Sun ONE Web Server 6.1
Administrator’s Guide and the Sun ONE Web Server 6.1 Administrator’s Configuration
File Reference, respectively.

JDBC Connection Pool Attributes
Depending on your application’s database activity, you may need to size
connection pool attributes. Attributes of a JDBC connection pool are listed below,
along with considerations relating to performance.

name
The pool name.

datasourceclassname
The jdbc driver class that implements javax.sql.DataSource.

steadypoolsize
The size the pool will tend to keep during the life of the server instance. Also the
initial size of the pool. Defaults to 8.

This number should be as close as possible to the expected average size of the pool.
Use a high number for a pool that is expected to be under heavy load. This will
minimize creation of connections during the life of the application, and will
minimize pool resizing. Use a lower number if the pool load is expected to be
small. This will minimize resource consumption.

maxpoolsize
The maximum number of connections that a pool can have at any given time.
Defaults to 32.

NOTE Each defined pool is instantiated during web server startup.
However, the connections are only created the first time the pool is
accessed. It is recommended that you jump-start a pool before
putting it under heavy load.

Tuning Java Web Applications Performance

Chapter 2 Tuning Sun ONE Web Server 67

Use this parameter to enforce a limit in the amount of connection resources that a
pool or application can have. This limit is also beneficial to avoid application
failures due to excessive resource consumption.

poolresizequantity
Number of connections to be removed when the idletimeout timer expires.
Connections that have been idle longer than the timeout are candidates for
removal. When the pool size reaches steady-pool-size, the connection removal
stops. Defaults to 2.

Keep this number low for pools that expect regular and steady changes in demand.
A higher number is recommended for pools that expect infrequent and
pronounced changes in the load.

idletimeout
The maximum amount in seconds that a connection is ensured to remain unused in
the pool. Also the intervals at which the resizer task will be scheduled.

Note that this does not control connection timeouts enforced at the database server
side. Defaults to 300.

Setting this attribute to 0 prevents the connections from being closed and causes
the resizing task not to be scheduled. This is recommended for pools that expect
continuous high demand. Otherwise, administrators are advised to keep this
timeout shorter than the database server-side timeout (if such timeouts are
configured on the specific vendor's database), to prevent accumulation of unusable
connections in the pool.

maxwaittime
The amount of time in milliseconds that a request waits for a connection in the
queue before timing out. Defaults to 60000.

Setting this attribute to 0 causes a request for a connection to wait indefinitely. This
could also improve performance by keeping the pool from having to account for
connection timers.

connectionvalidationrequired
If set to true, the pool will always execute a call on the connection to verify its
validity. Defaults to off.

The overhead caused by this call can be avoided by setting the parameter to false.

Tuning Java Web Applications Performance

68 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

connectionvalidationmethod
The method used for validation. Defaults to auto-commit.

If validation is needed, the methods auto-commit and meta-data are less costly
than the method table. The first two require a method call, but they might not be
effective if the JDBC driver caches the result of the call. The third method is almost
always effective, but it requires the execution of a SQL statement, and thus is less
performance-friendly.

validationtablename
The user-defined table to be use for validation. Defaults to test.

If this method is used, it is strongly recommended that the table used be dedicated
only to validation, and the number of rows in the table be kept to a minimum.

failallconnections
Indicates whether all connection in the pool are re-created when one is found to be
invalid or only the invalid one. Only applicable if
connectionvalidationrequired is set to true. Defaults to off.

If set to true, all of the re-creation work will be done in one step, and the thread
requesting the connection will be heavily affected. If set to false, the load of
re-creating connections will be distributed betwen the threads requesting each
connection.

transactionisolationlevel
Specifies the Transaction Isolation Level on the pooled database connections. This
setting is optional and has no default.

If left empty, the default isolation level of the connection will be left intact. Setting
it to any value will incur the small performance penalty cause by the method call.

isolationlevelguaranteed
Only applicable if a transactionisolationlevel has been specified. Defaults to
off.

Leaving this as off or false will cause the isolation level to be set only when the
connection is created. Setting this to true will set the level every time the
connection is leased to an application. It is recommended that you leave this set to
false.

69

Chapter 3

Miscellaneous Performance Topics

This chapter provides miscellaneous performance information and includes the
following topics:

• Miscellaneous magnus.conf Directives

• Miscellaneous obj.conf Parameters

• Using Quality of Service

• Using Load Balancing

Miscellaneous magnus.conf Directives
The following topics discuss magnus.conf directives you can use to configure your
server to function more effectively:

• Buffer Size

• Connection Timeout

• CGIStub Processes (UNIX/Linux)

For a complete list and description of magnus.conf directives, see the Sun ONE
Web Server 6.1 Administrator’s Configuration File Reference.

Miscellaneous magnus.conf Directives

70 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Buffer Size
You can specify the size of the send buffer (SndBufSize) and the receiving buffer
(RcvBufSize) at the server’s sockets. For more information regarding these buffers,
see your UNIX/Linux documentation.

Tuning
You can set the buffer size by:

• Editing the SndBufSize and RcvBufSize parameters in magnus.conf

• Setting or changing the SndBufSize and RcvBufSize values in the Magnus
Editor of the Server Manager

Connection Timeout
You can specify the number of seconds the server waits for data to arrive from the
client before closing the connection by using the AcceptTimeout directive. If data
does not arrive before the timeout expires, the connection is closed. This is set to 30
seconds by default. Under most circumstances, you won’t need to change this
setting. You can free up threads by setting this to less than the default, but you
might also disconnect users with slower connections.

Tuning
You can set AcceptTimeout by:

• Editing the AcceptTimeout parameter in magnus.conf

• Setting or changing the AcceptTimeout value in the Magnus Editor of the
Server Manager

CGIStub Processes (UNIX/Linux)
You can adjust the CGIStub parameters on UNIX/Linux systems. In Sun ONE Web
Server, the CGI engine creates CGIStub processes as needed. On systems that serve
a large load and rely heavily on CGI-generated content, it is possible for the
CGIStub processes to consume all system resources. If this is happening on your
server, the CGIStub processes can be tuned to restrict how many new CGIStub
processes can be spawned, their timeout value, and the minimum number of
CGIStub processes that will be running at any given moment.

Miscellaneous magnus.conf Directives

Chapter 3 Miscellaneous Performance Topics 71

The four directives and their defaults that can be tuned to control Cgistub are:

• MinCGIStubs

• MaxCGIStubs

• CGIStubIdleTimeout

• CGIExpirationTimeout

MinCGIStubs controls the number of processes that are started by default. The first
CGIStub process is not started until a CGI program has been accessed. The default
value is 2. If you have a init-cgi directive in the magnus.conf file, the minimum
number of CGIStub processes are spawned at startup.

MaxCGIStubs controls the maximum number of CGIStub processes the server can
spawn. This is the maximum concurrent CGIStub processes in execution, not the
maximum number of pending requests. The default value shown should be
adequate for most systems. Setting this too high may actually reduce throughput.
The default is 10.

CGIStubIdleTimeout causes the server to kill any CGIStub processes that have
been idle for the number of seconds set by this directive. Once the number of
processes is at MinCGIStubs, it does not kill any more processes. The default is 45.

CGIExpirationTimeout limits the maximum time in seconds that CGI processes
can run.

Tuning
You can set the CGIStub processes by:

• Editing them in magnus.conf

• Setting or changing their values in the Magnus Editor of the Server Manager

NOTE If you have an init-cgi function in the magnus.conf file and you
are running in multi-process mode, you must add LateInit = yes
to the init-cgi line.

Miscellaneous obj.conf Parameters

72 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Miscellaneous obj.conf Parameters
You can use some obj.conf function parameters to improve your server’s
performance, as discussed in the topics in this section:

• find-pathinfo-forward

• nostat

In addition to these parameters, see “Using the nocache Parameter” on page 56 for
information about the nocache parameter.

For more information about obj.conf, see the Sun ONE Web Server 6.1
Administrator’s Configuration File Reference.

find-pathinfo-forward
The parameter find-pathinfo-forward for the PathCheck function
find-pathinfo and the NameTrans functions pfx2dir and assign-name can help
you improve your performance. The find-pathinfo-forward parameter instructs
the server to search forward for PATH_INFO in the path after ntrans-base, instead
of backward from the end of path in the server function find-pathinfo.

Example

This feature can improve performance for certain URLs by doing fewer stats in the
server function find-pathinfo. On Windows, you can also use this feature to
prevent the server from changing "\" to "/" when using the PathCheck server
function find-pathinfo.

NOTE The server ignores the find-pathinfo-forward parameter if the
ntrans-base parameter is not set in rq->vars when the server
function find-pathinfo is called. By default, ntrans-base is set.

NameTrans fn="pfx2dir" find-pathinfo-forward="" from="/cgi-bin"
dir="/export/home/cgi-bin" name="cgi"

NameTrans fn="assign-name" from="/perf" find-pathinfo-forward=""
name="perf"

Using Quality of Service

Chapter 3 Miscellaneous Performance Topics 73

nostat
You can specify the parameter nostat in the NameTrans function assign-name to
prevent the server from doing a stat on a specified URL whenever possible. Use the
following syntax:

nostat=virtual-path

Example

In the previous example, the server does not stat for path /ntrans-base/nsfc and
/ntrans-base/nsfc/* if ntrans-base is set. If ntrans-base is not set, the server does not
stat for URLs /nsfc and /nsfc/*. By default, ntrans-base is set. The example
assumes the default PathCheck server functions are used.

When you use nostat= virtual-path in the assign-name NameTrans, the server
assumes that stat on the specified virtual-path will fail. Therefore, use nostat only
when the path of the virtual-path does not exist on the system, for example, in
NSAPI plugin URLs. Using nostat on those URLs improves performance by
avoiding unnecessary stats on those URLs.

Using Quality of Service
The quality of service features allow you to limit the amount of bandwidth and
number of connections for a server instance, class of virtual servers, or an
individual virtual server. You can set these performance limits, track them, and
optionally enforce them.

For more information about using the quality of service features, see the Sun ONE
Web Server 6.1 Administrator’s Guide.

<Object name=default>
NameTrans fn="assign-name" from="/nsfc" nostat="/nsfc"
name="nsfc"
</Object>
<Object name=nsfc>
Service fn=service-nsfc-dump
</Object>

Using Load Balancing

74 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Using Load Balancing
With load balancing, the amount of server traffic is divided between two or more
computers so that more work gets done in the same amount of time and all online
users will generally be served faster. Third-party plugins can be used to provide
load balancing capabilities for Sun ONE Web Server. Contact load balancing
plugin providers for information about solutions that work with Sun ONE Web
Server.

Using libloadbal
You can use the load balancing plugin libloadbal to allow your server to execute a
program when certain thread load conditions are met, so a load distribution
product on the front-end can redistribute the load.

There are two methods that you can use to trigger the load balancer to increase or
decrease load, standard or aggressive:

• Standard

Base load decisions on the number of queued requests. This is a passive
approach. By letting the queue fill up you are already delaying some requests.
In this case, you want the HighThreshold to be a low value and
LowThreshold to be a high value.

• Aggressive

Base load decisions on the number of active threads in the pool. This is
designed to more tightly control the requests so that you would reduce the
load before requests get queued.

Library configuration
To enable the plugin, you must modify magnus.conf manually. This should look
something like this:

Init fn="load-modules" funcs="init-resonate"
shlib="server_root/bin/https/lib/libloadbal.so"

Init fn="init-resonate" ThreadPool="sleep"
EventExePath="/tools/ns/bin/perl5" LateInit="yes"
CmdLow="/opt/SUNWwbsvr/plugins/loadbal/CmdLow.pl"
CmdHigh="/opt/SUNWwbsvr/plugins/loadbal/CmdHigh.pl"

Using Load Balancing

Chapter 3 Miscellaneous Performance Topics 75

The init-resonate function can take the following parameters:

If you set LogVerbose on in magnus.conf, the error log contains information on
how the plugin is configured and when it is invoked.

Table 3-1 init-resonate Parameters

Parameter Description

ThreadPool Name of the thread pool to monitor.

Aggressive If set to TRUE, this argument causes the plugin to use the pool
thread count rather than the queue thread count.

PollTime How frequently to check the thread status. The default is 2000
milliseconds.

HighThreshold Defines the queue size/# of threads where HighCmd is
executed to increase load on the server. The default is 4096.

LowThreshold Defines the queue size/# of threads where the LowCmd is
executed to decrease load on the server. The default is 1.

EventExePath Pointer to the script program you want to run (for instance,
/usr/bin/perl or /bin/sh). Defaults to perl or
perl.exe, depending on the platform.

CmdLow Pointer to the script to be run when the LowThreshold is
met.

ArgsLow Arguments to send to CmdLow.

CmdHigh Pointer to the script to be run when the HighThreshold is
met.

ArgsHigh Arguments to send to CmdHigh.

NOTE You must specify LateInit="yes" when loading this module. The
module creates a monitoring thread, and this monitoring thread
must start after ns-httpd has started.

Using Load Balancing

76 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

A sample of the information in the error log is shown below:

This is what the log entries will look like when LogVerbose on is set and the plugin
is activated:

[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin watching
thread pool sleep
[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin
aggressive setting is FALSE
[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin poll time
set to 2000
[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin
HighThreshold set to 5
[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin
LowThreshold set to 1
[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin event
executable path set to /tools/ns/bin/perl5
[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin low
command set to /opt/SUNWwbsvr/plugins/loadbal/CmdLow.pl
[12/Jun/2003:09:36:35] verbose (20685): Resonate plugin high
command set to /opt/SUNWwbsvr/plugins/loadbal/CmdHigh.pl

[12/Jun/2003:09:40:12] verbose (20699): Resonate plugin reducing
load.
[12/Jun/2003:09:40:14] verbose (20699): Resonate plugin reducing
load.
[12/Jun/2003:09:40:16] verbose (20699): Resonate plugin reducing
load.
[12/Jun/2003:09:40:18] verbose (20699): Resonate plugin reducing
load.
[12/Jun/2003:09:40:20] verbose (20699): Resonate plugin reducing
load.
[12/Jun/2003:09:40:30] verbose (20699): Resonate plugin
increasing load.

Using Load Balancing

Chapter 3 Miscellaneous Performance Topics 77

Testing
To test the load balancer, you can create an NSAPI plugin that prints an HTML
page and then calls sleep() for a period to simulate execution time. This way you
can build up a simulated load on the server and ensure that the load balancer
commands are working properly.

To configure the sample program:

1. Add a new mime.type so this isn't run for every request by modifying
config/mime.types and adding:

type=magnus-internal/sleep exts=sleep

2. Create a file in your document root directory with the extension of .sleep.

It doesn't matter if anything is in this file; it is used only as a placeholder.

3. Load the module into the server by editing magnus.conf.

Init fn="load-modules" funcs="dosleep"
shlib="/opt/SUNWwbsvr/plugins/nsapi/examples/dosleep.so"
pool="sleep"

In the example above, you are changing shlib to the location of the library,
and setting pool to the name of the thread pool you defined earlier.

4. Add this Service line where the others are found (note that order is not
important):

Service method="(GET|HEAD)" fn="dosleep" duration="10"
type="magnus-internal/sleep"

The argument duration tells the server how long to sleep for each request in
seconds.

5. Restart your server.

You should now be ready to test the load balancer plugin. The NSAPI plugin will
keep the threads busy long enough to simulate your desired load. The load
balancing plugin is tested by retrieving the .sleep file you created earlier.

Sample
Below is a sample dosleep.c:

#ifdef XP_WIN32
#define NSAPI_PUBLIC __declspec(dllexport)
#else /* !XP_WIN32 */
#define NSAPI_PUBLIC
#endif /* !XP_WIN32 */

Using Load Balancing

78 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

#include "nsapi.h"

#define BUFFER_SIZE 1024

#ifdef __cplusplus
extern "C"
#endif
NSAPI_PUBLIC int dosleep(pblock *pb, Session *sn, Request *rq)
{

char buf[BUFFER_SIZE];
int length, duration;
char *dur = pblock_findval("duration", pb);

if (!dur) {
log_error(LOG_WARN, "dosleep", sn, rq, "Value for duration

is not set.");

return REQ_ABORTED;
}

duration = atoi(dur);

/* We need to get rid of the internal content type. */
param_free(pblock_remove("content-type", rq->srvhdrs));
pblock_nvinsert("content-type", "text/html", rq->srvhdrs);

protocol_status(sn, rq, PROTOCOL_OK, NULL);

/* get ready to send page */
protocol_start_response(sn, rq);

/* fill the buffer with our message */
length = util_snprintf(buf, BUFFER_SIZE,

"<title>%s</title><h1>%s</h1>\n", "Sleeping", "Sleeping");
length += util_snprintf(&buf[length], BUFFER_SIZE - length,

"Sample NSAPI that is sleeping for %d seconds...\n", duration);

/* write the message to the client */
if (net_write(sn->csd, buf, length) == IO_ERROR)
{

return REQ_EXIT;
}
sleep(duration);
return REQ_PROCEED;

}

79

Chapter 4

Common Performance Problems

This chapter discusses common web site performance problems, and includes the
following topics:

• Magnus Editor Values

• check-acl Server Application Functions

• Low-memory Situations

• Under-throttled Server

• Cache Not Utilized

• Keep-Alive Connections Flushed

• Log File Modes

Magnus Editor Values
You can set most of the tuning parameter values of the magnus.conf file using the
Magnus Editor in the Server Manager. However, note that once you have set the
values, the Administration Server does not verify that they are valid.

NOTE For platform-specific issues, see Chapter 5, “Platform-specific Issues
and Tips.”

check-acl Server Application Functions

80 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

check-acl Server Application Functions
For optimal performance of your server, use ACLs only when required.

The default server is configured with an ACL file containing the default ACL
allowing write access to the server only to "all," and an es-internal ACL for
restricting write access for "anybody." The latter protects the manuals, icons, and
search UI files in the server.

The default obj.conf file has NameTrans lines mapping the directories that need to
be read-only to the es-internal object, which in turn has a check-acl SAF for the
es-internal ACL.

The default object also contains a check-acl SAF for the "default" ACL.

You can improve your server’s performance by removing the aclid properties
from virtual server tags in server.xml. This stops any ACL processing.

You can also improve performance by removing the check-acl SAF from the
default object for URIs that are not protected by ACLs.

Low-memory Situations
If Sun ONE Web Server must run in low-memory situations, reduce the thread
limit to a bare minimum by lowering the value of RqThrottle. Also, you may want
to reduce the maximum number of processes that the server will spawn by
lowering the value of the MaxProcs value.

Your web applications running under stress may sometimes result in the server
running out of Java VM runtime heap space, as can be seen by
java.lang.OutOfMemoryError messages in the server log file. There could be
several reasons for this (such as excessive allocation of objects), but such behavior
could affect performance. To address this problem, you would need to profile the
application. Refer to the following HotSpot VM performance FAQ for tips on
profiling allocations (objects and their sizes) of your application:

http://java.sun.com/docs/hotspot/PerformanceFAQ.html

At times your application could be running out of maximum sessions (as
evidenced by the "too many active sessions message" in the server log file), which
would result in the container throwing exceptions, which in turn impacts
application performance. A due consideration of session manager properties,
session creation activity (note that JSPs have session enabled by default), and
session idle time would be needed to address this situation.

http://java.sun.com/docs/hotspot/PerformanceFAQ.html

Under-throttled Server

Chapter 4 Common Performance Problems 81

Under-throttled Server
The server does not allow the number of active threads to exceed the thread limit
value. If the number of simultaneous requests reaches that limit, the server stops
servicing new connections until the old connections are freed up. This can lead to
increased response time.

In Sun ONE Web Server, the server’s default RqThrottle value is 128. If you want
your server to process more requests concurrently, you need to increase the
RqThrottle value.

The symptom of an under-throttled server is a server with a long response time.
Making a request from a browser establishes a connection fairly quickly to the
server, but on under-throttled servers it may take a long time before the response
comes back to the client.

The best way to tell if your server is being throttled is to see if the number of active
sessions is close to, or equal to, the maximum number allowed via RqThrottle. To
do this, see “Maximum Simultaneous Requests” on page 48.

Cache Not Utilized
If the cache is not utilized, your server is not performing optimally. Since most sites
have lots of GIF or JPEG files that should always be cacheable, you need to use
your cache effectively.

Some sites, however, do almost everything through CGIs, SHTML, or other
dynamic sources. Dynamic content is generally not cacheable, and inherently
yields a low cache hit rate. Don’t be too alarmed if your site has a low cache hit rate.
The most important thing is that your response time is low. You can have a very
low cache hit rate and still have very good response time. As long as your response
time is good, you may not care that the cache hit rate is low.

Check your hit ratio using statistics from perfdump or the Monitor Current Activity
page of the Server Manager. The hit ratio is the percentage of times the cache was
used with all hits to your server. A good cache hit rate is anything above 50%.
Some sites may even achieve 98% or higher. For more information, see “Cache
Information” on page 37.

In addition, if you are doing a lot of CGI or NSAPI calls, you may have a low cache
hit rate. If you have custom NSAPI functions, you may also have a low cache hit
rate.

Keep-Alive Connections Flushed

82 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Keep-Alive Connections Flushed
A web site that might be able to service 75 requests per second without keep-alive
connections may be able to do 200-300 requests per second when keep-alive is
enabled. Therefore, as a client requests various items from a single page, it is
important that keep-alive connections are being used effectively. If the
KeepAliveCount exceeds the MaxKeepAliveConnections, subsequent keep-alive
connections will be closed, or "flushed," instead of being honored and kept alive.

Check the KeepAliveFlushes and KeepAliveHits values using statistics from
perfdump or the Monitor Current Activity page of the Server Manager. For more
information, see “Keep-Alive/Persistent Connection Information” on page 33.

On a site where keep-alive connections are running well, the ratio of
KeepAliveFlushes to KeepAliveHits is very low. If the ratio is high (greater than
1:1), your site is probably not utilizing keep-alive connections as well as it could.

To reduce keep-alive flushes, increase the MaxKeepAliveConnections value in the
magnus.conf file or the Magnus Editor of the Server Manager. The default value is
200. By raising the value, you keep more waiting keep-alive connections open.

Log File Modes
Keeping the log files on verbose mode can have a significant impact on
performance. You can set LogVerbose to "on" in magnus.conf or the Magnus
Editor of the Server Manager.

CAUTION On UNIX/Linux systems, if the MaxKeepAliveConnections value is
too high, the server can run out of open file descriptors. Typically
1024 is the limit for open files on UNIX/Linux, so increasing this
value above 500 is not recommended.

83

Chapter 5

Platform-specific Issues and Tips

This chapter provides platform-specific tuning tips, and includes the following
topics:

• Solaris-specific Issues

• Solaris File System Tuning

• Tuning Solaris for Performance Benchmarking

Solaris-specific Issues
This section discusses Solaris-specific issues and tuning tips, and includes the
following topics:

• Files Open in a Single Process

• File Descriptor Limits

• Failure to Connect to HTTP Server

• Connection Refused Errors

• Tuning TCP Buffering

Files Open in a Single Process
Different platforms each have limits on the number of files that can be open in a
single process at one time. For busy sites, increase that number to 8192. To do so on
Solaris, make the change in the file /etc/system by setting rlim_fd_max, and then
rebooting.

Solaris-specific Issues

84 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

File Descriptor Limits
Append the following line to the file /etc/system to increase the number of file
descriptors for Sun ONE Web Server:

set rlim_fd_max=65536

After making this or any change in the /etc/system file, reboot Solaris to put the
new settings into effect. In addition, if you upgrade to a new version of Solaris, any
line added to /etc/system should be removed and added again only after
verifying that it is still valid.

Failure to Connect to HTTP Server
If users are experiencing connection timeouts from a browser to Sun ONE Web
Server when the server is heavily loaded, you can increase the size of the HTTP
listener backlog queue. To increase this setting, edit the file ListenQ parameter in
the magnus.conf file:

ListenQ 8192

In addition to this setting, you must also increase the limits within the Solaris
TCP/IP networking code. There are two parameters that are changed by executing
the following commands:

/usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q 8192
/usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q0 8192

These two settings increase the maximum number of two Solaris listen queues that
can fill up with waiting connections. tcp_conn_req_max_q increases the number of
completed connections waiting to return from an accept() call.
tcp_conn_req_max_q0 increases the maximum number of connections with the
handshake incomplete. The default values are 128 and 1024 respectively. To
automatically have these ndd commands executed after each system reboot, place
them in a file called /etc/init.d/network-tuning and create a link to that file
named /etc/rc2.d/S99network-tuning.

You can monitor the effect of these changes by using the netstat -s command
and looking at the tcpListenDrop, tcpListenDropQ0, and tcpHalfOpenDrop
values. Review them before adjusting these values. If they are not zero, adjust the
value to 2048 initially, and continue to monitor the netstat output.

Solaris-specific Issues

Chapter 5 Platform-specific Issues and Tips 85

The Sun ONE Web Server ListenQ setting and the related Solaris
tcp_conn_req_max_q and tcp_conn_req_max_q0 settings should match the
throughput of the Sun ONE Web Server HTTP server. These queues act as a
"buffer" to manage the irregular rate of connections coming from web users. These
queues allow Solaris to accept the connections and hold them until they are
processed by the Sun ONE Web Server HTTP server application.

You don't want to accept more connections than the Sun ONE Web Server HTTP
server will be able to process. It is better to limit the size of these queues and reject
further connections than to accept excess connections and fail to service them. The
value of 2048 for these three parameters will typically reduce connection request
failures, and improvement has been seen with values as high as 4096.

This adjustment is not expected to have any adverse impact in any web hosting
environment, so you can consider this suggestion even if your system is not
showing the symptoms mentioned.

Connection Refused Errors
If users are experiencing connection refused errors on a heavily loaded server, you
can tune the use of network resources on the server.

When a TCP/IP connection is closed, the port is not reused for the duration of
tcp_time_wait_interval (default value of 240000 milliseconds). This is to ensure
that there are no leftover segments. The shorter the tcp_time_wait_interval, the
faster precious network resources are again available. This parameter is changed
by executing the following command (do not reduce it below 60000):

usr/sbin/ndd -set /dev/tcp tcp_time_wait_interval 60000

To automatically have this ndd command executed after each system reboot, place
it in a file called /etc/init.d/network-tuning and create a link to that file named
/etc/rc2.d/S99network-tuning.

If your system is not exhibiting the symptoms mentioned, and if you are not
well-versed in tuning the TCP protocol, it is suggested that you do not change the
above parameter.

Solaris File System Tuning

86 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Tuning TCP Buffering
If you are seeing unpredictable intermittent slowdowns in network response from
a consistently loaded server, you might investigate setting the sq_max_size
parameter by adding the following line to the /etc/system file:

set sq_max_size=512

This setting adjusts the size of the sync queue, which transfers packets from the
hardware driver to the TCP/IP protocol driver. Using the value of 512 allows the
queue to accommodate high volumes of network traffic without overflowing.

You should monitor your system to see if using this higher value improves
network response consistency. Do not bother to change this parameter if your
system is not exhibiting the symptoms mentioned.

Solaris File System Tuning
This section discusses changes that can be made for file system tuning, and
includes topics that address the following issues:

• High File System Page-in Rate

• Reduce File System Housekeeping

• Long Service Times on Busy Disks or Volumes

Please read the descriptions of the following parameters carefully. If the
description matches your situation, consider making the adjustment.

High File System Page-in Rate
If you are seeing high file system page-in rates on Solaris 8 or 9, you may benefit
from increasing the value of segmap_percent. This parameter is set by adding the
following line to the /etc/system file:

set segmap_percent=25

segmap_percent adjusts the percentage of memory that the kernel will map into its
address space for the file system cache. The default value is 12; that is, the kernel
will reserve enough space to map at most 12% of memory for the file system cache.
On a heavily loaded machine with 4 GB of physical memory, improvements have

Solaris File System Tuning

Chapter 5 Platform-specific Issues and Tips 87

been seen with values as high as 60. You should experiment with this value,
starting with values around 25. On systems with large amounts of physical
memory, you should raise this value in small increments, as it can significantly
increase kernel memory requirements.

Reduce File System Housekeeping
UNIX file system (UFS) volumes maintain the time that each file was accessed.
Note that the following change does not turn off the access time updates when the
file is modified, but only when the file is accessed. If the file access time updates are
not important in your environment, you could turn off the same by adding the
noatime parameter to the data volume's mount point in /etc/vfstab. For
example:

/dev/dsk/c0t5d0s6 /dev/rdsk/c0t5d0s6 /data0 ufs 1 yes noatime

Long Service Times on Busy Disks or Volumes
Sun ONE Web Server's responsiveness depends greatly on the performance of the
disk subsystem. Use the iostat utility to monitor how busy the disks are and how
rapidly they complete I/O requests (the %b and svc_t columns, respectively).
Service times are unimportant for disks that are less than about 30% busy, but for
busier disks service times should not exceed about 20 milliseconds. If your busy
disks have slower service times, improving disk performance may help Sun ONE
Web Server performance substantially.

Your first step should be to balance the load: if some disks are busy while others
are lightly loaded, move some files off of the busy disks and onto the idle disks. If
there is an imbalance, correcting it will usually give a far greater payoff than trying
to tune the overloaded disks.

Solaris-specific Performance Monitoring

88 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Solaris-specific Performance Monitoring
This section describes some of the Solaris-specific tools and utilities you can use to
monitor your system's behavior, and includes the following topics:

• Short-term System Monitoring

• Long-term System Monitoring

• "Intelligent" Monitoring

The tools described in this section monitor performance from the standpoint of
how the system responds to the load Sun ONE Web Server generates. For
information about using Sun ONE Web Server's own capabilities to track the
demands users place on the Web Server itself, see “Monitoring Server
Performance” on page 17.

Short-term System Monitoring
Solaris offers several tools for taking "snapshots" of system behavior. Although you
can capture their output in files for later analysis, the tools listed below are
primarily intended for monitoring system behavior in real time:

• The iostat -x 60 command reports disk performance statistics at 60-second
intervals.

Watch the %b column to see how much of the time each disk is busy, and for
any disk busy more than about 20% of the time pay attention to the service
time as reported in the svct column. Other columns report the I/O operation
rates, the amount of data transferred, and so on.

• The vmstat 60 command summarizes virtual memory activity and some CPU
statistics at 60-second intervals.

Monitor the sr column to keep track of the page scan rate and take action if it's
too high (note that "too high" is very different for Solaris 8 and 9 than for earlier
releases). Watch the us, sy, and id columns to see how heavily the CPUs are
being used; remember that you need to keep plenty of CPU power in reserve to
handle sudden bursts of activity. Also keep track of the r column to see how
many threads are contending for CPU time; if this remains higher than about
four times the number of CPUs, you may need to reduce the server's
concurrency.

• The mpstat 60 command gives a detailed look at CPU statistics, while the
netstat -i 60 command summarizes network activity.

Solaris-specific Performance Monitoring

Chapter 5 Platform-specific Issues and Tips 89

Long-term System Monitoring
It is important not only to "spot-check" system performance with the tools
mentioned above, but to collect longer-term performance histories so you can
detect trends. If nothing else, a baseline record of a system performing well may
help you figure out what has changed if the system starts behaving poorly. We
recommend you enable the system activity reporting package by doing the
following:

• Edit the file /etc/init.d/perf and remove the # comment characters from
the lines near the end of the file.

• Run the command crontab -e sys and remove the # comment characters
from the lines with the sa1 and sa2 commands. You may also wish to adjust
how often the commands run and at what times of day depending on your
site's activity profile (see man crontab for an explanation of the format of this
file).

This causes the system to store performance data in files in the /var/adm/sa
directory, where by default they are retained for one month. You can then use the
sar command to examine the statistics for time periods of interest.

"Intelligent" Monitoring
The "SE toolkit" is a freely downloadable software package developed by Sun
performance experts. In addition to collecting and monitoring raw performance
statistics, the toolkit can apply heuristics to characterize the overall health of the
system and highlight areas that may need adjustment. You can download the
toolkit and its documentation from the following location:

http://www.setoolkit.com/

http://www.setoolkit.com/

Tuning Solaris for Performance Benchmarking

90 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Tuning Solaris for Performance Benchmarking
The following table shows the operating system tuning for Solaris used when
benchmarking for performance and scalability. These values are an example of
how you might tune your system to achieve the desired result.

Table 5-1 Tuning Solaris for performance benchmarking

Parameter Scope Default Value Tuned Value Comments

rlim_fd_max /etc/syst
em

1024 8192 Process open file descriptors
limit; should account for the
expected load (for the
associated sockets, files,
pipes if any).

rlim_fd_cur /etc/syst
em

64 8192

sq_max_size /etc/syst
em

2 0 Controls streams driver
queue size; setting to 0 makes
it infinity so the performance
runs won’t be hit by lack of
buffer space. Set on clients
too.

tcp_close_wait_inter
val

ndd
/dev/tcp

240000 60000 Set on clients too.

tcp_time_wait_interv
al

ndd
/dev/tcp

240000 60000 For Solaris 7 only. Set on
clients too.

tcp_conn_req_max_q ndd
/dev/tcp

128 1024

tcp_conn_req_max_q0 ndd
/dev/tcp

1024 4096

tcp_ip_abort_interva
l

ndd
/dev/tcp

480000 60000

tcp_keepalive_interv
al

ndd
/dev/tcp

7200000 900000 For high traffic web sites,
lower this value.

tcp_rexmit_interval_
initial

ndd
/dev/tcp

3000 3000 If retransmission is greater
than 30-40%, you should
increase this value.

tcp_rexmit_interval_
max

ndd
/dev/tcp

240000 10000

Tuning Solaris for Performance Benchmarking

Chapter 5 Platform-specific Issues and Tips 91

tcp_rexmit_interval_
min

ndd
/dev/tcp

200 3000

tcp_smallest_anon_po
rt

ndd
/dev/tcp

32768 1024 Set on clients too.

tcp_slow_start_initi
al

ndd
/dev/tcp

1 2 Slightly faster transmission
of small amounts of data.

tcp_xmit_hiwat ndd
/dev/tcp

8129 32768 To increase the transmit
buffer.

tcp_recv_hiwat ndd
/dev/tcp

8129 32768 To increase the receive
buffer.

Table 5-1 Tuning Solaris for performance benchmarking (Continued)

Parameter Scope Default Value Tuned Value Comments

Tuning Solaris for Performance Benchmarking

92 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

93

Chapter 6

Sizing and Scaling Your Server

This chapter examines the subsystems of your server, and provides
recommendations for optimal performance. The chapter includes the following
topics:

• Processors

• Memory

• Drive Space

• Networking

Processors
On Solaris and Windows, Sun ONE Web Server transparently takes advantage of
multiple CPUs. In general, the effectiveness of multiple CPUs varies with the
operating system and the workload. Dynamic content performance improves as
more processors are added to the system. Because static content involves mostly
IO, and more primary memory means more caching of the content (assuming the
server is tuned to take advantage of the memory) more time is spent in IO rather
than any busy CPU activity.

Memory
As a baseline, Sun ONE Web Server requires 64 MB RAM. Multiple CPUs require
at least 64 MB per CPU. For example, if you have four CPUs, you should install at
least 256 MB RAM for optimal performance. For high numbers of peak concurrent
users, also allow extra RAM for the additional threads. After the first 50 concurrent
users, add an extra 512 KB per peak concurrent user.

Drive Space

94 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Drive Space
You need to have enough drive space for your OS, document tree, and log files. In
most cases 2 GB total is sufficient.

Put the OS, swap/paging file, Sun ONE Web Server logs, and document tree each
on separate hard drives. Thus, if your log files fill up the log drive, your OS will not
suffer. Also, you’ll be able to tell whether, for example, the OS paging file is
causing drive activity.

Your OS vendor may have specific recommendations for how much swap or
paging space you should allocate. Based on our testing, Sun ONE Web Server
performs best with swap space equal to RAM, plus enough to map the document
tree.

Networking
For an Internet site, decide how many peak concurrent users you need the server to
handle, and multiply that number of users by the average request size on your site.
Your average request may include multiple documents. If you’re not sure, try
using your home page and all of its associated subframes and graphics.

Next decide how long the average user will be willing to wait for a document, at
peak utilization. Divide by that number of seconds. That’s the WAN bandwidth
your server needs.

For example, to support a peak of 50 users with an average document size of 24 KB,
and transferring each document in an average of 5 seconds, we need 240 KBs (1920
Kbit/s). So our site needs two T1 lines (each 1544 Kbit/s). This also allows some
overhead for growth.

Your server’s network interface card should support more than the WAN it’s
connected to. For example, if you have up to three T1 lines, you can get by with a
10BaseT interface. Up to a T3 line (45 Mbit/s), you can use 100BaseT. But if you
have more than 50 Mbit/s of WAN bandwidth, consider configuring multiple
100BaseT interfaces, or look at Gigabit Ethernet technology.

For an intranet site, your network is unlikely to be a bottleneck. However, you can
use the same calculations as above to decide.

95

Chapter 7

Scalability Studies

This chapter describes the results of scalability studies. You can refer to these
studies for a sample of how the server performs, and how you might configure
your system to best take advantage of Sun ONE Web Server’s strengths.

This chapter includes the following topics:

• Study Goals

• General Conclusions

• Sun ONE Web Server Configuration

• Performance Results

Study Goals
This study shows how well Sun ONE Web Server 6.1 scales against 1, 2, and 4
CPUs. The goal of the tests in the study was to saturate the server CPU. The tests
also help to determine what kind of configuration (CPU and memory) is required
for different types of content. The studies were conducted against the following
content:

• 100% static

• 100% C CGI

• 100% Perl CGI

• 100% NSAPI

• 100% Java servlets

• 100% PHP/FastCGI

General Conclusions

96 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

General Conclusions
• The tuned server performed significantly better than the out-of-the-box server

for static loads.

• The tuned server performed slightly better than the out-of-the-box server for
dynamic loads.

• The tuned server showed no significant performance improvement for
SSL-encrypted static and dynamic workloads.

Sun ONE Web Server Configuration
• Mostly out-of-the box settings

• File cache configured via nsfc.conf for cache static tests

• Tested with two virtual servers (secure and non-secure) on two listen sockets
of the same instance

• SSL and non-SSL run without configuring two instances

• Java tests run with both the default and /usr/lib/lwp thread libraries

• HTTP/1.0 and HTTP/1.1 for static tests

This section lists:

• Tuned Server Settings

• nsfc.conf Settings

• System Configuration

Sun ONE Web Server Configuration

Chapter 7 Scalability Studies 97

Tuned Server Settings
The following table shows the server settings for the non-SSL performance runs.
Also note the following:

• nsfc.conf in the tuned server was configured to cache all files in the heap.

• The size of files in the specweb fileset ranged between 102 bytes to 912 KB.

• JVM settings were default.

Table 7-1 Tuned Server Settings

Setting Value

DNS Off

AccessLog Off

StackSize 262144

MaxKeepAliveConnections 2000

ConnQueueSize 10000

ListenQ 8192

SSLCacheEntries 100000000

SSL3SessionTimeout 86400

SSLSessonTimeout 100

CGIStubIdleTimeout 10000

Sun ONE Web Server Configuration

98 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

nsfc.conf Settings
The following table lists the nsfc.conf settings.

For more information about nsfc.conf, see the Sun ONE Web Server 6.1
Administrator’s Configuration File Reference.

System Configuration
• Server machine: Sun Fire™ V880, 900 Mhz (only 4 CPUs were used for the

tests)

• RAM: 16384 MB

• Network connection: 1 GB/sec private interface

Table 7-2 nsfc.conf Settings

Setting Out of the Box Tuned

MaxAge 30 86400

MaxFiles 1024 240000

SmallFileSizeLimit 2048 1000000

SmallFileSpace 1048576 2147483648

MediumFileSizeLimit 537600 1000001

MediumFileSpace 10485760 1

Performance Results

Chapter 7 Scalability Studies 99

Performance Results
For most cases, scalability plots are shown. Performance is shown as a function of
the number of CPUs enabled. The following metrics were used to characterize
performance:

• Operations per second (ops/sec) = successful transactions per second

• Response time for single transaction (round-trip time) in milliseconds

While operations per second (ops/sec) data is shown for most cases, the response
time and throughput are shown only where available.

Results are provided for the following tests, which are discussed in the remainder
of this chapter:

• Static Content Test

• Dynamic Content Test: WASP Servlet

• Dynamic Content Test: C CGI

• Dynamic Content Test: Perl CGI

• Dynamic Content Test: NSAPI

• SSL Performance Test: Static Content

• SSL Performance Test: Perl CGI

• SSL Performance Test: C CGI

• SSL Performance Test: NSAPI

• JDBC Connection Pooling with OCI Driver

• PHP Scalability Tests

Performance Results

100 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Static Content Test
This test was performed with static download of a randomly selected file from a
pool of 400 directories, each containing 100 files ranging in size from 5 KB to 250
KB. Tests were done with the file cache configured to include all files in the
directories. The goal of static content tests was to identify the maximum number of
conforming connections the server could handle. A conforming connection is one
that operates faster than 320 Kbps (kilobits per second).

Simultaneous connections: 1500

Figure 7-1 Static Content Test

Table 7-3 Static Content Test

CPUs Response
Time
(Out of Box)
msec

Response
Time
(Tuned) msec

Op/Sec
(Out of Box)

Op/Sec
(Tuned)

Number of
Connections
(Out of Box)

Number of
Connections
(Tuned)

1 346.69 320.5 1456.9 2169.3 510 700

2 337.01 305.3 2280.1 3565.1 775 1100

4 307.19 299.6 3220.8 5279.1 1000 1600

Performance Results

Chapter 7 Scalability Studies 101

Dynamic Content Test: WASP Servlet
This test was conducted using the WASP servlet. It prints out the servlet's
initialization arguments, environments, request headers, connection/client info,
URL information, and remote user information. The goal was to saturate the CPUs
on the server.

Number of clients: 3600

Figure 7-2 Dynamic Content Test: WASP Servlet

Table 7-4 Dynamic Content Test: WASP Servlet

CPUs Response Time
(Out of Box) msec

Response Time
(Tuned) msec

Op/Sec
(Out of Box)

Op/Sec (Tuned)

1 6436.46 4159.93 414.6 571.87

2 4031.66 2052.63 518.8 870.25

4 2177.81 732.42 832.1 1280.43

Performance Results

102 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Dynamic Content Test: C CGI
This test was performed by accessing a C executable called printenv.This
executable outputs approximately 0.5 KB of data per request. The goal was to
saturate the CPUs on the server.

Number of clients: 2400

Figure 7-3 Dynamic Content Test: C CGI

Table 7-5 Dynamic Content Test: C CGI

CPUs Response Time
(Out of Box) msec

Response Time
(Tuned) msec

Op/Sec
(Out of Box)

Op/Sec (Tuned)

1 7350.41 6819.63 244.8 265.17

2 2801.64 2391.25 436.8 473.46

4 1127.31 719.36 750.59 873.6

Performance Results

Chapter 7 Scalability Studies 103

Dynamic Content Test: Perl CGI
This test ran against a Perl script called printenv.pl that prints the CGI
environment. This script outputs approximately 0.5 KB of data per request. The
goal was to saturate the CPUs on the server.

Number of clients: 450

Figure 7-4 Dynamic Content Test: Perl CGI

Table 7-6 Dynamic Content Test: Perl CGI

CPUs Response Time
(Out of Box) msec

Response Time
(Tuned) msec

Op/Sec
(Out of Box)

Op/Sec (Tuned)

1 5484.17 4777.72 57.6 62.05

2 2111.22 1704.28 107.8 119.32

4 363.81 132.85 189.6 209.76

Performance Results

104 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Dynamic Content Test: NSAPI
The NSAPI module used in this test was printenv2.so. It prints the NSAPI
environment variables along with some text to make the entire response 2 KB. The
goal was to saturate the CPUs on the server.

Number of clients: 6300

Figure 7-5 Dynamic Content Test: NSAPI

Table 7-7 Dynamic Content Test: NSAPI

CPUs Response Time
(Out of Box) msec

Response Time
(Tuned) msec

Op/Sec
(Out of Box)

Op/Sec
(Tuned)

1 2208.06 1259.16 758.9 1212.07

2 1123.85 931.13 1636.3 1965.68

4 952.67 177.9 2106.1 2804.05

Performance Results

Chapter 7 Scalability Studies 105

SSL Performance Test: Static Content
A 1 KB static SSL file was used for this test. The goal was to saturate the CPUs on
the server.

Simultaneous connections: 550

Figure 7-6 SSL Test: Static Content

Table 7-8 SSL Test: Static Content

CPUs Response Time
(Out of Box) msec

Response Time
(Tuned) msec

Op/Sec
(Out of Box)

Op/Sec
(Tuned)

1 1259.11 1357.81 392.5 404.7

2 650.61 697.31 764.3 784.3

4 351.31 368.01 1422.6 1484.5

Performance Results

106 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

SSL Performance Test: Perl CGI
This test was performed by accessing the printenv C executable in SSL mode. The
goal was to saturate the CPUs on the server. The test was performed in SSL mode
with the SSL session cache both enabled and disabled.

Figure 7-7 SSL Test: Perl CGI

Table 7-9 SSL/Perl CGI: No Session Cache Reuse

of CPUs Op/Sec (Out of Box) Op/Sec (Tuned)

1 41.9 42.19

2 81.0 81.86

4 145.1 146.05

Table 7-10 SSL/Perl CGI: 100% Session Cache Reuse

of CPUs Op/Sec (Out of Box) Op/Sec (Tuned)

1 55.29 55.42

2 105.01 107.05

4 194.35 197.91

Performance Results

Chapter 7 Scalability Studies 107

SSL Performance Test: C CGI
This test was performed by accessing the printenv C executable in SSL mode. The
goal was to saturate the CPUs on the server. The test was performed in SSL mode
with the SSL session cache both enabled and disabled.

Figure 7-8 SSL Test: C CGI

Table 7-11 SSL/Perl CGI: Session Cache Comparison

of CPUs No Session Cache
(Tuned)

100% Session Cache
(Tuned)

1 42.19 55.42

2 81.86 107.05

4 146.05 197.91

Table 7-12 SSL/C CGI: No Session Cache Reuse

CPUs Op/Sec (Out of Box) Op/Sec (Tuned)

1 84.8 82.73

2 165.0 164.38

4 290.6 291.63

Performance Results

108 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

Table 7-13 SSL/C CGI: 100% Session Cache Reuse

CPUs Op/Sec (Out of Box) Op/Sec (Tuned)

1 160.65 165.69

2 308.11 310.51

4 538.54 550.19

Table 7-14 SSL/C CGI: Session Cache Comparison

CPUs No Session Cache
(Tuned)

100% Session Cache
(Tuned)

1 82.73 160.65

2 164.38 308.11

4 291.63 538.54

Performance Results

Chapter 7 Scalability Studies 109

SSL Performance Test: NSAPI
This test was performed by accessing the printenv C executable in SSL mode. The
goal was to saturate the CPUs on the server. The test was performed in SSL mode
with the SSL session cache both enabled and disabled.

Figure 7-9 SSL Test: NSAPI

Table 7-15 SSL/NSAPI: No Session Cache Reuse

CPUs Op/Sec (Out of Box) Op/Sec (Tuned)

1 114.08 114.44

2 223.58 225.04

4 380.88 382.78

Table 7-16 SSL/NSAPI: 100% Session Cache Reuse

CPUs Op/Sec (Out of Box) Op/Sec (Tuned)

1 321.24 333.21

2 554.87 551.45

4 762.04 791.62

Performance Results

110 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

JDBC Connection Pooling with OCI Driver
This test tested the scalability and performance of the JDBC connection pooling
module. In this test a simple servlet requests a row from a large database and prints
its content. An Oracle database and the Oracle OCI driver were used for the test.
JDBC connection pool resource configuration is shown below (server.xml).

Number of clients: 3600

Table 7-17 SSL/NSAPI: Session Cache Comparison

CPUs No Session Cache
(Tuned)

100% Session Cache
(Tuned)

1 114.44 333.21

2 225.04 551.45

4 382.78 791.62

<RESOURCES>

<JDBCRESOURCE jndiname="jdbc/tpcwDB" poolname="TpcwPool"
enabled="true"/>

<JDBCCONNECTIONPOOL name="TpcwPool"
datasourceclassname="oracle.jdbc.pool.OracleDataSource"
steadypoolsize="1000" maxpoolsize="1000" poolresizequantity="2"
idletimeout="0" maxwaittime="0"
connectionvalidationrequired="false"
connectionvalidationmethod="auto-commit"
validationtablename="string" failallconnections="false" >

<PROPERTY name="URL"
value="jdbc:oracle:oci8:@(description=(address=(host=mach-3)
(protocol=tcp)(port=1521))(connect_data=(sid=10K)))"/>
<PROPERTY name="user" value="tpcw"/>
<PROPERTY name="password" value="tpcw"/>

</JDBCCONNECTIONPOOL>
</RESOURCES>

Performance Results

Chapter 7 Scalability Studies 111

Figure 7-10 JDBC Connection Pooling Test

Table 7-18 JDBC Connection Pooling Test

CPUs Response Time (msec) Op/Sec

1 4223.66 529.14

2 1508.53 966.74

4 153.19 1634.94

Performance Results

112 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

PHP Scalability Tests
PHP is a widely used scripting language uniquely suited to creating dynamic Web
based content. It is the most rapidly expanding scripting language in use on the
Internet due to its simplicity, accessibility, wide number of available modules, and
large number of easily available applications.

The scalability of Sun ONE Web Server combined with the versatility of the PHP
engine provides a highly performant and versatile web deployment platform for
dynamic content.

The PHP (version 4.3.2) tests were performed in two modes:

• Out-of-process "fastcgi-php" application invoked using the FastCGI plugin
available for Sun ONE Web Server 6.1 (the download will be available from
http://www.zend.com/sun).

• In-process PHP NSAPI plugin (available with PHP).

The test executes the phpinfo() query. Mostly out-of-the-box settings were used,
plus PHP-related settings in the obj.conf and magnus.conf files, as shown after
the test graphs and data.

FastCGI

Figure 7-11 PHP Scalability Test: FastCGI

http://www.zend.com/sun

Performance Results

Chapter 7 Scalability Studies 113

NSAPI

Figure 7-12 PHP Scalability Test: NSAPI

Table 7-19 PHP Scalability Test: FastCGI

CPUs Op/Sec Latency (msec)

1 54 214

2 105 225

4 199 230

Table 7-20 PHP Scalability Test: NSAPI

CPUs Op/Sec Latency

1 63 190

2 125 193

4 251 190

Performance Results

114 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

magnus.conf Settings

Init fn="load-modules"
shlib="/export0/ES61/install/bin/https/lib/libphp4.so"\
funcs="php4_init,php4_close,php4_execute,php4_auth_trans"
Init fn="php4_init"\

errorString="PHP Totally Blowed Up!"

Init fn="load-modules"
shlib="/export0/ES61/install/bin/https/lib/libnsapi_fcgi.
so" funcs="FCGIRequestHandler,FCGIInit"
shlib_flags="(global|now)"

Init fn="FCGIInit" errorString "Unable to start the FCGI NSAPI
module"

Performance Results

Chapter 7 Scalability Studies 115

obj.conf Settings

NameTrans fn="pfx2dir"
from="/php-nsapi"dir="/export0/ES61/install/docs/php-nsapi"
name="php-nsapi"
NameTrans fn="pfx2dir"
from="/php-fcgi"dir="/export0/ES61/install/docs/php-fcgi"
name="fastcgi"

Service type="magnus-internal/fastcgi-php"
fn="FCGIRequestHandler"
BindPath="localhost:8082" AppPath="/export0/php-fastcgi/bin/php"
StartServers="5" PHP_FCGI_CHILDREN="10"
PHP_FCGI_MAX_REQUEST="2000"

<Object name="fastcgi">
ObjectType fn="force-type" type="magnus-internal/fastcgi-php"
Service type="magnus-internal/fastcgi-php"\

fn=FCGIRequestHandler\
BindPath="localhost:8082"\
AppPath="/export0/php-fastcgi/bin/php"
StartServers="5"\
PHP_FCGI_CHILDREN="10"\
PHP_FCGI_MAX_REQUEST="2000"

</Object>

<Object name="php-nsapi">
Set the MIME type
ObjectType fn="force-type" type="magnus-internal/x-httpd-php"
Run the function
Service fn=php4_execute
</Object>

Performance Results

116 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

117

Index

A
about this guide 9

audience 9
contents 12
conventions 13

acceptor threads 32
AcceptTimeout directive 70
access time updates 87
ACL cache

tuning 59
acl-bucket 23
ACLCacheLifetime 60
ACLGroupCacheSize 61
ACLUserCacheSize 59, 60
activating statistics

from the Server Manager 17
with stats-xml 18

AddLog 44
Administration interface

more information about 11
assign-name 72, 73

B
benchmarking

tuning Solaris for 90
buckets, performance 22
buffer size, tuning 70
busy functions 44

C
cache information 37
cache not utilized 81
cache, DNS 43
CacheEntries 38, 43
CacheHits 38
CacheLookups 38, 43
caching, servlet/JSP 63
cgi-bucket 23
CGIStub processes 70

CGIExpirationTimeout 71
CGIStubIdleTimeout 71
MaxCGIStubs 71
MinCGIStubs 71

check-acl SAF 80
class reloading, configuring 63
class-loader 63
classpath elements 64
classpath, directories in 64
classpathprefix 64
classpathsuffix 64
common performance problems 79
connection handling 45
connection pooling, JDBC 65

configuring 65
connection queue information 29
connection refused errors 85
connection timeout, tuning 70
connection timeouts 84
connections 45

Section D

118 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

closed 33
settings in magnus.conf 45
simultaneous via RqThrottle parameter 48

connectionvalidationmethod 68
connectionvalidationrequired 67
content_length 34
crontab -e sys command 89
CurrentCacheEntries 43

D
default-bucket 23
defaultvs 32
determining requirements 94
directives, performance-related 69
directories in the classpath 64
DNS cache information 43
documentation, Web Server 10
drive space

sizing issues 94
dynamic control and monitoring

NSFC file cache 57
dynamicreloadinterval 63

F
failallconnections 68
file cache

configuring 53
flags for ?list option 59
low hit rate with custom NSAPI functions 81
magnus.conf directives 60
monitoring via statistics 56
NSFC, dynamic control and monitoring 57
obj.conf object for monitoring 57
problems, cache not utilized 81
tuning 53
virtual memory 55

file descriptor limits 84
file system tuning, Solaris 86

file-bucket 23
FileCacheEnable 37
find-pathinfo 72
find-pathinfo-forward 72
flushed keep-alive connections 82
func_insert 44

H
hardware virtual servers 32
high file system page-in rate 86
hit ratio 38, 81
HitRatio 43
HotSpot VM performance FAQ 80
HTTP/1.0-style workload 51
HTTP/1.1-style workload 52

I
Idle 40
idletimeout 67
improving application performance 65
init-cgi

multi-process mode 71
init-resonate

parameters 75
iostat utility 87
iostat -x 60 command 88
isolationlevelguaranteed 68

J
Java heap tuning 62
Java HotSpot VM 62
Java Security Manager, configuring 63
Java VM heap space 80
Java web applications, tuning performance 61

Section K

Index 119

java.lang.OutOfMemoryError 80
JDBC connection pool attributes

connectionvalidationmethod 68
connectionvalidationrequired 67
failallconnections 68
idletimeout 67
isolationlevelguaranteed 68
maxpoolsize 66
maxwaittime 67
name 66
poolresizequantity 67
steadypoolsize 66
transactionisolationlevel 68
validationtablename 68

JDBC connection pooling
advantages of 65
configuring 65
improving application performance 65

JDBCCONNECTIONPOOL 66
jsp-config 62

K
KeepAlive connections

about 33
keep-alive connections

flushed 82
keep-alive information 33
KeepAliveCount 34, 82
KeepAliveFlushes 35, 82
KeepAliveHits 35, 82
KeepAliveMaxCount 82
KeepAliveQueryMaxSleepTime 50
KeepAliveQueryMeanTime 51
KeepAliveRefusals 35
KeepAliveThreads 34, 50
KeepAliveTimeout 34, 35, 50
KeepAliveTimeouts 35

L
libloadbal

enabling via magnus.conf 74
library configuration 74
plugin 74
sample 77
using 74

listen socket
default virtual server 32
statistics 30

ListenQ 31, 37, 70, 71, 84
load balancing, libloadbal plugin 74
load balancing, using 74
load-modules 39
log file modes 82

verbose 82
LogVerbose 41, 44, 75, 76
long service times 87
low-memory problems 80

M
Magnus Editor, using to tune 79
magnus.conf

ACLUserCacheSize 59
activating statistics 18
directives, performance-related 69
enabling libloadbal 74
file cache directives, using 60
init-cgi, multi-process mode 71
listen queue 31, 37, 70, 71
simultaneous connections via RqThrottle 48

manager-properties properties 65
MaxCacheEntries 43
MaxKeepAlive 34
MaxKeepAliveConnections 34, 50, 82
maxLocks, tuning 64
maxpoolsize 66
MaxProcs 47, 80
maxSessions 64
maxwaittime 67

Section N

120 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

memory
sizing issues 93

memory requirements 93
MinCGIStubs 71
miscellaneous issues 69
MMapSessionManager, tuning 65
modes

log file 82
multi-process 47
single-process 46

monitoring server performance
overview 15
using perfdump 20
using performance buckets 22
using stats-xml 18
using the Server Manager 17

monitoring statistics 19
SE toolkit 89

mpstat 60 command 88
multi-process mode 46, 47
multi-thread mode 46

N
NameTrans 39, 72, 73
native threads pool 39
NativePool 39
NativePoolMaxThreads 40, 42, 48, 61
NativePoolMinThreads 42
NativePoolQueueSize 40, 41
NativePoolStackSize 41
NativeThread 40
netstat -i 60 88
netstat -s command 84
networking

sizing issues 94
nocache parameter 56
nostat 73
NSFC file cache

dynamic control and monitoring 57
nsfc.conf

file cache settings 54

nsfc.conf settings 98
NSPR 39
NSServletService 22
ntrans-base 72

O
obj.conf

activating statistics 18
object for monitoring the NSFC file cache 57
perfdump utility 20
performance buckets 23
performance-related parameters 72
timeout period 49

P
PATH_INFO 72
PathCheck 39, 44, 72
peak concurrent users 94
perfdump

about 20
installing 20
performance buckets 22
sample output 21
statistics monitored 28
using to monitor server activity 20

performance
buckets 22
issues 15
monitoring tools 17
overview 15
problems 79
studies 95
tuning 27

performance buckets
configuration of 23
defining in magnus.conf 23
information in perfdump 25
performance report 24
using to monitor activity 22

Section Q

Index 121

performance monitoring, Solaris-specific 88
performance report

performance buckets 24
persistence-type 64, 65
persistent connection information 33
persistent connections 33
pfx2dir 72
PHP scalability tests 112
platform-specific issues 83
poll interval 19
pool, native threads 39
poolresizequantity 67
PR_GetFileInfo 59
PR_TransmitFile 54
precompiled JSPs 62
problems

common 79
connection timeouts 84
KeepAlive connections flushed 82
log file modes 82
low memory 80
under-throttled server 81

process modes 46
processes 45

settings in magnus.conf 45
processors

sizing issues 93
product support 14
profiling 19

Q
quality of service (QOS) features 16, 73
queue, peak work 40

R
ratio, hit 38
RcvBufSize 70
reapIntervalSeconds 64

refresh 58
reload-interval 62
restart 58
rlim_fd_cur 90
rlim_fd_max 90
RqThrottle 28, 50, 80, 81

NativePoolQueueSize 41
simultaneous connections 48

S
scalability studies 95
scaling your server 93
SE toolkit 89
segmap_percent 86
send-cgi 22
send-file

nocache parameter 56
serverclasspath 64
Service 39, 44
servlet/JSP caching 63
session creation information 36
session settings, web application 64
session-properties 64
single-process mode 46
sizing your server 93
SndBufSize 70
Solaris

file system tuning 83
platform-specific issues 83
tuning for performance benchmarking 90

Solaris-specific performance monitoring 88
long-term system monitoring 89
SE toolkit 89
short-term system monitoring 88

solutions to common problems 79
sq_max_size 86, 90
SSL test 105, 106, 107, 109
static test 100, 105
statistics

accessing 19

Section T

122 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

activating 17
busy function 44
cache information 37
connection queue 29
file cache, monitoring 56
hit ratio 38
how to activate 18
listen socket information 30
monitoring 17, 19
nocache parameter 56
performance buckets 22
poll interval 19
types monitored by perfdump 28
viewing 19, 20
virtual server 19

stats-init 18
stats-xml 18

activating statistics 18
steadypoolsize 66
studies 95

general conclusions 96
goals 95
nsfc.conf settings 98
results 99
system configuration 98
tuned server settings 97
Web Server configuration 96

Support 14

T
TCP buffering, tuning 86
tcp_close_wait_interval 90
tcp_conn_req_max_q 84, 90
tcp_conn_req_max_q0 84, 90
tcp_ip_abort_interval 90
tcp_keepalive_interval 90
tcp_recv_hiwat 91
tcp_rexmit_interval_initial 90
tcp_rexmit_interval_max 90
tcp_rexmit_interval_min 91
tcp_slow_start_initial 91
tcp_smallest_anon_port 91

tcp_time_wait_interval 90
tcp_xmit_hiwat 91
tcpHalfOpenDrop 84
tcpListenDrop 84
tcpListenDropQ0 84
test results 95
thread pools 39
thread POOLS, native 39
threads 45

acceptor 32
multi-process mode 47
settings in magnus.conf 45

tips
general 27
platform-specific 83

transactionisolationlevel 68
tuning maxLocks 64
tuning MMapSessionManager 65
tuning rules, keep-alive subsystem 52
tuning TCP buffering 86
tuning the file cache 53
tuning the Web Server 27

ACL user cache 59
Java web applications performance 61
the file cache 53
threads, processes, and connections 45
using statistics 28

tuning tips
general 27
platform-specific 83

U
UFS 87
under-throttled server 81
UNIX file system 87
update-interval 18
UseNativePoll 35
using Java heap tuning 62
using statistics to tune your server 28

Section V

Index 123

V
validationtablename 68
viewing statistics 19, 20
virtual memory

file cache 55
virtual servers 16

default 32
hardware/software 32
listen sockets 30
monitoring statistics 19
performance 16

vmstat 60 command 88

W
WASP servlet test 100
web application session settings 64
web applications, tuning performance 61
work queue

length 40

Section W

124 Sun ONE Web Server 6.1 • Performance Tuning, Sizing, and Scaling Guide • August 2003

	Performance Tuning, Sizing, and Scaling Guide
	Contents
	About This Guide
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Documentation Conventions
	Product Support

	Performance and Monitoring Overview
	Performance Issues
	Virtual Servers
	Monitoring Server Performance
	Monitoring Current Activity Using the Server Manager
	Activating Statistics
	Monitoring Statistics
	Virtual Server Statistics

	Monitoring Current Activity Using the perfdump Utility
	Installing the perfdump Utility
	Sample perfdump Output

	Using Performance Buckets
	Configuration
	Performance Report

	Tuning Sun ONE Web Server
	General Tuning Tips
	Using Statistics to Tune Your Server
	Connection Queue Information
	Current /Peak /Limit
	Total Connections Queued
	Average Queuing Delay

	Listen Socket Information
	Address
	Acceptor Threads
	Default Virtual Server

	Keep-Alive/Persistent Connection Information
	KeepAliveThreads
	KeepAliveCount
	KeepAliveHits
	KeepAliveFlushes
	KeepAliveRefusals
	KeepAliveTimeout
	KeepAliveTimeouts
	UseNativePoll

	Session Creation Information
	Cache Information
	enabled
	CacheEntries
	Hit Ratio (CacheHits / CacheLookups)
	Maximum Age

	Thread Pools
	Thread Pools (UNIX/Linux Only)
	Native Thread Pools (Windows Only)
	Generic Thread Pools (Windows Only)
	Idle /Peak /Limit
	Work Queue Length /Peak /Limit
	NativePoolStackSize
	NativePoolQueueSize
	NativePoolMaxThreads
	NativePoolMinThreads

	DNS Cache Information
	enabled
	CacheEntries (CurrentCacheEntries / MaxCacheEntries)
	HitRatio (CacheHits / CacheLookups)

	Busy Functions

	Threads, Processes, and Connections
	Connection-Handling Overview
	Process Modes
	Single-Process Mode
	Multi-Process Mode
	MaxProcs (UNIX/Linux)

	Listen Socket Acceptor Threads
	Maximum Simultaneous Requests
	Keep-Alive Subsystem Tuning
	HTTP/1.0-style Workload
	HTTP/1.1-style Workload

	Tuning the File Cache
	Configuring the File Cache
	Using the nocache Parameter
	Monitoring the File Cache with the Server Manager
	File Cache Dynamic Control and Monitoring

	Tuning the ACL User Cache
	ACL User Cache Directives
	ACLCacheLifetime
	ACLUserCacheSize
	ACLGroupCacheSize

	Verifying ACL User Cache Settings

	Tuning Java Web Applications Performance
	Using Java Heap Tuning
	Using Precompiled JSPs
	Using Servlet/JSP Caching
	Configuring the Java Security Manager
	Configuring Class Reloading
	Avoiding Directories in the Classpath
	Configuring the Web Application’s Session Settings
	Tuning maxLocks (UNIX/Linux)
	Tuning MMapSessionManager (UNIX/Linux)

	Configuring JDBC Connection Pooling
	JDBC Connection Pool Attributes
	name
	datasourceclassname
	maxpoolsize
	poolresizequantity
	idletimeout
	maxwaittime
	connectionvalidationrequired
	connectionvalidationmethod
	validationtablename
	failallconnections
	transactionisolationlevel
	isolationlevelguaranteed

	Miscellaneous Performance Topics
	Miscellaneous magnus.conf Directives
	Buffer Size
	Tuning

	Connection Timeout
	Tuning

	CGIStub Processes (UNIX/Linux)
	Tuning

	Miscellaneous obj.conf Parameters
	find-pathinfo-forward
	nostat

	Using Quality of Service
	Using Load Balancing
	Using libloadbal
	Library configuration
	Testing
	Sample

	Common Performance Problems
	Magnus Editor Values
	check-acl Server Application Functions
	Low-memory Situations
	Under-throttled Server
	Cache Not Utilized
	Keep-Alive Connections Flushed
	Log File Modes

	Platform-specific Issues and Tips
	Solaris-specific Issues
	Files Open in a Single Process
	File Descriptor Limits
	Failure to Connect to HTTP Server
	Connection Refused Errors
	Tuning TCP Buffering

	Solaris File System Tuning
	High File System Page-in Rate
	Reduce File System Housekeeping
	Long Service Times on Busy Disks or Volumes

	Solaris-specific Performance Monitoring
	Short-term System Monitoring
	Long-term System Monitoring
	"Intelligent" Monitoring

	Tuning Solaris for Performance Benchmarking

	Sizing and Scaling Your Server
	Processors
	Memory
	Drive Space
	Networking

	Scalability Studies
	Study Goals
	General Conclusions
	Sun ONE Web Server Configuration
	Tuned Server Settings
	nsfc.conf Settings
	System Configuration

	Performance Results
	Static Content Test
	Dynamic Content Test: WASP Servlet
	Dynamic Content Test: C CGI
	Dynamic Content Test: Perl CGI
	Dynamic Content Test: NSAPI
	SSL Performance Test: Static Content
	SSL Performance Test: Perl CGI
	SSL Performance Test: C CGI
	SSL Performance Test: NSAPI
	JDBC Connection Pooling with OCI Driver
	PHP Scalability Tests
	FastCGI
	NSAPI

	Index

