
Sun Java™ System

Sun Java Enterprise System 2005Q1
Deployment Planning Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819-0058-10

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.
This distribution may include materials developed by third parties.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the
U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, the Duke logo,
the Java Coffee Cup logo, the Solaris logo, the SunTone Certified logo and the Sun ONE logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
Legato and the Legato logo are registered trademarks, and Legato NetWorker, are trademarks or registered trademarks of Legato Systems, Inc.
The Netscape Communications Corp logo is a trademark or registered trademark of Netscape Communications Corporation.
The OPEN LOOK and Sun(TM) Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun's written license agreements.
Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct
or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs des brevets américains listés
à l'adresse http://www.sun.com/patents et un ou des brevets supplémentaires ou des applications de brevet en attente aux Etats - Unis et dans
les autres pays.
CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.
Cette distribution peut comprendre des composants développés par des tierces parties.
Des parties de ce produit peuvent être dérivées des systèmes Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, le logo Duke, le
logo Java Coffee Cup, le logo Solaris, le logo SunTone Certified et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
Legato, le logo Legato, et Legato NetWorker sont des marques de fabrique ou des marques déposées de Legato Systems, Inc. Le logo Netscape
Communications Corp est une marque de fabrique ou une marque déposée de Netscape Communications Corporation.
L'interface d'utilisation graphique OPEN LOOK et Sun(TM) a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique
pour l'industrie de l'informatique. Sun détient une license non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux
licences écrites de Sun.
Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales,
ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime, directement ou
indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou vers des entites
figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui font objet d'un
ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la legislation
americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.
LA DOCUMENTATION EST FOURNIE “EN L'ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

http://www.sun.com/patents
http://www.sun.com/patents

3

Contents

List of Figures . 7

List of Tables . 9

Preface . 11
Who Should Use This Book . 12
How This Book Is Organized . 12
Related Documentation . 12

Books in This Documentation Set . 12
Accessing Sun Resources Online . 14
Contacting Sun Technical Support . 14
Related Third-Party Web Site References . 14
Sun Welcomes Your Comments . 15

Chapter 1 Introduction to Deployment Planning . 17
About Java Enterprise System . 17

System Services . 17
Built-In Services and Custom-Developed Services . 19
Migrating to Java Enterprise System . 20

About Deployment Planning . 21
Solution Life Cycle . 21
Business Analysis Phase . 23
Technical Requirements Phase . 23
Logical Design Phase . 24
Deployment Design Phase . 24
Implementation Phase . 25
Operations Phase . 26

4 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Chapter 2 Business Analysis . 27
About Business Analysis . 27
Defining Business Requirements . 28

Setting Business Goals . 28
Scope . 28
Priorities . 28
Critical Qualities . 28
Growth Factors . 28
Safety Margin . 29

Understanding User Needs . 29
Developing Operational Requirements . 30
Supporting Existing Usage Patterns . 30

Understanding Corporate Culture . 31
Stakeholders . 31
Standards and Policies . 31
Regulatory Requirements . 31
Security . 31
Site Distribution . 32

Using an Incremental Approach . 32
Understanding Service Level Agreements . 32

Defining Business Constraints . 33
Migration Issues . 33
Schedule Mandates . 33
Budget Limitations . 34
Cost of Ownership . 34

Chapter 3 Technical Requirements . 35
About Technical Requirements . 35
Usage Analysis . 36
Use Cases . 38
Quality of Service Requirements . 38

Performance . 40
Availability . 40

Fault-Tolerant Systems . 41
Prioritizing Service Availability . 41
Loss of Services . 42

Scalability . 42
Estimating Growth . 43

Security Requirements . 44
Elements of a Security Plan . 45

Latent Capacity . 46
Serviceability Requirements . 46

Service Level Requirements . 47

Contents 5

Chapter 4 Logical Design . 49
About Logical Architectures . 49
Designing a Logical Architecture . 51

Java Enterprise System Components . 51
Component Dependencies . 52
Web Container Support . 55
Logically Distinct Services Provided by Messaging Server . 55
Access Components . 56

Multitiered Architecture Design . 56
Example Logical Architectures . 58

Messaging Server Example . 58
Messaging Server Use Cases . 60

Identity-Based Communications Example . 62
Use Cases for Identity-Based Communications Example . 63

Access Zones . 66
Deployment Scenario . 67

Chapter 5 Deployment Design . 69
About Deployment Design . 69

Project Approval . 70
Deployment Design Outputs . 70
Factors Affecting Deployment Design . 71

Deployment Design Methodology . 73
Estimating Processor Requirements . 74

Example Estimating Processor Requirements . 75
Determine Baseline CPU Estimate for User Entry Points . 76
Include CPU Estimates for Service Dependencies . 77
Study Use Cases for Peak Load Usage . 77
Modify Estimates for Other Load Conditions . 78
Update the CPU Estimates . 79

Estimating Processor Requirements for Secure Transactions . 80
CPU Estimates for Secure Transactions . 80
Specialized Hardware to Handle SSL Transactions . 82

Determining Availability Strategies . 83
Availability Strategies . 83

Single Server System . 84
Horizontally Redundant Systems . 84
Sun Cluster Software . 86

6 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Availability Design Examples . 87
Load Balancing Example for Messaging Server . 87
Failover Example Using Sun Cluster Software . 88
Replication of Directory Services Example . 89
Single Master Replication . 90
Multi-Master Replication . 90

Determining Strategies for Scalability . 91
Latent Capacity . 92
Scalability Example . 92

Identifying Performance Bottlenecks . 93
Optimizing Disk Access . 95

Designing for Optimum Resource Usage . 96
Managing Risks . 97
Example Deployment Architecture . 98

Chapter 6 Implementation of a Deployment Design . 101
About Implementing Deployment Designs . 101
Installing and Configuring Software . 102
Developing Pilots and Prototypes . 103
Testing Pilot and Prototype Deployments . 103
Rolling Out a Production Deployment . 104

Index . 105

7

List of Figures

Figure 1-1 Solution Life Cycle . 22

Figure 4-1 Three Dimensions of the Java Enterprise System Solution Architecture 50

Figure 4-2 Java Enterprise System Components . 52

Figure 4-3 Java Enterprise System Component Dependencies . 54

Figure 4-4 Multitiered Architecture Model . 57

Figure 4-5 Logical Architecture for Messaging Server Deployment . 59

Figure 4-6 Messaging Server Logical Architecture Showing Use Case 1 . 60

Figure 4-7 Messaging Server Logical Architecture Showing Use Case 2 . 61

Figure 4-8 Messaging Server Logical Architecture Showing Use Case 3 . 62

Figure 4-9 Logical Architecture for Identity-Based Communications Scenario 63

Figure 4-10 Communications Scenario Logical Architecture Showing Use Case 1 64

Figure 4-11 Communications Scenario Logical Architecture Showing Use Case 2 65

Figure 4-12 Logical Components Placed in Access Zones . 66

Figure 5-1 Logical Architecture for Identity-Based Communications Scenario 76

Figure 5-2 Single Server System . 84

Figure 5-3 N+1 Failover System With Two Servers . 85

Figure 5-4 Load Balancing Plus Failover Between Two Servers . 85

Figure 5-5 Distribution of Load Between n Servers . 86

Figure 5-6 Availability Strategy for Messaging Server Example . 88

Figure 5-7 Failover Design Using Sun Cluster Software . 89

Figure 5-8 Single Master Replication Example . 90

Figure 5-9 Multi-master Replication Example . 91

Figure 5-10 Horizontal and Vertical Scaling Examples . 93

Figure 5-11 Example Deployment Architecture . 99

8 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

9

List of Tables

Table 1 Java Enterprise System Documentation . 13

Table 1-1 Java Enterprise System Service Categories . 18

Table 3-1 Usage Analysis Factors . 36

Table 3-2 System Qualities Affecting QoS Requirements . 39

Table 3-3 Unscheduled Downtime for a System Running Year-Round (8,760 hours) 41

Table 3-4 Availability of Services by Priority . 42

Table 3-5 Scalability Factors . 43

Table 3-6 Topics for Serviceability Requirements . 46

Table 4-1 Java Enterprise System Component Dependencies . 53

Table 4-2 Messaging Server Configurations . 55

Table 4-3 Java Enterprise System Components Providing Remote Access 56

Table 4-4 Logical Tiers in a Multitiered Architecture . 57

Table 4-5 Components in Messaging Server Logical Architecture . 59

Table 4-6 Secure Access Zones and Components Placed Within Them . 67

Table 5-1 CPU Estimates for Components Containing Access User Entry Points 76

Table 5-2 CPU Estimates for Supporting Components . 77

Table 5-3 CPU Estimate Adjustments for Peak Load . 78

Table 5-4 CPU Estimate Adjustments for Supporting Components . 79

Table 5-5 Modifying CPU Estimates for Secure Transactions . 81

Table 5-6 CPU Estimate Adjustments for Portal Server Secure Transactions 82

Table 5-7 CPU Estimate Adjustments for Supporting Components . 87

Table 5-8 Data Access Points . 94

Table 5-9 Resource Management Considerations . 96

10 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

11

Preface

The Java Enterprise System Deployment Planning Guide provides an introduction to
planning and designing enterprise deployment solutions based on Sun Java™
Enterprise System. This guide presents basic concepts and principles of
deployment planning and design, discusses the solution life cycle, which
encapsulates the phases and tasks of a deployment design project, and provides
high-level examples and strategies that you can when planning enterprise-wide
deployment solutions with Java Enterprise System.

This preface contains the following sections:

• “Who Should Use This Book” on page 12

• “Related Documentation” on page 12

• “Accessing Sun Resources Online” on page 14

• “Contacting Sun Technical Support” on page 14

• “Related Third-Party Web Site References” on page 14

• “Sun Welcomes Your Comments” on page 15

Before performing any of the tasks described in this guide, read the Java Enterprise
System Release Notes (http://docs.sun.com/doc/819-0057).

http://docs.sun.com/doc/819-0057).

Who Should Use This Book

12 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Who Should Use This Book
This guide is primarily intended for deployment architects and business planners
responsible for the analysis and design of enterprise deployments. This guide is
also useful for system integrators and others responsible for the design and
implementation of various aspects of an enterprise application.

This guide assumes you are familiar with the design and installation of
enterprise-level applications, and that you have read the Java Enterprise System
Technical Overview.

How This Book Is Organized
This guide is based on a solution life cycle which describes the various phases of
deployment planning. Chapter 1, “Introduction to Deployment Planning,”
provides a description of the solution life cycle.

Related Documentation
The http://docs.sun.comSM web site enables you to access Sun technical
documentation online. You can browse the archive or search for a specific book
title or subject.

Books in This Documentation Set
The Java ES manuals are available as online files in Portable Document Format
(PDF) and Hypertext Markup Language (HTML) formats. Both formats are
readable by assistive technologies for users with disabilities. The Sun™
documentation web site can be accessed here:

http://docs.sun.com

The Java ES documentation includes information about the system as a whole and
information about its components. This documentation can be accessed here:

http://docs.sun.com/prod/entsys.05q1

The following table lists the system-level manuals in the Java ES documentation
set. The left column provides the name and part number location of each document
and the right column describes the general contents of the document.

http://docs.sun.com
http://docs.sun.com
http://docs.sun.com/prod/entsys.05q1

Related Documentation

Preface 13

Table 1 Java Enterprise System Documentation

Document Contents

Java Enterprise System Release Notes
http://docs.sun.com/doc/819-0057

Contains the latest information about Java Enterprise
System, including known problems. In addition, components
have their own release notes.

Java Enterprise System
Documentation Roadmap
http://docs.sun.com/doc/819-0055

Provides descriptions of the documentation related to Java
Enterprise System. Includes links to the documentation
associated with components.

Java Enterprise System Technical
Overview
http://docs.sun.com/doc/819-0061

Introduces the technical and conceptual foundations of Java
Enterprise System. Describes components, architecture,
processes, and features.

Java Enterprise System Deployment
Planning Guide
http://docs.sun.com/doc/819-0058

Provides an introduction to planning and designing
enterprise deployment solutions based on Java Enterprise
System. Presents basic concepts and principles of
deployment planning and design, discusses the solution life
cycle, and provides high-level examples and strategies to
use when planning solutions based on Java Enterprise
System.

Sun Java Enterprise System User
Management Guide
http://docs.sun.com/doc/817-5761

Helps you plan, deploy, and manage information about the
users of your Java Enterprise System solution.
Complements the Java Enterprise System Deployment
Planning Guide by describing user management issues in
each phase of the solution life cycle.

Java Enterprise System Deployment
Example Series: Evaluation Scenario
http://docs.sun.com/doc/819-0059

Describes how to install Java Enterprise System on one
system, establish a set of core, shared, and networked
services, and set up user accounts that can access the
services that you establish.

Java Enterprise System Installation
Guide
http://docs.sun.com/doc/819-0056

Guides you through the process of installing Java Enterprise
System for the Solaris™ Operating System or the Linux
operating system. Shows how to select components to
install, how to configure those components after installation,
and how to verify that the configured components function
properly.

Java Enterprise System Upgrade and
Migration Guide
http://docs.sun.com/doc/819-0062

Provides the information and instructions to upgrade Java
Enterprise System for the Solaris™ Operating System or
the Linux operating environment.

Java Enterprise System Glossary
http://docs.sun.com/doc/816-6873

Defines terms that are used in Java Enterprise System
documentation.

http://docs.sun.com/doc/819-0057
http://docs.sun.com/doc/819-0055
http://docs.sun.com/doc/819-0061
http://docs.sun.com/doc/819-0058
http://docs.sun.com/doc/817-5761
http://docs.sun.com/doc/819-0059
http://docs.sun.com/doc/819-0056
http://docs.sun.com/doc/819-0062
http://docs.sun.com/doc/816-6873

Accessing Sun Resources Online

14 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Accessing Sun Resources Online
For product downloads, professional services, patches and support, and additional
developer information, go to the following:

• Download Center
http://wwws.sun.com/software/download/

• Professional Services
http://www.sun.com/service/sunps/sunone/index.html

• Sun Enterprise Services, Solaris Patches, and Support
http://sunsolve.sun.com/

• Developer Information
http://developers.sun.com/prodtech/index.html

The following location contains information about Java ES and its components:

http://www.sun.com/software/javaenterprisesystem/index.html

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in the
product documentation, go to http://www.sun.com/service/contacting.

Related Third-Party Web Site References
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused or alleged to be caused by or in connection with use of or reliance on
any such content, goods, or services that are available on or through such sites or
resources.

http://wwws.sun.com/software/download/
http://www.sun.com/service/sunps/sunone/index.html
http://sunsolve.sun.com/
http://developers.sun.com/prodtech/index.html
http://www.sun.com/software/javaenterprisesystem/index.html
http://www.sun.com/service/contacting

Sun Welcomes Your Comments

Preface 15

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments
and suggestions.

To share your comments, go to http://docs.sun.com and click Send Comments. In
the online form, provide the document title and part number. The part number is a
seven-digit or nine-digit number that can be found on the title page of the book or
at the top of the document.

http://docs.sun.com

Sun Welcomes Your Comments

16 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

17

Chapter 1

Introduction to Deployment Planning

This chapter provides a brief overview of Sun Java™ Enterprise System (Java ES),
discusses deployment planning concepts, and introduces the solution life cycle,
which outlines the various steps for planning and designing enterprise software
systems. This chapter contains the following sections:

• “About Java Enterprise System” on page 17

• “About Deployment Planning” on page 21

About Java Enterprise System
Java Enterprise System is a software infrastructure that provides a complete set of
middleware services to support enterprise applications distributed across a
network or Internet environment. The Java Enterprise System components that
provide the services are installed using a common installer, synchronized on a
common set of shared libraries, and share an integrated user identity and security
management system.

System Services
The main infrastructure services provided by Java Enterprise System components
can be categorized as follows:

• Portal services. These services enable mobile employees, telecommuters,
knowledge workers, business partners, suppliers, and customers to securely
access their personalized corporate portal from anywhere outside the
corporate network through the Internet. These services provide anytime,
anywhere access capabilities to user communities, delivering integration,
aggregation, personalization, security, mobile access, and search.

About Java Enterprise System

18 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

• Communications and collaboration services. These services enable the
secure interchange of information among diverse user communities. Specific
capabilities include messaging, real-time collaboration, and calendar
scheduling in the context of the user's business environment.

• Network identity and security services. These services improve security and
protection of key corporate information assets by ensuring that appropriate
access control policies are enforced across all communities, applications, and
services on a global basis. These services work with a repository for storing
and managing identity profiles, access privileges, and application and network
resource information.

• Web and application services. These services enable distributed components
to communicate with one another and support the development, deployment,
and management of applications for a broad range of servers, clients, and
devices. These services are based on Java 2 Platform, Enterprise Edition
(J2EE™) technology.

• Availability services. These services provide near-continuous availability
and scalability for applications and web services.

The following table lists the preceding service categories and specifies the Java
Enterprise System components that provide services for each category.

Table 1-1 Java Enterprise System Service Categories

Service Category Java Enterprise System Components

Portal services Portal Server
Portal Server Secure Remote Access
Access Manager
Directory Server
Application Server or Web Server

Communication and collaboration
services

Messaging Server
Calendar Server
Instant Messaging
Access Manager
Directory Server
Application Server or Web Server

Network identity services Access Manager
Directory Server
Web Server

Web and application services Application Server
Message Queue
Web Server

About Java Enterprise System

Chapter 1 Introduction to Deployment Planning 19

For more information about Java Enterprise System services, components, and Java
Enterprise System architectural concepts, refer to the Java Enterprise System
Technical Overview, http://docs.sun.com/doc/819-0061.

Built-In Services and Custom-Developed
Services
Deployment solutions based on Java Enterprise System typically fall into two
general categories:

• 80:20 deployments. These solutions consist primarily of services provided by
Java Enterprise System. Java Enterprise System provides about 80% or more of
the services.

• 20:80 deployments. These solutions consist of a significant number of
custom-developed services and third-party applications.

The 80:20 and 20:80 categories are broad generalizations. The exact percentage of
the type of services offered is not important. However, the percentage indicates the
amount of customization a solution contains.

Java Enterprise System is well suited for 80:20 deployments because of the rich set
of services provided by Java ES. For example, it is relatively easy to deploy an
enterprise-wide communications system or an enterprise-wide portal system using
services provided by Java Enterprise System.

For deployments that require custom development, Java Enterprise System
supports the creation and integration of custom-developed services and
applications.

Most of the service categories listed in Table 1-1 on page 18 can be used to deliver
80:20 deployments. For example, communications and collaboration services
provide email, calendar, and instant messaging services to end users, allowing
them to aggregate and personalize the content. Similarly, the network identity and
enterprise portal categories of services allow you to install and configure
enterprise-wide applications without developing or integrating custom services.

Availability services Sun Cluster
Sun Cluster Agents

Table 1-1 Java Enterprise System Service Categories (Continued)

Service Category Java Enterprise System Components

http://docs.sun.com/doc/819-0061

About Java Enterprise System

20 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Enterprise solutions that require custom development of J2EE platform services
can leverage Application Server, Message Queue, or Web Server which are
provided with Java Enterprise System web and application services.

Enterprise deployments can vary greatly in the number of custom-developed
services they require. Because of the interoperability between Java Enterprise
System services, you can create your own suite of services tailored to your
particular enterprise needs.

Migrating to Java Enterprise System
The planning, designing, and implementing of an enterprise solution that uses Java
Enterprise System depends largely on your current deployment strategy. For
enterprises that are planning a first-time deployment solution, the planning,
design, and implementation is driven largely by the specific needs of your
enterprise. However, first-time deployments solutions are not typical. More likely
are solutions that use Java Enterprise System to enhance existing enterprise
solutions or to upgrade from earlier versions of Java Enterprise System
components.

When replacing or upgrading existing solutions, you must take additional
planning, design, and implementation steps to ensure that existing data is
preserved and that software is properly upgraded to current versions. As you
proceed through the analysis and design outlined in this guide, keep in mind the
preparation and planning required to replace and upgrade existing software
systems.

For more information about upgrading to the current version of Java Enterprise
System and strategies for migration from other applications, refer to the Java
Enterprise System Upgrade and Migration Guide.

About Deployment Planning

Chapter 1 Introduction to Deployment Planning 21

About Deployment Planning
Deployment planning is a critical step in the successful implementation of a Java
Enterprise System solution. Each enterprise has its own set of goals, requirements,
and priorities to consider. Successful planning starts with analyzing the goals of an
enterprise and determining the business requirements to meet those goals. The
business requirements must then be converted into technical requirements that can
be used as a basis for designing and implementing a system that can meet the goals
of the enterprise.

Successful deployment planning is the result of careful preparation, analysis, and
design. Errors and missteps that occur anywhere during the planning process can
result in a system that can misfire in many ways. Significant problems can arise
from a poorly planned system. For example, the system could under-perform, be
difficult to maintain, be too expensive to operate, could waste resources, or could
be unable to scale to meet increasing needs.

Solution Life Cycle
The solution life cycle shown in the following figure depicts the steps in the
planning, design, and implementation of an enterprise software solution based on
Java Enterprise System. The life cycle is a useful tool for keeping a deployment
project on track.

About Deployment Planning

22 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Figure 1-1 Solution Life Cycle

Business Ana ysisl
Business requirements
Business constraints

Technical Requirements
Use-case analysis
Usage analysis
Quality of service requirements

Logical Design
Logical architecture
Deployment scenario

Deployment Design
Deployment architecture
Implementation specifications
Implementation plans

Deplo nyment Implementatio
Hardware setup
Installation, upgrade, and migration
Configuration and customization
Development and integration
Prototypes and pilots
Production rollout

Operations
Monitoring
Maintenance
Performance tuning
System enhancements and upgrades

About Deployment Planning

Chapter 1 Introduction to Deployment Planning 23

The life cycle consists of ordered phases. Each phase consists of related tasks that
result in outputs that are carried forward as inputs to subsequent phases. The tasks
within each phase are iterative, requiring thorough analysis and design before
generating the outputs for that phase. The early phases can be iterative also. For
example, during the deployment design phase, you might discover that the
analysis in earlier phases is insufficient and requires more work.

The following sections in this chapter briefly describe each life cycle phase.

Business Analysis Phase
During business analysis, you define the business goals of a deployment project
and state the business requirements that must be met to achieve those goals. When
stating the business requirements, consider any business constraints that might
affect the ability to achieve the business goal. Throughout the life cycle, you
measure the success of your deployment planning, and ultimately your
deployment solution, according to the analysis performed in the business analysis
phase.

During the business analysis phase you create business requirements documents
that you later use as inputs to the technical requirements phase.

For more information on the business analysis phase, refer to Chapter 2, “Business
Analysis” on page 27.

Technical Requirements Phase
The technical requirements phase starts with the business requirements and
business constraints defined during the business analysis phase and translates
them into technical specifications that can be used to subsequently design the
deployment architecture. The technical requirements specify quality of service
(QoS) features, such as performance, availability, security, and others.

During the technical requirements phase, you create documents that contain the
following information:

• Analysis of user tasks and usage patterns

• Use cases that model user interaction with the planned system

• Quality of service requirements derived from the business requirements,
possibly taking into consideration the analysis of user tasks and usage patterns

About Deployment Planning

24 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

The resulting usage analysis, use cases, and QoS requirements documents are
inputs to the logical design phase of the solution life cycle. The usage analysis also
plays a significant role in the deployment design phase.

During the technical requirements phase, you might also specify service level
requirements that are the basis for subsequently creating service level agreements
(SLA). Service level agreements specify the terms under which customer support
must be provided to maintain the system and are generally signed as part of project
approval in the deployment design phase.

For more information on technical requirements, refer to Chapter 3, “Technical
Requirements” on page 35.

Logical Design Phase
During logical design, using use cases from the technical requirements phase as
inputs, you identify the Java Enterprise System components necessary to
implement a solution. You identify components that provide support to those Java
ES components, and also identify any additional custom-developed components
necessary to meet the business requirements. You then map the components within
a logical architecture that shows the interrelationships among the components. The
logical architecture does not specify any hardware required to implement the
solution.

The output of the logical design phase is the logical architecture. The logical
architecture by itself is not sufficient to begin deployment design. You also need
the QoS requirements from the technical requirements phase. The logical
architecture and the QoS requirements from the technical requirements phase form
a deployment scenario. This deployment scenario is the input to the deployment
design phase.

For more information on logical design, refer to Chapter 4, “Logical Design” on
page 49.

Deployment Design Phase
During deployment design, you map the components specified in the logical
architecture to a physical environment, producing a high-level deployment
architecture. You also create an implementation specification, which provides
low-level details specifying how to build the deployment architecture.
Additionally, you create a series of plans and specifications that detail different
aspects of implementing the software solution.

About Deployment Planning

Chapter 1 Introduction to Deployment Planning 25

Project approval occurs during the deployment design phase. During project
approval, the cost of the deployment is assessed. If approved, contracts for
implementation of the deployment are signed, and resources to build the project
are acquired. Often, project approval occurs after the implementation specification
has been detailed. However, approval can also occur upon completion of the
deployment architecture.

The outputs of the deployment design phase include the following:

• Deployment architecture. A high-level design document that represents the
mapping of components to network hardware and software.

• Implementation specifications. Detailed specifications used as blueprints for
building the deployment.

• Implementation plans. A group of plans and specifications that cover
various aspects of implementing an enterprise software solution.
Implementation plans include a migration plan, installation plan, user
management plan, test plan, and others.

For more information about deployment design, refer to Chapter 5, “Deployment
Design” on page 69.

Implementation Phase
During the implementation phase, you work from specifications and plans created
during deployment design to build the deployment architecture and implement
the solution. Depending on the nature of your deployment project, this phase
includes some or all of the following tasks:

• Installing and configuring the hardware infrastructure

• Installing and configuring the software

• Modeling users and resources within an LDAP directory design

• Migrating data from existing directories and databases according to a user
management plan

• Creating and deploying pilot and prototype deployments in a test
environment

• Designing and running functional tests to measure compliance with system
requirements

• Designing and running stress tests to measure performance under peak loads

About Deployment Planning

26 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

• Developing and integrating any custom enterprise applications

• Creating a production deployment, which might be phased into production in
stages

Once a deployment is in production, you proceed to the operations phase of the
solution life cycle.

For more information on the implementation phase, refer to Chapter 6,
“Implementation of a Deployment Design” on page 101.

Operations Phase
The operations phase covers tasks necessary to keep the implementation of the
deployment running smoothly. This phase includes the following:

• Monitoring the deployment to ensure that the system is running according to
plans

• Performance tuning to ensure that the deployed software runs at optimal
levels

• Providing scheduled maintenance for smooth operations and unscheduled
maintenance as the need arises

• Upgrading software and hardware as the need arises

Details about the operations phase are out of scope for this guide.

27

Chapter 2

Business Analysis

During the business analysis phase of the solution life cycle you define business
goals by analyzing a business problem and identifying the business requirements
and business constraints to meet that goal.

This chapter contains the following sections:

• “About Business Analysis” on page 27

• “Defining Business Requirements” on page 28

• “Defining Business Constraints” on page 33

About Business Analysis
Business analysis starts with stating the business goals. You then analyze the
business problems you must solve and identify the business requirements that
must be met to achieve the business goals. Consider also any business constraints
that limit your ability to achieve the goals. The analysis of business requirements
and constraints results in a set of business requirements documents.

You use the resulting set of business requirements documents as a basis for
deriving technical requirements in the technical requirements phase. Throughout
the solution life cycle, you measure the success of your deployment planning and
ultimately the success of your solution according to the analysis performed in the
business analysis phase.

Defining Business Requirements

28 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Defining Business Requirements
No simple formula exists that can identify all business requirements. You
determine the requirements based on collaboration with the stakeholders requiring
a software solution, your own knowledge about the business domain, and applied
creative thinking.

This section provides some factors to consider when defining business
requirements.

Setting Business Goals
Business analysis should articulate the goals of a deployment project. Clear goals
help focus design decisions and prevent the project from going astray. Contrasting
the business goals with current operations also helps determine design decisions.

Scope
Business requirements should state the scope of the deployment project. Make sure
you identify areas that can be solved and avoid open-ended requirements that
make the goal either unclear or unreachable. A poorly defined scope can lead to a
deployment design that insufficiently addresses business needs or that is
extravagant with resources.

Priorities
Prioritize your goals to ensure that the most important aspects of the deployment
can be achieved first. Limited resources might require postponement or
modification of some goals. For example, large and complex deployments
generally require phased implementation of the solution. By stating the priorities,
you provide guidance on decisions that might need to be made for your
deployment design to be accepted by the stakeholders.

Critical Qualities
Identify areas that are critical to success to allow stakeholders and designers to
concentrate on the most important criteria.

Growth Factors
As you set business goals, consider not only the current needs of the organization,
but anticipate how these needs might change and grow over extended periods.
You do not want a solution that is outdated prematurely.

Defining Business Requirements

Chapter 2 Business Analysis 29

Safety Margin
The design of your solution is based on assumptions made during this business
analysis phase. These assumptions might not be accurate for various reasons, such
as insufficient data, errors in judgement, or unanticipated external events. Make
sure you plan for a safety margin not only in your business goals but throughout
your planning so the solution that you design can handle unexpected events.

Understanding User Needs
Do the research necessary to understand the types of users that the solution targets,
their needs, and the expected benefits to them. For example, the following list
provides one way to categorize users:

• Current employees only

• Current and previous employees

• Administrators

• Active customers

• All customers

• Membership site

• General public

• Restricted access

Clearly stating the expected benefits to users helps drive design decisions. For
example, here are some benefits that a solution can provide to users:

• Remote access to company resources

• Enterprise collaboration

• Simplification of daily tasks

• Sharing of resources by remote teams

• Increased productivity

• Self-administration by end-users

Defining Business Requirements

30 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Developing Operational Requirements
Express operational requirements as a set of functional requirements with
straightforward goals. Typically, you create operational specifications for areas
such as:

• End-user functionality

• Reduced response time

• Availability and uptime

• Reduced error rate

• Information archival and retention

Express operational requirements in measurable terms that all stakeholders can
understand. Avoid ambiguous language, such as “adequate end-user response
time.” Examples of operational requirements could be the following:

• Ability to restore services within 10 minutes of an outage

• Ability to replay the last 48 hours of inbound message delivery

• Online transactions completed within 60 seconds during peak periods

• End-user authentication completed within four seconds during peak periods

Supporting Existing Usage Patterns
Express existing usage patterns as clearly measurable goals. The following
questions can help determine such goals.

• How are current services utilized?

• What are the usage patterns (for example, sporadic, frequent, or heavy usage)?

• To which sites do your users typically connect?

• What size messages do users commonly send?

• How many transactions do users typically complete per day or per hour?

Study the users who access your services. Factors such as when users access
existing services and for how long are keys to identifying your goals. If your
organization’s experience cannot provide these patterns, study the experience of
similar organizations.

Defining Business Requirements

Chapter 2 Business Analysis 31

Understanding Corporate Culture
Requirements analysis should take into account various aspects of corporate
culture and politics. Lack of attention to corporate culture can result in a solution
that is not well received or is difficult to implement.

Stakeholders
Identify individuals and organizations that have a vested interest in the success of
the proposed solution. All stakeholders should actively participate in defining the
business goals and requirements. If a stakeholder does not participate or is
uninformed of planned changes, the plans could have significant shortcomings.
Such a stakeholder could even block the implementation of the deployment.

Standards and Policies
Make sure you understand the standards and policies of the organization
requesting the solution. These standards and policies might affect technical aspects
of the design, product selection, and methodology of deployment.

One example is the confidentiality of personnel data that might be owned and
controlled by the human resources organization or unit managers. Another
example would be company procedures for change management. Change
management policies could dramatically affect acceptance of a solution and
influence the implementation methodology and time table.

Regulatory Requirements
Regulatory requirements vary greatly, depending on the nature of the business.
Research and understand any regulatory requirements that might affect the
deployment. Many companies and government agencies require compliance with
accessibility standards. When deploying global solutions, consider foreign laws
and regulations. For example, many European countries have strict controls on
storing personal information.

Security
Some goals that you identify might have implicit security issues that should be
emphasized. Call out specific security goals essential to the solution. For example:

• Authorized access to proprietary information

• Role-based access to confidential information

• Secure communication between remote locations

• Invocation of remote applications on local systems

Defining Business Requirements

32 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

• Secure transactions with third-party businesses and organizations

• Enforcement of security policies

Site Distribution
The geographic distribution of sites and the bandwidth between the sites can affect
design decisions. Additionally, some sites might require local management.

Such geographic considerations can raise the project’s training costs, complexity,
and so forth. Clearly state requirements resulting from geographic distribution of
sites. Highlight which sites are critical to the design’s success.

Using an Incremental Approach
Often, you view a software solution as a whole, comprehensive system. However,
you often achieve deployment of the complete system incrementally by taking
measured steps.

When adopting an incremental approach, you typically design a road map that
provides milestones leading to the ultimate, comprehensive solution. Additionally,
you might have to consider short-term plans for aspects of the comprehensive
solution that are deferred for later implementation.

The incremental approach provides these advantages:

• You can adapt to requirement changes due to business growth.

• You can leverage the existing infrastructure as you transition to your ultimate
deployment implementation.

• You can accommodate capital expenditure requirements.

• You can leverage a small supply of human resources.

• You can allow for partnership possibilities.

Understanding Service Level Agreements
A service level agreement (SLA) specifies minimum performance requirements
and, upon failure to meet those requirements, the level and extent of customer
support that must be provided. A service level agreement is based on business
requirements defined during business analysis, which are later specified as service
level requirements during the technical requirements phase. The SLA is signed
during project approval, which occurs in the deployment design phase.

Defining Business Constraints

Chapter 2 Business Analysis 33

You should develop an SLA around areas such as uptime, response time, message
delivery time, and disaster recovery. An SLA should account for items such as an
overview of the system, the roles and responsibilities of support organizations,
how to measure service levels, change requests, and so forth. Identifying your
organization’s expectations around system availability is key in determining the
scope of an SLA.

Defining Business Constraints
Business constraints play a significant role in determining the nature of a
deployment project. One key to successful deployment design is finding the
optimal way to meet business requirements within known business constraints.
The business constraints can be fiscal limitations, physical limitations (for example,
network capacity), time limitations (for example, completion before significant
events such as the next annual meeting), or any other limitation you anticipate as a
factor that affects the achievement of the business goal.

This section describes several factors to consider when defining business
constraints.

Migration Issues
Typically, a deployment project replaces or supplements existing software
infrastructure and data. Any new solution must be able to migrate data and
procedures from the existing infrastructure to the new solution, often retaining
interoperability with existing applications. An analysis of the current infrastructure
is necessary to determine the extent migration issues play into the proposed
solution.

Schedule Mandates
The schedule for implementation of a solution can affect design decisions.
Aggressive schedules might result in scaling back of goals, changing priorities, or
adopting an incremental solution approach. Within a schedule, significant
milestones might exist that deserve consideration as well. Milestones can be set by
internal events such as scheduled service rollouts or external events such as the
opening date of a school semester.

Defining Business Constraints

34 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Budget Limitations
Most deployment projects must adhere to a budget. Considering the cost of
building the proposed solution and the resources required to maintain the solution
over a specific lifetime including the following:

• Existing hardware and network infrastructure. Reliance on existing
infrastructure can affect the design of a system.

• Development resources needed to implement the solution. Limited
development resources, including hardware, software, and human resources,
might suggest incremental deployment. You might have to reuse the same
resources or development teams for each incremental phase you implement.

• Maintenance, administration, and support. Analyze the resources available
to administer, maintain, and support users on the system. Limited resources
might impact design decisions.

Cost of Ownership
In addition to maintenance, administration, and support, analyze other factors that
affect the cost of ownership. Hardware and software upgrades might be necessary,
the impact of the solution on the power grid, telecommunications cost, and other
factors influence out-of-pocket expenses. Service level agreements specifying
availability levels for the solution also affect the cost of ownership by requiring
increased redundancy.

The implementation of a solution should provide a return on the investment into
the solution. Analysis of return on investment typically involves measuring the
financial benefits gained from the expenditure of capital.

Estimating the financial benefits of a solution involves a careful analysis of the
goals to be achieved in comparison with alternate ways of achieving those goals
and with the cost of doing nothing at all.

35

Chapter 3

Technical Requirements

During the technical requirements phase of the solution life cycle you perform a
usage analysis, identify use cases, and determine quality of service requirements
for the proposed deployment solution.

This chapter contains the following sections:

• “About Technical Requirements” on page 35

• “Usage Analysis” on page 36

• “Use Cases” on page 38

• “Quality of Service Requirements” on page 38

• “Service Level Requirements” on page 47

About Technical Requirements
Technical requirements analysis begins with the business requirements documents
created during the business analysis phase of the solution life cycle. Using the
business analysis as a basis, you do the following:

• Perform a usage analysis to aid in determining expected load conditions.

• Create use cases that model typical user interaction with the system.

• Create a set of quality of service requirements (QoS) that define how a
deployed solution must perform in areas such as response time, availability,
security, and others.

The quality of service requirements are derived from the usage analysis and the
use cases, keeping in mind business requirements and constraints previously
identified.

Usage Analysis

36 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

The quality of service requirements are later paired with logical architectures in the
logical design phase to form a deployment scenario. The deployment scenario is
the main input to the deployment design phase of the solution life cycle.

As with business analysis, no simple formula for technical requirements analysis
exists that generates the usage analysis, use cases, and system requirements.
Technical requirements analysis requires an understanding of the business
domain, business objectives, and the underlying system technology.

Usage Analysis
Usage analysis involves identifying the various users of the solution you are
designing and determining the usage patterns for those users. The information you
gather provides a basis for estimating the load conditions on the system. Usage
analysis information is also useful when assigning weights to use cases, as
described in “Use Cases” on page 38.

During usage analysis, you should interview users whenever possible, research
existing data on usage patterns, and interview builders and administrators of
previous systems. The following table lists factors to consider when performing a
usage analysis.

Table 3-1 Usage Analysis Factors

Topic Description

Number and type of users Identify how many users your solution must support, and categorize
those users, if necessary.

For example:

• A Business to Customer (B2C) solution might have a large
number of visitors, but only a small number of users who
register and engage in business transactions.

• A Business to Employee (B2E) solution typically
accommodates each employee, although some employees
might need access from outside the corporate network.

In a B2E solution, managers might need authorization to areas
that regular employees cannot access.

Active and inactive users Identify the usage patterns and ratios of active and inactive users.

Active users are those users logged into the system and interact
with the system’s services. Inactive users can be users who are not
logged in, users who log in but do not interact with the system’s
components, or users who are in the database but never log in.

Usage Analysis

Chapter 3 Technical Requirements 37

Administrative users Identify users that access the deployed system to monitor, update,
and support the deployment.

Determine any specific administrative usage patterns that might
affect technical requirements (for example, administration of the
deployment from outside the firewall).

Usage patterns Identify how various types of users access the system and provide
targets for expected usage.

For example:

• Are there peak times when usage spikes?

• What are normal business hours?

• Are users distributed globally?

• What is the expected duration of user connectivity?

User growth Determine if the size of the user base is fixed or if the deployment
expects growth in the number of users.

If the user base is expected to grow, try to create reasonable
projections of the growth.

User transactions Identify the type of user transactions that must be supported. These
user transactions can be translated into use cases.

For example:

• What tasks do users perform?

• When users log in, do they remain logged in? Do they typically
perform a few tasks and log out?

• Will significant collaboration between users require common
calendars, web-conferences, and deployment of internal web
pages?

User studies and statistical
data

Use pre-existing user studies and other sources to determine
patterns of user behavior.

Often, enterprises or industry organizations have user research
studies from which you can extract useful information about users.
Log files for existing applications might contain statistical data
useful in making estimates for a system.

Table 3-1 Usage Analysis Factors (Continued)

Topic Description

Use Cases

38 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Use Cases
Use cases model typical user interaction with the solution that you are designing,
and describe the complete flow of an operation from the perspective of an end user.
Prioritizing the design around a complete set of use cases ensures a continual focus
on the delivery of expected functionality. Use cases are the principal input to
logical design.

Assign relative weights to use cases, with the highest weighted use cases
representing the most common user tasks. The weighting of use cases allows you
to focus your design decisions on the system services that are used the most.

Use cases can be described at two levels.

• Use-case reports. Descriptions of individual use cases, including primary and
alternative flows of events.

• Use-case diagrams. Diagrams depicting the relationships among actors and
the use cases, presenting a more formal organization of the flow of events.
Use-case diagrams are useful to model long or complex use cases. Typically,
you use Unified Modeling Language (UML) standards to draw use case
diagrams.

Quality of Service Requirements
Quality of service (QoS) requirements are technical specifications that specify the
system quality of features such as performance, availability, scalability, and
serviceability. QoS requirements are driven by business needs specified in the
business requirements. For example, if services must be available 24 hours a day
throughout the year, the availability requirement must address this business
requirement.

The following table lists the system qualities that typically form a basis for QoS
requirements.

Quality of Service Requirements

Chapter 3 Technical Requirements 39

System qualities are closely interrelated. Requirements for one system quality
might affect the requirements and design for other system qualities. For example,
higher levels of security might affect performance, which in turn might affect
availability. Adding additional servers to address availability issues affect
serviceability (maintenance costs).

Understanding how system qualities are interrelated and the trade-offs that must
be made is the key to designing a system that successfully satisfies both business
requirements and business constraints.

The following sections describe further the system qualities that impact
deployment design, providing guidance on factors to consider when formulating
QoS requirements. A section on service level requirements, which form the basis of
service level agreements, is also included.

Table 3-2 System Qualities Affecting QoS Requirements

System Quality Description

Performance The measurement of response time and throughput with respect to
user load conditions.

Availability A measure of how often a system’s resources and services are
accessible to end users, often expressed as the uptime of a
system.

Scalability The ability to add capacity (and users) to a deployed system over
time. Scalability typically involves adding resources to the system
but should not require changes to the deployment architecture.

Security A complex combination of factors that describe the integrity of a
system and its users. Security includes authentication and
authorization of users, security of data, and secure access to a
deployed system.

Latent capacity The ability of a system to handle unusual peak loads without
additional resources. Latent capacity is a factor in availability,
performance, and scalability qualities.

Serviceability The ease by which a deployed system can be maintained, including
monitoring the system, repairing problems that arise, and upgrading
hardware and software components.

Quality of Service Requirements

40 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Performance
Business requirements typically express performance in nontechnical terms that
specify response time. For example, a business requirement for web-based access
might state the following:

Users expect a reasonable response time upon login, typically no greater than
four seconds.

Starting with this business requirement, examine all use cases to determine how to
express this requirement at a system level. In some cases, you might want to
include user load conditions determined during usage analysis. Express the
performance requirement for each use case in terms of response time under
specified load conditions or response time plus throughput. You might also specify
the allowable number of errors.

Here are two examples of how to specify system requirements for performance:

Response for web page refresh must be no greater than four seconds
throughout the day, sampled at 15-minute intervals, with fewer than 3.4 errors
per million transactions.

During defined peak periods, the system must allow 25 secure logins per
second with response time no greater than 12 seconds for any user and with
fewer than 3.4 errors per million transactions.

Performance requirements are closely related to availability requirements (how
failover impacts performance) and latent capacity (how much capacity is available
to handle unusual peak loads).

Availability
Availability is a way to specify the uptime of a system and is typically measured as
the percentage of time that the system is accessible to users. The time that the
system is not accessible (downtime) can be due to the failure of hardware,
software, the network, or any other factor (such as loss of power) that causes the
system to be down. Scheduled downtime for service (maintenance and upgrades)
is not considered downtime. A basic equation to calculate system availability in
terms of percentage of uptime is:

Availability = uptime / (uptime + downtime) * 100%

Quality of Service Requirements

Chapter 3 Technical Requirements 41

Typically you measure availability by the number of “nines” you can achieve. For
example, 99% availability is two nines. Specifying additional nines significantly
affects the deployment design. The following table quantifies the unscheduled
downtime for additional nines of availability to a system that is running 24x7
year-round (a total of 8,760 hours).

Fault-Tolerant Systems
Availability requirements of four or five nines typically require a system that is
fault-tolerant. A fault-tolerant system must be able to continue service even during
a hardware or software failure. Typically, fault tolerance is achieved by
redundancy in both hardware (such as CPUs, memory, and network devices) and
in software providing key services.

A single point of failure is a hardware or software component that is part of a
critical path but is not backed up by redundant components. The failure of this
component results in the loss of service for the system. When designing a
fault-tolerant system, you must identify and eliminate potential single points of
failure.

Fault-tolerant systems can be expensive to implement and maintain. Make sure
you understand the nature of the business requirements for availability and
consider the strategies and costs of availability solutions that meet those
requirements.

Prioritizing Service Availability
From a user perspective, availability often applies more on a service-by-service
basis rather than on the availability of the entire system. For example, the
unavailability of instant messaging services usually has little or no impact on the
availability of other services. However, the unavailability of services upon which
many other services depend (such as Directory Server) has a much wider impact.
Higher availability specifications should clearly reference specific use cases and
usage analysis that require the increased availability.

Table 3-3 Unscheduled Downtime for a System Running Year-Round (8,760 hours)

Number of Nines Percentage Available Unscheduled Downtime

2 99% 88 hours

3 99.9% 9 hours

4 99.99% 45 minutes

5 99.999% 5 minutes

Quality of Service Requirements

42 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

It is helpful to list availability needs according to an ordered set of priorities. The
following table prioritizes the availability of different types of services.

Loss of Services
Availability design includes consideration for what happens when availability is
compromised or when a component is lost. This includes considering whether
users connected must restart sessions and how a failure in one area affects other
areas of a system. QoS requirements should consider these scenarios and specify
how the deployment reacts to these situations.

Scalability
Scalability is the ability to add capacity to a system so the system can support
additional load from existing users or from an increased user-base. Scalability
usually requires the addition of resources, but should not require changes in the
design of the deployment architecture or loss of service due to the time required to
add additional resources.

As with availability, scalability applies more to individual services provided by a
system rather than to the entire system. However, for services upon which other
services depend, such as Directory Server, scalability can have system-wide
impact.

Table 3-4 Availability of Services by Priority

Priority Service Type Description

1 Mission critical Services that must be available at all times. For example,
database services (such as LDAP directories) to applications.

2 Must be
available

Services that must be available, but can be available at reduced
performance. For example, messaging service availability might
not be critical in some business environments.

3 Can be
postponed

Services that must be available within a given time period. For
example, calendar services availability might not be essential in
some business environments.

4 Optional Services that can be postponed indefinitely. For example, in some
environments instant messaging services can be considered
useful but not necessary.

Quality of Service Requirements

Chapter 3 Technical Requirements 43

You do not necessarily specify scalability requirements with QoS requirements
unless projected growth of the deployment is clearly stated in the business
requirements. However, during the deployment design phase of the solution life
cycle, the deployment architecture should always add some tolerance for scaling
scaling the system even if no QoS requirements for scalability have been specified.

Estimating Growth
Estimating the growth of a system to determine scalability requirements involves
working with projections, estimates, and guesses that might not be fulfilled. Three
keys to developing requirements for a scalable system are the following.

• High performance design strategy. During the specification of performance
requirements, include latent capacity to handle loads that might increase over
time. Also, maximize availability within budget constraints. This strategy
allows you to absorb growth and better schedule milestones for scaling the
system.

• Incremental deployment. Incremental deployment helps with scheduling the
addition of resources. Specify clear milestones for scaling the system.
Milestones are typically load-based requirements coordinated with specific
dates for assessing scalability.

• Extensive performance monitoring. Monitoring performance helps
determine when to add resources to the system. Requirements for monitoring
performance can provide guidance to operators and administrators
responsible for maintenance and upgrades.

The following table lists factors to consider for determining scalability
requirements.

Table 3-5 Scalability Factors

Topic Description

Analyze usage patterns Understand the usage patterns of the current (or projected) user
base by studying existing data. In the absence of current data,
analyze industry data or market estimates.

Design for reasonable
maximum scale

Design with a goal towards the maximum required scale for both
known demand and possible demand.

Often, this is a 24-month estimate based on performance
evaluation of the existing user load and reasonable expectations of
future load. The time period for the estimate depends largely on the
reliability of projections.

Quality of Service Requirements

44 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Security Requirements
Security is a complex topic that involves all levels of a deployed system.
Developing security requirements revolves around identifying the security threats
and developing a strategy to combat them. This security analysis includes the
following steps:

1. Identifying critical assets

2. Identifying threats to those assets

3. Identifying vulnerabilities that expose the threats that create risk to the
organization

4. Developing a security plan that mitigates the risk to the organization

The analysis of security requirements should involve a cross-section of
stakeholders from your organization, including managers, business analysts, and
information technology personnel. Often, an organization appoints a security
architect to take the lead in the design and implementation of security measures.

The following section describes some of the areas that are covered in security
planning.

Set appropriate milestones Implement the deployment design in increments to meet short-term
requirements with a buffer to allow for unexpected growth. Set
milestones for adding system resources.

For example:

• Capital acquisition (such as quarterly or yearly)

• Lead time to purchase hardware and software (such as one to
six weeks)

• Buffer (10% to 100%, depending on growth expectations)

Incorporate emerging
technology

Understand emerging technology, such as faster processors and
Web servers, and how this technology can affect the performance
of the underlying architecture.

Table 3-5 Scalability Factors (Continued)

Topic Description

Quality of Service Requirements

Chapter 3 Technical Requirements 45

Elements of a Security Plan
Planning for security of a system is part of deployment design that is essential to
successful implementation. Consider the following when planning for security:

• Physical security. Physical security is the physical access to routers, servers,
server rooms, data centers, and other parts of your infrastructure. Other
security measures become compromised if an unauthorized person can walk
into a server room and unplug routers.

• Network security. Network security is access to your network through
firewalls, secure access zones, access control lists, and port access. For network
security you develop strategies for unauthorized access, tampering, and denial
of service (DoS) attacks.

• Application and application data security. Application and application data
security covers access to user accounts, corporate data, and enterprise
applications through authentication and authorization procedures and
policies. This area includes defining the following policies:

❍ Password policies

❍ Access rights, such as delegated administration to users as opposed to
administrator access

❍ Account inactivation

❍ Access control

❍ Encryption policies, including secure transport of data and using
certificates to sign data

• Personal security practices. An organization-wide security policy defines the
working environment and practices with which all users must comply to
ensure other security measures perform as designed. Typically, you develop a
handbook or manual on security and also offer training to users on security
practices. For an effective overall security policy, sound security practices must
become part of the organization culture.

Quality of Service Requirements

46 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Latent Capacity
Latent capacity is the ability of a deployment to handle unusual peak load usage
without the addition of resources. Typically, you do not specify QoS requirements
directly around latent capacity, but this system quality is a factor in the availability,
performance, and scalability of the system.

Serviceability Requirements
Serviceability is the ease with which a deployed system can be maintained,
including tasks such as monitoring the system, repairing problems that arise,
adding and removing users from the system, and upgrading hardware and
software components.

When planning requirements for serviceability, consider the topics listed in the
following table.

Table 3-6 Topics for Serviceability Requirements

Topic Description

Downtime planning Identify maintenance tasks that require specific services to be
unavailable or partially unavailable.

Some maintenance and upgrades can occur seamlessly to users,
while others require interruption of service. When possible,
schedule with users those maintenance activities that require
downtime, allowing the users to plan for the downtime.

Usage patterns Identify the usage patterns to determine the best time to schedule
maintenance.

For example, on systems where peak usage is during normal
business hours, schedule maintenance in the evening or
weekends. For geographically distributed systems, identifying these
times can be more challenging.

Service Level Requirements

Chapter 3 Technical Requirements 47

Service Level Requirements
A service level agreement (SLA) specifies minimum performance requirements
and, upon failure to meet those requirements, the level and extent of customer
support that must be provided. Service level requirements are system
requirements that specify the conditions upon which the SLA is based.

As with QoS requirements, service level requirements derive from business
requirements and represent a guarantee about the overall system quality that the
deployed system must meet. Because the service level agreement is considered to
be a contract, specification of service level requirements should be unambiguous.
The service level requirements define exactly under what conditions the
requirements are tested and precisely what constitutes failure to meet the
requirements.

Availability Serviceability is often a reflection of your availability design.
Strategies for minimizing downtime for maintenance and upgrades
revolve around your availability strategy. Systems that require a
high degree of availability have limited opportunities for
maintenance, upgrades, and repair.

Strategies for handling availability requirements affect how you
handle maintenance and upgrades. For example, on systems that
are distributed geographically, servicing can depend on the ability
to route workloads to remote servers during maintenance periods.

Also, systems requiring a high degree of availability might require
more sophisticated solutions that automate restarting of systems
with little human intervention.

Diagnostics and monitoring You can improve the stability of a system by regularly running
diagnostic and monitoring tools to identify problem areas.

Regular monitoring of a system can avoid problems before they
occur, help balance workloads according to availability strategies,
and improve planning for maintenance and downtime.

Table 3-6 Topics for Serviceability Requirements (Continued)

Topic Description

Service Level Requirements

48 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

49

Chapter 4

Logical Design

During the logical design phase of the solution life cycle, you design a logical
architecture showing the interrelationships of the logical components of the
solution. The logical architecture and the usage analysis from the technical
requirements phase form a deployment scenario, which is the input to the
deployment design phase.

This chapter contains the following sections:

• “About Logical Architectures” on page 49

• “Designing a Logical Architecture” on page 51

• “Example Logical Architectures” on page 58

• “Access Zones” on page 66

• “Deployment Scenario” on page 67

About Logical Architectures
A logical architecture identifies the software components needed to implement a
solution, showing the interrelationships among the components. The logical
architecture and the quality of service requirements determined during the
technical requirements phase form a deployment scenario. The deployment
scenario is the basis for designing the deployment architecture, which occurs in the
next phase, deployment design.

When developing a logical architecture you need to identify not only the
components that provide services to users, but also other components that provide
necessary middleware and platform services. Infrastructure service dependencies
and logical tiers provide two complementary ways of performing this analysis.

About Logical Architectures

50 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Infrastructure service dependencies and logical tiers are two of the three
dimensions of the solution architecture upon which Sun Java™ Enterprise System
is based. The three dimensions are listed below and are also represented in
Figure 4-1 on page 50.

• Infrastructure service dependencies. Interacting software components that
provide enterprise services. The software components require an underlying
set of infrastructure services that allows the distributed components to
communicate with each other and to interoperate.

• Logical tiers. A logical organization of software components into tiers that
represent the logical and physical independence of software components,
based on the nature of the services they provide.

• Quality of service. System service qualities, such as performance, availability,
scalability, and others that represent particular aspects of a software solution’s
design and operation.

Figure 4-1 Three Dimensions of the Java Enterprise System Solution Architecture

NOTE For more information on Java Enterprise System architecture
concepts, refer to the “Java Enterprise System Architecture” chapter
in the Java Enterprise System Technical Overview,
http://docs.sun.com/doc/819-0061.

Logical Tiers

Quality
 of S

ervice

Infrastructure
 Service
 Dependencies

P
erform

ance
A

vailability
S

ecurity
S

calability
S

erviceability

Busin
ess

 Servi
ce

Clie
nt

Data
Prese

ntatio
n

Platform Services

Middleware Services

Application Services

http://docs.sun.com/doc/819-0061

Designing a Logical Architecture

Chapter 4 Logical Design 51

A logical architecture depicts infrastructure service levels by showing the
necessary components and their dependencies. A logical architecture also
distributes the components among logical tiers that represent presentation,
business, and data services that can be ultimately accessed by a client tier. Quality
of service requirements are not modeled in the logical architecture but are paired
with the logical architecture in a deployment scenario.

Designing a Logical Architecture
When you design a logical architecture, use the use cases identified during the
technical requirements phase to determine the Java Enterprise System components
that provide the services necessary for the solution. You must also identify any
components providing services to the components you initially identify.

You place the Java Enterprise System components within the context of a
multitiered architecture according to the type of services that they provide.
Understanding the components as part of a multitiered architecture helps you later
determine how to distribute the services provided by the components and also
helps determine a strategy for implementing quality of service (such as scalability,
availability, and others.)

Additionally, you can provide another view of the logical components that places
them within secure access zones. The section “Access Zones” on page 66 provides
an example of secure access zones.

Java Enterprise System Components
Java Enterprise System consists of interacting software components providing
enterprise services that you can use to build your enterprise solution. The
following figure shows the key software components provided with Java
Enterprise System. The Java Enterprise System Technical Overview,
http://docs.sun.com/doc/819-0061, provides additional information on Java
Enterprise System components and the services they provide.

http://docs.sun.com/doc/819-0061

Designing a Logical Architecture

52 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Figure 4-2 Java Enterprise System Components

Component Dependencies
When identifying Java Enterprise System components for a logical architecture,
you need to also identify supporting components. For example, if you identify
Messaging Server as a necessary component to a logical architecture, then your
logical architecture must also include Directory Server and possibly Access
Manager. Messaging Server depends on Directory Server for directory services and
Access Manager for solutions requiring single sign-on.

The following table lists dependencies of Java Enterprise System components.
Refer to Figure 4-3 on page 54 for a visual representation of dependencies among
key components. When designing a logical architecture, use this table and
accompanying figure to determine dependent components in your design.

Persistence

Messaging

Runtime

Application
Server

Web
Server

Message
Queue

Middleware
Services

Directory
Server

Security and Policy
Access

Manager

User Collaboration

Integration

Instant
Messaging

Calendar
Server

Messaging
Server

Application
Services

Portal
Server

Operating System Platform

Network Transport

Platform
Services

HP-UXWindowsLinuxSolaris

Designing a Logical Architecture

Chapter 4 Logical Design 53

Table 4-1 Java Enterprise System Component Dependencies
Java Enterprise System Component Depends On

Application Server Message Queue
Directory Server (optional)

Calendar Server Messaging Server (for email notification service)
Access Manager (for single sign-on)
Web Server (for web interface)
Directory Server

Communications Express Access Manager (for single sign-on)
Calendar Server
Messaging Server
Instant Messaging
Web Server (for web interface)
Directory Server

Directory Proxy Server Directory Server

Directory Server None

Access Manager Application Server or Web Server
Directory Server

Instant Messaging Access Manager (for single sign-on)
Directory Server

Message Queue Directory Server (optional)

Messaging Server Access Manager (for single sign-on)
Web Server (for web interface)
Directory Server

Portal Server If configured to use Portal Server Channels:

Calendar Server
Messaging Server
Instant Messaging

Access Manager (for single sign-on)
Application Server or Web Server
Directory Server

Portal Server Secure Remote Access Portal Server

Web Server Access Manager (optional, for access control

NOTE The dependencies among Java Enterprise System components listed
in Table 4-1 does not list all component dependencies. Table 4-1
does not list dependencies that you must consider when planning
for installation. For a complete list of Java Enterprise System
dependencies, refer to the Java Enterprise System Installation Guide.,
http://docs.sun.com/doc/819-0056.

http://docs.sun.com/doc/819-0056.

Designing a Logical Architecture

54 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Figure 4-3 Java Enterprise System Component Dependencies

Messaging Server Dependencies

Messaging
Server

Directory
Server

Access
Manager

For single sign-on

Calendar Server Dependencies

Calendar
Server

Access
Manager

Messaging
Server

Directory
Server

For single sign-on

For email
notification

Portal Server Dependencies*

Instant
Messaging

Portal
Server

Messaging
Server

Access
Manager

Calendar
Server

*Configured to use Portal Server channels for
Calendar, Messaging, and Instant Messaging

Directory
Server

For single sign-on

Access Manager Dependencies

Access
Manager

Directory
Server

Instant Messaging Dependencies

Instant
Messaging

Directory
Server

Directory
Server

Access
Manager

For single sign-on

Communications Express Dependencies

Directory
Server

Communications
Express

Instant
Messaging

Messaging
Server

Calendar
Server

Access
Manager

For single sign-on

Designing a Logical Architecture

Chapter 4 Logical Design 55

Web Container Support
The previous section, “Component Dependencies,” does not account for the web
container in which Portal Server and Access Manager run. This web container can
be provided by Application Server, Web Server, or a third-party product. When
designing a logical architecture that includes Portal Server or Access Manager be
sure to account for the web container required for these components.

Logically Distinct Services Provided by Messaging Server
The Java Enterprise System Messaging Server can be configured to provide
separate instances that provide the following logically distinct services:

• Message Transfer Agent

• Message Multiplexor

• Message Express Multiplexor

• Message Store

These various configurations of Messaging Server provide functionality that can be
deployed on separate physical servers and can be represented in different tiers of a
logical architecture. Because these configurations for Messaging Server represent
logically distinct services in separate tiers, consider them as logically distinct
components when designing a logical architecture. The section “Example Logical
Architectures” on page 58 provides an example of logically distinct components.

The following table describes the logically distinct configurations of Messaging
Server.

Table 4-2 Messaging Server Configurations

Subcomponent Description

Message Transfer Agent
(MTA)

Supports the sending of email by handling SMTP connections,
routing emails, and delivering messages to the proper message
stores. The MTA components can be configured to support email
sent from outside the enterprise (inbound) or sent from within the
enterprise (outbound).

Message Store (STR) Provides for the retrieval and storage of email messages.

Message Multiplexor
(MMP)

Supports the retrieval of email by accessing the message store for
email clients, using either IMAP or POP protocols.

Messenger Express
Multiplexor (MEM)

Supports the retrieval of email by accessing the message store on
behalf of web- based (HTTP) clients.

Designing a Logical Architecture

56 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Access Components
Java Enterprise System also contains components that provide access to system
services, often from outside an enterprise firewall. Some configurations of
Messaging Server can also provide network access, such as Messaging Server
configured for message multiplexor. The following table describes Java Enterprise
System components that provide remote access to system services.

Components providing remote access are generally deployed in secures access
zones, as illustrated by the example in the section “Access Zones” on page 66.

Multitiered Architecture Design
Java Enterprise System is well-suited for multitiered architecture design, where
services are placed in tiers according to the functionality they provide. Each service
is logically independent and can be accessed by services in either the same tier or a
different tier. The following figure depicts a multitiered architecture model for
enterprise applications, illustrating the client, presentation, business service, and
data tiers.

Table 4-3 Java Enterprise System Components Providing Remote Access

Component Description

Directory Proxy Server Provides enhanced directory access, schema compatibility, routing,
and load balancing for multiple Directory Server instances.

Portal Server, Portal Server
Secure Remote Access

Provides secure Internet access from outside a corporate firewall to
Portal Server content and services, including internal portals and
Internet applications.

Portal Server, Portal Server
Mobile Access

Provides wireless access from mobile devices and voice access to
Portal Server.

Messaging Server
Message Multiplexor
(MMP)

Supports the retrieval of email by accessing the message store on
behalf of web-based (HTTP) clients.

Designing a Logical Architecture

Chapter 4 Logical Design 57

Figure 4-4 Multitiered Architecture Model

The following table describes the logical tiers depicted in Figure 4-4.

Table 4-4 Logical Tiers in a Multitiered Architecture

Tier Description

Client tier Contains client applications that present information to end users.
For Java Enterprise System, these applications are typically mail
clients, web browsers, or mobile access clients.

Presentation tier Provides services that display data to end users, allowing users to
process and manipulate the presentation. For example, a web mail
client or Portal Server component allows users to modify the
presentation of information they receive.

Business service tier Provides back-end services that typically retrieve data from the
data tier to provide to other services within the presentation or
business service tiers or directly to clients in the client tier. For
example, Access Manager provides identity services to other Java
Enterprise System components.

Data tier Provides database services accessed by services within the
presentation tier or business service tier. For example, Directory
Server provides LDAP directory access to other services.

Presentation TierClient Tier Business Service Tier Data Tier

Service

Service

Service

DB
ServicesService

Service
Directory
Services

Example Logical Architectures

58 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Multitiered architecture design provides several advantages. During the
deployment design phase, the placement of services according to functionality in a
multitiered architecture helps you determine how to distribute services in your
network. You also can see how components within the architecture access services
of other components. This visualization helps you plan for availability, scalability,
security, and other quality of service solutions.

Example Logical Architectures
This section provides some examples of logical architectures for Java Enterprise
System solutions. These examples show how you place logical components within
the appropriate tiers of a multitiered architecture and then analyze the
relationships between the components by studying the use cases. Use the logical
architectures examples in this section as a basis for understanding logical
architecture design in Java Enterprise System solutions.

The first example is a basic Messaging Server solution that illustrates how the
logically distinct components of Messaging Server interact with other components.
The second example shows a logical architecture for an identity-based deployment
solution that might be appropriate for a medium-sized enterprise of about 1,000 to
5,000 employees.

Messaging Server Example
The following figure shows a basic logical architecture for a deployment of
Messaging Server. This logical architecture shows only the logically distinct
components required for Messaging Server. Later figures illustrate the
relationships among these components.

NOTE Typically, a deployment of Messaging Server is part of an enterprise
solution that includes other Java Enterprise System components, as
illustrated in “Identity-Based Communications Example” on
page 62.

Example Logical Architectures

Chapter 4 Logical Design 59

Figure 4-5 Logical Architecture for Messaging Server Deployment

The following table describes the components depicted in Figure 4-5.

The logical architecture does not specify replication of services for the Messaging
Server components. For example, enterprise deployments typically create separate
inbound and outbound MTA instances but Figure 4-5 on page 59 shows only one
MTA component. The replication of logical components into multiple instances is a
design decision that you make during the deployment design phase.

Table 4-5 Components in Messaging Server Logical Architecture

Component Description

Email clients Client applications for reading and sending email.

Messaging Server MTA Messaging Server configured as a message transfer agent (MTA)
to receive, route, transport, and deliver email messages.

Messaging Server MMP Messaging Server configured as a message multiplexor (MMP) to
route connections to appropriate message stores for retrieval and
storage. MMP accesses Directory Server to look up directory
information to determine the proper message store.

Messaging Server STR Messaging Server configured as a message store for retrieval and
storage of email messages.

Directory Server Provides access to LDAP directory data.

Presentation TierClient Tier Business Services Tier

Messaging
Server
MTA

Messging
Server
MMP

Data Tier

Comms
Express

Messaging
Server
STR

DBMS

Directory
Server

Browser-
Based
Clients

E-mail
Clients

LDAP

Example Logical Architectures

60 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Messaging Server Use Cases
Use cases help identify the relationships among the logical components in an
architecture. By mapping the interactions between the components according to
the use cases, you get a visual picture of component interaction that is helpful in
deployment design.

Typically, you analyze each use case to determine the interaction of components
prior to deployment design. The following three use cases are typical for
Messaging Server and show interactions among the logical components.

Use Case 1: User Logs in Successfully to Messaging Server
1. Email client sends login information to Messaging Server Multiplexor (MMP)

2. MMP requests verification of user ID and password from Directory Server.

3. Directory Server returns verification to MMP.

4. MMP requests message list from Messaging Server Message Store (STR).

5. STR requests user’s LDAP record from Directory Server.

6. Directory Server returns user’s LDAP record to STR.

7. STR returns message list to MMP.

8. MMP forwards message list to email client.

Figure 4-6 Messaging Server Logical Architecture Showing Use Case 1

8

Data Tier

6

5

4

Business Services Tier

3

1

Presentation TierClient Tier

Messaging
Server
MTA

Messging
Server
MMP

Comms
Express

Messaging
Server
STR

DBMS

Directory
Server

Browser-
Based
Clients

E-mail
Clients

LDAP

2

7

Example Logical Architectures

Chapter 4 Logical Design 61

Use Case 2: Logged-In User Reads and Deletes Mail
1. Email client requests message to read from Messaging Server Multiplexor

(MMP).

2. MMP requests message from Messaging Server Message Store (STR).

3. STR returns message to MMP.

4. MMP forward message to email client.

5. Email client sends deletes message action to MMP.

6. MMP forwards delete message action to STR.

7. STR deletes message from database and sends confirmation to MMP.

8. MMP forwards delete confirmation to email client.

Figure 4-7 Messaging Server Logical Architecture Showing Use Case 2

Use Case 3: Logged-In User Sends Email Message
1. Email client sends message composed in client to Messaging Server Message

Transfer Agent (MTA).

2. MTA requests verification of user ID and password from Directory Server.

3. Directory Server returns verification to MTA.

4. MTA checks Directory Server for the destination domain for each recipient.

8 7

65

4

21

Presentation TierClient Tier Business Services Tier

Messaging
Server
MTA

Messging
Server
MMP

Data Tier

Comms
Express

Messaging
Server
STR

DBMS

Directory
Server

Browser-
Based
Clients

E-mail
Clients

LDAP

3

Example Logical Architectures

62 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

5. Directory Server returns to MTA the destination domain for each recipient.

6. MTA forwards message to each recipient.

7. MTA forwards message to Messaging Server Message Store (STR) to store
message in outbox.

8. MTA sends confirmation to email client.

Figure 4-8 Messaging Server Logical Architecture Showing Use Case 3

Identity-Based Communications Example
This example illustrates an identity-based communications solution for a
medium-sized enterprise of about 1,000 to 5,000 employees. Typically, an
exhaustive business analysis followed by detailed technical requirements analysis
is needed to design the logical architecture. However, because this is a theoretical
example, assume that the following business requirements have been determined:

• Employees of the enterprise require personalized access to internal web sites,
communications services, calendar services, and other resources.

• Enterprise-wide authentication and authorization provide access to the
internal web sites and other services.

• Single identity is tracked across all enterprise services, enabling a single
sign-on (SSO) that provides access to the internal websites and other services.

8

7

6

5

Data Tier

4
2

Presentation TierClient Tier Business Services Tier

Messaging
Server
MTA

Messging
Server
MMP

Comms
Express

Messaging
Server
STR

DBMS

Directory
Server

Browser-
Based
Clients

E-mail
Clients

LDAP

3

1

Example Logical Architectures

Chapter 4 Logical Design 63

Use cases for this example would detail login procedures, reading email, sending
email, personalizing the portal, synchronizing calendars, and other similar user
activities.

The following figure shows a logical architecture for this type of identity-based
communications solution.

Figure 4-9 Logical Architecture for Identity-Based Communications Scenario

Use Cases for Identity-Based Communications Example
For a deployment solution of this nature, there typically are numerous detailed use
cases outlining the user interaction with the services provided by the solution. This
example focuses on the interaction among components when a user logs into a
portal from a web browser client. The example splits this login scenario into two
use cases:

• User logs in, becomes authenticated, and Portal Server retrieves the user’s
portal configuration.

• Portal Server retrieves email and calendar information to display in the web
client.

The two use cases can be considered one extended use case. However, for this
example, the use cases are separated for simplicity.

Client Tier

Web
Browser
Clients

E-mail
Clients

Presentation Tier

Portal
Server

Comms
Express

Business Services Tier

Messaging
Server
MTA

Messging
Server
MMP

Access
Manager

Data Tier

Messaging
Server
(STR)

Directory
Server

Calendar
Server

(Back-end)

DBMS

LDAP

DBMS

Example Logical Architectures

64 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Use Case 1: User Logs in Successfully and Portal Retrieves User’s
Configuration
1. Web browser client sends user ID and password to Portal Server.

2. Portal Server requests authentication from Access Manager.

3. Access Manager requests verification of user ID and password from Directory
Server.

4. Directory Server verifies user ID and password.

5. Access Manager requests user profile from Directory Server.

6. Directory Server returns user profile.

7. Portal Server requests user display profile from Access Manager.

8. Access Manager returns portal configuration.

9. Portal configuration is displayed in web browser client.

Figure 4-10 Communications Scenario Logical Architecture Showing Use Case 1

Client Tier

Web
Browser
Clients

E-mail
Clients

Presentation Tier

Portal
Server

Comms
Express

Business Services Tier

Messaging
Server
MTA

Messging
Server
MMP

Access
Manager

Data Tier

Messaging
Server
(STR)

Directory
Server

Calendar
Server

(Back-end)

DBMS

LDAP

DBMS

1

2

3
4 5

6

7

8

9

Example Logical Architectures

Chapter 4 Logical Design 65

Use Case 2: Portal Server Displays Email and Calendar Information
1. After successful log in, authentication, and retrieval of portal configuration,

Portal Server requests email messages from Messaging Server MMP.

2. MMP requests message list from Messaging Server STR.

3. STR returns message list to MMP.

4. MMP forwards message headers to Portal Server.

5. Portal Server requests calender information from Communications Express.

6. Communications Express requests calendar information from Calendar Server
backend.

7. Calendar Server backend returns calendar information to Communications
Express.

8. Communications Express forwards calendar information to Portal Server.

9. Portal Server sends all channel information to web browser client.

Figure 4-11 Communications Scenario Logical Architecture Showing Use Case 2

Client Tier

Web
Browser
Clients

E-mail
Clients

Presentation Tier

Portal
Server

Comms
Express

Business Services Tier

Messaging
Server
MTA

Messging
Server
MMP

Access
Manager

Data Tier

Messaging
Server
(STR)

Directory
Server

Calendar
Server

(Back-end)

DBMS

LDAP

DBMS

1

2

3

4

5

6

7

8

9

Access Zones

66 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Access Zones
Another way to represent the components of a logical architecture is to place them
in access zones that show how the architecture provides secure access. The
following figure illustrates access zones for deploying Java Enterprise System
components. Each access zone shows how components provide secure remote
access to and from the Internet and intranet.

Figure 4-12 Logical Components Placed in Access Zones

The following table describes the access zones depicted in Figure 4-12.

���
Firewall (Policy Enforced)

�����Firewall (Policy Enforced)

Internet

Internal Access Zone (Intranet)

Mail Client Web Client

Access
Manager

Directory
Server

Secure Access Zone (Back-end)

Portal
Server

Messaging
Server
(STR)

Application
Server

�����
Firewall (Policy Enforced)

Portal
Server SRA

Messaging
Server
(MMP)

Portal Server
Mobile
Access

External Access Zone (DMZ)

Application
Server

Messaging
Server
(MTA)

Directory
Proxy
Server

Load Balancer

Deployment Scenario

Chapter 4 Logical Design 67

Figure 4-12 does not illustrate the logical tiers depicted in the previous examples,
but instead focuses on which components provide remote and internal access, the
relationship of these components to security measures such as firewalls, and a
visual depiction of access rules that must be enforced. Use the multi-tier
architecture design in combination with the design showing access zones to
provide a logical model of your planned deployment.

Deployment Scenario
The completed logical architecture design by itself is not sufficient to move
forward to the deployment design phase of the solution life cycle. You need to pair
the logical architecture with the quality of service (QoS) requirements determined
during the technical requirements phase. The pairing of the logical architecture
with the QoS requirements constitutes a deployment scenario. The deployment
scenario is the starting point for designing the deployment architecture, as
explained in Chapter 5, “Deployment Design.”

Table 4-6 Secure Access Zones and Components Placed Within Them

Access Zone Description

Internal access zone
(Intranet)

Access to the Internet through policies enforced by a firewall
between the intranet and the Internet. The Internal access zone is
typically used by end users for web browsing and for sending email.

In some cases, direct access to the Internet for web-browsing is
allowed. However, typically secure access to and from the Internet
is provided through the external access zone.

External access zone
(DMZ)

Provides secure access to and from the Internet, acting as a
security buffer to critical back-end services.

Secure access zone
(Back-end)

Provides restricted access to critical back-end services, which can
only be accessed from the external access zone.

Deployment Scenario

68 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

69

Chapter 5

Deployment Design

During the deployment design phase of the solution life cycle, you design a
high-level deployment architecture and a low-level implementation specification,
and prepare a series of plans and specifications necessary to implement the
solution. Project approval occurs in the deployment design phase.

This chapter contains the following sections:

• “About Deployment Design” on page 69

• “Deployment Design Methodology” on page 73

• “Estimating Processor Requirements” on page 74

• “Estimating Processor Requirements for Secure Transactions” on page 80

• “Determining Availability Strategies” on page 83

• “Determining Strategies for Scalability” on page 91

• “Designing for Optimum Resource Usage” on page 96

• “Example Deployment Architecture” on page 98

About Deployment Design
Deployment design begins with the deployment scenario created during the logical
design and technical requirements phases of the solution life cycle. The
deployment scenario contains a logical architecture and the quality of service (QoS)
requirements for the solution. You map the components identified in the logical
architecture across physical servers and other network devices to create a
deployment architecture. The QoS requirements provide guidance on hardware
configurations for performance, availability, scalability, and other related QoS
specifications.

About Deployment Design

70 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Designing the deployment architecture is an iterative process. You typically revisit
the QoS requirements and reexamine your preliminary designs. You take into
account the interrelationship of the QoS requirements, balancing the trade-offs and
cost of ownership issues to arrive at an optimal solution that ultimately satisfies the
business goals of the project.

Project Approval
Project approval occurs during the deployment design phase, generally after you
have created the deployment architecture. Using the deployment architecture and
possibly also implementation specifications described below, the actual cost of the
deployment is estimated and submitted to the stakeholders for approval. Once the
project is approved, contracts for completion of the deployment are signed and
resources to implement the project are acquired and allocated.

Deployment Design Outputs
During the deployment design phase, you might prepare any of the following
specifications and plans:

• Deployment architecture. A high-level architecture that depicts the mapping
of a logical architecture to a physical environment. The physical environment
includes the computing nodes in an intranet or Internet environment,
processors, memory, storage devices, and other hardware and network
devices.

• Implementation specifications. Detailed specifications used as a blueprint
for building the deployment. These specifications provide specifics on the
computer and network hardware to acquire and describe the network layout
for the deployment. Implementation specifications also include specifications
for directory services, including details on a directory information tree (DIT)
and the groups and roles defined for directory access.

• Implementation plans. A group of plans that cover various aspects of
implementing an enterprise software solution. Implementation plans include
the following:

❍ Migration plan. Describes the strategies and processes for migrating
enterprise data and upgrading enterprise software. The migrated data
must conform to the formats and standards of the newly installed
enterprise applications. All enterprise software must be at correct release
version levels to interoperate.

About Deployment Design

Chapter 5 Deployment Design 71

❍ Installation plan. Derived from the deployment architecture, specifies
hardware server names, installation directories, installation sequence,
types of installation for each node, and the configuration information
necessary to install and configure a distributed deployment.

❍ User management plan. Includes migration strategies for data in existing
directories and databases, directory design specifications that takes into
account replication design specified in the deployment architecture, and
procedures for provisioning directories with new content.

❍ Test plan. Describes the procedures for testing the deployed software,
including specific plans for developing prototype and pilot
implementations, stress tests that determine the ability to handle projected
loads, and functional tests that determine if planned functionality operates
as expected.

❍ Roll-out plan. Describes the procedures and schedule for moving the
implementation from a planning and test environment to a production
environment. Moving an implementation into production usually occurs
in various phases. For example, the first phase might be deploying the
software for a limited group of users and increasing the user base with
each phase until the entire deployment is complete. Phased
implementation can also include scheduled implementation of specific
software packages until the entire deployment is complete.

❍ Disaster recovery plan. Describes procedures on how to restore the
system from unexpected system-wide failures. The recovery plan includes
procedures for both large scale and small scale failures.

❍ Operations plan (Run Book). A manual of operations that describes
monitoring, maintenance, installation, and upgrade procedures.

❍ Training plan. Contains processes and procedures for training operators,
administrators, and end users on the newly installed enterprise software.

Factors Affecting Deployment Design
Several factors influence the decisions you make during deployment design.
Consider the following key factors:

• Logical Architecture. The logical architecture details the functional services
in a proposed solution and the interrelationships of the components providing
those services. Use the logical architecture as a key to determining the best way
to distribute services. A deployment scenario contains the logical architecture
paired with quality of service requirements (described below).

About Deployment Design

72 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

• Quality of service requirements. The quality of service (QoS) requirements
specify various aspects of a solution’s operation. Use the QoS requirements to
help develop strategies to achieve performance, availability, scalability,
serviceability, and other quality of service goals. A deployment scenario
contains the logical architecture (described previously) paired with quality of
service requirements.

• Usage analysis. Usage analysis, developed during the technical requirements
phase of the solution life cycle, provides information on usage patterns that can
help estimate load and stress on a deployed system. Use the usage analysis to
help isolate performance bottlenecks and develop strategies to satisfy QoS
requirements.

• Use cases. Use cases, developed during the technical requirements phase of
the solution life cycle, lists distinct user interactions identified for a
deployment, often identifying the most common use cases. Although the use
cases are embodied in the usage analysis, when assessing a deployment design
you should refer to the use cases to make sure that they are properly
addressed.

• Service level agreements. A service level agreement (SLA) specifies
minimum performance requirements, and when those requirements are not
met, the level and extent of customer support that must be provided. A
deployment design should easily meet the performance requirements specified
in a service level agreement.

• Total cost of ownership. During deployment design you analyze potential
solutions that address the QoS requirements for availability, performance,
scalability, and others. However, for each solution you consider, you must also
consider the cost of that solution and how that cost impacts the total cost of
ownership. Make sure that you consider the trade-offs embodied by your
decisions and that you have optimized your resources to achieve business
requirements within business constraints.

• Business goals. Business goals are stated during the business analysis phase
of the solution life cycle and include the business requirements and business
constraints to meet those goals. Deployment design is ultimately judged by its
ability to satisfy the business goals.

Deployment Design Methodology

Chapter 5 Deployment Design 73

Deployment Design Methodology
As with other aspects of deployment planning, deployment design is as much an
art as it is a science and cannot be detailed with specific procedures and processes.
Factors that contribute to successful deployment design are past design experience,
knowledge of systems architecture, domain knowledge, and applied creative
thinking.

Deployment design typically revolves around achieving performance
requirements while meeting other QoS requirements. The strategies you use must
balance the trade-offs of your design decisions to optimize the solution. The
methodology you use typically involves the following tasks:

• Estimating processor requirements. Deployment design often begins with
estimating the number of CPUs needed for each component in the logical
architecture. Start with the use cases representing the heaviest load and
continue through each use case. Consider the load on all components
providing support to the use cases, and modify your estimates accordingly.
Also consider any previous experience you have with designing enterprise
systems.

• Estimating processor requirements for secure transport. Study the use cases
that require secure transport and modify CPU estimates accordingly.

• Replicating services for availability and scalability. Once you are satisfied
with the processor estimates, make modifications to the design to account for
QoS requirements for availability and scalability. Consider load balancing
solutions that address availability and failover considerations.

During your analysis, consider the trade-offs of your design decisions. For
example, what affect does the availability and scalability strategy have on
serviceability (maintenance) of the system? What are the others costs of the
strategies?

• Identifying bottlenecks. As you continue with your analysis, examine the
deployment design to identify any bottlenecks that cause the transmission of
data to fall beneath requirements, and make adjustments.

• Optimizing resources. Review your deployment design for resource
management and consider options that minimizes costs while fulfilling
requirements.

• Managing risks. Revisit your business and technical analyses with respect to
your design, making modifications to account for events or situations that
might not have been foreseen in the earlier planning.

Estimating Processor Requirements

74 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Estimating Processor Requirements
This section discusses a process for estimating the number of CPU processors and
corresponding memory that are necessary to support the services in a deployment
design. The section includes a walkthrough of an estimation process for an
example communications deployment scenario.

The estimation of CPU computing power is an iterative process that considers the
following:

• Logical components and their interactions (as indicated by component
dependencies in the logical architecture)

• Usage analysis for the identified use cases

• Quality of service requirements

• Past experience with deployment design and with Java Enterprise System

• Consultation with Sun professional services who have experience with
designing and implementing various types of deployment scenarios

The estimation process includes the following steps. The ordering of these steps is
not critical, but provides one way to consider the factors that affect the final result.

1. Determine a baseline CPU estimate for components identified as user entry
points to the system.

One design decision is whether to fully load or partially load CPUs. Fully
loaded CPUs maximize the capacity of a system. To increase the capacity, you
incur the maintenance cost and possible downtime of adding additional CPUs.
In some cases, you can choose to add additional machines to meet growing
performance requirements.

Partially loaded CPUs allow room to handle excess performance requirements
without immediately incurring maintenance costs. However, there is an
additional up front expense of the under-utilized system.

2. Make adjustments to the CPU estimates to account for interactions between
components.

Study the interactions among components in the logical architecture to
determine the extra load required because of dependent components.

Estimating Processor Requirements

Chapter 5 Deployment Design 75

3. Study the usage analysis for specific use cases to determine peak loads for the
system, and then make adjustments to components that handle the peak loads.

Start with the most heavily weighted use cases (those requiring the most load),
and continue with each use case to make sure you account for all projected
usage scenarios.

4. Make adjustments to the CPU estimates to reflect security, availability, and
scalability requirements.

This estimation process provides starting points for determining the actual
processing power you need. Typically, you create prototype deployments based on
these estimates and then perform rigorous testing against expected use cases. Only
after iterative testing can you determine the actual processing requirements for a
deployment design.

Example Estimating Processor Requirements
This section illustrates one methodology to estimate processing power required for
an example deployment. The example deployment is based on the logical
architecture for the identity-based communications solution for a medium-sized
enterprise of about 1,000 to 5,000 employees, as described in the section
“Identity-Based Communications Example” on page 62.

The CPU and memory figures used in the example are arbitrary estimates for
illustration only. These figures are based on arbitrary data upon which the
theoretical example is based. An exhaustive analysis of various factors is necessary
to estimate processor requirements. This analysis would include, but not be limited
to, the following information:

• Detailed use cases and usage analysis based on an exhaustive business analysis

• Quality of service requirements determined by analysis of business
requirements

• Specific costs and specifications of processing and networking hardware

• Past experience implementing similar deployments

CAUTION The information presented in these examples do not represent any
specific implementation advice, other than to illustrate a process
you might use when designing a system.

Estimating Processor Requirements

76 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Determine Baseline CPU Estimate for User Entry Points
Begin by estimating the number of CPUs required to handle the expected load on
each component that is a user entry point. The following figure shows the logical
architecture for an identity-based communications scenario described previously
in Chapter 4, “Logical Design” on page 62.

Figure 5-1 Logical Architecture for Identity-Based Communications Scenario

The following table lists the components in the presentation tier of the logical
architecture that interface directly with end users of the deployment. The table
includes baseline CPU estimates derived from analysis of technical requirements,
use cases, specific usage analysis, and past experience with this type of
deployment.

Table 5-1 CPU Estimates for Components Containing Access User Entry Points

Component Number of CPUs Description

Portal Server 4 Component that is a user entry point.

Communications
Express

2 Routes data to Portal Server messaging and calendar
channels.

Client Tier

Web
Browser
Clients

E-mail
Clients

Presentation Tier

Portal
Server

Comms
Express

Business Services Tier

Messaging
Server
MTA

Messging
Server
MMP

Access
Manager

Data Tier

Messaging
Server
(STR)

Directory
Server

Calendar
Server

(Back-end)

DBMS

LDAP

DBMS

Estimating Processor Requirements

Chapter 5 Deployment Design 77

Include CPU Estimates for Service Dependencies
The components providing user entry points require support from other Java
Enterprise System components. To continue specifying performance requirements,
include the performance estimates to take into account support required from
other components. The type of interactions among components should be detailed
when designing the logical architecture, as described in the logical architecture
examples in the section “Example Logical Architectures” on page 58.

Study Use Cases for Peak Load Usage
Return to the use cases and usage analysis to identify areas of peak load usage and
make adjustments to your CPU estimates.

For example, suppose for this example you identify the following peak load
conditions:

• Initial ramp up of users as they log on simultaneously

• Email exchanges during specified time frames

Table 5-2 CPU Estimates for Supporting Components

Component CPUs Description

Messaging Server MTA
(inbound)

1 Routes incoming mail messages from
Communications Express and e-mail clients.

Messaging Server MTA
(outbound)

1 Routes outgoing mail messages to recipients.

Messaging Server MMP 1 Access Messaging Server message store for email
clients.

Messaging Server STR
(Message Store)

1 Retrieves and stores email messages.

Access Manager 2 Provides authorization and authentication services.

Calendar Server
(back-end)

2 Retrieves and stores calendar data for
Communications Express, a Calendar Server
front-end.

Directory Server 2 Provides LDAP directory services.

Web Server 0 Provides web container support for Portal Serverand
Access Manager.

(No additional CPU cycles required.)

Estimating Processor Requirements

78 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

To account for this peak load usage, make adjustment to the components providing
these services. The following table outlines adjustments you might make to
account for this peak load usage.

Modify Estimates for Other Load Conditions
Continue with your CPU estimates to take into account other quality of service
requirements that can impact load:

• Security. From the technical requirements phase, determine how secure
transport of data might affect the load requirements and make corresponding
modifications to your estimates. The following section, “Estimating Processor
Requirements for Secure Transactions” on page 80, describes a process for
making adjustments.

• Replication of services. Adjust CPU estimates to account for replication of
services for availability, load balancing, and scalability considerations. The
following section, “Determining Availability Strategies” on page 83, discusses
sizing for availability solutions. The section, “Determining Strategies for
Scalability” on page 91 discusses solutions involving available access to
directory services.

• Latent capacity and scalability. Modify CPU estimates as necessary to allow
latent capacity for unexpected large loads on the deployment. Look at the
anticipated milestones for scaling and projected load increase over time to
make sure you can reach any projected milestones to scale the system, either
horizontally or vertically.

Table 5-3 CPU Estimate Adjustments for Peak Load

Component CPUs (Adjusted) Description

Messaging Server MTA
inbound

2 Add 1 CPU for peak incoming email

Messaging Server MTA
outbound

2 Add 1 CPU for peak outgoing email

Messaging Server
MMP

2 Add 1 CPU for additional load

Messaging Server STR
(Message Store)

2 Add 1 CPU for additional load

Directory Server 3 Add 1 CPU for additional LDAP lookups

Estimating Processor Requirements

Chapter 5 Deployment Design 79

Update the CPU Estimates
Typically, you round up CPUs to an even number. Rounding up to an even
number allows you to evenly split the CPU estimates between two physical servers
and also adds a small factor for latent capacity. However, round up according to
your specific needs for replication of services.

As a general rule, allow 2 gigabytes of memory for each CPU. The actual memory
required depends on your specific usage and can be determined in testing.

The following table lists the final estimates for the identity-based communications
example. These estimates do not include any additional computing power that
could have been added for security and availability. Totals for security and
availability will be added in following sections.

Table 5-4 CPU Estimate Adjustments for Supporting Components

Component CPUs Memory

Portal Server 4 8 GB

Communications Express 2 4 GB

Messaging Server
(MTA, inbound)

2 4 GB

Messaging Server
(MTA, outbound)

2 4 GB

Messaging Server
(MMP)

2 4 GB

Messaging Server
(Message Store)

2 4 GB

Access Manager 2 4 GB

Calendar Server 2 4 GB

Directory Server 4 8 GB (Rounded up from 3 CPUs/6 GB memory)

Web Server 0 0

Estimating Processor Requirements for Secure Transactions

80 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Estimating Processor Requirements for Secure
Transactions

Secure transport of data involves handling transactions over a secure transport
protocol such as Secure Sockets Layer (SSL) or Transport Layer Security (TLS).
Transactions handled over a secure transport typically require additional
computing power to first, establish a secure session (known as the handshake) and
then to encrypt and decrypt transported data. Depending on the encryption
algorithm used (for example, 40-bit or 128-bit encryption algorithms), the
additional computing power can be substantial.

For secure transactions to perform at the same level as nonsecure transactions, you
must plan for additional computing power. Depending on the nature of the
transaction and the Sun Java™ Enterprise System services that handle it, secure
transactions might require up to four times more computing power than nonsecure
transactions.

When estimating the processing power to handle secure transactions, analyze use
cases to determine the percentage of transactions that require secure transport. If
the performance requirements for secure transactions are the same as for
non-secure transactions, modify the CPU estimates to account for the additional
computing power needed for the secure transactions.

In some usage scenarios, secure transport might only be required for
authentication. Once a user is authenticated to the system, no additional security
measures for transport of data is required. In other scenarios, secure transport
might be required for all transactions.

For example, when browsing a product catalog for an online e-commerce site, all
transactions can be nonsecure until the customer has finished making selections
and is ready to “check out” to make a purchase. However, some usage scenarios,
such as deployments for banks or brokerage houses, require most or all,
transactions to be secure and apply the same performance standard for both secure
and nonsecure transactions.

CPU Estimates for Secure Transactions
This section continues the example deployment to illustrate how to calculate CPU
requirements for a theoretical use case that includes both secure and nonsecure
transactions.

To estimate the CPU requirements for secure transactions, make the following
calculations:

Estimating Processor Requirements for Secure Transactions

Chapter 5 Deployment Design 81

1. Start with a baseline figure for the CPU estimates (as illustrated in the previous
section, “Example Estimating Processor Requirements” on page 75).

2. Calculate the percentage of transactions that require secure transport, and
calculate the CPU estimates for the secure transactions.

3. Calculate reduced CPU estimates for non-secure transactions.

4. Tally the secure estimate and nonsecure estimate to calculate the total CPU
estimates.

5. Round up the total CPU estimate to an even number.

Table 5-5 shows an example calculation based on use cases and usage analysis for
the Portal Server that assume the following:

• All logins require secure authentication.

• All logins account for 10% of the total Portal Server load.

• The performance requirement for secure transactions is the same as the
performance requirement for non-secure transactions.

To account for the extra computing power to handle secure transactions, the
number of CPUs to handle these transactions will be increased by a factor of four.
As with other CPU figures in the example, this factor is arbitrary and is for
illustration purposes only.

Table 5-5 Modifying CPU Estimates for Secure Transactions

Step Description Calculation Result

1 Start with baseline estimate
for all Portal Server
transactions.

Baseline estimate from Table 5-3 on page 78
is 4 CPUs.

- - - - -

2 Calculate additional CPU
estimates for secure
transactions. Assume
secure transactions require
five times the CPU power
as nonsecure transactions.

Ten percent of the baseline estimate require
secure transport:

0.10 x 4 CPUs = 0.4 CPUs

Increase CPU power for secure transactions
by a factor of four:

4 x 0.4 = 1.6 CPUs
1.6 CPUs

3 Calculate reduced CPU
estimates for nonsecure
transactions.

Ninety percent of the baseline estimate are
non-secure:

0.9 x 4 CPUs = 3.6 CPUs
3.6 CPUs

Estimating Processor Requirements for Secure Transactions

82 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

From the calculations for secure transactions in this example, you would modify
the total CPU estimates in Table 5-5 on page 81 by adding an additional two CPUs
and four gigabytes of memory to get the following total for Portal Server.

Specialized Hardware to Handle SSL
Transactions
Specialized hardware devices, such as SSL accelerator cards and other appliances,
are available to provide computing power to handle establishment of secure
sessions and the encryption and decryption of data. When using specialized
hardware for SSL operations, computational power is dedicated to some part of the
SSL computations, typically the “handshake” operation that establishes a secure
session.

This hardware might be of benefit to your final deployment architecture. However,
because of the specialized nature of the hardware, estimate secure transaction
performance requirements first in terms of CPU power, and then consider the
benefits of using specialized hardware to handle the additional load.

Some factors to consider when using specialized hardware are whether the use
cases support using the hardware (for example, use cases that require a large
number of SSL handshake operations) and the added layer of complexity this type
of hardware brings to the design. This complexity includes the installation,
configuration, testing, and administration of these devices.

4 Calculate adjusted total
CPU estimates for secure
and nonsecure
transactions.

Secure estimate + non-secure estimate = total:

1.6 CPUs + 3.6 CPUs = 5.2 CPUs

5.2 CPUs

5 Round up to even number. 5.2 CPUs ==> 6 CPUs 6 CPUs

Table 5-6 CPU Estimate Adjustments for Portal Server Secure Transactions

Component CPUs Memory

Portal Server 6 12 GB

Table 5-5 Modifying CPU Estimates for Secure Transactions (Continued)

Step Description Calculation Result

Determining Availability Strategies

Chapter 5 Deployment Design 83

Determining Availability Strategies
When developing a strategy for availability requirements, study the component
interactions and usage analysis to determine which availability solutions to
consider. Do your analysis on a component-by-component basis, determining a
best-fit solution for availability and failover requirements.

The following items are examples of the type of information you gather to help
determine availability strategies:

• How many nines of availability are specified?

• What are the performance specifications with respect to failover situations (for
example, at least 50% of performance during failover)?

• Does the usage analysis identify times of peak and non-peak usage?

• What are the geographical considerations?

The availability strategy you choose must also take into consideration
serviceability requirements, as discussed in “Determining Strategies for
Scalability” on page 91. Avoid complex solutions that require considerable
administration and maintenance.

Availability Strategies
Availability strategies for Java Enterprise System deployments include the
following:

• Load balancing. Uses redundant hardware and software components to
share a processing load. A load balancer directs any requests for a service to
one of multiple symmetric instances of the service. If any one instance should
fail, other instances are available to assume a heavier load.

• Failover. Involves managing redundant hardware and software to provide
continuous access of services and security for critical data if any component
fails.

Sun Cluster software provides a failover solution for critical data managed by
back-end components such as the message storage for Messaging Server and
calendar data for Calendar Server.

• Replication of services. Replication of services provides multiple sources for
access to the same data. Directory Server provides numerous replication and
synchronization strategies for LDAP directory access.

Determining Availability Strategies

84 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

The following sections provide some examples of availability solutions that
provide various levels of load balancing, failover, and replication of services.

Single Server System
Place all computing resources for a service on a single server. If the server fails, the
entire service fails.

Figure 5-2 Single Server System

Sun provides high-end servers that provide the following benefits:

• Replacement and reconfiguration of hardware components while the system is
running

• Ability to run multiple applications in fault-isolated domains on the server

• Ability to upgrade capacity, performance speed, and I/O configuration
without rebooting the system

A high-end server typically costs more than a comparable multi-server system.
However, a single server provides savings on administration, monitoring, and
hosting costs for servers in a data center. Load balancing, failover, and removal of
single points of failure is more flexible with multi-server systems.

Horizontally Redundant Systems
There are several ways to increase availability with parallel redundant servers that
provide both load balancing and failover. The following figure illustrates two
replicate servers providing an N+1 failover system. An N+1 system has an
additional server to provide 100% capacity should one server fail.

10 CPUs

Required performance: 10 CPUs

Place all CPUs that satisfy the performance
requirement on a single server.

The server is a single point of failure.

Determining Availability Strategies

Chapter 5 Deployment Design 85

Figure 5-3 N+1 Failover System With Two Servers

The computing power of each server in Figure 5-3 above is identical. One server
alone handles the performance requirements. The other server provides 100% of
the performance when called into service as a backup.

The advantage of an N+1 failover design is 100% performance during a failover
situation. Disadvantages include increased hardware costs with no corresponding
gain in overall performance (because one server is a standby for use in failover
situations only).

The following figure illustrates a system that implements load balancing plus
failover that distributes the performance between two servers.

Figure 5-4 Load Balancing Plus Failover Between Two Servers

In the system depicted in Figure 5-4 above, if one server fails, all services are
available, although at a percentage of the full capacity. The remaining server
provides 6 CPUs of computing power, which is 60% of the 10 CPU requirement.

An advantage of this design is the additional 2 CPU latent capacity when both
servers are available.

The following figure illustrates a distribution between a number of servers for
performance and load balancing.

10 CPUs 10 CPUs

Required performance: 10 CPUs
Place all CPUs that satisfy the performance
requirement on two identical servers.

If one server fails, the other server provides
100% of performance requirement.

6 CPUs 6 CPUs

Required performance: 10 CPUs Distribute load between 2 servers for
failover and load balancing.

If one server fails, the available CPUs
are reduced to 60% of those needed
to meet the performance requirement.

Determining Availability Strategies

86 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Figure 5-5 Distribution of Load Between n Servers

Because there are five servers in the design depicted inFigure 5-5, if one server fails
the remaining servers provide a total of 8 CPUs of computing power, which is 80%
of the 10 CPU performance requirement. If you add an additional server with a
2-CPU capacity to the design, you effectively have an N+1 design. If one server
fails, 100% of the performance requirement is met by the remaining servers.

This design includes the following advantages:

• Added performance if a single server fails

• Availability even when more than one server is down

• Servers can be rotated out of service for maintenance and upgrades

• Multiple low-end servers typically cost less than a single high-end server

However, administration and maintenance costs can increase significantly with
additional servers. You also have to consider costs for hosting the servers in a data
center. At some point you run into diminishing returns by adding additional
servers.

Sun Cluster Software
For situations that require a high degree of availability (such as four or five nines),
you might consider Sun Cluster software as part of your availability design. A
cluster system is the coupling of redundant servers with storage and other network
resources. The servers in a cluster continually communicate with each other. If one
of the servers goes offline, the remainder of the devices in the cluster isolate the
server and fail over any application or data from the failing node to another node.
This failover process is achieved relatively quickly with little interruption of
service to the users of the system.

Sun Cluster software requires additional dedicated hardware and specialized skills
to configure, administer, and maintain.

2 CPUs 2 CPUs 2 CPUs 2 CPUs 2 CPUs

Required performance: 10 CPUs Distribute the required load among
5 servers for failover and load balancing.

If one server fails, the available CPUs
are reduced to 80% of those needed to
meet the performance requirement.

Determining Availability Strategies

Chapter 5 Deployment Design 87

Availability Design Examples
This section contains two examples of availability strategies based on the
identity-based communications solution for a medium-sized enterprise of about
1,000 to 5,000 employees, as described previously in “Identity-Based
Communications Example” on page 62. The first availability strategy illustrates
load balancing for Messaging Server. The second illustrates a failover solution that
uses Sun Cluster software.

Load Balancing Example for Messaging Server
The following table lists the estimates for CPU power for each logical Messaging
Server component in the logical architecture. This table repeats the final estimation
calculated in the section “Update the CPU Estimates” on page 79.

For this example, assume that during technical requirements phase, the following
quality of service requirements were specified:

• Availability. Overall system availability should be 99.99% (does not include
scheduled downtime). Failure of an individual computer system should not
result in service failure.

• Scalability. No server should be more than 80% utilized under daily peak
load and the system must accommodate long-term growth of 10% per year.

To fulfill the availability requirement, for each Messaging Server component
provide two instances, one of each on separate hardware servers. If a server for one
component fails, the other provides the service. The following figure illustrates the
network diagram for this availability strategy.

Table 5-7 CPU Estimate Adjustments for Supporting Components

Component CPUs Memory

Messaging Server
(MTA, inbound)

2 4 GB

Messaging Server
(MTA, outbound)

2 4 GB

Messaging Server
(MMP)

2 4 GB

Messaging Server
(Message Store)

2 4 GB

Determining Availability Strategies

88 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Figure 5-6 Availability Strategy for Messaging Server Example

In the preceding figure the number of CPUs has doubled from the original
estimate. The CPUs are doubled for the following reasons:

• In the event one server fails, the remaining server provides the CPU power to
handle the load.

• For the scalability requirement that no single server is more than 80% utilized
under peak load, the added CPU power provides this safety margin.

• For the scalability requirement to accommodate 10% increased load per year,
the added CPU power adds latent capacity that can handle increasing loads
until additional scaling would be needed.

Failover Example Using Sun Cluster Software
The following figure shows an example of failover strategy for Calendar Server
back-end and Messaging Server messaging store. The Calendar Server back-end
and messaging store are replicated on separate hardware servers and configured
for failover with Sun Cluster software. The number of CPUs and corresponding
memory are replicated on each server in the Sun Cluster.

MMP2
(2x4)

Messaging Server
MMP

Load Balancer

MMP1
(2x4)

Messaging Server
MMP

MTA2
(2x4)

Messaging Server
MMP

Load Balancer

MTA1
(2x4)

Messaging Server
Inbound MTA

MTA4
(2x4)

Messaging Server
MMP

Load Balancer

MTA3
(2x4)

Messaging Server
Outbound MTA

Load balancer

Hardware system

System component

Legend

(2x4)

Network connection

2-CPU, 4-GB RAM

Determining Availability Strategies

Chapter 5 Deployment Design 89

Figure 5-7 Failover Design Using Sun Cluster Software

Replication of Directory Services Example
Directory services can be replicated to distribute transactions across different
servers, providing high availability. Directory Server provides various strategies
for replication of services, including the following:

• Multiple databases. Stores different portions of a directory tree in separate
databases.

• Chaining and referrals. Links distributed data into a single directory tree.

• Single master replication. Provides a central source for the master database,
which is then distributed to consumer replicas

• Multi-master replication. Distributes the master database among several
servers. Each of these masters then distributes their database among consumer
replicas.

Availability strategies for Directory Server is a complex topic that is beyond the
scope of this guide. The following sections, “Single Master Replication” and
“Multi-Master Replication” provide a high-level view of basic replication
strategies. For detailed information on availability strategies for Directory Server,
refer to the Directory Server Deployment Planning Guide,
http://docs.sun.com/doc/817-7607.

Calendar Store
Message Store

Sun Cluster Software

Failover

System: STR2
(2x8)

Calendar Server
(Store)

Messaging Server
(Store)

System: STR1
(2x8)

Calendar Server
(Back-end)

Messaging Server
(Store)

Load balancer

Hardware system

System component

External storage

Legend
Network connection

Sun Cluster software

2-CPU, 8-GB RAM(2x8)

http://docs.sun.com/doc/817-7607

Determining Availability Strategies

90 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Single Master Replication
The following figure shows a single master replication strategy that illustrates
basic replication concepts.

Figure 5-8 Single Master Replication Example

In single master replication, one instance of Directory Server manages the master
directory database, logging all changes. The master database is replicated to any
number of consumer databases. The consumer instances of Directory Server are
optimized for read and search operations. Any write operation received by a
consumer is referred back to the master. The master periodically updates the
consumer databases.

Advantages of single master replication include:

• Single instance of Directory Server optimized for database read and write
operations

• Any number of consumer instances of Directory Server optimized for read and
search operations

• Horizontal scalability for consumer instances of Directory Server

Multi-Master Replication
The following figure shows a multi-master replication strategy that might be used
to distribute directory access globally.

 Change
Log

Clients

 Write

Read
Write

Replication

Write
Referrals

Master
DB

Directory
Server

(Master)

Consumer
DB

Directory
Server

(Consumer)

Consumer
DB

Directory
Server

(Consumer)

Consumer
DB

Directory
Server

(Consumer)

Determining Strategies for Scalability

Chapter 5 Deployment Design 91

In multi-master replication, one or more instances of Directory Server manages the
master directory database. Each master has a replication agreement that specifies
procedures for synchronizing the master databases. Each master replicates to any
number of consumer databases. As with single master replication, the consumer
instances of Directory Server are optimized for read and search access. Any write
operation received by a consumer is referred back to the master. The master
periodically updates the consumer databases.

Figure 5-9 Multi-master Replication Example

Multi-master replication strategy provides all the advantages of single master
replication, plus an availability strategy that can provide load balancing for
updates to the masters. You can also implement an availability strategy that
provides local control of directory operations, which is an important consideration
for enterprises with globally distributed data centers.

Determining Strategies for Scalability
Scalability is the ability to add capacity to your system, usually by the addition of
system resources, but without changes to the deployment architecture. During
requirements analysis, you typically make projections of expected growth to a
system based on the business requirements and subsequent usage analysis. These
projections of the number of users of a system and the capacity of the system to
meet their needs are often estimates that can vary significantly from the actual
numbers for the deployed system. Your design should be flexible enough to allow
for variance in your projections.

 Write

Replication

Clients

Replication
Agreement 1

Replication
Agreement 2

Master
DB

Directory
Server

(Master 1)

Master
DB

Directory
Server

(Master 2)

Clients
Directory
Server

(Consumer)

Directory
Server

(Consumer)

Consumer
DB

Directory
Server

(Consumer)

Directory
Server

(Consumer)

Directory
Server

(Consumer)

Consumer
DB

Directory
Server

(Consumer)

Replication

 Write

Write
Referrals

Read
Write

Read
Write

Write
Referrals

Determining Strategies for Scalability

92 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

A design that is scalable includes sufficient latent capacity to handle increased
loads until a system can be upgraded with additional resources. Scalable designs
can be readily scaled to handle increasing loads without redesign of the system.

Latent Capacity
Latent capacity is one aspect of scalability where you include additional
performance and availability resources into your system so the system can easily
handle unusual peak loads. You can also monitor how latent capacity is used in a
deployed system to help determine when to scale the system by adding resources.
Latent capacity is one way to build safety into your design.

Analysis of use cases can help identify the scenarios that can create unusual peak
loads. Use this analysis of unusual peak loads plus a factor to cover unexpected
growth to design latent capacity that builds safety into your system.

Your system design should be able to handle projected capacity for a reasonable
time, generally the first 6 to 12 months of operation. Maintenance cycles can be
used to add resources or increase capacity as needed. Ideally, you should be able to
schedule upgrades to the system on a regular basis, but predicting needed
increases in capacity is often difficult. Rely on careful monitoring of your resources
as well as business projections to determine when to upgrade a system.

If you plan to implement your solution in incremental phases, you might schedule
increasing the capacity of the system to coincide with other improvements
scheduled for each incremental phase.

Scalability Example
The example in this section illustrates horizontal and vertical scaling for a solution
that implements Messaging Server. For horizontal scaling, you add additional
CPUs to a server to handle increasing loads. For vertical scaling, you handle
increasing loads by adding additional servers for distribution of the load.

The baseline for the example assumes a 50,000 user base supported by two message
store instances that are distributed for load balancing. Each server has two CPUs
for a total of four CPUs. The following figure shows how this system can be scaled
to handle increasing loads for 250,000 users and 2,000,000 users.

Identifying Performance Bottlenecks

Chapter 5 Deployment Design 93

Figure 5-10 Horizontal and Vertical Scaling Examples

Identifying Performance Bottlenecks
One of the keys to successful deployment design is identifying potential
performance bottlenecks and developing a strategy to avoid them. A performance
bottleneck occurs when the rate at which data is accessed cannot meet specified
system requirements.

Bottlenecks can be categorized according to various classes of hardware, as listed
in the following table of data access points within a system. This table also suggests
potential remedies for bottlenecks in each hardware class.

NOTE Figure 5-10 shows the differences between vertical scaling and
horizontal scaling. This figure does not show other factors to
consider when scaling, such as load balancing, failover, and changes
in usage patterns.

STR1
(8x16)

Messaging Server
Message Store

STR2
(8x16)

Messaging Server
Message Store

STR1
(2x4)

Messaging Server
Message Store

STR2
(2x4)

Messaging Server
Message Store

Horizontal Scaling

2M Users
Total of 64 CPUs

8 each on eight physical servers

Baseline

50K Users
Total of 4 CPUs

2 each on two physical servers

Vertical Scaling

250K Users
Total of 16 CPUs

8 each on two physical servers

STR1
(8x4)

Messaging Server
Message Store

STR1
(8x4)

Messaging Server
Message Store

STR1
(8x4)

Messaging Server
Message Store

STR1
(8x16)

Messaging Server
Message Store

STR1
(8x4)

Messaging Server
Message Store

STR1
(8x4)

Messaging Server
Message Store

STR1
(8x4)

Messaging Server
Message Store

STR5
(8x16)

Messaging Server
Message Store

Identifying Performance Bottlenecks

94 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

You typically begin deployment design with baseline processing power estimates
for each component in the deployment and their dependencies. You then
determine how to avoid bottlenecks related to system memory and disk access.
Finally, you examine the network interface to determine potential bottlenecks and
focus on strategies to overcome them.

Table 5-8 Data Access Points

Hardware
Class Relative Access Speed Remedies for Performance Improvement

Processor Nanoseconds Vertical scaling: Add more processing power,
improve processor cache

Horizontal scaling: Add parallel processing power
for load balancing

System memory
(RAM)

Microseconds Dedicate system memory to specific tasks

Vertical scaling: Add additional memory

Horizontal scaling: Create additional instances for
parallel processing and load balancing

Disk read and
write

Milliseconds Optimize disk access with disk arrays (RAID)

Dedicate disk access to specific functions, such as
read only or write only

Cache frequently accessed data in system memory

Network
interface

Varies depending on
bandwidth and access
speed of nodes on the
network

Increase bandwidth

Add accelerator hardware when transporting
secure data

Improve performance on nodes within the network
so the data is more readily available

NOTE Table 5-8 lists hardware classes according to relative access speed,
implying that slow access points, such as disks, are more likely to be
the source of bottlenecks. However, processors that are
underpowered to handle large loads are also likely sources of
bottlenecks.

Identifying Performance Bottlenecks

Chapter 5 Deployment Design 95

Optimizing Disk Access
A critical component of deployment design is the speed of disk access to frequently
accessed datasets, such as LDAP directories. Disk access provides the slowest
access to data and is a likely source of a performance bottleneck.

One way to optimize disk access is to separate write operations from read
operations. Not only are write operations more expensive than read operations,
read operations (lookup operations for LDAP directories) typically occur with
considerably more frequency than write operations (updates to data in LDAP
directories).

Another way to optimize disk access is by dedicating disks to different types of
I/O operations. For example, provide separate disk access for Directory Server
logging operations, such as transaction logs and event logs, and LDAP read and
write operations.

Also, consider implementing one or more instances of Directory Server dedicated
to read and write operations and using replicated instances distributed to local
servers for red and search access. Chaining and linking options are also available to
optimize access to directory services.

The chapter “System Sizing” in the Directory Server Deployment Planning Guide,
http://docs.sun.com/doc/817-7607, discusses various factors in planning for disk
access. Topics in this chapter include:

• Minimum memory and disk space requirements. Provides estimates for disk
and memory needed for various sizes of directories.

• Sizing physical memory for cache access. Provides guidance on estimating
cache size according to planned usage of Directory Server and on planning
total memory usage.

• Sizing disk subsystems. Provides information on planning disk space
requirements according to directory suffixes and Directory Server factors that
affect disk use. and distributing files across disks, including various disk array
alternatives.

http://docs.sun.com/doc/817-7607

Designing for Optimum Resource Usage

96 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Designing for Optimum Resource Usage
Deployment design is not just estimating the resources required to meet the QoS
requirements. During deployment design you also analyze all available options
and select the best solution that minimizes cost but still fulfills QoS requirements.
You must analyze the trade-off for each design decision to make sure a benefit in
one area is not offset by a cost in another.

For example, horizontal scaling for availability might increase overall availability,
but at the cost of increased maintenance and service. Vertical scaling for
performance might increase computing power inexpensively, but the additional
power might be used inefficiently by some services.

Before completing your design strategy, examine your decisions to make sure that
you have balanced the use of resources with the overall benefit to the proposed
solution. This analysis typically involves examining how system qualities in one
area affect other system qualities. The following table lists some system qualities
and corresponding considerations for resource management.

Table 5-9 Resource Management Considerations

System Quality Description

Performance For performance solutions that concentrate CPUs on individual
servers, will the services be able to efficiently use the computing
power? (For example, some services have a ceiling on the number
of CPUs that can be efficiently used.)

Latent capacity Does your strategy handle loads that exceed performance
estimates?

Are excessive loads handled with vertical scaling on servers, load
balancing to other servers, or both?

Is the latent capacity sufficient to handle unusual peak loads until
you reach the next milestone for scaling the deployment?

Security Have you sufficiently accounted for the performance overhead
required to handle secure transactions?

Availability For horizontally redundant solutions, have you sufficiently
estimated long-term maintenance expenses?

Have you accounted for the scheduled downtime necessary to
maintain the system?

Have you balanced the costs between high-end servers and
low-end servers?

Managing Risks

Chapter 5 Deployment Design 97

Managing Risks
Much of the information on which deployment design is based, such as quality of
service requirements and usage analysis, is not empirical data but data based on
estimates and projections ultimately derived from business analyses. These
projections could be inaccurate for may reasons, including unforeseen
circumstances in the business climate, faulty methods of gathering data, or simply
human error. Before completing a deployment design, revisit the analyses upon
which your design is based and make sure your design accounts for any reasonable
deviations from the estimates or projections.

For example, if the usage analysis underestimates the actual usage of the system,
you run the risk of building a system that cannot cope with the amount of traffic it
encounters. A design that under performs will surely be considered a failure.

On the other hand, if you build a system that is several orders more powerful than
required, you divert resources that could be used elsewhere. The key is to include a
margin of safety above the requirements, but to avoid extravagant use of resources.

Extravagant use of resources results in a failure of the design because underutilized
resources could have been applied to other areas. Additionally, extravagant
solutions might be perceived by stakeholders as not fulfilling contracts in good
faith.

Scalability Have you estimated milestones for scaling the deployment?

Do you have a strategy to provide enough latent capacity to handle
projected increases in load until you reach the milestones for
scaling the deployment?

Serviceability Have you taken into account administration, monitoring, and
maintenance costs into your availability design?

Have you considered delegated administration solutions (allowing
end-users to perform some administration tasks) to reduce
administration costs?

Table 5-9 Resource Management Considerations (Continued)

System Quality Description

Example Deployment Architecture

98 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Example Deployment Architecture
The following figure represents a completed deployment architecture for the
example deployment introduced earlier in this white paper. This figure provides
an idea of how to present a deployment architecture.

CAUTION The deployment architecture in the following figure is for
illustration purposes only. It does not represent a deployment that
has been actually designed, built, or tested and should not be
considered as deployment planning advice.

Example Deployment Architecture

Chapter 5 Deployment Design 99

Figure 5-11 Example Deployment Architecture

System: MTA2
(2x4)

Messaging Server
Inbound MTA

System: MTA1
(2x4)

Messaging Server
Inbound MTA

System: PS2
(4x16)

Identity Server
(SDK)

Web Server

Portal ServerPortal Server

System: PS1
(4x16)

Access Manager
(SDK)

Web Server

Portal ServerPortal Server

System: MTA4
(2x4)

Messaging Server
Outbound MTA

System: MTA3
(2x4)

Messaging Server
Outbound MTA

System: MMP2
(2x4)

Messaging Server
(MMP)

System: MMP1
(2x4)

Messaging Server
(MMP)

System: AM2
(2x8)

Access Manager

Web Server

System: AM1
(2x8)

Access Manager

Web Server

System: CX2
(2x4)

Messaging Server
(MEM)

Identity Server
(SDK)

Communications
Express

Web Server

System: CX1
(2x4)

Messaging Server
(MEM)

Access Manager
(SDK)

Communications
Express

Web Server

Load balancer

Hardware system

System component

External storage

Legend
Network connection

2-CPU, 4-GB RAM

2-CPU, 8-GB RAM

4-CPU, 16-GB RAM

(2x4)

(2x8)

(4x16)

Calendar Store
Message Store

Sun Cluster Software

Failover

System: STR2
(2x8)

Calendar Server
(Store)

Messaging Server
(Store)

System: STR1
(2x8)

Calendar Server
(Back-end)

Messaging Server
(Store)

Load BalancerLoad Balancer

Load Balancer

Load BalancerLoad Balancer

LDAP
Store

Load Balancer

System: DS2
(2x4)

Directory Server
Master

System: DS1
(2x4)

Directory Server
Master

Example Deployment Architecture

100 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

101

Chapter 6

Implementation of a
Deployment Design

During the implementation phase of the solution life cycle you work from
specifications and plans created during deployment design to build and test the
deployment architecture, ultimately rolling out the deployment into production.
Implementation is beyond the scope of this guide, however this chapter provides a
high-level view of this phase.

This chapter contains the following sections:

• “About Implementing Deployment Designs” on page 101

• “Installing and Configuring Software” on page 102

• “Developing Pilots and Prototypes” on page 103

• “Developing Pilots and Prototypes” on page 103

• “Testing Pilot and Prototype Deployments” on page 103

• “Rolling Out a Production Deployment” on page 104

About Implementing Deployment Designs
After the deployment architecture has been approved and implementation
specifications and plans have been completed, you enter the implementation phase
of the solution life cycle. Implementation is a complex set of processes and
procedures that requires careful planning to ensure success. Implementation
includes the following tasks:

• Building the network and hardware infrastructure

• Installing and configuring software according to an installation plan

Installing and Configuring Software

102 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

• Migrating data from existing applications to the current solution

• Implementing a user management plan.

• Designing and deploying pilots or prototypes in a test environment according
to a test plan

• Designing and running functional tests and stress tests according to a test plan

• Rolling out the solution from a test environment to a production environment
according to a rollout plan

• Training administrators and users of the deployment according to a training
plan

Details of implementation are beyond the scope of this guide. However, the
following sections provide overview information for some of these tasks.

Installing and Configuring Software
The installation and configuration of Sun Java™ Enterprise System for a
distributed enterprise application requires the planning and coordination of many
tasks and procedures. During the deployment design phase, you create an
installation plan based on the high-level deployment architecture that provides
installation and configuration information needed to install Java Enterprise System
software.

Highlights of this installation plan include:

• Determining the sequence and type of installation

• Surveying hosts for previously installed software and installation readiness

• Gathering configuration information for each Java Enterprise System
component you are installing

The Java Enterprise System Installation Guide, http://docs.sun.com/doc/819-0056,
provides details on how to gather information for an installation plan. The
installation guide provides detailed configuration information and worksheets you
can use to document this information. The installation guide also provides
guidance on common installation scenarios that involve multiple Java Enterprise
System components. For more information, refer to the section “Preparing for an
Installation” in the Java Enterprise System Installation Guide,
http://docs.sun.com/doc/819-0056.

http://docs.sun.com/doc/819-0056
http://docs.sun.com/doc/819-0056.

Developing Pilots and Prototypes

Chapter 6 Implementation of a Deployment Design 103

Developing Pilots and Prototypes
Java Enterprise System deployments typically fall into two categories, those based
primarily on services provided with Java Enterprise System and those that require
a significant number of custom services that are integrated with Java Enterprise
System services. You can think of the former type of deployment as an 80:20
deployment (80% of the services are provided by Java Enterprise System) and
similarly, the former as a 20:80 deployment.

For 80:20 deployments, during the implementation phase, you typically develop a
pilot deployment for testing purposes. Because 80:20 deployments use mature Java
Enterprise System services that provide “out-of-the-box” functionality, pilot
deployments move relatively quickly from development, testing, and modification
steps, to production deployments. A pilot deployment verifies the functionality of
a solution, but also provides information on how well the system performs.

20:80 deployments, on the other hand, introduce new, custom services that do not
have the history of interoperability that comes with 80:20 deployments. For this
reason, you create a prototype, which is a proof-of-concept deployment that
typically requires a more rigorous development, testing, and modification cycle
before going into production. A prototype lets you determine how well a proposed
solution solves the problem in a test environment. Once the prototype
demonstrates the functionality is sufficient, you can move on to more rigorous
testing and then to a pilot deployment.

Testing Pilot and Prototype Deployments
The purpose of testing pilot and prototype deployments is to determine as best as
possible under test conditions whether the deployment satisfies the system
requirements and also meets the business goals.

Ideally, functional tests should model scenarios based on all identified use cases
and a set of metrics should be developed to measure compliance. Functional
testing can also involve a limited deployment to a select group of beta users to
determine if business requirements are being satisfied.

NOTE Actual enterprise deployments can vary greatly in the amount of
custom development of services they require. How you use pilot
and prototype deployments for testing purposes depends on the
complexity and nature of your deployment.

Rolling Out a Production Deployment

104 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

Stress tests measure performance under peak loads. These tests typically use a
series of simulated environments and load generators to measure throughput of
data and performance. System requirements for the deployment are typically the
basis for designing and passing stress tests.

Testing can indicate problems with the deployment design specification and might
involve several design, build, and test iterations before you can roll out the
deployment to a production environment. When testing prototype deployments,
you might discover problems with the deployment design, in which case you can
iterate back to earlier phases in the solution life cycle to address the problems.

Make sure you have thoroughly tested your deployment design before proceeding
to a pilot deployment. A pilot deployment indicates you have already verified the
deployment design with earlier series of tests. Problems you uncover during the
testing of a pilot deployment must generally be addressed within the parameters of
the deployment design.

Because testing never completely simulates a production environment, and also
because the nature of a deployed solution can evolve and change, you should
continue to monitor deployed systems to identify any areas that require tuning,
maintenance, or service.

Rolling Out a Production Deployment
Once the pilot or proof-of-concept deployment passes the test criteria, you are
ready to roll out the deployment to a production environment. Typically, you roll
out to a production environment in stages. A staged rollout is especially important
for large deployments that affect a significant number of users.

The staged deployment can start with a small set of users and eventually expand
the user base until the deployment is available to all users. A staged deployment
can also start with a limited set of services and eventually phase in the remaining
services. Staging services in phases can help isolate, identify, and resolve problems
a service might encounter in a production environment.

NOTE Functional and stress tests are particularly important for large
deployments where system requirements might not be well-defined,
there is no previous implementation on which to base estimates, and
the deployment requires a significant amount of new development.

105

Index

NUMERICS
20:80 deployments 19

implementation phase 103
3-dimensional architecture 50
80:20 deployments 19, 103

A
Access Manager 53, 77
access zones 66
Application Server 53
availability

examples 87
failover 83
horizontally redundant systems 84
load balancing 83
N+1 failover system 84
optimizing resources 96
prioritizing 41
quality of service requirement 40
replication of services 83

availability strategies
determining 83

B
budget limitations 34
business analysis phase 23

about 27
business constraints 33

budget limitations 34
cost of ownership 34
migration issues 33
schedule mandates 33

business goals
affecting deployment design 72
defining 28

business requirements
business goals 28
corporate culture 31
defining 28
operational requirements 30
regulatory requirements 31
security goals 31
service level agreements 32
understanding users 29
usage patterns 30

business service tier
multitiered architecture model 57

Section C

106 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

C
Calendar Server 53, 77
client tier

multitiered architecture model 57
Communications Express 53
component dependencies 52

web container support 55
corporate culture 31
cost of ownership 34

affecting deployment design 72

D
data tier

multitiered architecture model 57
deployment architecture 70

example 98
deployment design

about 69
business goals 72
cost of ownership 72
factors 71
methodology 73
outputs 70
processor requirements 73
project approval 70
quality of service requirements 72
replicating services 73
service level agreements 72
usage analysis 72
use cases 72

deployment design phase 24
deployment planning

about 21
incremental approach 32
solution life cycle 21

deployment scenario 49, 67, 69
Directory Proxy Server 53, 56
Directory Server 53, 59, 77

multi-master replication 89, 90
single master replication 89, 90

disaster recovery plan 71

DMZ
external access zone 67

documentation 12
Installation Guide 53, 102
overview 12
Technical Overview 19, 50, 51

E
estimating processor requirements 73, 74

example 75
secure transactions 80
use cases 77

examples
access zones 66
availability design 87
deployment architecture 98
Directory Server 89
estimating processor requirements 75
estimating processor requirements for secure

transactions 80
failover 88
identity-based communications 62
load balancing 85, 87
logical architecture 58
Messaging Server logical architecture 58
multi-master replication 90
replication of services 89
scalability 92
single master replication 90

external access zone (DMZ) 67

F
failover 83

example 88
Sun Cluster software 86

fault-tolerant systems 41
functional tests 103

Section H

Index 107

H
horizontally redundant systems 84

I
identifying bottlenecks

deployment design 73
identity-based communications example 62

estimating processor requirements 75
use cases 63

implementation phase 25, 103
about 101
developing pilots and prototypes 103

implementation plans 70
implementation specifications 70
installation plan 71
installing Java Enterprise System 102
Instant Messaging 53
internal access zone (intranet) 67

J
Java Enterprise System

20:80 deployments 19
80:20 deployments 19
about 17
access components 56
component dependencies 52
components 51
custom services 19
installing 102
migration issues 20
rolling out a production deployment 104
services 19
system services 17
three dimensional architecture 50

L
latent capacity 46

scalability considerations 92
load balancing 83

example 85
logical architecture

affecting deployment design 71
designing 51
examples 58
identity-based communications example 63

logical architectures 49
logical design

about 49
logical design phase 24
logical tiers

multitiered architecture model 57

M
managing risks 97

deployment design 73
Message Queue 53
Messaging Server 53

example logical architecture 58
load balancing example 87
logically distinct services 55
Message Multiplexor (MMP) 55, 56, 59, 77
Message Store (STR) 55, 59, 77
Message Transfer Agent (MTA) 55, 59
Messenger Express Multiplexor (MEM) 55
use cases 60

migration issues 20
as business constraint 33

migration plan 70
multi-master replication 89

example 90
multitiered architecture design 56

Section N

108 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

N
N+1 failover system 84

O
operational requirements 30
operations phase 26
operations plan (Run Book) 71
optimizing

disk access 95
resource usage 96

optimizing resources
deployment design 73

P
performance

identifying bottlenecks 93
optimizing resources 96
quality of service requirement 40

pilots 103
testing 103

Portal Server 53, 56
Mobile Access 56
Secure Remote Access 53, 56

presentation tier
multitiered architecture model 57

processor requirements
estimating 74

project approval 70
prototypes 103

testing 103

Q
QoS (quality of service requirements) 38
quality of service requirements 38, 46

affecting deployment design 72
role in deployment design 69

R
regulatory requirements 31
replicating services 73
replication of services

availability strategy 83
Directory Server example 89

risk management 97
roll-out plan 71
Run Book 71

S
scalability

estimating growth 43
example 92
optimizing resources 97
quality of service requirement 42
strategies 91

schedule mandates 33
secure access zone 67
security

estimating processor requirements 73
optimizing resources 96
quality of service requirement 44

service level agreements 32
affecting deployment design 72
requirements 47

service level requirements 47

Section T

Index 109

serviceability
optimizing resources 97
quality of service requirement 46

single master replication 89
example 90

SLA 32
Solaris

patches 14
support 14

solution life cycle 21
business analysis phase 23, 27
deployment design phase 24, 69
implementation phase 25, 101
logical design phase 24, 49
operations phase 26
technical requirements phase 23, 35

stress tests 104
Sun Cluster software 86

failover example 88
support

Solaris 14

T
technical requirements

availability 40
latent capacity 46
performance 40
scalability 42
security 44
service level requirements 47
serviceability 46

technical requirements phase 23
about 35
quality of service requirements 38
usage analysis 36
use cases 38

test plan 71
testing

functional tests 103
pilots and prototypes 103
stress tests 104

three dimensional architecture 50
training plan 71

U
usage analysis 36

affecting deployment design 72
usage patterns 30
use cases 38

affecting deployment design 72
estimating processor requirements 77
identity-based communications example 63
Messaging Server example 60

user management plan 71

W
Web Server 53, 77

Section W

110 Sun Java Enterprise System 2005Q1 • Deployment Planning Guide

	Sun Java Enterprise System 2005Q1 Deployment Planning Guide
	Contents
	List of Figures
	List of Tables
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Documentation
	Books in This Documentation Set

	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Related Third-Party Web Site References
	Sun Welcomes Your Comments

	1. Introduction to Deployment Planning
	About Java Enterprise System
	System Services
	Built-In Services and Custom-Developed Services
	Migrating to Java Enterprise System

	About Deployment Planning
	Solution Life Cycle
	Business Analysis Phase
	Technical Requirements Phase
	Logical Design Phase
	Deployment Design Phase
	Implementation Phase
	Operations Phase

	2. Business Analysis
	About Business Analysis
	Defining Business Requirements
	Setting Business Goals
	Scope
	Priorities
	Critical Qualities
	Growth Factors
	Safety Margin

	Understanding User Needs
	Developing Operational Requirements
	Supporting Existing Usage Patterns

	Understanding Corporate Culture
	Stakeholders
	Standards and Policies
	Regulatory Requirements
	Security
	Site Distribution

	Using an Incremental Approach
	Understanding Service Level Agreements

	Defining Business Constraints
	Migration Issues
	Schedule Mandates
	Budget Limitations
	Cost of Ownership

	3. Technical Requirements
	About Technical Requirements
	Usage Analysis
	Use Cases
	Quality of Service Requirements
	Performance
	Availability
	Fault-Tolerant Systems
	Prioritizing Service Availability
	Loss of Services

	Scalability
	Estimating Growth

	Security Requirements
	Elements of a Security Plan

	Latent Capacity
	Serviceability Requirements

	Service Level Requirements

	4. Logical Design
	About Logical Architectures
	Designing a Logical Architecture
	Java Enterprise System Components
	Component Dependencies
	Web Container Support
	Logically Distinct Services Provided by Messaging Server
	Access Components

	Multitiered Architecture Design

	Example Logical Architectures
	Messaging Server Example
	Messaging Server Use Cases

	Identity-Based Communications Example
	Use Cases for Identity-Based Communications Example

	Access Zones
	Deployment Scenario

	5. Deployment Design
	About Deployment Design
	Project Approval
	Deployment Design Outputs
	Factors Affecting Deployment Design

	Deployment Design Methodology
	Estimating Processor Requirements
	Example Estimating Processor Requirements
	Determine Baseline CPU Estimate for User Entry Points
	Include CPU Estimates for Service Dependencies
	Study Use Cases for Peak Load Usage
	Modify Estimates for Other Load Conditions
	Update the CPU Estimates

	Estimating Processor Requirements for Secure Transactions
	CPU Estimates for Secure Transactions
	Specialized Hardware to Handle SSL Transactions

	Determining Availability Strategies
	Availability Strategies
	Single Server System
	Horizontally Redundant Systems
	Sun Cluster Software

	Availability Design Examples
	Load Balancing Example for Messaging Server
	Failover Example Using Sun Cluster Software
	Replication of Directory Services Example
	Single Master Replication
	Multi-Master Replication

	Determining Strategies for Scalability
	Latent Capacity
	Scalability Example

	Identifying Performance Bottlenecks
	Optimizing Disk Access

	Designing for Optimum Resource Usage
	Managing Risks
	Example Deployment Architecture

	6. Implementation of a Deployment Design
	About Implementing Deployment Designs
	Installing and Configuring Software
	Developing Pilots and Prototypes
	Testing Pilot and Prototype Deployments
	Rolling Out a Production Deployment

	Index

