
1

ZFS as a Root File System

Lori Alt
Sun Microsystems, Inc.

2

What Does It Take to be a Root
File System?

• Boot capability
• Robustness characteristics (such as

mirroring)
• Installation support
• Swap and dump support
• Ongoing management capabilities (upgrade,

patching, snapshots, etc.)

3

Why use ZFS as a Root File
System?

• There is a benefit to having only one file
system type to understand and manage
(assuming ZFS is already in use for data).

• ZFS's features make it an excellent root file
system with many management advantages.

• At least for Solaris, it's the coming thing. New
installation and management features will
depend on it.

4

ZFS Features that Matter (for
Root File Systems)

• Pooled Storage – No need to preallocate
volumes. File systems only use as much
space as they need

• Built-in redundancy capabilities (such as
mirroring) at the pool level.

• Unparalleled data integrity features. On-disk
consistency always maintained—no fsck.

5

More ZFS Features that Matter
(for Root File Systems)

• Snapshots and clones (writable snapshots)–
instantaneous, nearly free, persistent, and
unlimited in size and number (except by the
size of the pool)

• ZFS volumes (zvols) can be used for in-pool
swap and dump areas (no need for a
swap/dump slice). One pool does it all.

6

Storage Layout for System Software
with Traditional File Systems

Root A

Root B

Swap/Dump

/export

Root A

Root B

Swap/Dump

/export

Disk 1 Disk 2

mirror

mirror

mirror

mirror

7

Storage Layout for System Software
with a ZFS Storage Pool

Root A

Root B

Swap/Dump

/export

Root A

Root B

Swap/Dump

/export

Disk 1 Disk 2

mirror

Pool 'Tank' Pool 'Tank'

+

+

+

+

+

+

8

A Short Primer on Booting Solaris

PROM BOOTER KERNEL

Three Phases:

9

Booting Solaris – PROM phase

1) The PROM (BIOS on x86, Open-Boot Prom
on SPARC) identifies a boot device.

2) The PROM loads and executes a booter
from the boot device.

10

Booting Solaris – Booter phase

1) The booter selects a root file system.
2) The booter loads one or more files from the

root file system into memory and executes
one of them. The executable file is either
part of the Solaris kernel, or a program that
knows how to load the Solaris kernel.

11

Booting Solaris – Kernel phase

1) The kernel uses the I/O facilities provided by
the booter to load the necessary kernel
modules and files (drivers, file system, and
some control files) in order to do its own I/O
and mount the root file system.

2) The root file system is mounted and system
initialization is performed.

12

Booting from ZFS – PROM phase

• At the PROM stage, booting ZFS is
essentially the same as booting any other file
system type.

• The boot device identifies a storage pool, not
a root file system.

• At this time, the booter which gets loaded is
GRUB 0.95 on x86 platforms, and is a
standalone ZFS reader on SPARC platforms.

13

Booting from ZFS – Booter phase
• With ZFS, there is no one-to-one

correspondence between boot device and
root file system. A boot device identifies a
storage pool, not a file system. Storage pools
can contain multiple root file systems.

• Thus, the booter phase must have a way to
select among the available root file systems in
the pool.

• The booter must have a way of identifying the
default root file system to be booted, and also
must provide a way for a user to override the
default.

14

Booting from ZFS – Booter phase,
Root File System Selection

• Root pools have a “bootfs” property that
identifies the default root file system.

• We need a control file that lists all of the
available root file systems, but in which file
system do we store it? (we don't want to keep
it in any particular root file system).

• Answer: keep it in the “pool dataset”, which is
the dataset at the root of the dataset
hierarchy. There's only one of them per pool
and it's guaranteed to be there.

15

Booting from ZFS – Booter phase,
Root File System Selection - x86

• On x86 platforms, the GRUB menu provides a
way to list alternate root file systems.

• One of the GRUB menu entries is designated
as the default.

• This default entry (or any other, for that
matter) can be set up to mount the pool's
default root file system (indicated by the pool's
“bootfs” property).

16

Booting from ZFS – Booter phase,
Root File System Selection - SPARC

• On SPARC platforms, a control file will list the
available root file systems.

• A simple “boot” or “boot disk” command at the
OBP prompt will boot whatever root file
system is identified by the “bootfs” pool
property.

• There will also be a standalone program
available which presents a list of the available
root file systems and allows the user to select
one of the roots for booting.

17

Booting from ZFS – Booter phase,
Loading the Kernel

• Once the root file system is identified, the
paths to the files needed for booting are
resolved in that root file system's name
space.

• The booter loads the kernel's initial
executable file (and other files, as necessary)
and executes the kernel.

18

Booting from ZFS – Kernel phase

• The booter has passed (1) the device
identifier of the boot device, and (2) the name
and type of the root file system as arguments
to the kernel.

• Because the root file system is ZFS, the ZFS
file system module is loaded and its
“mountroot” function is called.

• The ZFS mountroot function reads the pool
metadata from the boot device, initializes the
pool, and mounts the designated dataset as
root.

19

Boot Environments

• A boot environment is a root file system,
plus all of its subordinate file systems (i.e.,
the file systems that are mounted under it)

• There is a one-to-one correspondence
between boot environments and root file
systems.

• A boot environment (sometimes
abbreviated as a BE) is a fundamental
object in Solaris system software
management.

20

Using Boot Environments

• There can be multiple boot environments on
a system, varying by version, patch level, or
configuration.

• Boot environments can be related (for
example, one BE might be a modified copy
of another BE).

• Multiple BEs allow for safe application and
testing of configuration changes.

21

The “Clone and Modify” Model of
System Updates

In-place updates of boot environments can be
risky and time-consuming. A safer model is to
do the following:
•Make a new boot environment which is a clone
of the current active boot environment.
•Update the clone (upgrade, patch, or
reconfigure)
•Boot the updated clone BE.
•If the clone is acceptable, make it the new
active BE. If not, leave the old one active.

22

“Clone and Modify” Tools

• Solaris supports a set of tools calls
“LiveUpgrade”, which do cloning of boot
environments for the purpose of safe
upgrades and patching

• New install technology under development will
support this also.

• ZFS is ideally suited to making “clone and
modify” fast, easy, and space-efficient. Both
“clone and modify” tools will work much better
if your root file system is ZFS. (The new install
tool will require it for some features.)

23

Clone and Modify with Traditional
File Systems

Root A

Clone of
Root A

Swap/Dump

/export

Then
upgrade
this root file
system

24

Clone and Modify with a ZFS
Storage Pool

Swap/Dump

/export

Initial State After Clone

Pool 'Tank'

+

Pool 'Tank'

Root A
Root A

+

Clone of
Root A

+
Swap/Dump

/export

After Upgrade

Pool 'Tank'

Root A

+
Upgraded

Root A

+
Swap/Dump

+

/export
+

+

25

Boot Environment Management
with ZFS

• Boot environments can be composed of
multiple datasets, with exactly one root file
system.

• Regardless of how many datasets compose
the boot environment, the “clone and modify”
tools will treat the boot environment as a
single manageable object.

26

The ZFS “Safe” Upgrade

The low-risk, almost-no-down-time system
upgrade (using LiveUpgrade):

lucreate -n S10_U6
luupgrade -n S10_U6 -s \

/cdrom/Solaris_10_U6
luactivate S10_U6
[reboot]

27

What Happens During the ZFS
“Safe” Upgrade

lucreate
• Does a ZFS snapshot of the datasets in the
current Boot Environment, and then clones
them to create writable copies

• Requires almost no additional disk space and
occurs almost instantaneously (because ZFS
cloning works by copy-on-write).

28

What Happens During the ZFS
“Safe” Upgrade

luupgrade
• The system remains “live” (still running the
original root) during the upgrade of the clone.

• The upgrade gradually increases the amount
of disk space used as copy-on-write takes
place. New space is required only for files
that are modified by the upgrade.

29

What Happens During the ZFS
“Safe” Upgrade

luactivate
• Make the specified boot environment the new
active BE. Both the old and the new BE are
available from the boot menu (but the new one
is the default).

<reboot>
• User can select either the old or the new BE.
If the new BE fails for some reason, the
system can be booted from the old BE.

30

What Happens During the ZFS
“Safe” Upgrade

ludestroy
• At some point, the old BE can be destroyed.

31

Boot Environment Management
with ZFS

• Boot environments will typically be composed
of multiple datasets.

• The recommended configuration will be to
have separate datasets for root, /usr, /var, /
opt, /export and any optional directories
placed under root (such as a /zoneroots
directory, for example).

32

Boot Environment Dataset
Hierarchy

rootpool

BE

S10_u6

usr var opt export

S10_patchedS10

33

Boot Environments Composed of
Multiple Datasets

Why do this? Why split out /usr and so on?
• Keeps the root file system small (critical for

eventually supporting boot from RAID-Z
devices, because root will have to be
replicated on all devices in a pool.)

• Allows parts of the Solaris name space to
have different kinds of storage characteristics
(such as compression).

• Allows a directory such as /var/log to be
shared between boot environments

34

Boot Environments Composed of
Multiple Datasets

Why not split out /usr and other directories?
•ZFS file system are more like directories than
traditional file systems. Why not use them that
way when it helps administration?
•Pooled storage means that the file systems
don't have to have to be pre-allocated.
•About the only capability you lose if /usr is a
separate file system is the ability to establish
hard links between root and /usr.

35

ZFS Boot Limitations

• Currently, root pools can be n-way mirrors
only (no striping or RAID-Z). We hope to relax
this restriction in the next release.

• On Solaris, root pools cannot have EFI labels
(the boot firmware doesn't support booting
from them).

36

Installation – Near Term

• The existing Solaris install software is being
adapted to set up a root pool and a root
dataset and install Solaris into the root dataset
(and its subordinate datasets).

• This will work with both the interactive install
and the profile-driven install (Jumpstart).

• Customization features will be limited.

37

Installation – Future

• New installation software is currently under
development which will leverage ZFS's
capabilities from the outset.

• Installation will be much easier with ZFS: no
need to slice up a disk into separate volumes
for root, swap, /export, and so on.

• See:
http://opensolaris.org/os/project/caiman

38

Further Information

• Check out:

http://opensolaris.org/os/community/zfs/boot

• We welcome ideas for how to use ZFS to
manage software.

