
Tunnel Reform Design
Daniel L. McDonald

Solaris Security

Revision 1.0 – 21 October 2005

Overview

The Tunnel Reform project will address several shortcomings in the Solaris IPsec and
IKE implementations. All of these shortcomings are related to tunnel mode packets.
The current Solaris implementation of IPsec tunneling is barely interoperable with other
implementations if manually-keyed, and is not at all interoperable with other
implementations when IKE manages IPsec Security Associations.

Tunnel Reform includes a series of changes that span the IPsec implementation:
configuration commands, the IKE daemon, the IPsec Security Policy Database (SPD),
the IPsec Security Association Database (SADB), the PF_KEY key management socket,
and the IP Tunnelling Module. This project also interacts, and has at least a soft
dependency, on the IP Network Interface Unification (Clearview) project.

Problem Statement

In Solaris 8, Secure IPv4 tunnels were implemented as network interfaces. This decision
made for easier network construction, as well as dovetailing with IPv6 tunnels. The
downside to this decision, however, was that configuring IPsec to tunnel packets was
not solely in the domain of IPsec configuration. Many IPsec administrators are used to
dealing with integrated firewalls, where packet protection policy and the use of tunnels
have been combined in a single solution. These users were confused by Solaris 8.

Also, because tunneling was a forwarding decision, not an IPsec decision, some possible
uses of IPsec tunnel mode could not be performed in Solaris 8. The best example was
the case where the outer packet's destination IP address was equal to the inner packet's
destination IP address. In Solaris 8 (and later) one could not configure tunnelling to
perform such an encapsulation - it would black-hole to prevent a never-ending
forwarding loop.

In Solaris 9 and Solaris 10, the changes made for IKE and other IPsec policy
improvements did nothing to change how tunnels were implemented. Also, the IKE
daemon would express Phase II identities in a non-standard way. According to RFC
2409 the Phase II identities must be set as follows:

If ISAKMP is acting as a client negotiator on behalf of another party, the
identities of the parties MUST be passed as IDci and then IDcr.

This is a fancy way of saying "use some form of the inner IP addresses for Tunnel
Mode". Currently Solaris sets both identities for packets protected on a tunnel interface
as proto=4 (IP-in-IP), 0.0.0.0/0 for IPv4-in-* tunnels, and proto=41 (IPv6-in-IP), 0::0/0
for IPv6-in-* tunnels. This decision led to many interoperability problems with other
IKE implementations.

Furthermore, the upcoming revisions to the IETF IPsec standards (known among the
IPsec community as 2401bis) will also require that tunnel mode packets have inner-

packet selectors. The next revision of IKE, IKEv2, also still specifies the equivalent of
Phase II identities, now calling them traffic selectors. IKEv2 also clarifies when it is
appropriate to send precise inner-packet information, and when to send inner-packet
patterns that matched an SPD entry.

Goals and Non-Goals

The goals of Tunnel Reform are straightforward:

• For packets that originate or are destined for a Solaris node (where a tunnelling
interface counts as an originator or destination), implement the full RFC 2401
set of selectors, while attempting to not impede changes that 2401bis will
introduce.

• To severely reduce or eliminate interoperability problems. Testing should
include the following platforms:

• Solaris 9 and/or Solaris 10 FCS (for backward compatibility in S9's non-
standard tunnel handling in IKE).

• cisco IOS

• cisco PIX (uses different IPsec implementation)

• Checkpoint products

• Microsoft Windows (2000, XP, and if available, Vista)

• MacOS X

• Linux distributions based on the 2.6 kernel, optionally with the “ipsec-tools”
project.

• If not covered by MacOS X and/or Linux testing, a *BSD with the racoon
IKE daemon.

• OpenBSD isakmpd.

• PF_KEY improvements for expressing 2401 selectors, preferably as input into a
publicly available PF_KEYv3 specification.

• The ability to tunnel to multiple peers behind a single NAT-ted IP address.

The following items are specifically NOT part of the Tunnel Reform project:

• Policy-directed tunnelling – the ability to use ipsecconf(1m) to configure a
tunnel (as opposed to merely setting a tunnel's security properties). While it
would allow the use of a policy that may include a packet with the inner
destination address is equal to the outer destination address, implementing it
now may sabotage other routing or tunnel related projects.

• Performing IPsec protection on forwarded packets that are not explicitly routed
through a tunnelling interface. Such work would be done in conjunction with an
integrated IPfilter module.

• Cleanup of the main IP processing path that deals with IPsec packets. Such
work constitutes a separate project.

• RFC 2401bis work will be delayed until the full RFC 2401bis project.

Concepts

This document assumes the reader is familiar with TCP/IP and IPsec internals.

Solaris's implementation of packet tunnelling, the IPsec specifications for Tunnel Mode
packets, and other proposals from the IETF community have not agreed on the best way
to do packet tunnelling and express IKE Quick Mode proposals for such packets.

Solaris 9 (the first Solaris revision to feature IKE) took a halfhearted approach to the
problem, in that it specified (for IKE) the broadest set of tunnel mode inner selectors for
both internal packet addresses (0.0.0.0/0), but fixed the IP protocol to either IPv4-in-IP
or IPv6-in-IP. Furthermore, the Solaris 9 IKE does not check at all on the responder side
for transport or tunnel mode -> it merely uses the port and protocol selectors in
combination with the addresses in Phase I. While using ports and protocol along with
the Phase I addresses is sensible behavior for transport mode negotiations, it is not for
tunnel mode.

The IETF specifications for IPsec and IKE specify two details that Solaris 9 did not
implement. The first was that the Security Association Database (SADB) allows inner-
packet fields to be used in selecting IPsec SAs. Since Solaris does not support inner-
packet field SA selection, PF_KEY in Solaris lacks any expression for such selectors.
That lack ties into the second detail. The Solaris 9 IKE daemon does not express Quick
Mode identities other than the ones mentioned earlier in the Problem Statement section.
Tunnel Reform will address this problem in both PF_KEY and IKE, and allow proper
tunnel mode Quick Mode negotiations.

Another approach to packet tunnelling is detailed in RFC 3884. RFC 3884 postulates
that Tunnel Mode is redundant if tunnels are treated like network interfaces. RFC 3884
suggests that IPsec treat IP-in-IP packets as transport mode, with the protocol selector
being set to IP or IPv6, respectively. One suggestion 3884 makes is to also include just
the inner addresses in SA selection. A drawback to this suggestion is that it cannot be
expressed in IKE's quick-mode without heuristics that may violate the IKE
specification. This project will not implement 3884 tunnels with inner address selctors,
but it will implement 3884 tunnels in order to maintain backward compatibility with
Solaris 9. Tunnel Reform will allow IKE to negotiate transport mode in Quick Mode
for tunnels using a protocol value of either IPPROTO_ENCAP or IPPROTO_IPV6.

The following chart details the different secure tunnelling semantics:

Specification IPsec mode: Tunnel or
Transport

IKE Quick Mode
Identities

NOTES

RFC 2401 Tunnel Inner packet's
addresses or
matching prefix,
optionally inner-
packet's protocol
and/or ports.

Modulo case of
inner-packet
destination == outer-
packet destination,
can be implemented
using tunnelling
interfaces.

RFC 3884 Transport Same as outer
packet's addresses,
proto=ipip or ipv6.

Can express easily
in IKE, but not
specified in IKE or
in RFC 2401.

Also for Solaris 9 or
10 compatibility.

Internal Data Structure Changes

Several internal data structures will need to accommodate the full set of RFC 2401
selectors. The primary internal selector structure is this one:

typedef struct ipsec_selkey
{

uint32_t ipsl_valid; /* bitmask of valid entries */
ipsec_addr_t ipsl_local;
ipsec_addr_t ipsl_remote;
ipsec_addr_t ipsl_linner; /* NEW FIELD */
ipsec_addr_t ipsl_rinner; /* NEW FIELD */
uint16_t ipsl_lport; /* NEW SEMANTICS: Applies to inner */
uint16_t ipsl_rport; /* if either inner address is valid */
/*
 * ICMP type and code selectors. Both have an end value to
 * specify ranges, or * and *_end are equal for a single
 * value
 */
uint8_t ipsl_icmp_type;
uint8_t ipsl_icmp_type_end;
uint8_t ipsl_icmp_code;
uint8_t ipsl_icmp_code_end;

/*
 * NOTE: These fields apply to the inner packet
 * if either inner address is valid.
 */
uint8_t ipsl_proto; /* ip payload type */
uint8_t ipsl_local_pfxlen; /* #bits of prefix */
uint8_t ipsl_remote_pfxlen; /* #bits of prefix */
uint8_t ipsl_mbz;

uint32_t ipsl_hval;
} ipsec_selkey_t;

#define IPSL_REMOTE_ADDR 0x00000001
#define IPSL_LOCAL_ADDR 0x00000002
#define IPSL_REMOTE_PORT 0x00000004
#define IPSL_LOCAL_PORT 0x00000008
#define IPSL_PROTOCOL 0x00000010
#define IPSL_ICMP_TYPE 0x00000020
#define IPSL_ICMP_CODE 0x00000040
#define IPSL_LOCAL_INNER 0x00000080 /* NEW */
#define IPSL_REMOTE_INNER 0x00000100 /* NEW */
#define IPSL_IPV6 0x00000200 /* CHANGED */
#define IPSL_IPV4 0x00000400 /* CHANGED */

#define IPSL_WILDCARD 0x000001ff /* CHANGED */

The new and changed fields all have to do with the fact that for tunnel mode packet, the
inner packet's fields are used for IPsec SA selection, in addition to the outer header's
addresses. Selector ranges (as generalized in RFC 2401bis) are outside the scope of this
project.

The PF_POLICY API will have to accommodate not only the changes above, but also
to tie specify tunnel policy entries to specific tunnel interfaces or (in the case of policy-
directed tunnels) an additional IP address for tunnelling.

Tunnel Reform requires a few new extensions, two of them are address extensions, and
the third is a new extension type:

• SPD_EXT_LCLINNER
• SPD_EXT_REMINNER
• SPD_EXT_TUNIFNAME

PF_POLICY now needs a way to identify a tunnel interface:

typedef struct spd_ifid_s {
union {

struct {
uint16_t spd_ifid_ulen;
uint16_t spd_ifid_uexttype;
uint8_t spd_ifid_uid[6];

} spd_ifid_u;
uint64_t spd_ifid_alignment;

} spd_ifid_u;
/* NOTE: #defines removed for brevity... */
} spd_ifid_t;

The interface identity structure select a tunnel for which the specific policy (with inner
selectors) is applied. The spd_ifid_id field (the uint8_t array) contains a null-terminated
string that names the tunnel interface. This identity may be used by the SPD to either
tag an entry for a tunnel interface, or locate a tunnel interface and place the policy entry
in an interface-specific place. A policy entry with an interface identifier and no inner
addresses means transport-mode will be indicated by PF_KEY ACQUIRE messages.

Given that policy entries can be assigned to tunnel interfaces, it may be helpful to
system performance if such entries in the SPD are hashed into their own separate tables.
This way, a tunnel-specific entry is not in the way of the main SPD, or other tunnels'
entries.

The IPsec Security Association Database (SADB) needs to more properly match the
specifications in RFC 2401. While defined, but not used, the “proxy” addresses in the
internal SA representation will start being used with Tunnel Reform. The “Proxy
Source” and “Proxy Destination” correspond to the inner packet's source and destination
addresses. For inner addresses, we will need to add prefix-lengths to them as well, in
case the endpoints negotiate based on prefixes instead of actual addresses.

Internally, there will still be no major difference between a Transport Mode SA and a
Tunnel Mode SA. For the cases of RFC 3884 and RFC 2401 semantics, both have their
protocols set to 4 or 41. RFC 2401 SAs which have inner-header port or protocol
selectors (e.g. Quick Mode Identities are a TCP 5-tuple) will have a new byte in the
ipsa_unique_id field for the inner-packet's protocol.

Internal Packet Processing Changes

PF_POLICY AND SPD CHANGES

If a PF_POLICY message contains a SPD_EXT_TUNIFNAME extension, one of two
things will happen. The SPD code will first attempt to locate an active tunnel that
matches the interface names specified. If the SPD finds the tunnel it will update its state
with the relevant SPD entry. If it does not find the tunnel, then it will link the SPD
entry into a “homeless queue” for the named interface. New tunnel instances (see

below) will search for homeless SPD entries.

TUNNEL MODULE CHANGES

The IP tunnelling module will become an active participant in IP policy. Currently, the
IP tunnelling module parses an IP_SEC_OPT socket option structure out of the tunnel
configuration ioctl, and packages it as a T_OPT_REQ for its IP instance. Packets
delivered to a tunnel instance are checked in the initial IP processing for policy. On
outbound processing, the tunnel trusts the lower layer of IP to apply the appropriate
level of protection.

Under Tunnel Reform, inbound packets will have to arrive in the tunnel module routines
with the IPSEC_IN metadata intact. Only the tunnel module, with access to the routing
tables and its own inner-packet SPD entries can determine if the inbound packet is
acceptable or not. Correspondingly, outbound packets will be tagged by the tunnel
module with IPSEC_OUT metadata. This reintroduces an external producer of
IPSEC_OUTs and a consumer of IPSEC_INs, but the FireEngine project, while
eliminating TCP's direct dependence, does not appear to have eliminate the handling
code in IP for external IPSEC_OUT and IPSEC_IN messages.

On the bring-up of a tunnel, once the instance name is known, the homeless SPD entries
will be searched for a set that matches the tunnel's name. If homeless SPD entries are
found, they will be cached in tunnel state. If a tunnel's name changes, existing SPD
entries remain, AND the homeless queue will be searched for new ones matching the
new name. Since ipsecconf(1m) input uses tunnel names, it is up to the administrator to
ensure that if a tunnel interface name changes, the ipsecconf(1m) input also changes.

IP INBOUND PROCESSING CHANGES

The only major change in IP inbound processing is to deliver IPSEC_IN messages
intact to the tunnel module along with the packet, if the packet was protected.

IP OUTBOUND PROCESSING CHANGES

Outbound processing in IP will not be affected as part of this project, except that the
tunnel module may inject IPSEC_OUT packets into IP instead of just IP-in-IP
datagrams. (An implementation decision about where ESP should be called – IP or tun
– will occur.)

SADB LOOKUP and/or ACQUIRE CHANGES

Tunnel reform will add inner-packet fields to both SADB lookup and (upon an outbound
SADB miss) PF_KEY ACQUIRE (extended, regular, and inverse) construction.
Inverse ACQUIRE handling has to take into account inner-packet selectors, and
matching them on per-tunnel SPD entries, possible matching a more general selector for
than was expressed with IKE.

An open question is whether the ACQUIRE (which will be translated into an IKE Quick
Mode Identity) should have the specifics of the inner packet, or contain the policy entry
(or some subset) which marked the packet for protection (e.g. A specific IP address or
an IP prefix?), or if the answer should be a configuration option. For the current IPsec
specifications, interoperability testing will yield an appropriate answer. For IKEv2 and
RFC 2401bis, the answer appears to be “both”, as both the packet specifics and the
policy entry which triggered the ACQUIRE (or provided the answer in an
INVERSE_ACQUIRE) are used by IKEv2. As with range selectors, IKEv2 and RFC
2401bis changes are beyond the scope of this project.

Configuration Command Changes

Changes to ipsecconf(1m)

A previous section detailed two different semantics: RFC 2401 and RFC 3884. The
ifconfig(1m) command should not be bloated any more to allow these different
configurations. If the ifconfig(1m) syntax is used, Transport Mode negotiations will be
employed. (See the IKE Changes section below for implications.) This project should
encourage users to use the new ipsecconf(1m) syntax described in this section.

The ipsecconf(1m) command takes three-tuples of the following form:

{pattern} action {properties}

Tunnel Reform will introduce new pattern keywords to match each of the two
semantics. The following table shows examples of each, with the new keywords tunnel
and negotiate (which must appear together).

Specification Example ipsecconf(1m) syntax and explanation.

RFC 2401 # Like Solaris 9, except for the
ACQUIRE messages that come up will be different,
telling IKE or other key management to negotiate
proper tunnel-mode.
{tunnel ip.tun0 negotiate tunnel} ipsec
 {encr_algs aes encr_auth_algs md5}

If you want to give a specific set of inner
packets more protection, you may do that.
laddr == inner-src outbound, inner-dst inbound.
raddr == inner-dst outbound, inner-src inbound.
When 2401-tunnel is specified, all pattern specs
refer to the INNER packet.
{tunnel ip.tun0 negotiate tunnel laddr
 10.0.0.0/24 } ipsec
 {encr_algs aes(256) encr_auth_algs sha1}

RFC 3884 # Like Solaris 9, except for the
ACQUIRE messages that come up will be different,
telling IKE or other key management to negotiate
transport mode.
{tunnel ip.tun0 negotiate transport} ipsec
 {encr_algs aes encr_auth_algs md5}

NOTE: If “negotiate transport” is present, no
addresses may be present.

Like Transport Mode, if addresses are not specified, it is assumed that both IPv4 and
IPv6 traffic that matches will be affected. This is a slight semantic change from the
ifconfig(1m) method of tunnel security configuration, but it matches the overall feel of
ipsecconf(1m) more precisely.

Changes to ifconfig(1m)

This project should consider beginning the EOL process on “*_algs” keywords to
ifconfig(1m). As it stands, ifconfig(1m) can only configure Solaris 9 semantics across
the whole of the tunnel.

Changes to ipseckey(1m)

Changes in ipseckey(1m) will reflect changes in the PF_KEY messages required for this
project. The PF_KEY changes are documented in the next section.

Changes to in.iked(1m)

With respect to configuration file changes, in.iked will not change. IKE internal
changes are documented in the final section of this design document.

Changes to ikeadm(1m)

Modulo statistics changes in in.iked(1m), there will be no changes to ikeadm(1m).

Changes to ikecert(1m)

There will be no changes to ikecert(1m).

PF_KEY Changes

New PF_KEY extensions and values

Tunnel Reform requires some changes to the PF_KEY key management socket. Most
of these changes are semantic ones, but one extension changes name, and this project
requires a new extension.
#define SADB_X_EXT_ADDRESS_INNER_SRC SADB_EXT_ADDRESS_PROXY

This extension, specified in RFC 2367, but not used, represents the source address, or
source address prefix, of the inner packet triggering an ACQUIRE message. It can
contain an upper-layer protocol and port in the case of RFC 2401 policies. An SA can
be created with this extension for precise SA lookup in the case of tunneled packets.
#define SADB_X_EXT_ADDRESS_INNER_DST nnn

This extension is also of type sadb_address_t. It corresponds to the destination
side of an ACQUIRE-triggering packet.

An ACQUIRE with inner destination and source addresses set will generate the created
of two SAs... one outbound with destination and source matching the ACQUIRE, and
an inbound SA with the inner destination and source switched, as is the packet source
and destination.

Finally, a bit long-requested now becomes mandatory:

#define SADB_X_SAFLAGS_TUNNEL nnn

If this bit is set on the ACQUIRE message, the key management daemon should
negotiate for a Tunnel Mode SA. An SA MAY have this flag set by the key
management daemon, to aid in diagnostics.

New PF_KEY message semantics

Tunnel Reform introduces two different tunnelling semantics. These two are
distinguished by their requests in an SADB_ACQUIRE message from PF_KEY. These
distinctions apply equally to regular ACQUIRE messages or extended ACQUIRE
messages (as introduced by IKE, PSARC 1999/166).

The pf_key(7p) manual page currently shows both kinds of ACQUIRE sharing these
extensions:

address (SD), (address(P))

where the source and destination addresses (of the outer packet, for a tunnel packet) are
required, and the inner address is optional.

Either tunnelling semantic has different requirements for address extensions. The
following table will illustrate these.

NOTE: All outer source and destination addresses have protocol set to IPPROTO_IP or
IPPROTO_IPV6

Semantic Address extensions and values

RFC 2401 SADB_X_SAFLAGS_TUNNEL set.

Inner address extensions are REQUIRED, even if they are
wildcards.

RFC 3884 SADB_X_SAFLAGS_TUNNEL is cleared.

No inner address extensions. Protocol is set to ipip or IPv6.

Inverse ACQUIRE requests should send down all pertinent information from IKE,
including the tunnel-mode flag if need be. It is left up to IKE (see below) to distinguish
a Solaris 9 peer with respect to tunnel mode.

QUESTION: v3 or not v3

There is a movement afoot in PF_KEY community to whack RFC 2367 into a better
version that all implementations can use. This movement aims to produce what might
be considered version 3 of the PF_KEY specification. Tunnel Reform SHOULD
attempt to deliver changes into version 3 of the PF_KEY specification.

IKE Changes

The IKE daemon needs to react to the new ACQUIRE message combinations
appropriately. All of this work will be concentrated in the in.iked(1m) source.
Initiating Quick Mode negotiations need to convert the ACQUIRE to an appropriate set
of initiator-side Quick Mode identities. Responding Quick Mode negotiations must use
the peer's set of identities to construct an inverse ACQUIRE, and use the results to
construct the responder-side Quick Mode identities. Interoperability testing will be
needed to see how granular or not the identity sets need to be. (e.g. A prefix or a
specific address which reflects the policy, or the packet specifics.)

Negotiating for tunnels protected with transport mode is a bit unusual. Three things can
happen:

1. The peer supports 3884 and the negotiation proceeds as normal.

2. The peer does not support 3884 and the negotiation fails.

3. The peer is a Solaris 9 implementation.

Solaris 9 peers do not check the tunnel/transport mode for IKE's Quick Mode as a
responder. This allows Tunnel Reform's IKE to only have a two-position switch:
tunnel mode or transport mode. If Solaris 9 initiates a negotiation for a tunnel, the
Tunnel Reform IKE implementation will detect the tunnel mode negotiation, and the
unusual Quick Mode identities (0.0.0.0/0 with protocol set to IPPROTO_ENCAP or
IPPROTO_IPV6). Recognizing Solaris 9 peers will require some work, but the
recognition code should be isolated, so it can be removed when Solaris 9 is EOLed.

