
Solaris 10 smf(5):
Service Management Facility

Liane Praza
Solaris Kernel Development
Sun Microsystems



smf(5) tour
● Definitions
● Features
● Compatibility and changes
● Components
● Commands
● Restart relationships
● Service relationships
● Troubleshooting and repair
● Service development



Terms and Definitions
Service

A long lived software object with a well-defined state, 
error boundary, definition of start and stop, and 
relationship to other services.  A service is often 
critical to operation of system or fulfillment of 
business objectives.

Service Management
– service delivery
– administrative interaction
– management of service by system

smf(5): Service Management Facility



Predictive Self-Healing
Solaris Fault Manager

Solaris Service Manager (smf(5))

Solaris Fault Manager provides detection and diagnosis of 
errors, leading to isolation or deactivation of faulty 
components and precise, accurate administrative 
messaging.

smf(5) makes Solaris services self-healing.  Hardware 
faults which previously caused system restart are now 
isolated to the effected services.  Services are also 
automatically restarted in the face of hardware and 
software faults.



Features
● Service is first class object that can be managed 

and observed
● Legacy mechanisms still work
● Automated restart of services in dependency order:
– Administrative error
– Software bug
– Uncorrectable hardware error

● Parallel startup



Features
● Easy access to information about 

misconfigured/misbehaving services
● Admins can get a meaningful system view
● Supported enable/disable; changes persist across 

upgrades and patches
● Securely delegate tasks to non-root users 
● Snapshots and repository backup taken 

automatically: restore, undo



Features
● Unify service delivery
● Enable service-based resource management
● Simplify debugging of boot process; console access 

provided more reliably
● Boot messages under control of administrator



Compatibility
● Existing SysV init scripts (/etc/rc?.d) will just work 

unless they
– rely on being run before a Solaris-provided script or 

effect Solaris-provided infrastructure services
– require input from console during boot (strongly 

discouraged)
● Legacy services visible in smf
● Documented  /etc/init.d scripts work
● Customer or ISV additions to /etc/inittab continue 

to work
● No public configuration files absorbed except...



Changes: inetd.conf
● inetd.conf is no longer primary configuration 

source
● Most Solaris-delivered inetd(1M) services have 

been converted to smf(5)
● Remaining entries auto-converted during upgrade 

by inetconv(1M)
● Admin must run inetconv(1M) manually after 

creating entries or adding packages which do so
● Warning messages during boot if unconverted 

entries exist



SunOS Release 5.10 Version Generic 64-bit
Copyright 1983-2005 Sun Microsystems, Inc.  All rights reserved.
Use is subject to license terms.
Hostname: demobox
NIS domain name is testlab.example.com
checking ufs filesystems
/dev/rdsk/c1t0d0s7: is logging.
demobox console login:

● boot is quieter by default

Changes: boot

● messages logged to files
● verbose boot available (boot -m verbose)

SunOS Release 5.10 Version Generic 64-bit
Copyright 1983-2005 Sun Microsystems, Inc.  All rights reserved.
Use is subject to license terms.
[ network/loopback:default starting (loopback network interface) ]
[ system/filesystem/root:default starting (root file system mount) ]
[ network/pfil:default starting (packet filter) ]
[ network/physical:default starting (physical network interfaces) ]
...



Changes
● Processes refuse to die
– Service processes restarted automatically
– Use svcadm(1M) to keep a service from being 

restarted
● /etc/init.d and /etc/rc*.d directories, as well as 

the /etc/inittab file, are quite a bit emptier than 
in previous releases of Solaris



Components: Architecture schematic

KERNEL

init(1M)

svc.startd(1M)

observability/
management

agent
commands service

process
contract

repository
client

inet-service

svc.configd(1M) inetd(1M)

repository API

delegated
restarter

delegated
service

contracts



Components: Service
● Consistent specification of a software object on a 

Solaris system
● Stored in the smf(5) repository
● Properties divided into property groups
● Includes
– name
– localized descriptions and doc references
– dependencies
– method specifications (start, stop, etc.)
– restarter
– service-specific startup properties 



Components: Service Instance
● Running view of a service
● Inherits configuration from service unless explicitly 

overridden
● One service may have many instances (e.g. Web 

server on multiple ports)
● Has a well-defined state [uninitialized, offline, 

online, degraded, disabled, or maintenance] and a 
well-defined error boundary [process contract]

● Includes non-persistent property groups
● Named by an FMRI



Components: FMRI
Fault-Managed Resource Identifier
● Category and service

svc:/network/smtp:sendmail

● Property group and property
svc:/network/smtp:sendmail/:properties/general
/enabled

● Commands take abbreviations: 'svc:/' inserted 
automatically, 'globbed' on instance or service 
name

● Shell globbing also supported in commands; 
remember to escape meta-characters if your shell 
requires it



Components: Service Manifest
● XML description of a service,  or set of services
● Delivery mechanism for service descriptions
● Located in /var/svc/manifest
● Automatically imported into repository on install, 

upgrade, boot (by svc:/system/manifest-import), 
and pkgadd(1M)

● Ignored once imported
● Sun-delivered manifests NOT for modification  

Customizations should occur in repository, or as a 
distinct service/instance.



utmpd(1M) service description
<service name='system/utmp' type='service' version='1'>
    <create_default_instance enabled='true' />
    <single_instance />
        <dependency name='milestone' grouping='require_all'
            restart_on='none' type='service'>
            <service_fmri value='svc:/milestone/sysconfig'/>
        </dependency>
        <dependent name='utmpd_multi-user' grouping='optional_all'
            restart_on='none'>
            <service_fmri value='svc:/milestone/multi-user'/>
        </dependent>
        <exec_method type='method' name='start'
            exec='/lib/svc/method/svc-utmpd' timeout='60' />
        <exec_method type='method' name='stop'
            exec=':kill' timeout='60' />
    <stability value='Unstable' />
    <template>
        <common_name><loctext xml:lang='C'>
            utmpx monitoring
        </loctext></common_name>

        <documentation>
        <manpage title='utmpd' section='1M'
            manpath='/usr/share/man' />
        </documentation>
    </template>
</service> 



Components: Service Profile
● An XML file containing listing of service instances 

and settings for “enabled”
● Located in /var/svc/profile
● /var/svc/profile/site.xml available for 

administrators to make local customizations; it is 
always applied after Solaris-provided profiles

● see smf_bootstrap(5)for more detail



Components: Legacy Services
● Started and stopped due to presence in appropriate

/etc/rc?.d directory 
● Faults not handled by smf(5); no automated restart
– software error results in process death
– administrative error undetected
– hardware error results in process death

● Script names visible in svcs(1) (prefixed by lrc:)
● Start time during boot displayed, but not updated 

if administrator stops or restarts the service



Components: Security
● Enhance security by providing uniform mechanism 

to disable services
● Provide alternate profiles: generic_limited_net.xml
● Specify administrative authorizations to manage 

and configure services via RBAC (smf_security(5)):
– solaris.smf.modify: change all service properties
– solaris.smf.manage: request restart, refresh, etc.

● Define a method_context to allow services to easily 
run as non-root users and with restricted privileges



Components: Repository
● All data (services, methods, etc.) stored in 

persistent, transaction-based repository
– Transactions/snapshots allow “undo”, rollback to safe 

configuration
– Repository can be local, in directory [later], or mixed 

[later]
● NOT a giant registry: mainly svc mgmt properties
● Can contain simple configurations (a few 

properties)
– All configurations in repository can be read/written 

using a common API  lowers management s/w 
development times

See also http://blogs.sun.com/roller/page/lianep/20050208



Components: svc.configd(1M)
● Single access point to repository
● Manages
– back-end database
– access control
– snapshots
– backups



Components: contract(4)
● Generic mechanism to express relationship 

between a process and the kernel-managed 
resources it depends upon

● Process contract: process can create a fault 
boundary around a set of subprocesses and observe 
events within the boundary

● Visible via /system/contract filesystem



Components: svc.startd(1M)
● Graph engine
– records service state changes and manages all 

service restart relationships
– signals individual restarters on dependency events 

and administrative requests
– responsible for run-level management

● Master restarter
– writes contracts and responds to contract events
– manages service environment and bindings
– executes service methods based on graph engine 

requests



Components: Delegated Restarter
● Assumes responsibility for executing a set of 

services
● Manages service faults per its own model;  may 

gracefully handle conditions such as process 
coredumps

● May implement non-process-based service models, 
e.g. Java

● May define/require additional service 
configuration

● Often provides functionality common to a specific 
set of services.  e.g. inetd(1M).



Components: inetd(1M)
● A delegated restarter for inet services
● Manages inet-specific properties
– tcp_wrappers
– max connection rate

● Listens for connections, etc.
● Manages instance state for inet services



Components: init(1M)
● Remains the primordial user process
● Continues its process-reaping duties
● Delegates run-level maintenance to svc.startd(1M)
● Restarted by the kernel
● Restarts svc.startd(1M)



Commands
● General commands:

– svcs(1) service status listings
– svcadm(1M) administrative actions
– svccfg(1M) general property manipulation
– svcprop(1) property reporting (scripting)

● inetd(1M) management commands:
– inetadm(1M) administrative actions/property 

mods
– inetconv(1M) conversion of legacy inetd.conf 

entries



Commands
● Contracts subsystem:

– ctrun(1M) execute with process contract
– ctstat(1M) display active contracts
– ctwatch(1M) monitor contract events
– libcontract(3LIB) Contract APIs
– /system/contract contract filesystem



Commands: svcs(1)

$ svcs
STATE          STIME    FMRI
....
online         18:18:30 svc:/network/http:apache2
online         18:18:29 svc:/network/smtp:sendmail
....
$ svcs -p sendmail
STATE          STIME    FMRI
online         18:18:29 svc:/network/smtp:sendmail
               18:18:29   100180 sendmail
               18:18:29   100181 sendmail

$ svcs -d sendmail
STATE          STIME    FMRI
online         18:17:44 svc:/system/identity:domain
online         18:17:52 svc:/network/service:default
....

● List enabled or all (-a) instances, sorted by state, time
● Explanations for errors/states (-x)
● Show dependencies (-d) and dependents (-D)
● Show member processes (-p), additional details (-v/-l)



Commands: svcadm(1M)

$ grep lianep /etc/user_attr
lianep::::auths=solaris.smf.modify,solaris.smf.manage
$ svcs apache2
STATE          STIME    FMRI
-              ?        svc:/network/http:apache2
$ # create /etc/apache2/httpd.conf
$ svcadm enable apache2
STATE          STIME    FMRI
online         19:19:01 svc:/network/http:apache2
$ # edit /etc/apache2/httpd.conf
$ svcadm refresh apache2    
$ svcs apache2         
STATE          STIME    FMRI
online         19:19:33 svc:/network/http:apache2
$ svcadm disable apache2
$ svcs apache2
STATE          STIME    FMRI
disabled       19:20:07 svc:/network/http:apache2

● Enable, disable, refresh, restart service instances
● Mark in special states (maintenance)
● Synchronously wait for changes (-s)

See also http://blogs.sun.com/roller/page/sch/20040923



Commands: svcadm(1M) actions
● enable: allow start once dependencies are satisfied
● disable: stop service and do not allow it to start 

again
– -t: enable/disable until the system is rebooted
– -s: enable/disable synchronously (wait for it...)

● refresh: reload service configuration and run the 
refresh method (if any) 

● restart: stop the service, then allow it to start once 
its dependencies are satisfied (no configuration 
change made)

● clear: mark service as repaired



Commands: svcadm(1M) milestone
● Milestone: A service which specifies a collection of 

dependencies which declare a specific state of 
system-readiness 

● Major milestones, which are analogous to system 
run-levels can be reached directly from boot (-m 
milestone=), the standard init invocations, or via 
svcadm: milestone/single-user, milestone/multi-
user, milestone/multi-user-server

● Transitions to milestones are implemented by 
temporary disable.  svcs(1M) will show all enabled 
services that are not part of the milestone as 
temporarily disabled

See also http://blogs.sun.com/roller/page/lianep/20050204



Commands: svccfg(1M)
● Import, export manifests; apply, extract profiles
● Interactive mode for modifying properties

$ grep lianep /etc/user_attr
lianep::::auths=solaris.smf.modify,solaris.smf.manage
$ svccfg -v import /var/svc/manifest/network/http-apache2.xml
svccfg: Refreshed network/http:/apache2
svccfg: Successful import.
$ svccfg
svc:> select network/http:apache2
svc:/network/http:apache2> listprop
...
general                  framework
general/enabled          boolean  false
...
start                    method
start/exec               astring  "/lib/svc/method/http-apache2 start"
start/timeout_seconds    count    60
start/type               astring  method
svc:/network/http:apache> editprop
[$EDITOR launches, allows direct editing of properties]
svc:/network/http:apache2> exit

$ svcadm refresh apache2 # read changed config
$ svcadm restart apache2 # restart with changed config



Commands: svcprop(1)
● List properties of services and instances
● Fetch in convenient forms for scripting
● View running or current props (-c), uncomposed (-C)

$ svcprop network/http:apache2
...
physical/entities fmri svc:/network/physical:default
physical/grouping astring optional_all
physical/restart_on astring error
physical/type astring service
start/exec astring /lib/svc/method/http-apache2\ start
start/timeout_seconds count 60
start/type astring method
stop/exec astring /lib/svc/method/http-apache2\ stop
stop/timeout_seconds count 60
stop/type astring method
restarter/auxiliary_state astring none
restarter/next_state astring none
restarter/state astring disabled
restarter/state_timestamp time 1102030556.737590000

$ svcprop -p enabled network/http:apache2
false



Commands: inetadm(1M)
● List services managed by inetd
● View (-l) and modify (-m) inetd-specific properties

$ inetadm
...
enabled   online         svc:/network/ftp:default
enabled   online         svc:/network/finger:default
disabled  disabled       svc:/network/login:eklogin
disabled  disabled       svc:/network/login:klogin
enabled   online         svc:/network/login:rlogin
disabled  disabled       svc:/network/rexec:default
enabled   online         svc:/network/shell:default

$ inetadm -l ftp
SCOPE    NAME=VALUE
         name="ftp"
         endpoint_type="stream"
         proto="tcp6"
         isrpc=FALSE
         wait=FALSE
         exec="/usr/sbin/in.ftpd -a"
         user="root"
...
default  tcp_wrappers=FALSE



Restart relationships

kernel init svc.startd

svc.configd

inetd
...

in.ftpd

in.telnetd

...

cron

fmd

See also http://blogs.sun.com/roller/page/lianep/20050316



● Restart relationships defined by dependency groups
– grouping

● require_all: all services are running
● require_any: at least one service running
● optional_all: all services running, disabled, or maint
● exclude_all: all services disabled, maint, or absent

– restart_on
● none: required only for startup
● error: stop if dependency fails due to h/w or s/w error
● restart: stop if dependency restarts for any reason
● refresh: stop if dependency restarts or is refreshed

Service relationships



Troubleshooting
● Service failures printed to console, syslog
● Always start with svcs -x; http://sun.com/msg
● svcs -x will display the service logfile, if it exists:

– /var/svc/log
– /etc/svc/volatile

● See service start messages with boot -m verbose
● For a system that hangs during boot:

– boot -m milestone=none

– log in at prompt
– svcadm milestone all

– Watch system progress with svcs



Recovery
● If a single service is broken, make sure you've got 

the latest service config; svcadm refresh <fmri>
● Follow instructions from svcs -x pointer
● Revert to a previous snapshot.

$ svccfg -s system/cron:default
svc:/system/cron:default> listsnap 
initial
last-import
previous
running
start
svc:/system/cron:default> revert start
svc:/system/cron:default> exit
$ svcadm refresh cron
$ svcadm restart cron

● Read /lib/svc/share/README
● Restore repository from backup: 

http://sun.com/msg/SMF-8000-MY



Service Development
● Conversion may be done piecemeal and is a 

lightweight act
● Work needed for existing Solaris software is 

usually:
– Create a service manifest
– Make minimal modifications to /etc/rc?.d scripts 

and re-invoke them as service methods



Development: Benefits
● Services appear with smf(5) FMRIs
– Visible using standard Solaris tools; your service 

appears in administrative heads-up displays
– Manageable using standard Solaris tools; admin 

can leverage existing knowledge to use your service
– New generic tools developed will automatically see 

your service
● Built-in restart due to administrative error, 

software, or hardware fault
● Participation in future software diagnosis 

capabilities



Development: Levels of integration
● Common:
– Trivial: create simple service manifest, convert init 

scripts to service methods, minimal testing
– Full restartability: split monolithic services, each 

separately restartable component becomes its own 
service

● Advanced:
– Customized error/restart handling: avoid service 

restart if fault can be internally handled



Development: utmpd(1M) example
<service name='system/utmp' type='service' version='1'>
    <create_default_instance enabled='true' />
    <single_instance />”
        <dependency name='milestone' grouping='require_all'
            restart_on='none' type='service'>
            <service_fmri value='svc:/milestone/sysconfig'/>
        </dependency>
        <dependent name='utmpd_multi-user' grouping='optional_all'
            restart_on='none'>
            <service_fmri value='svc:/milestone/multi-user'/>
        </dependent>
       
        <exec_method type='method' name='start'
            exec='/lib/svc/method/svc-utmpd' timeout='60' />
        <exec_method type='method' name='stop'
            exec=':kill' timeout='60' />
    <stability value='Unstable' />
    <template>
        <common_name><loctext xml:lang='C'>
            utmpx monitoring
        </loctext></common_name>

        <documentation>
        <manpage title='utmpd' section='1M'
            manpath='/usr/share/man' />
        </documentation>
    </template>
</service> 



Development: Other examples
● DTD is self-documenting; read it at

/usr/share/lib/xml/dtd/service_bundle.dtd.1

● Explore /var/svc/manifest for similar services
– system/utmp is a simple standalone daemon
– system/coreadm is a simple configuration service
– network/telnet is an inet-managed daemon

● Initial inet service manifests can be created easily 
by invoking: inetconv -i <file>



Additional Resources
● Additional quickstart and developer documentation 

available at 
http://www.sun.com/bigadmin/content/selfheal/

● Solaris System Administration Guide has smf 
information: 
http://docs.sun.com/app/docs/doc/817-1985

● smf(5) manpage introduces the facility
● Blogs:
– http://blogs.sun.com/sch
– http://blogs.sun.com/lianep



liane.praza@sun.com
http://blogs.sun.com/lianep


