
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

Solaris™ Security Toolkit 4.2
Reference Manual

Part No. 819-1503-10
July 2005, Revision A

http://www.sun.com/hwdocs/feedback

Copyright 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, Solaris, SunOS, Java, iPlanet, JumpStart, SunSolve, AnswerBook2, Sun Enterprise, Sun
Enterprise Authentication Mechanism, Sun Fire, SunSoft, SunSHIELD, OpenBoot, and Solstice DiskSuite are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. ORACLE is a registered
trademark of Oracle Corporation.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie qui est décrit dans ce document. En particulier, et sans la
limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés à http://www.sun.com/patents et
un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats-Unis et dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Sun BluePrints, Solaris, SunOS, Java, iPlanet, JumpStart, SunSolve, AnswerBook2, Sun Enterprise, Sun
Enterprise Authentication Mechanism, Sun Fire, SunSoft, SunSHIELD, OpenBoot, and Solstice DiskSuite sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc. ORACLE est une marque déposée registre de Oracle Corporation.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une license non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciées de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Preface xxxi

1. Introduction to Solaris 10 Operating System Support 1

Using Perl With Solaris Security Toolkit 4.2 Software 1

SMF and Legacy Services on Solaris 10 OS 2

Scripts That Use the SMF-Ready Services Interface 3

Scripts That SMF Recognizes as Legacy Services 4

New Scripts for Solaris Security Toolkit 4.2 Release 5

Scripts Not Used for Solaris 10 6

Environment Variables Not Used for Solaris 10 6

Using Solaris 10 OS Zones 7

Sequence Matters in Hardening Global and Non-Global Zones 7

Harden a Non-Global Zone From Within That Zone 7

Some Scripts Are Not Relevant to Non-Global Zones 8

Audits of Non-Global Zones Are Separate and Distinct From Audits of Global
Zones 8

Zone-Aware Finish and Audit Scripts 9

Some Zone-Aware Scripts Require Action Before Use in Non-Global Zones 9

rpcbind Disabled or Enabled Based on Drivers 10

▼ To Enable rpcbind 10
 iii

Using TCP Wrappers 11

TCP Wrappers Configuration for secure.driver 12

TCP Wrappers Configuration for
server-secure.driver 12

TCP Wrappers Configuration for
suncluster3x-secure.driver 12

TCP Wrappers Configuration for
sunfire_15k_sc-secure.driver 13

Defining Environment Variables 13

Earlier Solaris Security Toolkit Versions 13

Solaris Security Toolkit 4.2 14

2. Framework Functions 15

Customizing Framework Functions 15

Using Common Log Functions 17

logBanner 18

logDebug 19

logError 19

logFailure 20

logFileContentsExist and
logFileContentsNotExist 20

logFileExists and
logFileNotExists 21

logFileGroupMatch and
logFileGroupNoMatch 22

logFileModeMatch and
logFileModeNoMatch 22

logFileNotFound 23

logFileOwnerMatch and
logFileOwnerNoMatch 24

logFileTypeMatch and
logFileTypeNoMatch 25
iv Solaris Security Toolkit 4.2 Reference Manual • July 2005

logFinding 26

logFormattedMessage 27

logInvalidDisableMode 27

logInvalidOSRevision 28

logMessage 28

logNotGlobalZone 29

logNotice 29

logPackageExists and
logPackageNotExists 30

logPatchExists and
logPatchNotExists 30

logProcessArgsMatch and
logProcessArgsNoMatch 31

logProcessExists and
logProcessNotExists 32

logProcessNotFound 32

logScore 33

logScriptFailure 33

logServiceConfigExists and
logServiceConfigNotExists 34

logServiceDisabled and logServiceEnabled 34

logServiceInstalled and logServiceNotInstalled 35

logServiceOptionDisabled and logServiceOptionEnabled 36

logServiceProcessList 36

logServicePropDisabled and logServicePropEnabled 37

logServiceRunning and logServiceNotRunning 37

logStartScriptExists and
logStartScriptNotExists 38

logStopScriptExists and
logStopScriptNotExists 39

logSuccess 39
Contents v

logSummary 40

logUserLocked and logUserNotLocked 40

logUndoBackupWarning 41

logWarning 41

Using Common Miscellaneous Functions 42

adjustScore 42

checkLogStatus 43

clean_path 43

extractComments 44

get_driver_report 44

get_lists_conjunction 44

get_lists_disjunction 45

invalidVulnVal 45

isNumeric 46

printPretty 46

printPrettyPath 46

strip_path 47

Using Driver Functions 47

add_crontab_entry_if_missing 48

add_option_to_ftpd_property 49

add_patch 50

add_pkg 50

add_to_manifest 51

backup_file 53

backup_file_in_safe_directory 54

change_group 54

change_mode 54

change_owner 55
vi Solaris Security Toolkit 4.2 Reference Manual • July 2005

check_and_log_change_needed 55

check_os_min_version 56

check_os_revision 57

check_readOnlyMounted 58

checksum 58

convert_inetd_service_to_frmi 58

copy_a_dir 59

copy_a_file 59

copy_a_symlink 59

copy_files 60

create_a_file 62

create_file_timestamp 63

disable_conf_file 63

disable_file 63

disable_rc_file 64

disable_service 65

enable_service 65

find_sst_run_with 65

get_expanded_file_name 66

get_stored_keyword_val 66

get_users_with_retries_set 67

is_patch_applied and is_patch_not_applied 67

is_service_enabled 68

is_service_installed 68

is_service_running 69

is_user_account_extant 69

is_user_account_locked 70

is_user_account_login_not_set 70
Contents vii

is_user_account_passworded 71

lock_user_account 71

make_link 71

mkdir_dashp 72

move_a_file 72

rm_pkg 73

set_service_property_value 73

set_stored_keyword_val 73

unlock_user_account 74

update_inetconv_in_upgrade 74

warn_on_default_files 75

write_val_to_file 75

Using Audit Functions 76

check_fileContentsExist and
check_fileContentsNotExist 77

check_fileExists and
check_fileNotExists 77

check_fileGroupMatch and
check_fileGroupNoMatch 78

check_fileModeMatch and
check_fileModeNoMatch 79

check_fileOwnerMatch and
check_fileOwnerNoMatch 80

check_fileTemplate 80

check_fileTypeMatch and
check_fileTypeNoMatch 81

check_if_crontab_entry_present 82

check_keyword_value_pair 82

check_minimized 83

check_minimized_service 83
viii Solaris Security Toolkit 4.2 Reference Manual • July 2005

check_packageExists and
check_packageNotExists 84

check_patchExists and
check_patchNotExists 85

check_processArgsMatch and
check_processArgsNoMatch 85

check_processExists and
check_processNotExists 86

check_serviceConfigExists and
check_serviceConfigNotExists 87

check_serviceDisabled and
check_serviceEnabled 87

check_serviceInstalled and
check_serviceNotInstalled 88

check_serviceOptionEnabled and
check_serviceOptionDisabled 88

check_servicePropDisabled 89

check_serviceRunning and
check_serviceNotRunning 89

check_startScriptExists and
check_startScriptNotExists 89

check_stopScriptExists and
check_stopScriptNotExists 90

check_userLocked and
check_userNotLocked 91

finish_audit 91

get_cmdFromService 91

start_audit 92

3. File Templates 93

Customizing File Templates 93

▼ To Customize a File Template 94

Understanding Criteria for How Files Are Copied 95
Contents ix

Using Configuration Files 96

driver.init 97

finish.init 97

user.init.SAMPLE 98

▼ To Add a New Variable to the user.init script 99

▼ To Append Entries to Variables Using the user.init File 100

Using File Templates 100

.cshrc 101

.profile 102

etc/default/sendmail 102

etc/dt/config/Xaccess 102

etc/ftpd/banner.msg 103

etc/hosts.allow and
etc/hosts.deny 103

etc/hosts.allow-15k_sc 104

etc/hosts.allow-server 104

etc/hosts.allow-suncluster 104

etc/init.d/nddconfig 105

etc/init.d/set-tmp-permissions 105

etc/init.d/sms_arpconfig 105

etc/init.d/swapadd 105

etc/issue and
etc/motd 106

etc/notrouter 106

etc/opt/ipf/ipf.conf 106

etc/opt/ipf/ipf.conf-15k_sc 106

etc/opt/ipf/ipf.conf-server 107

etc/rc2.d/S00set-tmp-permissions and
etc/rc2.d/S07set-tmp-permissions 107

etc/rc2.d/S70nddconfig 107
x Solaris Security Toolkit 4.2 Reference Manual • July 2005

etc/rc2.d/S73sms_arpconfig 108

etc/rc2.d/S77swapadd 108

etc/security/audit_control 108

etc/security/audit_class+5.8 and
etc/security/audit_event+5.8 108

etc/security/audit_class+5.9 and
etc/security/audit_event+5.9 109

etc/sms_domain_arp and
/etc/sms_sc_arp 109

etc/syslog.conf 109

root/.cshrc 110

root/.profile 110

var/opt/SUNWjass/BART/rules 110

var/opt/SUNWjass/BART/rules-secure 111

4. Drivers 113

Understanding Driver Functions and Processes 113

Load Functionality Files 114

Perform Basic Checks 115

Load User Functionality Overrides 115

Mount File Systems to JumpStart Client 115

Copy or Audit Files 116

Execute Scripts 116

Compute Total Score for the Run 117

Unmount File Systems From JumpStart Client 117

Customizing Drivers 118

▼ To Customize a Driver 119

Using Standard Drivers 122

config.driver 122

hardening.driver 123
Contents xi

secure.driver 126

Using Product-Specific Drivers 127

server-secure.driver 128

suncluster3x-secure.driver 128

sunfire_15k_sc-secure.driver 129

5. Finish Scripts 131

Customizing Finish Scripts 131

Customize Existing Finish Scripts 132

▼ To Customize a Finish Script 132

Prevent kill Scripts From Being Disabled 134

Create New Finish Scripts 134

Using Standard Finish Scripts 137

Disable Finish Scripts 138

disable-ab2.fin 139

disable-apache.fin 139

disable-apache2.fin 139

disable-appserv.fin 140

disable-asppp.fin 140

disable-autoinst.fin 140

disable-automount.fin 141

disable-dhcp.fin 141

disable-directory.fin 141

disable-dmi.fin 142

disable-dtlogin.fin 142

disable-face-log.fin 142

disable-IIim.fin 143

disable-ipv6.fin 143

disable-kdc.fin 143
xii Solaris Security Toolkit 4.2 Reference Manual • July 2005

disable-keyboard-abort.fin 144

disable-keyserv-uid-nobody.fin 144

disable-ldap-client.fin 144

disable-lp.fin 145

disable-mipagent.fin 145

disable-named.fin 145

disable-nfs-client.fin 145

disable-nfs-server.fin 146

disable-nscd-caching.fin 146

disable-picld.fin 147

disable-power-mgmt.fin 147

disable-ppp.fin 147

disable-preserve.fin 148

disable-remote-root-login.fin 148

disable-rhosts.fin 148

disable-routing.fin 148

disable-rpc.fin 149

disable-samba.fin 149

disable-sendmail.fin 149

disable-slp.fin 150

disable-sma.fin 150

disable-snmp.fin 150

disable-spc.fin 151

disable-ssh-root-login.fin 151

disable-syslogd-listen.fin 151

disable-system-accounts.fin. 152

disable-uucp.fin 152

disable-vold.fin 152
Contents xiii

disable-wbem.fin 153

disable-xfs-fin 153

disable-xserver.listen.fin 153

Enable Finish Scripts 153

enable-account-lockout.fin 154

enable-bart.fin 154

enable-bsm.fin 156

enable-coreadm.fin 156

enable-ftpaccess.fin 157

enable-ftp-syslog.fin 157

enable-inetd-syslog.fin 157

enable-ipfilter.fin 158

enable-password-history.fin 159

enable-priv-nfs-ports.fin 160

enable-process-accounting.fin 160

enable-rfc1948.fin 160

enable-stack-protection.fin 161

enable-tcpwrappers.fin 161

Install Finish Scripts 162

install-at-allow.fin 162

install-fix-modes.fin 163

install-ftpusers.fin 163

install-jass.fin 163

install-loginlog.fin 164

install-md5.fin 164

install-nddconfig.fin 164

install-newaliases.fin 164

install-openssh.fin 165
xiv Solaris Security Toolkit 4.2 Reference Manual • July 2005

install-recommended-patches.fin 165

install-sadmind-options.fin 165

install-security-mode.fin 165

install-shells.fin 166

install-strong-permissions.fin 166

install-sulog.fin 166

install-templates.fin 167

Print Finish Scripts 167

print-jass-environment.fin 167

print-jumpstart-environment.fin 167

print-rhosts.fin 168

print-sgid-files.fin 168

print-suid-files.fin 168

print-unowned-objects.fin 168

print-world-writable-objects.fin 168

Remove Finish Script 169

remove-unneeded-accounts.fin 169

Set Finish Scripts 169

set-banner-dtlogin.fin 170

set-banner-ftpd.fin 170

set-banner-sendmail.fin 170

set-banner-sshd.fin 171

set-banner-telnet.fin 171

set-flexible-crypt.fin 171

set-ftpd-umask.fin 172

set-login-retries.fin 173

set-power-restrictions.fin 173

set-rmmount-nosuid.fin 173
Contents xv

set-root-group.fin 174

set-root-home-dir.fin 174

set-root-password.fin 175

set-strict-password-checks.fin 175

set-sys-suspend-restrictions.fin 175

set-system-umask.fin 176

set-term-type.fin 176

set-tmpfs-limit.fin 176

set-user-password-reqs.fin 176

set-user-umask.fin 177

Update Finish Scripts 177

update-at-deny.fin 178

update-cron-allow.fin 178

update-cron-deny.fin 178

update-cron-log-size.fin 178

update-inetd-conf.fin 179

Using Product-Specific Finish Scripts 179

suncluster3x-set-nsswitch-conf.fin 180

s15k-static-arp.fin 180

s15k-exclude-domains.fin 180

s15k-sms-secure-failover.fin 181

6. Audit Scripts 183

Customizing Audit Scripts 183

Customize Standard Audit Scripts 183

▼ To Customize An Audit Script 184

Create New Audit Scripts 187

Using Standard Audit Scripts 187

Disable Audit Scripts 188
xvi Solaris Security Toolkit 4.2 Reference Manual • July 2005

disable-ab2.aud 189

disable-apache.aud 189

disable-apache2.aud 189

disable-appserv.aud 190

disable-asppp.aud 190

disable-autoinst.aud 190

disable-automount.aud 190

disable-dhcpd.aud 191

disable-directory.aud 191

disable-dmi.aud 191

disable-dtlogin.aud 191

disable-face-log.aud 192

disable-IIim.aud 192

disable-ipv6.aud 192

disable-kdc.aud 192

disable-keyboard-abort.aud 193

disable-keyserv-uid-nobody.aud 193

disable-ldap-client.aud 193

disable-lp.aud 193

disable-mipagent.aud 194

disable-named.aud 194

disable-nfs-client.aud 194

disable-nfs-server.aud 194

disable-nscd-caching.aud 195

disable-picld.aud 195

disable-power-mgmt.aud 195

disable-ppp.aud 195

disable-preserve.aud 195
Contents xvii

disable-remote-root-login.aud 196

disable-rhosts.aud 196

disable-routing.aud 196

disable-rpc.aud 196

disable-samba.aud 197

disable-sendmail.aud 197

disable-slp.aud 198

disable-sma.aud 198

disable-snmp.aud 198

disable-spc.aud 198

disable-ssh-root-login.aud 199

disable-syslogd-listen.aud 199

disable-system-accounts.aud 199

disable-uucp.aud 199

disable-vold.aud 200

disable-wbem.aud 200

disable-xfs.aud 200

disable-xserver.listen.aud 200

Enable Audit Scripts 201

enable-account-lockout.aud 201

enable-bart.aud 201

enable-bsm.aud 202

enable-coreadm.aud 202

enable-ftp-syslog.aud 202

enable-ftpaccess.aud 203

enable-inetd-syslog.aud 203

enable-ipfilter.aud 203

enable-password-history.aud 204
xviii Solaris Security Toolkit 4.2 Reference Manual • July 2005

enable-priv-nfs-ports.aud 204

enable-process-accounting.aud 204

enable-rfc1948.aud 204

enable-stack-protection.aud 205

enable-tcpwrappers.aud 205

Install Audit Scripts 205

install-at-allow.aud 206

install-fix-modes.aud 206

install-ftpusers.aud 206

install-jass.aud 206

install-loginlog.aud 207

install-md5.aud 207

install-nddconfig.aud 207

install-newaliases.aud 207

install-openssh.aud 208

install-recommended-patches.aud 208

install-sadmind-options.aud 208

install-security-mode.aud 208

install-shells.aud 209

install-strong-permissions.aud 209

install-sulog.aud 210

install-templates.aud 210

Print Audit Scripts 210

print-jass-environment.aud 210

print-jumpstart-environment.aud 210

print-rhosts.aud 211

print-sgid-files.aud 211

print-suid-files.aud 211
Contents xix

print-unowned-objects.aud 211

print-world-writable-objects.aud 211

Remove Audit Script 211

remove-unneeded-accounts.aud 212

Set Audit Scripts 212

set-banner-dtlogin.aud 212

set-banner-ftpd.aud 213

set-banner-sendmail.aud 213

set-banner-sshd.aud 213

set-banner-telnet.aud 213

set-flexible-crypt.aud 214

set-ftpd-umask.aud 214

set-login-retries.aud 214

set-power-restrictions.aud 214

set-rmmount-nosuid.aud 215

set-root-group.aud 215

set-root-home-dir.aud 215

set-root-password.aud 215

set-strict-password-checks.aud 216

set-sys-suspend-restrictions.aud 216

set-system-umask.aud 216

set-term-type.aud 216

set-tmpfs-limit.aud 216

set-user-password-reqs.aud 217

set-user-umask.aud 217

Update Audit Scripts 217

update-at-deny.aud 218

update-cron-allow.aud 218
xx Solaris Security Toolkit 4.2 Reference Manual • July 2005

update-cron-deny.aud 218

update-cron-log-size.aud 219

update-inetd-conf.aud 219

Using Product-Specific Audit Scripts 220

suncluster3x-set-nsswitch-conf.aud 220

s15k-static-arp.aud 221

s15k-exclude-domains.aud 221

s15k-sms-secure-failover.aud 221

7. Environment Variables 223

Customizing and Assigning Variables 223

Assigning Static Variables 224

Assigning Dynamic Variables 225

Assigning Complex Substitution Variables 225

Assigning Global and Profile-Based Variables 227

Creating Environment Variables 227

Using Environment Variables 228

Defining Framework Variables 229

JASS_AUDIT_DIR 231

JASS_CHECK_MINIMIZED 231

JASS_CONFIG_DIR 231

JASS_DISABLE_MODE 232

JASS_DISPLAY_HOST_LENGTH 232

JASS_DISPLAY_HOSTNAME 233

JASS_DISPLAY_SCRIPT_LENGTH 233

JASS_DISPLAY_SCRIPTNAME 233

JASS_DISPLAY_TIME_LENGTH 233

JASS_DISPLAY_TIMESTAMP 234

JASS_FILE_COPY_KEYWORD 234
Contents xxi

JASS_FILES 234

JASS_FILES_DIR 237

JASS_FINISH_DIR 238

JASS_HOME_DIR 238

JASS_HOSTNAME 238

JASS_ISA_CAPABILITY 238

JASS_LOG_BANNER 239

JASS_LOG_ERROR 239

JASS_LOG_FAILURE 239

JASS_LOG_NOTICE 240

JASS_LOG_SUCCESS 240

JASS_LOG_SUMMARY 240

JASS_LOG_WARNING 240

JASS_MODE 241

JASS_OS_REVISION 241

JASS_OS_TYPE 241

JASS_PACKAGE_DIR 242

JASS_PATCH_DIR 242

JASS_PKG 242

JASS_REPOSITORY 242

JASS_ROOT_DIR 243

JASS_ROOT_HOME_DIR 243

JASS_RUN_AUDIT_LOG 243

JASS_RUN_CHECKSUM 244

JASS_RUN_CLEAN_LOG 244

JASS_RUN_FINISH_LIST 245

JASS_RUN_INSTALL_LOG 245

JASS_RUN_MANIFEST 245
xxii Solaris Security Toolkit 4.2 Reference Manual • July 2005

JASS_RUN_SCRIPT_LIST 245

JASS_RUN_UNDO_LOG 246

JASS_RUN_VALUES 246

JASS_RUN_VERSION 246

JASS_SAVE_BACKUP 247

JASS_SCRIPT 247

JASS_SCRIPT_ERROR_LOG 247

JASS_SCRIPT_FAIL_LOG 248

JASS_SCRIPT_NOTE_LOG 248

JASS_SCRIPT_WARN_LOG 248

JASS_SCRIPTS 248

JASS_STANDALONE 250

JASS_SUFFIX 250

JASS_TIMESTAMP 251

JASS_UNAME 251

JASS_UNDO_TYPE 251

JASS_USER_DIR 252

JASS_VERBOSITY 252

JASS_VERSION 253

JASS_ZONE_NAME 254

Define Script Behavior Variables 254

JASS_ACCT_DISABLE 256

JASS_ACCT_REMOVE 257

JASS_AGING_MAXWEEKS 257

JASS_AGING_MINWEEKS 257

JASS_AGING_WARNWEEKS 257

JASS_AT_ALLOW 258

JASS_AT_DENY 258
Contents xxiii

JASS_BANNER_DTLOGIN 259

JASS_BANNER_FTPD 259

JASS_BANNER_SENDMAIL 259

JASS_BANNER_SSHD 259

JASS_BANNER_TELNETD 260

JASS_CORE_PATTERN 260

JASS_CPR_MGT_USER 260

JASS_CRON_ALLOW 260

JASS_CRON_DENY 261

JASS_CRON_LOG_SIZE 261

JASS_CRYPT_ALGORITHMS_ALLOW 262

JASS_CRYPT_DEFAULT 262

JASS_CRYPT_FORCE_EXPIRE 262

JASS_FIXMODES_DIR 262

JASS_FIXMODES_OPTIONS 263

JASS_FTPD_UMASK 263

JASS_FTPUSERS 263

JASS_KILL_SCRIPT_DISABLE 264

JASS_LOGIN_RETRIES 264

JASS_MD5_DIR 264

JASS_NOVICE_USER 265

JASS_PASS_ Environment Variables 265

JASS_PASS_DICTIONDBDIR 265

JASS_PASS_DICTIONLIST 265

JASS_PASS_HISTORY 266

JASS_PASS_LENGTH 266

JASS_PASS_MAXREPEATS 266

JASS_PASS_MINALPHA 266
xxiv Solaris Security Toolkit 4.2 Reference Manual • July 2005

JASS_PASS_MINDIFF 267

JASS_PASS_MINDIGIT 267

JASS_PASS_MINLOWER 268

JASS_PASS_MINNONALPHA 268

JASS_PASS_MINSPECIAL 268

JASS_PASS_MINUPPER 269

JASS_PASS_NAMECHECK 269

JASS_PASS_WHITESPACE 269

JASS_PASSWD 270

JASS_POWER_MGT_USER 270

JASS_REC_PATCH_OPTIONS 270

JASS_RHOSTS_FILE 270

JASS_ROOT_GROUP 271

JASS_ROOT_PASSWORD 271

JASS_SADMIND_OPTIONS 271

JASS_SENDMAIL_MODE 272

JASS_SGID_FILE 272

JASS_SHELLS 272

JASS_SUID_FILE 273

JASS_SUSPEND_PERMS 273

JASS_SVCS_DISABLE 274

JASS_SVCS_ENABLE 275

JASS_TMPFS_SIZE 276

JASS_UMASK 276

JASS_UNOWNED_FILE 276

JASS_WRITABLE_FILE 276

Define JumpStart Mode Variables 277

JASS_PACKAGE_MOUNT 277
Contents xxv

JASS_PATCH_MOUNT 278

Glossary 279

Index 287
xxvi Solaris Security Toolkit 4.2 Reference Manual • July 2005

Tables

TABLE 1-1 Solaris Security Toolkit Scripts That Use the SMF-Ready Services Interface 3

TABLE 1-2 Solaris Security Toolkit Scripts That SMF Recognizes as Legacy Services 4

TABLE 1-3 Solaris Security Toolkit Scripts Not Used for Solaris 10 6

TABLE 1-4 Solaris Security Toolkit 4.2 Zone-Aware Finish and Audit Scripts 9

TABLE 2-1 File Types Detected by Using the check_fileTypeMatch
Function 25

TABLE 2-2 Options for add_patch Finish Script Function 50

TABLE 2-3 Options for add_pkg Function 50

TABLE 2-4 add_to_manifest Options and Sample Manifest Entries 52

TABLE 2-5 create_a_file Command Options 62

TABLE 2-6 rm_pkg Function Options 73

TABLE 2-7 File Types Detected by the check_fileTypeMatch Function 81

TABLE 4-1 Product-Specific Drivers 127

TABLE 5-1 Product-Specific Finish Scripts 179

TABLE 6-1 List of Shells Defined by JASS_SHELLS 209

TABLE 6-2 Sample Output of JASS_SVCS_DISABLE 219

TABLE 6-3 Product-Specific Audit Scripts 220

TABLE 7-1 Supporting OS Versions in the JASS_FILES Variable 235

TABLE 7-2 Supporting OS Versions in the JASS_SCRIPTS Variable 249

TABLE 7-3 Verbosity Levels for Audit Runs 253
 xxvii

xxviii Solaris Security Toolkit 4.2 Reference Manual • July 2005

Code Samples

CODE EXAMPLE 1-1 Hardening a Non-Global Zone 8

CODE EXAMPLE 1-2 TCP Wrappers Configuration for secure.driver in Solaris 10 OS 12

CODE EXAMPLE 1-3 TCP Wrappers Configuration for server-secure.driver in Solaris 10 OS 12

CODE EXAMPLE 1-4 TCP Wrappers Configuration for suncluster3x-secure.driver in Solaris 10 OS 12

CODE EXAMPLE 1-5 TCP Wrappers Configuration for
sunfire_15k_sc-secure.driver in Solaris 10 OS 13

CODE EXAMPLE 2-1 Extending Functionality by Customizing the Framework 16

CODE EXAMPLE 2-2 Sample Banner Message 18

CODE EXAMPLE 2-3 Detecting Functionality That Exists in Multiple OS Releases 56

CODE EXAMPLE 2-4 Checking for a Specific OS Revision or Range 57

CODE EXAMPLE 2-5 Checksum Output From MD5 in Solaris 10 OS 58

CODE EXAMPLE 3-1 Adding a User-Defined Variable 99

CODE EXAMPLE 3-2 Appending Entries to Variables Using user.init File 100

CODE EXAMPLE 4-1 Creating a Nested or Hierarchical Security Profile 121

CODE EXAMPLE 4-2 Having a Driver Implement Its Own Functionality 121

CODE EXAMPLE 4-3 Exempt From config.driver 123

CODE EXAMPLE 4-4 secure.driver Contents 126

CODE EXAMPLE 5-1 Sample install-openssh.fin Script 133

CODE EXAMPLE 5-2 Default BART rules-secure File 155

CODE EXAMPLE 5-3 Default BART rules File 155

CODE EXAMPLE 5-4 secure.driver Default IP Filter Rules File 158
 xxix

CODE EXAMPLE 5-5 server-secure.driver Default IP Filter Rules File 158

CODE EXAMPLE 5-6 sunfire_15k_sc-secure.driver Default IP Filter Rules File 159

CODE EXAMPLE 5-7 Password Encryption Tunables for Solaris Security Toolkit Drivers 172

CODE EXAMPLE 6-1 Sample install-openssh.aud Script 185

CODE EXAMPLE 7-1 Variable Assignment Based on OS Version 226

CODE EXAMPLE 7-2 Adding rlogin to JASS_SVCS_ENABLE list 275
xxx Solaris Security Toolkit 4.2 Reference Manual • July 2005

Preface

This Solaris™ Security Toolkit 4.2 Reference Manual contains reference information for
understanding and using the internals of the Solaris Security Toolkit software. This
manual is primarily intended for persons who use the Solaris Security Toolkit
software to secure Solaris™ Operating System (OS) versions 2.5.1 through 10, such
as administrators, consultants, and others, who are deploying new Sun systems or
securing deployed systems. The instructions apply to using the software in either its
JumpStart™ mode or stand-alone mode.

Following are terms used in this manual that are important to understand:

■ Hardening – Modifying Solaris OS configurations to improve a system’s security.

■ Auditing – Determining if a system’s configuration is in compliance with a
predefined security profile.

■ Scoring – Counting the number of failures uncovered during an audit run. If no
failures (of any kind) are found, then the resulting score is 0. The Solaris Security
Toolkit increments the score (also known as a vulnerability value) by 1 whenever
a failure is detected.

Before You Read This Book
You should be a Sun Certified System Administrator for Solaris™ or Sun Certified
Network Administrator for Solaris™. You should also have an understanding of
standard network protocols and topologies.

Because this book is designed to be useful to people with varying degrees of
experience or knowledge of security, your experience and knowledge will determine
how you use this book.
 xxxi

How This Book Is Organized
This manual contains reference information about the software components and is
structured as follows:

Chapter 1 is an introduction to how to use Solaris Security Toolkit 4.2 software with
the Solaris 10 OS.

Chapter 2 provides reference information for using, adding, modifying, and
removing framework functions. Framework functions provide flexibility for you to
change the behavior of the Solaris Security Toolkit software without modifying
source code.

Chapter 3 provides reference information about for using, modifying, and
customizing the file templates included in the Solaris Security Toolkit software.

Chapter 4 provides reference information about using, adding, modifying, and
removing drivers. This chapter describes the drivers used by the Solaris Security
Toolkit software to harden, minimize, and audit Solaris OS systems.

Chapter 5 provides reference information about using, adding, modifying, and
removing finish scripts. This chapter describes the scripts used by the Solaris
Security Toolkit software to harden and minimize Solaris OS systems.

Chapter 6 provides reference information for using, adding, modifying, and
removing audit scripts.

Chapter 7 provides reference information about using environment variables. This
chapter describes all of the variables used by the Solaris Security Toolkit software
and provides tips and techniques for customizing their values.

Using UNIX Commands
This document might not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris Operating System documentation, which is at

http://docs.sun.com
xxxii Solaris Security Toolkit 4.2 Reference Manual • July 2005

http://docs.sun.com

Shell Prompts

Typographic Conventions

Using Generic Terms for Hardware
Models
Sun Fire™ high-end systems refers to these model numbers:

■ E25K
■ E20K

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Typeface1

1 The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.
Preface xxxiii

■ 15K
■ 12K

Sun Fire midrange systems refer to these model numbers:

■ E6900
■ E4900
■ 6800
■ 4810
■ 4800
■ 3800

Sun Fire entry-level midrange systems refer to these model numbers:

■ E2900
■ Netra 1280
■ V1280
■ V890
■ V880
■ V490
■ V480

Supported Hardware Systems
Solaris Security Toolkit 4.2 software supports SPARC®, 64-bit only, and x86 systems.

Supported Solaris OS Versions
Sun support for Solaris Security Toolkit software is available only for its use in the
Solaris 8, Solaris 9, and Solaris 10 Operating Systems.

Note – For Solaris Security Toolkit 4.2 software, Solaris 10 can be used only on Sun
Fire high-end systems domains, not on the system controller (SC).

While the software can be used in the Solaris 2.5.1, Solaris 2.6, and Solaris 7
Operating Systems, Sun support is not available for its use in those operating
systems.
xxxiv Solaris Security Toolkit 4.2 Reference Manual • July 2005

The Solaris Security Toolkit software automatically detects which version of the
Solaris Operating System software is installed, then runs tasks appropriate for that
operating system version.

Note in examples provided throughout this document that when a script checks for
a version of the OS, it checks for 5.x, the SunOS™ versions, instead of 2.x, 7, 8, 9, or
10, the Solaris OS versions. TABLE P-1 shows the correlation between SunOS and
Solaris OS versions.

Supported SMS Versions
If you are using System Management Services (SMS) to run the system controller
(SC) on your Sun Fire high-end systems, then Solaris Security Toolkit 4.2 software is
supported on all Solaris 8 and 9 OS versions when used with SMS versions 1.3, 1.4.1,
and 1.5. No version of SMS is supported on Solaris 10 OS with Solaris Security
Toolkit 4.2 software.

Note – For Solaris Security Toolkit 4.2 software, Solaris 10 can be used only on
domains, not on the system controller (SC).

TABLE P-1 Correlation Between SunOS and Solaris OS Versions

SunOS Version Solaris OS Version

5.5.1 2.5.1

5.6 2.6

5.7 7

5.8 8

5.9 9

5.10 10
Preface xxxv

Related Documentation
The documents listed as online are available at:

http://www.sun.com/products-n-solutions/hardware/docs/
Software/enterprise_computing/systems_management/sst/index.html

Documentation, Support, and Training

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Application Title Part Number Format Location

Release Notes Solaris Security Toolkit 4.2 Release Notes 819-1504-10 PDF
HTML

Online

Administration Solaris Security Toolkit 4.2 Administration Guide 819-1402-10 PDF
HTML

Online

Man Pages Solaris Security Toolkit 4.2 Man Page Guide 819-1505-10 PDF Online

Sun Function URL Description

Documentation http://www.sun.com/documentation/ Download PDF and HTML documents,
and order printed documents

Support http://www.sun.com/support/ Obtain technical support and
download patches

Training http://www.sun.com/training/ Learn about Sun courses
xxxvi Solaris Security Toolkit 4.2 Reference Manual • July 2005

http://www.sun.com/training/
http://www.sun.com/support/
http://www.sun.com/documentation/
http://www.sun.com/products-n-solutions/hardware/docs/Software/enterprise_computing/systems_management/sst/index.html
http://www.sun.com/products-n-solutions/hardware/docs/Software/enterprise_computing/systems_management/sst/index.html

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

Solaris Security Toolkit 4.2 Reference Manual, part number 819-1503-10
Preface xxxvii

http://www.sun.com/hwdocs/feedback

xxxviii Solaris Security Toolkit 4.2 Reference Manual • July 2005

CHAPTER 1

Introduction to Solaris 10 Operating
System Support

One of the main purposes of the Solaris Security Toolkit 4.2 software release is to
provide support for the Solaris 10 Operating System. The Solaris Security Toolkit 4.2
software provides support for new Solaris 10 OS security features, such as the
Service Management Facility (SMF), TCP Wrappers, IP Filter, and other features.
Refer to the Solaris Security Toolkit 4.2 Release Notes for a complete list of new
features.

Using the Solaris Security Toolkit 4.2 software, you can harden and audit the
security of systems in a similar manner as earlier versions. You can also use this
release of software either in JumpStart or standalone mode, as in earlier versions.

Using Perl With Solaris Security Toolkit
4.2 Software
The Practical Extraction and Report Language (Perl) is delivered with the Solaris 10
OS. If you are creating scripts for use with the Solaris 10 OS, you can use Perl in
your scripts, even in JumpStart mode. Versions of the Solaris OS earlier than 10
might not have Perl available during JumpStart or included in the Solaris OS
distribution. Ensure that Perl is available in your target environment before you
write a script which requires it. Many security-conscious users do remove Perl from
their systems, so you also should be aware of that possibility.

The Solaris Security Toolkit attempts to use Perl if is installed on the system during
the audit performed by the set-flexible-crypt.aud script (see “set-
flexible-crypt.aud” on page 214). If Perl is not installed on the system, the
script issues an error.
1

SMF and Legacy Services on Solaris 10
OS
Some of the services under the Internet services daemon (inetd) control that you
might want to put in a list to enable or disable are converted to the Service
Management Facility and use Fault Management Resource Identifiers (FMRIs), and
some services under inetd control are not converted.

■ SMF-Ready Services – If you want to create lists of SMF-ready services under
inetd control to enable or disable, use JASS_SVCS_ENABLE or
JASS_SVCS_DISABLE. The JASS_SVCS_DISABLE script disables all services on
the list that are SMF ready and that are installed on the system. TABLE 1-1 lists
those Solaris Security Toolkit scripts that are SMF ready.

Note – The lists of SMF-ready services are valid only for the Solaris 10 Operating
System.

■ Legacy Services – If you want to create lists of legacy, or unconverted, services
under inetd control to enable or disable, you can use JASS_SVCS_ENABLE or
JASS_SVCS_DISABLE in the same manner you have been using them in earlier
versions of the toolkit. TABLE 1-2 lists those Solaris Security Toolkit scripts that are
not converted and, therefore, SMF recognizes as legacy services. See
“JASS_SVCS_DISABLE” on page 274 and “JASS_SVCS_ENABLE” on page 275 for
more information.

If you are using the Solaris 10 Operating System, the JASS_SVCS_DISABLE script
disables all services listed on the JASS_SVCS_DISABLE list if they are in the
inetd.conf file. Therefore, if a service was valid for the Solaris 9 Operating System
under inetd, but no longer uses the inetd.conf file for the Solaris 10 Operating
System, modifying the JASS_SVCS_DISABLE environment variable makes no
changes to that service.

The Solaris Security Toolkit issues a warning message if either the
JASS_SVCS_ENABLE or JASS_SVCS_DISABLE environment variable contains either
an FMRI or an inetd service name which does not exist on the system.
2 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Scripts That Use the SMF-Ready Services
Interface
TABLE 1-1 lists the Solaris Security Toolkit scripts that use the SMF-ready services
interface, their Fault Management Resource Identifiers (FMRIs), and the start or stop
scripts used for the Solaris 9 OS.

TABLE 1-1 Solaris Security Toolkit Scripts That Use the SMF-Ready Services Interface

Script Name Fault Management Resource Identifier (FMRI) Start/Stop Script for Solaris 9 OS

disable-apache21 svc:/network/http:apache2 None

disable-automount svc:/system/filesystem/autofs:
default

/etc/rc2.d/S74autofs

disable-dhcpd svc:/network/dhcp-server:default /etc/rc3.d/S24dhcp

disable-kdc svc:/network/security/krb5kdc:de
fault

/etc/rd3.d/S13kdc.master

/etc/rd3.d/S14kdc

disable-ldap-client svc:/network/ldap/client:default /etc/rc2.d/S71dap.client

disable-lp svc:/application/print/server:
default

svc:/application/print/ipp-
listener:default

svc:/application/print/rfc1179:
default

/etc/rc2.d/S80lp

disable-named svc:/network/dns/server:default /etc/named.boot

disable-nfs-client svc:/network/nfs/client:default

svc:/network/nfs/status:default

svc:/network/nfs/nlocmgr:default

/etc/rc2.d/S73nfs.client

disable-nfs-server svc:/network/nfs/server:default /etc/rc3.d/S15nfs

disable-power-mgmt svc:/system/power:default /etc/rc2.d/S85power

disable-rpc svc:/network/rpc/bind:default

svc:/network/rpc/keyserv:default

/etc/rc2.d/S71rpc

disable-sendmail svc:/network/smtp/sendmail:
default

/etc/rc2.d/S99sendmail

disable-slp svc:/network/slp:default /etc/rc2.d/S72slpd

disable-spc svc:/application/print/cleanup:
default

/etc/rc2.d/S80spc
Chapter 1 Introduction to Solaris 10 Operating System Support 3

Scripts That SMF Recognizes as Legacy
Services
TABLE 1-2 lists the Solaris Security Toolkit scripts that are not SMF ready, but that
SMF recognizes as legacy services. Although the legacy services can be represented
in FMRI format, SMF does not have the ability to enable or disable them.

disable-ssh-root-login svc:/network/ssh:default Use pkginfo -q -r SUNWsshdr

disable-uucp svc:/network/uucp:default /etc/rc2.d/S70uucp

enable-ftpaccess svc:/network/ftp:default /etc/inet/inetd.conf

enable-inetd-syslog svc:/network/inetd:default /etc/default/inetd

enable-tcpwrappers svc:/network/inetd:default /etc/default/inetd

install-ftpusers svc:/network/ftp:default Use pkginfo -q -R SUNWftpr

set-banner-ftpd svc:/network/ftp:default Use pkginfo -q -R SUNWsshdr

set-banner-sshd svc:/network/ssh:default Use pkginfo -q -R SUNWftpr

set-ftpd-unmask svc:/network/ftp:default Use pkginfo -q -r SUNWftpr

1 Solaris 10 only

TABLE 1-2 Solaris Security Toolkit Scripts That SMF Recognizes as Legacy Services

Script Name Fault Management Resource Identifier (FMRI)

disable-apache lrc:/etc/rc3_d/S50apache

disable-appserv lrc:/etc/rc2_d/S84appserv

disable-autoinst lrc:/etc/rc2_d/S72autoinstall

disable-directory lrc:/etc/rc2_d/S72directory

disable-dmi lrc:/etc/rc3_d/S77dmi

disable-dtlogin lrc:/etc/rc2_d/S99dtlogin

disable-IIim lrc:/etc/rc2_d/S95IIim

disable-mipagent lrc:/etc/rc3_d/S80mipagent

TABLE 1-1 Solaris Security Toolkit Scripts That Use the SMF-Ready Services Interface
 (Continued)

Script Name Fault Management Resource Identifier (FMRI) Start/Stop Script for Solaris 9 OS
4 Solaris Security Toolkit 4.2 Reference Manual • July 2005

New Scripts for Solaris Security Toolkit
4.2 Release
Following are new scripts for the Solaris Security Toolkit 4.2 release:

■ disable-apache2.{fin|aud}
■ disable-appserv.{fin|aud}
■ disable-IIim.{fin|aud}
■ disable-routing.{fin|aud}
■ enable-account-lockout.{fin|aud}
■ enable-bart.{fin|aud}
■ enable-ipfilter.{fin|aud}
■ enable-password-history.{fin|aud}
■ set-root-home-dir.{fin|aud}
■ set-strict-password-checks.{fin|aud}

The functions of finish (.fin) scripts are explained in Chapter 5, and the functions
of audit (.aud) scripts are explained in Chapter 6.

disable-ppp lrc:/etc/rc2_d/S47pppd

disable-preserve lrc:/etc/rc2_d/S89PRESERVE

disable-samba lrc:/etc/rc3_d/S90samba

disable-snmp lrc:/etc/rc3_d/S76snmpdx

disable-uucp lrc:/etc/rc2_d/S70uucp

disable-vold lrc:/etc/rc3_d/S81volmgt

disable-wbem lrc:/etc/rc2_d/S90wbem

set-banner-dtlogin lrc:/etc/rc2_d/S99dtlogin

TABLE 1-2 Solaris Security Toolkit Scripts That SMF Recognizes as Legacy Services
 (Continued)

Script Name Fault Management Resource Identifier (FMRI)
Chapter 1 Introduction to Solaris 10 Operating System Support 5

Scripts Not Used for Solaris 10
TABLE 1-3 lists the Solaris Security Toolkit Scripts that are not used when you are
hardening the Solaris 10 Operating System.

Environment Variables Not Used for
Solaris 10
The following environment variables are not used for the Solaris 10 Operating
System:

■ JASS_ISA_CAPABILITY (removed from Solaris Security Toolkit 4.2 software)
■ JASS_DISABLE_MODE

TABLE 1-3 Solaris Security Toolkit Scripts Not Used for Solaris 10

Script Name Applicable Operating System

disable-ab2 Solaris 2.5.1 through 8

disable-aspp Solaris 2.5.1 through 8

disable-picld Solaris 8 and 9

install-fix-modes Solaris 2.5.1 through 9

install-newaliases Solaris 2.5.1 through 8

install-openssh Solaris 2.5.1 through 8

install-sadmind-options Solaris 2.5.1 through 9

install-strong-permissions Solaris 2.5.1 through 9

remove-unneeded-accounts Solaris 2.5.1 through 9
6 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Using Solaris 10 OS Zones
The Solaris Security Toolkit 4.2 software can be used to harden a zone, or Sun
Network One (N1) grid container, for systems using the Solaris 10 OS. All Solaris
Security Toolkit profiles (hardening, audit, and undo) function in Solaris 10 zones in
the same manner as in non-zoned systems for the most part. Any differences are
noted in this section.

Sequence Matters in Hardening Global and Non-
Global Zones
If the global zone has been hardened before the non-global zone (NGZ) is installed,
certain modifications made by the Solaris Security Toolkit 4.2 software are carried
into the new zone, but many others are not. To ensure that a newly created zone is
properly secured, the Solaris Security Toolkit 4.2 software should be applied in both
hardening and audit modes immediately after the zone’s installation. Once a non-
global zone is installed, hardening and unhardening in the global zone does not
effect the NGZ, and vice versa.

Harden a Non-Global Zone From Within That
Zone

Caution – Because of security risks, you should never access a non-global zone file
system from outside that zone. A path that is not dangerous in a non-global zone can
be dangerous in the global zone. For example, a non-global zone administrator can
link the /etc/shadow file to the ../../../shadow file. Inside the non-global
zone, this is harmless, but modifications to the file from the global zone, using the
path /opt/testzone/etc/shadow, would edit the global zone’s /etc/passwd
file. Again, a non-global zone should never be hardened, undone, cleaned, or even
audited unless you are logged into that zone.
Chapter 1 Introduction to Solaris 10 Operating System Support 7

If your Solaris Security Toolkit 4.2 installation is in the standard /opt/SUNWjass
directory, you can harden a zone by using the Solaris 10 OS zlogin(1) command to
log in to, or enter, that zone to run the Solaris Security Toolkit.

The variable myzone is your non-global zone, and the variable my.driver is the name
of the driver you are using.

Some Scripts Are Not Relevant to Non-Global
Zones
Some of the Solaris Security Toolkit scripts are not relevant to a non-global zone; for
example, those that modify kernel parameters using /etc/system. When these
scripts are run in a non-global zone, the scripts log the fact that they are not required
for a non-global zone as a [NOTE].

If you are writing your own script, you might want to use the logNotGlobalZone
function (see “logNotGlobalZone” on page 29) to issue such a message in a
standard way. To test whether or not you are in a non-global zone in a Solaris
Security Toolkit script, you can check the Solaris Security Toolkit 4.2 environment
variable JASS_ZONE_NAME to see if it contains global. This variable is set to
global in OS versions prior to the Solaris 10 OS. For more information about the
variable, see “JASS_ZONE_NAME” on page 254.

Audits of Non-Global Zones Are Separate and
Distinct From Audits of Global Zones
Running processes, installed software, and the configurations of non-global zones
are audited separately from those of the global zone. For example, an audit of an
NGZ, which detected an unauthorized process running, would trigger an NGZ audit
failure, not a global zone audit failure. Similarly, when a global zone is audited, any
security violations detected would generate global zone security violations, not NGZ
violations.

The only overlap between a global and non-global zone audit occurs during a BART
review of the global zone. File systems of the NGZ are mounted on the global zone
and might be reviewed by the BART manifest files included in the Solaris Security
Toolkit. When reviewing these NGZ file systems from the global zone, security

CODE EXAMPLE 1-1 Hardening a Non-Global Zone

zlogin myzone /opt/SUNWjass/bin/jass-execute -d my.driver
8 Solaris Security Toolkit 4.2 Reference Manual • July 2005

violations relevant to the NGZ might be reported on the global zone. To avoid this
situation, ensure that any NGZ file systems mounted on the global zone are
excluded from the BART manifest file.

Zone-Aware Finish and Audit Scripts
Toolkit scripts that are not to be run in a zone because of insufficient privileges for
operation, check to see if they are in the global zone using the environment
variable JASS_ZONE_NAME (see “JASS_ZONE_NAME” on page 254). If the Solaris
Security Toolkit scripts are not running in the global zone, the scripts log that
information with the logNotGlobalZone function and finish.

TABLE 1-4 lists the Finish and Audit scripts that are zone aware.

Some Zone-Aware Scripts Require Action Before
Use in Non-Global Zones
Some Solaris Security Toolkit scripts that are zone aware, such as enable-bsm.fin,
might require actions to be taken in the global zone prior to their full use in a non-
global zone. If you run such scripts without taking these actions, you are prompted
and given instructions to take the required actions to make full use of these
capabilities. In other words, some actions require a kernel module to work. In this
case, you need to load the module from the global zone, and then you can use it in
the non-global zone. Until you do that, the actions are not performed.

TABLE 1-4 Solaris Security Toolkit 4.2 Zone-Aware Finish and Audit Scripts

Base Script Name Reason for Zone Awareness Zone Behavior

disable-power-mgmt Power functions cannot be used in a zone. log

enable-bsm Zones cannot enable BSM, although they can use BSM.
Before you can enable the ability to use BSM in a NGZ, you
first must enable the ability to use BSM in the global zone.

log

enable-ipfilter Zones cannot change IP Filter. log

enable-priv-ngs-ports Zones cannot be NFS servers. log

enable-rfc1948 Zones cannot affect the /dev/ip stack. log

enable-stack-protection Zones cannot change the kernel parameters. log

install-nddconfig Zones cannot affect the /dev/ip stack. log

install-security-mode Zones cannot access the EEPROM. log
Chapter 1 Introduction to Solaris 10 Operating System Support 9

rpcbind Disabled or Enabled Based on
Drivers
In the Solaris 10 Operating System, there are services which depend on rpcbind
such as the Fault Manager Daemon (FMD), Network Information Services (NIS), the
Network File System (NFS), and window managers, such as Common Desktop
Environment (CDE) and GNU Network Object Model Environment (GNOME). The
Solaris Security Toolkit 4.2 software either disables or enables rpcbind based on the
driver as follows:

■ secure.driver: rpcbind disabled by default
■ server-secure.driver: rpcbind enabled by default
■ suncluster3x-secure.driver: rpcbind enabled by default
■ sunfire_15k_sc-secure.driver: rpcbind disabled by default

You might need to configure rpcbind to start manually, depending on your
system’s configuration. Refer to the Solaris 10 OS Administration documentation for
details on how to use SMF.

rpcbind in the Solaris 10 OS uses TCP Wrappers and the uses of both are closely
related. See “Using TCP Wrappers” on page 11 for details on how each of the drivers
auto-configure TCP Wrappers.

▼ To Enable rpcbind
1. Unharden the system.

2. Verify that rpcbind is running by using the pgrep command.

Use the following form of the pgrep command for systems running the Solaris 10
OS where you have a global zone with child zones, so that you do not receive child
zone processes.

If you receive a process-id you know that rpcbind is running.

pgrep rpcbind
process-id

pgrep -z zone-name rpcbind
process-id
10 Solaris Security Toolkit 4.2 Reference Manual • July 2005

3. Copy and rename the secure.driver and hardening.driver to new-
secure.driver and new-hardening.driver.

4. Edit new-secure.driver to replace the reference to hardening.driver with new-
hardening.driver.

5. Comment out the disable-rpc.fin script from new-hardening.driver.

6. Re-run hardening with your customized copy drivers by running the Solaris
Security Toolkit with new-secure.driver.

7. Reboot the system.

Caution – After enabling the rpcbind service, additional services may be started
automatically and their corresponding ports opened. The Solaris Security Toolkit
audit flags these additional services as failures.

Using TCP Wrappers
For the Solaris 10 OS, the following TCP Wrappers configurations are used for the
following drivers. The configuration information is in the /etc/hosts.allow and
/etc/hosts.deny files.

Note – The arguments for these configurations are case-sensitive. For example, in
CODE EXAMPLE 1-2, LOCAL and ALL must be entered in all capital letters, and
localhost must be entered in lower-case letters.
Chapter 1 Introduction to Solaris 10 Operating System Support 11

TCP Wrappers Configuration for
secure.driver

TCP Wrappers Configuration for
server-secure.driver

TCP Wrappers Configuration for
suncluster3x-secure.driver

CODE EXAMPLE 1-2 TCP Wrappers Configuration for secure.driver in Solaris 10 OS

secure.driver: tcpwrappers enabled by default with the following:

 hosts.allow

 sshd: LOCAL

 sendmail: localhost

 hosts.deny

 ALL: ALL

 # rpcbind: ALL

CODE EXAMPLE 1-3 TCP Wrappers Configuration for server-secure.driver in
Solaris 10 OS

server-secure.driver: tcpwrappers enabled by default with the
following:

 hosts.allow

 ALL: localhost

 sshd: ALL

 hosts.deny

 ALL: ALL

CODE EXAMPLE 1-4 TCP Wrappers Configuration for suncluster3x-secure.driver
in Solaris 10 OS

suncluster3x-secure.driver: tcpwrappers enabled by default with
the following:

 hosts.allow

 <need to allow other cluster members access>

 ALL: localhost

 sshd: ALL
12 Solaris Security Toolkit 4.2 Reference Manual • July 2005

TCP Wrappers Configuration for
sunfire_15k_sc-secure.driver

Defining Environment Variables
There is a change in the sequence in which driver-specific environment variables are
set.

Earlier Solaris Security Toolkit Versions
In previous versions of Solaris Security Toolkit, the sequence in which environment
variables were set was as follows:

1. <driver-name>.driver

2. driver.init

a.user.init

 hosts.deny

 ALL: ALL

 NOTE: need to warn if not configured properly by adding
 entries to hosts.allow

CODE EXAMPLE 1-5 TCP Wrappers Configuration for
sunfire_15k_sc-secure.driver in Solaris 10 OS

sunfire_15k_sc-secure.driver: tcpwrappers enabled by default with
the following:

 hosts.allow

 <need to allow other SC sshd access>

 sendmail: localhost

 hosts.deny

 ALL: ALL

 NOTE: need to warn if not configured properly by adding
 entries to hosts.allow

CODE EXAMPLE 1-4 TCP Wrappers Configuration for suncluster3x-secure.driver
in Solaris 10 OS (Continued)
Chapter 1 Introduction to Solaris 10 Operating System Support 13

b. finish.init

3. <driver-name>.driver (after driver.init)

4. framework variables (driver files)

5. finish script variable definitions

Solaris Security Toolkit 4.2
In Solaris Security Toolkit 4.2 software, the sequence in which environment variables
are set is as follows:

1. jass-execute calls

a.driver-init

b. user-init

c. finish.init

d. *secure*

i. driver.init

ii. user.init

iii. finish.init

iv. *config*

v. *hardening*

In step d, some variables could be set before step i or after step iii.

Note – In spite of a change in sequence in which driver-specific variables are set in
Solaris Security Toolkit 4.2, your ability to use user.init to override is unchanged
from previous versions.
14 Solaris Security Toolkit 4.2 Reference Manual • July 2005

CHAPTER 2

Framework Functions

This chapter provides reference information on using, adding, modifying, and
removing framework functions. Framework functions provide flexibility for you to
change the behavior of the Solaris Security Toolkit software without modifying
source code.

Use framework functions to limit the amount of coding that is needed to develop
new finish and audit scripts, and to keep common functionality consistent. For
example, by using the common logging functions, you can configure the reporting
mechanism without needing to develop or alter any additional source code.
Similarly, by using this modular code for common functions, bugs and
enhancements can be more systematically addressed.

In addition, framework functions support the undo option. For example, using the
framework function backup_file in place of a cp or mv command allows that
operation to be reversed during an undo run.

This chapter contains the following topics:

■ “Customizing Framework Functions” on page 15
■ “Using Common Log Functions” on page 17
■ “Using Common Miscellaneous Functions” on page 42
■ “Using Driver Functions” on page 47
■ “Using Audit Functions” on page 76

Customizing Framework Functions
The Solaris Security Toolkit software is based on a modular framework that allows
you to combine features in various ways to suit your organization’s needs.
Sometimes, however, the standard features provided by the Solaris Security Toolkit
software might not meet your site’s needs. You can supplement the standard features
by customizing framework functions to enhance and extend the functionality
15

provided by the Solaris Security Toolkit software. The framework functions
configure how the Solaris Security Toolkit software runs, define the functions that it
uses, and initialize environment variables.

In most cases, you can easily copy standard framework function files and scripts,
and then customize their functionality for your use. For example, using the
user.run file, you can add, modify, replace, or extend the standard framework
functions. The user.run file is similar in purpose to the user.init file, except that
you use the user.init file to add or modify environment variables.

In some cases, you might need to develop new framework functions. In this case,
use similar framework functions as a guide or template for coding, and be sure to
follow the recommendations provided in this book. Development should only be
undertaken by users who are familiar with the Solaris Security Toolkit software’s
design and implementation.

Caution – Take extreme care when developing your own framework functions.
Incorrect programming might compromise the Solaris Security Toolkit software’s
ability to properly implement or undo changes or to audit a system’s configuration.
Furthermore, changes made to the software could adversely impact the target
platform on which the software is run.

CODE EXAMPLE 2-1 show how Solaris Security Toolkit functionality can be extended
by customizing the standard framework. In this example, the mount_filesystems
function is modified to enable the developer to mount additional file systems during
a JumpStart installation. The mount_filesystems function is copied directly from
the driver_private.funcs script into the user.run file. The modifications to it
are in lines 8 and 9.

For the sake of simplicity, the variable used to mount the new file system is not
converted to Solaris Security Toolkit environment variables. To aid in portability and
flexibility, abstract the actual values using environment variables. This approach

CODE EXAMPLE 2-1 Extending Functionality by Customizing the Framework

1 mount_filesystems()
2 {
3 if ["${JASS_STANDALONE}" = "0"]; then
4 mount_fs ${JASS_PACKAGE_MOUNT} ${JASS_ROOT_DIR} \
5 ${JASS_PACKAGE_DIR}
6 mount_fs ${JASS_PATCH_MOUNT} ${JASS_ROOT_DIR} \
7 ${JASS_PATCH_DIR}
8 mount_fs 192.168.0.1:/apps01/oracle \
9 ${JASS_ROOT_DIR}/tmp/apps-oracle
10 fi
11 }
16 Solaris Security Toolkit 4.2 Reference Manual • July 2005

allows changes to be made consistently, because the software is deployed into
environments with different requirements, such as production, quality assurance,
and development.

Note – You could implement the same functionality within a finish script that uses
this mount point, so that the mounting, use, and unmounting of the file system is
self-contained within the script. However, it might be more effective and efficient to
mount the file system using mount_filesystems when a single file system is used
by more than one script.

Caution – A disadvantage to modifying mount_filesystems is that when you
install updates of the Solaris Security Toolkit software, you might need to modify the
mount_filesystems again.

Using Common Log Functions
These functions control all logging and reporting functions and are located in the
Drivers directory in a file called common_log.funcs. The logging and reporting
functions are used in all of the Solaris Security Toolkit software’s operational modes;
therefore, they are considered common functions. Common functions such as
logWarning and logError are in this file.

This section describes the following common log functions.

■ “logBanner” on page 18
■ “logDebug” on page 19
■ “logError” on page 19
■ “logFailure” on page 20
■ “logFileContentsExist and logFileContentsNotExist” on page 20
■ “logFileExists and logFileNotExists” on page 21
■ “logFileGroupMatch and logFileGroupNoMatch” on page 22
■ “logFileModeMatch and logFileModeNoMatch” on page 22
■ “logFileNotFound” on page 23
■ “logFileOwnerMatch and logFileOwnerNoMatch” on page 24
■ “logFileTypeMatch and logFileTypeNoMatch” on page 25
■ “logFinding” on page 26
■ “logFormattedMessage” on page 27
■ “logInvalidDisableMode” on page 27
■ “logInvalidOSRevision” on page 28
■ “logMessage” on page 28
■ “logNotGlobalZone” on page 29
Chapter 2 Framework Functions 17

■ “logNotice” on page 29
■ “logPackageExists and logPackageNotExists” on page 30
■ “logPatchExists and logPatchNotExists” on page 30
■ “logProcessArgsMatch and logProcessArgsNoMatch” on page 31
■ “logProcessExists and logProcessNotExists” on page 32
■ “logProcessNotFound” on page 32
■ “logScore” on page 33
■ “logScriptFailure” on page 33
■ “logServiceConfigExists and logServiceConfigNotExists” on page 34
■ “logServiceDisabled and logServiceEnabled” on page 34
■ “logServiceInstalled and logServiceNotInstalled” on page 35
■ “logServiceOptionDisabled and logServiceOptionEnabled” on page 36
■ “logServiceProcessList” on page 36
■ “logServicePropDisabled and logServicePropEnabled” on page 37
■ “logServiceRunning and logServiceNotRunning” on page 37
■ “logStartScriptExists and logStartScriptNotExists” on page 38
■ “logStopScriptExists and logStopScriptNotExists” on page 39
■ “logSuccess” on page 39
■ “logSummary” on page 40
■ “logUserLocked and logUserNotLocked” on page 40
■ “logUndoBackupWarning” on page 41
■ “logWarning” on page 41

logBanner

This function displays banner messages. These messages typically precede driver,
finish, or audit script run output. Banner messages also are used at the start and end
of a run. They are displayed only if the logging verbosity is at least 3 (Full). For more
information on verbosity levels, see Chapter 7.

Banner messages take one of two forms. If you pass an empty string to this function,
then a single line separator is displayed. This line is often used to force a “break” in
the displayed output. If you enter a single string value, then the output is displayed
between a pair of single line separators. CODE EXAMPLE 2-2 shows a sample of a
banner message.

CODE EXAMPLE 2-2 Sample Banner Message

==
Solaris Security Toolkit Version: 4.2
Node name: imbulu
Zone name: global
Host ID: 8085816e
Host address: 192.168.0.1
MAC address: 0:0:80:85:81:6e
18 Solaris Security Toolkit 4.2 Reference Manual • July 2005

You can control the display of banner messages using the JASS_LOG_BANNER
environment variable. For more information on this environment variable, see
Chapter 7.

logDebug

This function displays debugging messages. Debugging messages have no type
prefix, such as [FAIL] or [PASS]. Debugging messages are displayed only if the
verbosity is at least 4 (Debug). The default is to not print debugging messages. For
more information about verbosity levels, see Chapter 7.

Arguments: $1 - String to print

Returns: None

Example Usage:

logError

This function displays error messages. Error messages are those that contain the
string [ERR].

Arguments: $1 - String to display as an error message

Returns: None

Example Usage:

Example Output:

OS version: 5.10
Date: Fri Jul 1 22:27:15 EST 2005
==

logDebug “Print first message for debugging.”

logError “getScore: Score value is not defined.”

[ERR] getScore: Score value is not defined.

CODE EXAMPLE 2-2 Sample Banner Message (Continued)
Chapter 2 Framework Functions 19

You can control the display of error messages using the JASS_LOG_ERROR
environment variable. For more information on this environment variable, see
Chapter 7.

logFailure

This function displays failure messages. Failure messages are those that contain the
string [FAIL].

Arguments: $1 - String to display as an failure message

Returns: None

Example Usage:

Example Output:

You can control the display of failure messages using the JASS_LOG_FAILURE
environment variable. For more information on this environment variable, see
Chapter 7.

logFileContentsExist and
logFileContentsNotExist

Use these functions to log messages associated with the results of file contents
checks. These functions are used primarily by the check_fileContentsExist and
check_fileContentsNotExist functions, although they can be used
independently if necessary.

Arguments: $1 - File to test (string value)
$2 - Search pattern (string value)
$3 - Vulnerability value (non-negative integer)
$4 - Related information that you want displayed for users after a

PASS or FAIL message (optional)

logFailure "Package SUNWatfsr is installed."

[FAIL] Package SUNWatfsr is installed.
20 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Returns: Success or failure messages. You can control the display of these
messages using the JASS_LOG_FAILURE and JASS_LOG_SUCCESS
environment variables. For more information on these environment
variables, see Chapter 7.

Example Usage:

Example Output:

logFileExists and
logFileNotExists

Use these functions to log messages associated with the results of file checks. These
functions are primarily used with the check_fileExists and
check_fileNotExists functions, although they can be used independently if
necessary.

Arguments: $1 - File to test (string value)
$2 - Vulnerability value (non-negative integer). If this argument is

passed a null string value, then the function reports the result in
the form of a notice using the logNotice function. If the
argument is 0, it reports the result as a pass with the logSuccess
function, otherwise as a failure with logFailure function.

$3 - Related information that you want displayed for users after a
PASS, FAIL, or NOTE message (optional).

Returns: Success or failure messages. You can control the display of these
messages using the JASS_LOG_FAILURE and JASS_LOG_SUCCESS
environment variables. For more information on these environment
variables, see Chapter 7.

Example Usage:

logFileContentsExist /etc/default/inetinit "TCP_STRONG_ISS=2" 0

[PASS] File /etc/default/inetinit has content matching
TCP_STRONG_ISS=2.

logFileExists /etc/issue
Chapter 2 Framework Functions 21

Example Output:

logFileGroupMatch and
logFileGroupNoMatch

Use these functions to log messages associated with the results of file group
membership checks. These functions are used primarily by the
check_fileGroupMatch and check_fileGroupNoMatch functions, although
they can be used independently if necessary.

Arguments: $1 - File to test (string value)
$2 - Group to check
$3 - Vulnerability value (non-negative integer)
$4 - Related information that you want displayed for users after a

PASS or FAIL message (optional).

Returns: Success or failure messages. You can control the display of these
messages using the JASS_LOG_FAILURE and JASS_LOG_SUCCESS
environment variables. For more information on these environment
variables, see Chapter 7.

Example Usage:

Example Output:

logFileModeMatch and
logFileModeNoMatch

Use these functions to log messages associated with the results of file permissions
checks. These functions are used primarily by the check_fileModeMatch and
check_fileModeNoMatch functions, although they can be used independently if
necessary.

You can supply the following arguments to these functions:

[NOTE] File /etc/issue was found.

logFileGroupMatch /etc/motd sys 0

[PASS] File /etc/motd has group sys.
22 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Arguments: $1 - File to test (string value)
$2 - Permissions to check
$3 - Vulnerability value (non-negative integer)
$4 - Related information that you want displayed for users after a

PASS or FAIL message (optional).

Returns: Success or failure messages. You can control the display of these
messages using the JASS_LOG_FAILURE and JASS_LOG_SUCCESS
environment variables. For more information on these environment
variables, see Chapter 7.

Example Usage:

Example Output:

logFileNotFound

This function is used by the software to display “file not found” messages. This
function is used in the Solaris Security Toolkit code in both hardening and audit
runs to provide a standard message when a designated file was not found on the
system.

You can supply the following arguments to this function:

■ String value representing the name of the file to test

■ Non-negative integer representing the vulnerability value result

If this argument is passed a null string value, then this function reports the result
in the form of a notice using the logNotice function. Otherwise, it reports the
result as a failure using the logFailure function.

■ String value representing related information that you want displayed for users
after a FAIL or NOTE message (optional)

Example Usage:

logFileModeMatch /etc/motd 0644 0

[PASS] File /etc/motd has mode 0644.

logFileNotFound /etc/motd
Chapter 2 Framework Functions 23

Example Output:

You can control the display of notice and failure messages using the
JASS_LOG_NOTICE and JASS_LOG_FAILURE environment variables, respectively.
For more information on these environment variables, see Chapter 7.

logFileOwnerMatch and
logFileOwnerNoMatch

Use these functions to log the messages associated with the results of file ownership
checks. These functions are used primarily by the check_fileOwnerMatch and
check_fileOwnerNoMatch functions, although they can be used independently if
necessary.

You can supply the following arguments to these functions:

■ String value representing the name of the file to test

■ String value representing the ownership to check

■ Non-negative integer representing the vulnerability value result

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional)

Example Usage:

Example Output:

These functions display either success or failure messages. You can control the
display of these messages using the JASS_LOG_FAILURE and JASS_LOG_SUCCESS
environment variables. For more information on these environment variables, see
Chapter 7.

[NOTE] File /etc/issue was not found.

logFileOwnerMatch /etc/motd root 0

[PASS] File /etc/motd has owner root.
24 Solaris Security Toolkit 4.2 Reference Manual • July 2005

logFileTypeMatch and
logFileTypeNoMatch

Use these functions to log the messages associated with the results of file type
checks. These functions are used primarily by the check_fileTypeMatch and
check_fileTypeNoMatch functions, although they can be used independently if
necessary.

You can supply the following arguments to these functions:

■ String value representing the name of the file to test

■ String value representing the file type to check

TABLE 2-1 lists the file types detected by the software:

■ Non-negative integer representing the vulnerability value result

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional)

Example Usage:

Example Output:

TABLE 2-1 File Types Detected by Using the check_fileTypeMatch
Function

File Type Description

b Block special file

c Character special file

d Directory

D Door

f Regular file

l Symbolic link

p Named pipe (fifo)

s Socket

logFileTypeMatch /etc/motd f 0

[PASS] File /etc/motd is a regular file.
Chapter 2 Framework Functions 25

These functions display either success or failure messages. You can control the
display of these messages using the JASS_LOG_FAILURE and JASS_LOG_SUCCESS
environment variables. For more information on these environment variables, see
Chapter 7.

logFinding

This function displays audit finding messages. This function accepts a single string
argument to be displayed as a message. The input for this function is processed by
the printPrettyPath function prior to display. In addition, if the verbosity level is
2 (Brief) or higher, then optional tags are prepended to the message. The following
are the optional tags that you can prepend using this function:

■ Timestamp – By default JASS_DISPLAY_TIMESTAMP is not defined. If the
JASS_DISPLAY_TIMESTAMP environment variable is 1 and if JASS_VERBOSITY
is less than 3, then the timestamp as defined by the JASS_TIMESTAMP
environment variable prepends to the finding message.

■ Target Host Name – By default JASS_DISPLAY_HOSTNAME is not defined. If the
JASS_DISPLAY_HOSTNAME environment variable is 1 and if JASS_VERBOSITY is
less than 3, then the target’s host name as defined by the JASS_HOSTNAME
environment variable prepends to the finding message.

■ Current Script Name – By default JASS_DISPLAY_SCRIPTNAME is not defined. If
the JASS_DISPLAY_SCRIPTNAME environment variable is 1 and if
JASS_VERBOSITY is less than 3, then the name of the current audit script
prepends to the finding message.

Note – If the finding occurs outside of an audit script, such as within the flow of the
driver.run script, then the name of the driver is used.

You can use all three output tags collectively or independently. The order of the
position in the resulting output line is as you listed them in the input line. For more
information on this function and verbosity levels, see Chapter 7.

Example Usage:

Example Output:

logFinding "/etc/motd"

test-script /etc/motd
26 Solaris Security Toolkit 4.2 Reference Manual • July 2005

logFormattedMessage

Use this function to generate formatted audit script headers that display information
such as the script name, purpose, and rationale for the check. This function accepts a
single string value and formats the message that is passed to the function.

These messages are reformatted as follows:

■ Maximum width of 75 characters
■ Prepended with the string “ # ” (pound symbol with a space before and after it)
■ Duplicate slashes in path names are removed

Formatted messages are displayed only when the verbosity level is at least 3 (Full).
For more information on this function and verbosity levels, see Chapter 7.

Example Usage:

Example Output:

logInvalidDisableMode

Use this function to display an error message when the JASS_DISABLE_MODE
environment variable is set to an invalid value. This utility function reports on the
state of the JASS_DISABLE_MODE environment variable. For more information on
this environment variable, see Chapter 7.

This function takes no arguments and generates the following output:

logFormattedMessage "Check system controller secure shell
configuration."

Check system controller secure shell configuration.

[ERR] The JASS_DISABLE_MODE parameter has an invalid value: [...]
[ERR] value must either be “script” or “conf”.
Chapter 2 Framework Functions 27

logInvalidOSRevision

Use this function when either the check_os_revision or
check_os_min_revision functions fail their checks. This utility function reports
when a function is being called on a version of the Solaris OS for which it does not
apply. For example, use this function when there is an attempt to use a Solaris 10 OS
script with the Solaris 8 OS.

Example Usage:

Example Output:

To specify multiple versions, enter a hyphen (-) between versions, for example,
“5.8-5.9.”

This function displays notice messages. You can control the display of messages
using the JASS_LOG_NOTICE environment variable.

Note – Do not use the JASS_LOG_NOTICE environment variable on systems
running the Solaris 10 OS.

For more information on this environment variable, see Chapter 7.

logMessage

Use this function to display any message that you want to display to users. Use this
function for messages that do not have any tags associated with them. This function
is similar to the logFormattedMessage function, but displays an unformatted
message. This function accepts a single string value that is displayed as is, with no
modification.

Unformatted messages are only displayed if the verbosity level is at least 3 (Full).
For more information on this function and verbosity levels, see Chapter 7.

Example Usage:

logInvalidOSRevision "5.10"

[NOTE] This script is only applicable for Solaris version 5.10.

logMessage "Verify system controller static ARP configuration."
28 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Example Output:

logNotGlobalZone

This function logs a message using logNotice that a script will not be run, because
it must run in the global zone. In other words, the script cannot run in non-global
zones.

Argument: None

Return: None

Example Usage:

logNotice

Use this function to display notice messages. This function accepts a single string
value that is displayed as a notice message. Notice messages are those that contain
the string [NOTE].

Example Usage:

Example Output:

You can control the display of notice messages using the JASS_LOG_NOTICE
environment variable. For more information on this environment variable, see
Chapter 7.

Verify system controller static ARP configuration.

logNotGlobalZone

logNotice "Service ${svc} does not exist in ${INETD}."

[NOTE] Service telnet does not exist in /etc/inetd.conf.
Chapter 2 Framework Functions 29

logPackageExists and
logPackageNotExists

Use these functions to log the messages associated with the results of checks that
determine if software packages are installed. These functions are used primarily by
the check_packageExists and check_packageNotExists functions, although
they can be used independently if necessary.

You can supply the following arguments to these functions:

■ String value representing the name of the software package to test

■ Non-negative integer representing the vulnerability value result

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional)

Example Usage:

Example Output:

These functions display either success or failure messages. You can control the
display of these messages using the JASS_LOG_FAILURE and JASS_LOG_SUCCESS
environment variables. For more information on these environment variables, see
Chapter 7.

logPatchExists and
logPatchNotExists

Use these functions to log the messages associated with the results of checks that
determine if software patches are installed. These functions are used primarily by
the check_patchExists and check_patchNotExists functions, although they
can be used independently if necessary.

You can supply the following arguments to these functions:

■ String value representing the patch identifier (number) to test

■ Non-negative integer representing the vulnerability value result

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional)

logPackageExists SUNWcsr 0

[PASS] Package SUNWcsr is installed.
30 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Example Usage:

Example Output:

These functions display either success or failure messages. You can control the
display of these messages using the JASS_LOG_FAILURE and JASS_LOG_SUCCESS
environment variables. For more information on these environment variables, see
Chapter 7.

logProcessArgsMatch and
logProcessArgsNoMatch

Use these functions to log the messages associated with the results of checks for
runtime process arguments. These functions are used primarily by the
check_processArgsMatch and check_processArgsNoMatch functions,
although they can be used independently if necessary.

You can supply the following arguments to these functions:

■ String value representing the name of the process to test

■ String value representing the argument search pattern

■ Non-negative integer representing the vulnerability value result

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional)

Example Usage:

Example Output:

logPatchExists 123456-01 0

[PASS] Patch ID 123456-01 or higher is installed.

logProcessArgsMatch inetd "-t" 0

[PASS] Process inetd found with argument -t.
Chapter 2 Framework Functions 31

These functions display either success or failure messages. You can control the
display of these messages using the JASS_LOG_FAILURE and JASS_LOG_SUCCESS
environment variables. For more information on these environment variables, see
Chapter 7.

logProcessExists and
logProcessNotExists

Use these functions to log the messages associated with the results of checks for
processes. These functions are used primarily by the check_processExists and
check_processNotExists functions, although they can be used independently if
necessary.

Arguments: $1 - Process name (string)
$2 - Vulnerability value (numeric)
$3 - Related information that you want displayed for users after a

PASS or FAIL message (optional).

Example Usage:

Example Output:

These functions display either success or failure messages. You can control the
display of these messages using the JASS_LOG_FAILURE and JASS_LOG_SUCCESS
environment variables. For more information on these environment variables, see
Chapter 7.

logProcessNotFound

Use this function to log a FAIL message for any process that is not found. This
function displays a standard “process not found” message when a designated
process cannot be found on a system.

Arguments: $1 - Process name (string)
$2 - Related information that you want displayed for users after a

PASS or FAIL message (optional).

logProcessExists nfsd 0

[PASS] Process nfsd was found.
32 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Example Usage:

Example Output:

You can control the display of these messages using the JASS_LOG_FAILURE
environment variable. For more information on this environment variable, see
Chapter 7.

logScore

Use this function to report the number of errors found during an audit run.

Argument: $1 - String to associate with the report
$2 - Number of errors (string)

Returns: Number of errors found during an audit run.

Example Usage:

Example Output:

logScriptFailure

Use this function to record a script failure to the corresponding script failure log.

Arguments: $1 - Type of failure:
“error”
“warning”
“note”
“failure”

$2 - Count of the type of failure recorded (string).

logProcessNotFound inetd

[FAIL] Process inetd was not found.

logScore “Script Total:” “0”

[PASS] Script Total: 0 Errors
Chapter 2 Framework Functions 33

Example Usage:

This example would record one failure to the
${JASS_REPOSITORY}/${JASS_TIMESTAMP}/jass-script-failures.txt
file.

logServiceConfigExists and
logServiceConfigNotExists

Use these functions to log the messages associated with the results of checks that
determine if configuration files exist. These functions are used primarily by the
check_serviceConfigExists and check_serviceConfigNotExists
functions, although they can be used independently if necessary.

Arguments: $1 - Service name (string)
$2 - Vulnerability value (numeric)
$3 - Related information that you want displayed for users after a

PASS or FAIL message (optional).

Example Usage:

Example Output:

These functions display either success or failure messages. You can control the
display of these messages using the JASS_LOG_FAILURE and JASS_LOG_SUCCESS
environment variables. For more information on these environment variables, see
Chapter 7.

logServiceDisabled and
logServiceEnabled

Use these functions to log that the specified service was enabled or disabled in a
uniform manner.

logScriptFailure “failure” 1

logServiceConfigExists /etc/apache/httpd.conf 0

[PASS] Service Config File /etc/apache/httpd.conf was found.
34 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Arguments: $1 - Service name (string)
$2 - Vulnerability value (numeric)
$3 - Related information that you want displayed for users after a

PASS or FAIL message (optional).

Example Usage:

Example Output:

logServiceInstalled and
logServiceNotInstalled

Use these functions to log that the specified service was installed or not installed in
a uniform manner. These functions are primarily used with the
check_serviceEnabled and check_serviceDisabled functions, although they
can be used independently if necessary.

Arguments: $1 - Service name (string)
$2 - Vulnerability value (numeric)
$3 - Related information that you want displayed for users after a

PASS or FAIL message (optional).

Example Usage:

Example Output:

logServiceDisabled “svc:/network/telnet:default” 0 ““

[PASS] Service svc:/network/telnet:default was not enabled.

logServiceInstalled “svc:/network/telnet:default” 1 ““

[FAIL] Service svc:/network/telnet:default was installed.
Chapter 2 Framework Functions 35

logServiceOptionDisabled and
logServiceOptionEnabled

Use this function to log whether a service had a specified option set to a particular
value. This function is used with the check_serviceOptionDisabled and
check_serviceOption Enabled functions.

Arguments: $1 - Process name (string)
$2 - Service property name (string)
$3 - Service name (string)
$4 - Service property value (string)
$5 - Vulnerability value (numeric)
$6 - Related information that you want displayed for users after a

PASS or FAIL message (optional)

Example Usage:

Example Output:

logServiceProcessList

Use this function to print a list of processes associated with an SMF service. For each
process, three items are printed: the process ID, process user ID, and process
command.

Arguments: $1 - SMF service
$2 - PASS or FAIL
$3 - List of associated processes with process ID (pid), process user ID

(user), and process command (command).

Example Usage:

logServiceOptionEnabled “in.ftpd” “inetd_start/exec”
“svc:/network/ftp” “-1” 0 ““

[PASS] Service in.ftpd of svc:/network/ftp property
inetd_start/exec has option -1.

logServiceProcessList svc:/network/telnet 0 “245 root in.telnetd”
36 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Example Output:

logServicePropDisabled and
logServicePropEnabled

Use this function to log whether a service had a specified option set to enabled or
disabled. These functions are primarily used with the
check_serviceOptionEnabled and check_serviceOptionDisabled
functions, although they can be used independently if necessary.

Arguments: $1 - Service name (string)
$2 - Property name (string)
$3 - Property value (string)
$4 - Vulnerability value (numeric)
$5 - Related information that you want displayed for users after a

PASS or FAIL message (optional)

Example Usage:

Example Output:

logServiceRunning and
logServiceNotRunning

Use this function to log whether a specific service is running. These functions are
primarily used with the check_serviceRunning and
check_serviceNotRunning functions, although they can be used independently if
necessary

[PASS] Service svc:/network/telnet was found running (pid 245,
user root, command in.telnetd).

logServicePropDisabled svc:/network/ftp enable_tcpwrappers
enabled 1 ““

[FAIL] Service svc:/network/ftp property enable_tcpwrappers was
enabled.
Chapter 2 Framework Functions 37

Arguments: $1 - Service name (string)
$2 - Vulnerability value (numeric)
$3 - Process list (optional)
$4 - Related information that you want displayed for users after a

PASS or FAIL message (optional)

Example Usage:

Example Output:

logStartScriptExists and
logStartScriptNotExists

Use these functions to log the messages associated with the results of checks that
determine if run-control start scripts exist. These functions are used primarily by the
check_startScriptExists and check_startScriptNotExists functions,
although they can be used independently if necessary.

Arguments: $1 - Start script to test (string)
$2 - Vulnerability value (numeric)
$3 - Related information that you want displayed for users after a

PASS or FAIL message (optional).

Example Usage:

Example Output:

These functions display either success or failure messages. You can control the
display of these messages using the JASS_LOG_FAILURE and JASS_LOG_SUCCESS
environment variables. For more information on these environment variables, see
Chapter 7.

logServiceRunning svc:/network/ftp 1

[FAIL] Service svc:/network/ftp was not running.

logStartScriptExists /etc/rc3.d/S89sshd 0

[PASS] Start Script /etc/rc3.d/S89sshd was found.
38 Solaris Security Toolkit 4.2 Reference Manual • July 2005

logStopScriptExists and
logStopScriptNotExists

Use these functions to log the messages associated with the results of checks that
determine if run-control stop scripts exist. These functions are used primarily by the
check_stopScriptExists and check_stopScriptNotExists functions,
although they can be used independently if necessary.

Arguments: $1 - Stop script to test (string)
$2 - Vulnerability value (numeric)
$3 - Related information that you want displayed for users after a

PASS or FAIL message (optional).

Example Usage:

Example Output:

These functions display either success or failure messages. You can control the
display of these messages using the JASS_LOG_FAILURE and JASS_LOG_SUCCESS
environment variables. For more information on these environment variables, see
Chapter 7.

logSuccess

Use this function to display success messages. This function accepts a single string
value that is displayed as an audit success message. Success messages are those that
contain the string [PASS].

Example Usage:

Example Output:

logStopScriptExists /etc/rc2.d/K03sshd 0

[PASS] Stop Script /etc/rc2.d/K03sshd was found.

logSuccess "Package SUNWsshdr is installed."

[PASS] Package SUNWsshdr is installed.
Chapter 2 Framework Functions 39

You can control the display of success messages using the JASS_LOG_SUCCESS
environment variable. For more information on this environment variable, see
Chapter 7.

logSummary

Use this function to display summary information from a Solaris Security Toolkit
run. The function takes arguments of the driver to compare the run against, and the
number of scripts run.

Example Usage:

Example Output:

logUserLocked and logUserNotLocked
Use this function to log whether the specific user account was locked. These
functions are used primarily by the check_userLocked and
check_userNotLocked functions, although they can be used independently if
necessary.

Arguments: $1 - User name (string)
$2 - Vulnerability value (numeric)
$3 - Related information that you want displayed for users after a

PASS or FAIL message (optional)

logSummary undo.driver 61

==
[SUMMARY] Results Summary for UNDO run of jass-execute
[SUMMARY] The run completed with a total of 91 scripts run.
[SUMMARY] There were Failures in 0 Scripts
[SUMMARY] There were Errors in 0 Scripts
[SUMMARY] There was a Warning in 1 Script
[SUMMARY] There were Notes in 61 Scripts

[SUMMARY] Warning Scripts listed in:
 /var/opt/SUNWjass/run/20050616052247/jass-undo-script-warnings.txt
[SUMMARY] Notes Scripts listed in:
 /var/opt/SUNWjass/run/20050616052247/jass-undo-script-notes.txt
==
40 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Example Usage:

Example Output:

logUndoBackupWarning

Use this function to log a general warning about the consequences of an undo run.

Example Usage:

Example Output:

logWarning

Use this function to display warning messages. This function accepts a single sting
value that is displayed as a warning message. Warning messages are those that
contain the string [WARN].

Example Usage:

Example Output:

logUserLocked “uucp” 1

[FAIL] User uucp was not locked.

logUndoBackupWarning

[WARN] Creating backup copies of some files may cause unintended
effects.
[WARN] This is particularly true of /etc/hostname.[interface]
files as well as crontab files in /var/spool/cron/crontabs.

logWarning "User ${acct} is not listed in ${JASS_PASSWD}."

[WARN] User abc is not listed in /etc/passwd.
Chapter 2 Framework Functions 41

You can control the display of warning messages using the JASS_LOG_WARNING
environment variable. For more information on this environment variable, see
Chapter 7.

Using Common Miscellaneous
Functions
These functions are for common miscellaneous functions that are used within
several areas of the Solaris Security Toolkit software and are not specific to
functionality provided by other framework functions (files ending with the .funcs
suffix). These functions are in the Drivers directory in a file called
common_misc.funcs. Common utility functions, such as isNumeric and
printPretty, are included in this file.

This section describes the common miscellaneous functions.

■ “adjustScore” on page 42
■ “checkLogStatus” on page 43
■ “clean_path” on page 43
■ “extractComments” on page 44
■ “get_driver_report” on page 44
■ “get_lists_conjunction” on page 44
■ “get_lists_disjunction” on page 45
■ “invalidVulnVal” on page 45
■ “isNumeric” on page 46
■ “printPretty” on page 46
■ “printPrettyPath” on page 46
■ “strip_path” on page 47

adjustScore

Note – This function applies only to audit runs.

Use this function to increase the score outside of the methods provided by the
functions defined in the audit_public.funcs file. For example, there might be
times when only the audit script can determine a failure. In those cases, use this
function to adjust the score, accounting for the failure. If you do not supply a value,
the function logs an error message and does not adjust the score.

Argument: $1 - Value to add to current score for an audit script (positive integer)
42 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Return: None

Example Usage:

checkLogStatus

Note – This function applies only to audit operations.

Use this function to determine whether the calling function is requesting to log its
results.

Argument: $1 - Value of the logging parameter

Return: 0 - No output is requested to be logged by the calling function
1 - Value is LOG, indicating calling function requests to log its results

Example Usage:

clean_path

Use this function to remove redundant forward slash characters (/) from a file name.
This function is used to clean up path names before they are displayed to the user or
before they are placed in logs.

Argument: $1 - Path to be cleaned

Return: Returns value in $1 after any duplicate forward slash characters (/)
have been removed.

Example Usage:

adjustScore 1

checkLogStatus “${_logParameter}”

newPath=‘clean_path “${oldPath}”‘
Chapter 2 Framework Functions 43

extractComments

Use this function to remove comments from a file or script. This function defines a
comment as any substring of text that begins with a number symbol (#) and
continues to the end of the line.

Arguments: $1 - List of tokens, such as script names or file names

Return: Removes any text that is commented out.

Example Usage:

get_driver_report

Use this function to read a log file and return the number of scripts that reported an
error or warning.

Argument: $1 - Log file to check

Returns: 255 - Unspecified failure
0 - Success
1 - Log file was not readable

Example Usage:

get_lists_conjunction

Use this function to take lists A and B, and return list C consisting of elements in
both A and B.

Arguments: $1 - listA, consisting of white-space–separated tokens
$2 - listB, consisting of white-space–separated tokens

Returns: List C containing all elements in both List A and List B.

FinishScripts=‘extractComments “${JASS_FILES}”‘

failures=‘get_driver_report “{JASS_SCRIPT_FAIL_LOG}”‘
44 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Example Usage:

get_lists_disjunction

Use this function to take lists A and B, and return list C consisting of those elements
in list A that are not present in list B.

Arguments: $1 - listA, consisting of white-space–separated tokens
$2 - listB, consisting of white-space–separated tokens

Returns: List C containing those elements in list A that are not present in list B.

Example Usage:

invalidVulnVal

Note – This function applies only to audit operations.

Use this function to determine if vulnerability value arguments are positive integers.
This function logs an error message for each failure. This function is necessary to
determine where there might be an invalid argument supplied to a function as a
vulnerability value. In all other aspects, this function behaves like its isNumeric
counterpart.

Argument: $1 - Vulnerability to be checked

Returns: 0 - Vulnerability is positive integer
1 - Vulnerability is not positive integer

Example Usage:

SvcsToLog=‘get_lists_conjunction “${JASS_SVCS_DISABLE}”
“${JASS_SVCS_ENABLE}”‘

SvcsToDisable=‘get_lists_disjunction “${JASS_SVCS_DISABLE}”
“${JASS_SVCS_ENABLE}”‘

invalidVulnVal “${testVulnerability}”
Chapter 2 Framework Functions 45

isNumeric

Use this function to determine if string arguments are positive integers. It is used
throughout the software by helper functions whenever input must be validated to
ensure that it consists of a single positive integer. If the value is a positive integer,
this function displays 0, otherwise it displays 1.

Argument: $1 - String to be checked

Returns: 0 - String is positive integer
1 - String is not positive integer

Example Usage:

printPretty

Use this function to format printed output so that it is easier to read. This function
accepts an unformatted input string and processes it. The resulting string is
wrapped at 72 characters, with each line of output indented by three characters.

Argument: $1 - String to be printed

Returns: None

Example Usage:

printPrettyPath

Use this function to format path names. This function accepts as input an
unformatted path name. This function strips any redundant forward slashes from
the input string, then displays the result. If the string is empty, then the keyword
<No Value> is displayed in its place.

Argument: $1 - String to be printed

Returns: None

isNumeric “${testString}”

printPretty “${CommentHeader}”
46 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Example Usage:

strip_path

Use this function to remove the JASS_ROOT_DIR prefix from the file name. This
function accepts as input a single string argument and returns the same value after
removing the JASS_ROOT_DIR prefix and replacing it with a single forward slash
character (/). This function is used with the add_to_manifest function when
storing path names in the JASS manifest file.

Argument: $1 - File path to be cleaned

Returns: None

Example Usage:

Using Driver Functions
These functions are for driver functionality. These functions are in the
driver_public.funcs file, located in the Drivers directory. Functions such as
add_pkg and copy_a_file are in this file.

When customizing or creating scripts, use the following functions to perform
standard operations.

■ “add_crontab_entry_if_missing” on page 48
■ “add_option_to_ftpd_property” on page 49
■ “add_patch” on page 50
■ “add_pkg” on page 50
■ “add_to_manifest” on page 51
■ “backup_file” on page 53
■ “backup_file_in_safe_directory” on page 54
■ “change_group” on page 54
■ “change_mode” on page 54
■ “change_owner” on page 55
■ “check_and_log_change_needed” on page 55
■ “check_os_min_version” on page 56

printPrettyPath “${PathToLogFile}”

StrippedString=‘strip_path “${JASS_ROOT_DIR}/etc/motd”‘
Chapter 2 Framework Functions 47

■ “check_os_revision” on page 57
■ “check_readOnlyMounted” on page 58
■ “checksum” on page 58
■ “convert_inetd_service_to_frmi” on page 58
■ “copy_a_dir” on page 59
■ “copy_a_file” on page 59
■ “copy_a_symlink” on page 59
■ “copy_files” on page 60
■ “create_a_file” on page 62
■ “create_file_timestamp” on page 63
■ “disable_conf_file” on page 63
■ “disable_file” on page 63
■ “disable_rc_file” on page 64
■ “disable_service” on page 65
■ “enable_service” on page 65
■ “find_sst_run_with” on page 65
■ “get_expanded_file_name” on page 66
■ “get_stored_keyword_val” on page 66
■ “get_users_with_retries_set” on page 67
■ “is_patch_applied and is_patch_not_applied” on page 67
■ “is_service_enabled” on page 68
■ “is_service_installed” on page 68
■ “is_service_running” on page 69
■ “is_user_account_extant” on page 69
■ “is_user_account_locked” on page 70
■ “is_user_account_login_not_set” on page 70
■ “is_user_account_passworded” on page 71
■ “lock_user_account” on page 71
■ “make_link” on page 71
■ “mkdir_dashp” on page 72
■ “move_a_file” on page 72
■ “rm_pkg” on page 73
■ “set_service_property_value” on page 73
■ “set_stored_keyword_val” on page 73
■ “unlock_user_account” on page 74
■ “update_inetconv_in_upgrade” on page 74
■ “warn_on_default_files” on page 75
■ “write_val_to_file” on page 75

add_crontab_entry_if_missing

Note – This function is used only for SMF in the Solaris 10 OS.
48 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Use this function to add crontab line $3 to the crontab if program $2 is not in
user’s $1 crontab. If $4 is zero, backs up the crontab file before modifying (see
Example Usage). The function ignores crontab comment lines.

Arguments: $1 - User ID of crontab to be modified
$2 - Program to add to crontab (full path name)
$3 - crontab line to add if $2 is not present in the crontab file
$4 - If zero, call backup_file before modifying (else the file was
 created or already backed up.)

Returns: 1 - If the crontab file was backed up; otherwise, passes back the
 argument $4 unmodified.)

Example Usage:

add_option_to_ftpd_property

Note – This function is used only for SMF in Solaris 10 and applies to the ftp
daemon only (options -1 or -a).

Caution – If you find the function add_option_to_gl_property or
add_option_to_smf_property, rename the function to
add_option_to_ftpd_property.

Use this function to add an option to the SMF-enabled in.ftpd service property
value in Solaris 10 OS. Only call this function for a hardening operation. This
function writes to the Solaris Security Toolkit manifest file for an undo operation.

Argument: $1 - Option to add to the start command: a or 1 (for use with
 ftpaccess(4) and log ftp session, respectively)

Returns: None

Example Usage:

add_crontab_entry_if_missing ’root’ ’/usr/lib/acct/dodisk’ ’0 2 * * 4
/usr/lib/acct/dodisk’ 0

add_option_to_ftpd_property “a”
Chapter 2 Framework Functions 49

add_patch

Use this function to add Solaris OS patches to the system. By default, this function
expects that the patches installed are located in the JASS_PATCH_DIR directory.
TABLE 2-2 lists the options for this function.

Example Usage:

add_pkg

Use this function to add Solaris OS packages to the system. By default, this function
expects that the packages are located in the JASS_PACKAGE_DIR directory and that
these packages are in one of the standard Sun formats, spooled directories, or
package stream files. This function automatically adds the necessary manifest entries
to permit this operation to be reversed during an undo run. During an undo run,
packages added using this function are removed from the system. TABLE 2-3 lists the
options for this function.

TABLE 2-2 Options for add_patch Finish Script Function

Option Description

-o options Options to be passed on

-M patchdir Fully qualified path to the source directory

patchlist List of patches or name of file containing a list of patches to apply

add_patch 123456-01
add_patch -M ${JASS_PATCH_DIR}/OtherPatches patch_list.txt

TABLE 2-3 Options for add_pkg Function

Option Description

-a ask_file pkgadd ask file name. By default, the pkgadd ask file,
noask_pkgadd, is used if no other file is specified.

-d src_loc Fully qualified path to the source package (streams or directory) to
be installed

-o options pkgadd command options

package Package to be installed
50 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Example Usage:

add_to_manifest

Use this function to manually insert entries into a manifest file during hardening
runs without calling one of the helper functions. This approach is most often used
when a command must be executed for the undo operation to complete. Use this
option with care to protect the integrity of the system and the Solaris Security
Toolkit repository.

The add_to_manifest command uses the following syntax:

This command puts an entry in the JASS_RUN_MANIFEST file in
JASS_REPOSITORY/jass-manifest.txt, which is critical to the ability to undo
the changes made by a finish script.

Note – Not all of the operations used by the Solaris Security Toolkit support each of
these arguments. The meaning of the options for src, dst, and args can differ
based on the operation selected, as discussed in TABLE 2-4.

The operations supported by the add_to_manifest function are listed in TABLE 2-4.
This table includes a sample resulting manifest entry after each option.

add_pkg ABCtest
add_pkg -d ${JASS_ROOT_DIR}/${JASS_PACKAGE_DIR}/SUNWjass.pkg SUNWjass

add_to_manifest operation src dst args
Chapter 2 Framework Functions 51

Caution – Exercise extreme caution when using the X manifest option. The
commands specified by this operation are executed during an undo run of the
Solaris Security Toolkit as the root user. If you are not careful, you could cause data
loss or render a target system unstable. For example, an X manifest entry of rm -rf/
would delete the system’s root partition during an undo run.

TABLE 2-4 add_to_manifest Options and Sample Manifest Entries

Option Description

C Indicates a file was copied. In this case, the src and dst parameters represent
the original and copied file names, respectively. No other arguments are used.
install-templates.fin /etc/syslog.conf /etc/ \
syslog.conf.JASS.20020823230626

D Indicates a directory was created. In this case, the src parameter represents the
name of the newly created directory. No other arguments are used.
disable-lp.fin /var/spool/cron/crontabs.JASS

J Indicates a new file was created on the system. This operation is used only when
the file specified by the src parameter does not exist on the system. During an
undo run, files tagged with this operation code are removed. This operation uses
both the src and dst parameters to represent the original name of the file and
its saved file name (which must include the JASS_SUFFIX).
disable-power-mgmt.fin /noautoshutdown \
/noautoshutdown.JASS.20020823230629

M Indicates a file was moved. In this case, the src and dst parameters represent
the original and moved file names, respectively. No other arguments are used.
disable-ldap-client.fin /etc/rcS.d/K41ldap.client \
/etc/rcS.d/_K41ldap.client.JASS.20020823230628
52 Solaris Security Toolkit 4.2 Reference Manual • July 2005

backup_file

Use this function to back up an existing file system object. This function backs up the
original file using a standard naming convention. The convention appends
JASS_SUFFIX to the original file name. This function automatically adds the
necessary manifest entries to permit this operation to be reversed during an undo
run.

The JASS_SAVE_BACKUP variable specifies if the Solaris Security Toolkit software
saves or does not save backup copies of files modified during a run. If this
environment variable is set to 0, then this function does not save backup files on the
system. If files are not saved, then the run cannot be reversed by using the undo
command.

Example Usage:

R Indicates a file was removed from the system. In this case, the src parameter
represents the name of the file that was removed. Files marked with this
operation code cannot be restored using the Solaris Security Toolkit undo
command.

S Indicates a symbolic link was created. In this case, the src and dst parameters
represent the source and target file names, respectively. During an undo run, the
symbolic links for files tagged with this operation are removed from the system.
install-templates.fin ../init.d/nddconfig /etc/rc2.d/ \
S70nddconfig

X Indicates a command was defined that should be run when the Solaris Security
Toolkit processes a manifest entry that has this operation code. A special
operation, this one is most often used to execute complex commands that go
beyond the standard operations. For example, in the install-fix-modes.fin
finish script, the following manifest entry is added to instruct the software to
undo changes made by the Fix Modes program:
/opt/FixModes/fix-modes -u
This command instructs the software to run the fix-modes program with the -u
option. Note that all commands processed by this operation code should be
specified using an absolute path to the program.

backup_file /etc/motd

TABLE 2-4 add_to_manifest Options and Sample Manifest Entries (Continued)

Option Description
Chapter 2 Framework Functions 53

backup_file_in_safe_directory

Use this function to disable files that cannot be stored in their original directory (see
“disable_file” on page 63 for more information) and to leave a copy of the files
in place for further editing, as well as moving the originals. This includes all files in
directories /etc/skel/, /var/spool/cron/crontabs/, /etc/init.d/, and
/etc/rcx.d/.

Arguments: $1 - Fully qualified path to source file
$2 - If set to “-u” for an undo file, the prior timestamp is

stripped from the file name.

Returns: None

Example Usage:

change_group

Use this function to change the file group ownership. This function automatically
adds the necessary manifest entries to be reversed during an undo run.

Arguments: $1 - Group ID of file owner
$2 - One or more files for which to change group ownership (must be

a regular or special file or directory, not a soft link.

Returns: 0 - If the file now has the correct group ownership
non-zero - If no file or file permission was specified, or chown failed

Example Usage:

change_mode

Use this function to change the permissions mode of a file. This function
automatically adds the necessary manifest entries to be reversed during an undo
run.

backup_file_in_safe_directory
${JASS_ROOT_DIR}etc/rcS.d/S42coreadm

change_group root ${JASS_ROOT_DIR}var/core
54 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Arguments: $1 - File permissions in octal chmod(1) format (for example, 0700)
$2 - One or more files for which to chmod (must be a regular or special
file or directory, not a soft link.

Returns: 0 - If the file now has the correct ownership
non-zero - If no file or file permission was specified, or chown failed

Example Usage:

change_owner

Use this function to change the file ownership and, optionally, the group. This
function automatically adds the necessary manifest entries to be reversed during an
undo run.

Arguments: $1 - User ID of file owner
$2 - One or more files for which to change ownership (must be a
regular or special file or directory, not a soft link.

Returns: 0 - If the file now has the correct ownership
non-zero - If no file or file permission was specified, or chown failed

Example Usage:

check_and_log_change_needed

Use this function to keep your finish scripts clean by moving a common operation,
checking and storing the current value in a file, into a framework function. This
function is most useful to you if you are a finish script writer and will be repeatedly
checking variables in a single file.

This function checks and logs a parameter separated by an equal sign (=) in a file. If
the new value is set, the global variable new_var is set to the new value. Otherwise,
new_var is set to the value currently existing in the file. If the most recent value is
different from the previous value, a log message is printed, and the global variable
change_needed is incremented.

change_mode 0700 ${JASS_ROOT_DIR}var/core

change_owner root:root ${JASS_ROOT_DIR}var/core
change_owner root ${JASS_ROOT_DIR}var/core
Chapter 2 Framework Functions 55

Use this function with the write_val_to_file function (see
“write_val_to_file” on page 75).

Arguments: $1 - File name
$2 - Keyword in the file
$3 - New value

Returns: Sets the global environment variable new_var to the new value,
unless it is empty, in which case it is set to the value in the file, or ““
if it is not set.

Example Usage:

check_os_min_version

Use this function to detect functionality that exists in multiple releases of the Solaris
OS. This function takes only one argument, indicating the minimal OS release
version. If the actual release of the OS on the target platform is greater than or equal
to the argument, then the function returns 0, otherwise this function returns 1. If an
error is encountered, then this function returns 255.

For example, this function can be used as shown in CODE EXAMPLE 2-3.

change_needed="0"
check_and_log_change_needed "/etc/default/passwd" "MINALPHA"
"${JASS_PASS_MINALPHA}"
minalpha="${new_var}"
check_and_log_change_needed "/etc/default/passwd" "MINLOWER"
"${JASS_PASS_MINLOWER}"
minlower="${new_var}"

if ["${change_needed}" != "0"]; then
 ...

CODE EXAMPLE 2-3 Detecting Functionality That Exists in Multiple OS Releases

if check_os_min_revision 5.10 ; then
 disable_service svc:/network/dns/server:default
elif check_os_min_revision 5.7 ; then
 disable_conf_file ${JASS_ROOT_DIR}etc named.conf
else
 disable_conf_file ${JASS_ROOT_DIR}etc named.boot
fi
56 Solaris Security Toolkit 4.2 Reference Manual • July 2005

In this example, Domain Name System (DNS) service is disabled with an SMF FMRI,
which was first available in the Solaris 10 OS. Otherwise, DNS is disabled by
renaming /etc/named.conf for the Solaris 7 OS and /etc/named.boot for the
Solaris 2.6 OS or earlier.

check_os_revision

Use this function to check for a specific OS revision or range of values. This function
can take either one or two arguments. If one argument is supplied, then the script
returns 0 only if the target operating system revision is the same as the argument,
otherwise it returns 1.

Similarly, if two arguments are provided, the target operating system revision must
be between the two values inclusively for the result to be 0. In either case, if an error
is encountered, this function returns a value of 255.

For example, this function can be used as shown in CODE EXAMPLE 2-4.

In this example, the script disables only its scripts or configuration files, based on the
value of JASS_DISABLE_MODE, when the target OS revision is or falls between
Solaris OS versions 2.5.1 (SunOS 5.1) and 8 (SunOS 5.8) inclusively.

CODE EXAMPLE 2-4 Checking for a Specific OS Revision or Range

if check_os_revision 5.5.1 5.8; then
 if ["${JASS_DISABLE_MODE}" = "conf"]; then
 disable_conf_file ${JASS_ROOT_DIR}/etc asppp.cf
 elif ["${JASS_DISABLE_MODE}" = "script"]; then
 if ["${JASS_KILL_SCRIPT_DISABLE}" = "1"]; then
 disable_rc_file ${JASS_ROOT_DIR}/etc/rcS.d K50asppp
 disable_rc_file ${JASS_ROOT_DIR}/etc/rc0.d K47asppp
 disable_rc_file ${JASS_ROOT_DIR}/etc/rc0.d K50asppp
 disable_rc_file ${JASS_ROOT_DIR}/etc/rc1.d K47asppp
 disable_rc_file ${JASS_ROOT_DIR}/etc/rc1.d K50asppp
 fi
 disable_rc_file ${JASS_ROOT_DIR}/etc/rc2.d S47asppp
 fi
else
 logInvalidOSRevision "5.5.1-5.8"
fi
Chapter 2 Framework Functions 57

check_readOnlyMounted

Use this function to determine whether the file specified is mounted on a read-only
file system.

Argument: $1 - File to check

Returns: 255 - Error occurred
0 - File system that file $1 is in is mounted as read only.
1 - File system that file $1 is in is not mounted as read only

Example Usage:

checksum

Use this function to calculate the checksum for a file. This function takes a single
string value that represents the file for which the checksum is being calculated.

■ For the Solaris 10 OS, this function uses the Solaris digest program to calculate the
MD5 checksum.

■ For the Solaris 9 OS or earlier, this function uses the Solaris cksum program to
calculate the checksum, then outputs a value in the format checksum:number of
octets.

convert_inetd_service_to_frmi

Use this function to convert an inetd service name in the /etc/inet/inetd.conf
file to an SMF FMRI for use by the inetconv(1M) command. This function only
uses legacy inetd service names in /etc/inet/inetd.conf, not on SMF FMRIs.
The converted FMRI prints to standard output.

Argument: $1 - inetd service name to be converted.

Returns: 0 - Success
1 - Failure

check_readOnlyMounted /usr/bin/ls

CODE EXAMPLE 2-5 Checksum Output From MD5 in Solaris 10 OS

checksum file-name
5b7dff9afe0ed2593f04caa578a303ba
58 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Example Usage:

copy_a_dir

Use this function to recursively copy the contents of a directory. This function takes
two arguments, a source directory name and a destination directory name. This
function copies the contents of the source directory to the directory specified by the
destination parameter. This function creates the new directory if it does not already
exist. This function automatically adds the necessary manifest entries to permit this
operation to be reversed during an undo run.

Example Usage:

copy_a_file

Use this function to copy exactly one regular file. This function takes two arguments:
a source file name and a destination file name. This function copies the contents of
the source file to the file name specified by the destination parameter. This function
automatically adds the necessary manifest entries to permit this operation to be
reversed during an undo run.

Example Usage:

copy_a_symlink

Use this function to copy a symbolic link to the target platform. This function takes
two arguments: a source link name and a destination file name. This function creates
a new symbolic link based on the source link specified using the new file name
passed as the destination parameter. This function automatically adds the necessary
manifest entries to permit this operation to be reversed during an undo run.

tooltalk_fmri=‘convert_inetd_service_to_fmri 100083‘

copy_a_dir /tmp/test1 /tmp/test2

copy_a_file /tmp/test-file-a /tmp/test-file-b
Chapter 2 Framework Functions 59

Example Usage:

copy_files

Use this function to copy a set of file system objects from the
JASS_HOME_DIR/Files directory tree to a target system. This function uses the
following copy functions to ensure that the changes made can be reversed during an
undo run:

■ copy_a_dir
■ copy_a_file
■ copy_a_symlink

This function is capable of copying regular files, directories, and symbolic links.

Example Usages:

This function extends capability by permitting the selective copy of files based on
tags appended to their file names that contain the values specified by environment
variables. (See Chapter 7 for detailed information about all of the environment
variables.)

The files that are copied by this function are selected by the following criteria, which
are listed in the order of precedence used to match. For example, if a host-specific
and generic file both exist, the host-specific file is used if the name of a target system
matches the host name defined by the host-specific file. The following examples use
/opt/SUNWjass as the home directory specified in the JASS_HOME_DIR
environment variable, but you might have specified a different home directory. In
our examples, the directory tree being searched is /opt/SUNWjass/Files/.

Note – The copy_files function ignores any objects listed that are not found in the
JASS_HOME_DIR/Files directory tree.

1.Host-specific version - /opt/SUNWjass/Files/file.JASS_HOSTNAME

copy_a_symlink /tmp/test-link-a /tmp/test-link-b

copy_files /etc/init.d/nddconfig

copy_files "/etc/init.d/nddconfig /etc/motd /etc/issue"
60 Solaris Security Toolkit 4.2 Reference Manual • July 2005

In this option, the software copies the file only if the name of the host target
platform matches the value specified by the JASS_HOSTNAME environment
variable. For example, if the file name is etc/issue and the JASS_HOSTNAME is
eng1, a file copied under this criteria would be:

/opt/SUNWjass/Files/etc/issue.eng1

2. Keyword + OS-specific version -
/opt/SUNWjass/Files/file-JASS_FILE_COPY_KEYWORD+
JASS_OS_VERSION

In this option, the software copies the file only if the name of the keyword and OS
version match the values specified by the JASS_FILE_COPY_KEYWORD and the
JASS_OS_VERSION environment variables.

For example, if the file being searched for is /etc/hosts.allow,
JASS_FILE_COPY_KEYWORD is “secure” (for secure.driver), and the
JASS_OS_VERSION is 5.10, a file copied under this criteria could be:

/opt/SUNWjass/Files/etc/hosts.allow-secure+5.10

3. Keyword-specific version -
/opt/SUNWjass/Files/file-JASS_FILE_COPY_KEYWORD

In this option, the software copies the file only if the keyword matches the value
specified by the JASS_FILE_COPY_KEYWORD environment variable. For example,
if the JASS_FILE_COPY_KEYWORD is “server”, a file copied under this criteria
could be:

/opt/SUNWjass/Files/etc/hosts.allow-server

4. OS-specific version - /opt/SUNWjass/Files/file+JASS_OS_REVISION

In this option, the software copies the file only if the OS revision of the target
platform matches the value specified by the JASS_OS_REVISION environment
variable. For example, if the file being searched for is /etc/hosts.allow and
JASS_OS_REVISION is “5.10”, a file copied under this criteria could be:

/opt/SUNWjass/Files/etc/hosts.allow+5.10

5. Generic version - /opt/SUNWjass/Files/file

In this option, the software copies the file to a target system.

For example, if the file name is etc/hosts.allow, a file copied under this
criteria would be:

/opt/SUNWjass/Files/etc/hosts.allow

6. Source file is of size 0 - When the file length/size is zero, the file is not copied to
the system.
Chapter 2 Framework Functions 61

create_a_file

Use this function to create an empty file on a target system. This function uses a
combination of the touch, chown, and chmod commands to create an empty file
with a specific owner, group, and set of permissions.

Note – This function does not adjust permissions or ownerships on a file that exists.

This function creates a file with specific permissions.

Example Usage:

In this example, a file called testing is created in the /usr/local directory,
owned by guppy and group of staff, with permissions 750. This function accepts
the options listed in TABLE 2-5.

Example Usages:

create_a_file -o guppy:staff -m 750 /usr/local/testing

TABLE 2-5 create_a_file Command Options

Option Valid Input

[-o user[:group]] Follows syntax of chown(1) and accepts user
and user:group

[-m perms] Follows syntax of chmod(1) and accepts perms

/some/fully/qualified/path/file The fully qualified path to the file

create_a_file /usr/local/testing

create_a_file -o root /usr/local/testing

create_a_file -o root:sys /usr/local/testing

create_a_file -o root -m 0750 /usr/local/testing
62 Solaris Security Toolkit 4.2 Reference Manual • July 2005

create_file_timestamp

Use this function to create a unique timestamp value for a given file and for all file
backup operations. This function is useful for creating a backup of a file that has
already been backed up when a unique suffix value is needed. The timestamp value
created is in the same format as JASS_TIMESTAMP. The resulting timestamp value
created by this function is stored in the JASS_SUFFIX environment variable. For
more information, see Chapter 7, “JASS_TIMESTAMP” on page 251.

Example Usage:

disable_conf_file

Use this function to disable service configuration files. This function accepts two
string values representing the directory name in which the file is located and the
service configuration file name. This function disables the service configuration file
by prepending a prefix of underscore (_) to the file name, thereby preventing its
execution.

Example Usage:

This example renames a file from /etc/dfs/dfstab to
/etc/dfs/_dfstab.JASS.timestamp. This function automatically adds the
necessary manifest entries to permit this operation to be reversed during an undo
run.

disable_file

Use this function to disable files that cannot be stored in their original directory. For
example, the /var/spool/cron/crontabs directory contains individual user
crontab files. If a disabled or backed-up copy of a crontab file were stored in the
crontabs directory, then the cron service would indicate an error, because there
would be no user name that matched the names of the disabled or backed-up files.

create_file_timestamp /usr/local/testing

disable_conf_file /etc/dfs dfstab
Chapter 2 Framework Functions 63

To address this issue, this function creates a mirror directory with a .JASS suffix
within which to store any of the disabled files. For example, if the file to be disabled
is located in the /var/spool/cron/crontabs directory, this function creates a
/var/spool/cron/crontabs.JASS directory into which the disabled file is
moved.

The file to be disabled, as with the other disable functions, has a suffix of
.JASS.timestamp. However, using this function, the disabled file is not stored in the
same directory as the original file.

Example Usage:

In this example, the file /var/spool/cron/crontabs/uucp is moved to the
/var/spool/cron/crontabs.JASS directory and renamed as
uucp.JASS.timestamp. This function automatically adds the necessary manifest
entries to permit this operation to be reversed during an undo run.

disable_rc_file

Use this function to disable the execution of a run-control file. This function accepts
two string values representing the directory name in which the script is located and
the run-control script name. To be executed, a script name must begin with either an
S or a K depending on its purpose as a start or kill run-control script. This function
disables the script by prepending a prefix of underscore (_) to the file name, thereby
preventing its execution by the run-control framework. In addition, a suffix of
.JASS.timestamp is appended to the disabled file.

Example Usage:

This example renames a file from /etc/rc2.d/S71rpc to
/etc/rc2.d/_S71rpc.JASS.timestamp. This function automatically adds the
necessary manifest entries to permit this operation to be reversed during an undo
run.

disable_file /var/spool/cron/crontabs/uucp

disable_rc_file /etc/rc2.d S71rpc
64 Solaris Security Toolkit 4.2 Reference Manual • July 2005

disable_service

Note – This function is used only for SMF in Solaris 10.

Use this function to disable all SMF services on a given FMRI list. This function
automatically adds the necessary manifest entries to permit this operation to be
reversed during an undo run.

Argument: $1 - FMRIs of the one or more SMF services to be disabled

Returns: None

Example Usage:

enable_service

Note – This function is used only for SMF in Solaris 10.

Use this function to enable all SMF services on a given FMRI list. This function
automatically adds the necessary manifest entries to permit this operation to be
reversed during an undo run.

Argument: $1 - FMRIs of the one or more SMF services to be enabled

Returns: None

Example Usage:

find_sst_run_with

Use this function to find the most recent, still active Solaris Security Toolkit run with
a given keyword-value pair as specified. See set_stored_keyword_val
(“set_stored_keyword_val” on page 73) and get_stored_keyword_val
(“get_stored_keyword_val” on page 66) for more information about storing and
retrieving the keyword-value pair.

disable_service “svc:/application/x11/xfs:default”

enable_service “svc:/network/ipfilter:default”
Chapter 2 Framework Functions 65

This function searches through all Solaris Security Toolkit runs on the system that
have not been undone. If any of those runs have used the
set_stored_keyword_val command to store the keyword-value pair being
searched for, the function returns the timestamp of the most recent one. If none of
these runs have used this command, nothing is returned.

Arguments: $1 - Keyword to be checked
$2 - Value being searched for

Returns: Prints the timestamp of the most recent active run using that script
and keyword-value pair, or ““ if no such run was found.

Example Usage:

get_expanded_file_name

Use this function to return the tag-expanded file name as described in
“copy_files” on page 60.

Argument: $1 - File name

Returns: Expanded file name, or empty if no file name matched

Example Usage:

This example would return /etc/motd.jordan if the file
JASS_HOME/Files/etc/motd.jordan existed when the function was run on
system jordan.

get_stored_keyword_val

Use this function to retrieve a stored keyword-value pair from a saved file. The
saved file used defaults to the JASS_RUN_VALUES file, but you can specify your own
file name.

Arguments: $1 - Keyword to be checked
$2 - Repository name, blank is default

last_date=‘find_sst_run_with MY_STORED_VALUE 17‘

get_expanded_file_name /etc/motd
66 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Returns: 0 - Keyword was found. RETURN_VALUE has been set to the value in
 the file
1 - File was not found.
2 - Keyword was not set in the file.

Example Usage:

get_users_with_retries_set

Use this function to obtain those user accounts with a password that have an
user_attr entry with lock_after_retries set. This function is useful in both
audit and finish scripts. (See “enable-account-lockout.fin” on page 154 or
“enable-account-lockout.aud” on page 201.)

Argument: $1 - List of users to be filtered out

Returns: List of users with password and lock_after_retries set.

Example Usage:

is_patch_applied and
is_patch_not_applied

Use these functions to determine if a patch is applied to a system. These functions
accept a single string value representing the patch number to check.

This value can be specified in one of two ways:

■ You can specify the patch number, as in 123456. These functions display 0 if the
patch is installed on a target system. If the patch is not installed, these functions
display 1.

Example Usage:

if get_stored_keyword_val MY_STORED_VALUE; then
...

user_list=‘get_users_with_retries_set “root”‘

is_patch_applied 123456
Chapter 2 Framework Functions 67

■ You can specify the patch number and revision number, as in 13456-03. These
functions display a value of 0 if the patch is on the system and has at a minimum
the same revision as specified. If the patch is not on the system, these functions
display 1. If the patch is installed, however, and its revision is not at least the
value specified, then these functions display 2.

Example Usage:

is_service_enabled

Note – This function is used only for SMF in Solaris 10.

Use this function to determine whether an SMF service is enabled.

Argument: $1 - FMRI of SMF service to check

Returns: 0 - Service is enabled or will be enabled after reboot.
1 - Service is disabled and no enable script is present in the upgrade

manifest, or the FMRI is not recognized.

Example Usage:

is_service_installed

Note – This function is used only for SMF in Solaris 10.

Use this function to determine whether an SMF service is installed. In stand-alone
mode, an SMF command does the verification. In JumpStart mode, the verification is
done by searching the service manifest .xml files.

Argument: $1 - FMRI of the SMF service to check

Returns: 0 - Service is installed (stand-alone mode), or the service manifest
exists (JumpStart mode).

 1 - Service is not installed (stand-alone more), no service manifest
exists (JumpStart mode), or the FMRI is not recognized.

is_patch_applied 123456-02

is_service_enabled “svc:/network/ipfilter:default”
68 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Example Usage:

is_service_running

Note – This function is used only for SMF in Solaris 10, and cannot be used in
JumpStart mode.

Use this function to determine whether an SMF service is running.

Argument: $1 - FMRI of the service to check

Returns: 0 - Service is running
1 - Service is not running

Example Usage:

is_user_account_extant

Note – Use this function only for systems running the Solaris 10 OS.

Use this function to determine whether a user account exists.

Argument: $1 - User account name to check

Returns: 0 - User account exists
1 - User account does not exist

Example Usage:

is_service_installed “svc:/network/ipfilter:default”

is_service_running “svc:/network/ipfilter:default”

is_user_account_extant “nuucp”
Chapter 2 Framework Functions 69

is_user_account_locked

Note – Use this function only for systems running the Solaris 10 OS.

Use this function to check if a user account is locked in the password file.

Argument: $1 - User account name to check

Returns: 0 - User account is locked
1 - User account is not locked

Example Usage:

is_user_account_login_not_set

Note – Use this function only for systems running the Solaris 10 OS.

Use this function to check whether a user account has a password set.

Argument: $1 - User account name to check

Returns: 0 - User password is not “NP”
1 - User password is “NP”

When “NP” (no password) is returned from this function, then the user has no
password defined and could be able to log in without one. Whether the user can
actually log in without a password, depends on how the user is logging in and what
the security restrictions are of that login mechanism. For example, Secure Shell is
configured, by default, to not allow a user who does not have a password to log in.

Example Usage:

is_user_account_locked “nuucp”

is_user_account_login_not_set “root”
70 Solaris Security Toolkit 4.2 Reference Manual • July 2005

is_user_account_passworded

Note – Use this function only for systems running the Solaris 10 OS.

Use this function to verify whether a user account has a password entry in the
/etc/shadow file.

Argument: $1 - User account name to check

Returns: 0 - User account is in the password file
 1 - User account is not in the password file

Example Usage:

lock_user_account

Note – Use this function only for systems running the Solaris 10 OS.

Use this function to lock a user account.

Argument: $1 - User account name to lock

Returns: None

Example Usage:

make_link

Use this function to create a symbolic file link. This function automatically adds the
necessary manifest entries to be reversed during an undo run.

Argument: $1 - Source link file name
$2 - Destination link file name

Returns: None

is_user_account_passworded “root”

lock_user_account “nuucp”
Chapter 2 Framework Functions 71

Example Usage:

mkdir_dashp

Use this function to create a new directory on a target system. This function accepts
a single string value representing the name of the directory to create. This function
uses the -p option to mkdir so that no error is reported if the target directory exists.
This function automatically adds the necessary manifest entries to permit this
operation to be reversed during an undo run.

Example Usage:

move_a_file

Use this function to move a file from one name to another. This function requires
two entries: a source file name and a destination file name. This function moves, or
renames, the source file to the file name specified by the destination parameter. This
function automatically adds the necessary manifest entries to permit this operation
to be reversed during an undo run.

Example Usage:

make_link ../lib/sendmail ${JASS_ROOT_DIR}usr/bin/newaliases

mkdir_dashp /usr/local

move_a_file /tmp/test-file-a /tmp/test-file-b
72 Solaris Security Toolkit 4.2 Reference Manual • July 2005

rm_pkg

Use this function to remove Solaris OS packages from a system. The operations
performed by this function are final and cannot be reversed during an undo run. The
options for this function are listed in TABLE 2-6.

Example Usage:

set_service_property_value

Note – This function is used only for SMF in Solaris 10.

Use this function to set a property value for an SMF service.

Arguments: $1 - FMRI of the service
$2 - property name to set
$3 - property value to set

Returns: None

Example Usage:

set_stored_keyword_val

Use this function to set a stored keyword-value pair to a saved file. The default file
used is the JASS_RUN_VALUES file.

TABLE 2-6 rm_pkg Function Options

Option Description

-a ask_file pkgrm ask file name. By default, the pkgrm ask file, noask_pkgrm,
is used if no other file is specified.

-o options pkgrm command options

package Package to be removed

rm_pkg SUNWadmr

set_service_property_value “svc:/network/inetd” “defaults/tcp_wrappers” “true”
Chapter 2 Framework Functions 73

Arguments: $1 - Keyword to be set
$2 - Value to be set

Returns: 0 - Keyword is set. If a keyword that already exists in the file is being
 set, the old value is overwritten
1 - Problem writing to the file..

Example Usage:

unlock_user_account

Note – This function is used only for SMF in Solaris 10.

Use this function to unlock a user account. This function automatically adds the
necessary manifest entries to be reversed during an undo run.

Arguments: $1 - User account name to unlock

Returns: None

Example Usage:

update_inetconv_in_upgrade

Use this function to write an instruction to run the inetconv(1M) command in the
upgrade file, which is run after rebooting. The inetconv command imports
inetd.conf entries into the SMF repository. This function automatically adds the
necessary manifest entries to be reversed during an undo run.

Argument: None

Returns: 0 - Success
1 - Failure

Example Usage:

get_stored_keyword_val MY_STORED_VALUE 23

unlock_user_account “adm”

update_inetconv_in_upgrade
74 Solaris Security Toolkit 4.2 Reference Manual • July 2005

warn_on_default_files

Use this function to issue logWarning commands about any files in the Solaris
Security Toolkit distribution that have not been modified by the user. Because these
files can be installed by the Solaris Security Toolkit, with unpredictable results if not
fully configured, you should check these files to ensure the files are what you expect.
Modifying the file, or having a customer version not shipped in the distribution
produces no warning.

Arguments: ${1} - One or more files to check.

Specify the fully qualified, installed target path relative to the front
slash root (/), without any prefix. For example, /etc/motd.

Returns: None

Example Usage:

write_val_to_file

Use this function to write a name value pair separated by an equal sign (=) to a file.
If the value is null, nothing is written. Use this functions with the
check_and_log_change_needed function (see
“check_and_log_change_needed” on page 55.)

Arguments: $1 - File name
$2 - Keyword in the file
$3 - New value

Returns: None

Example Usage:

warn_on_default_files /etc/opt/ipc/ipf.conf

write_val_to_file /etc/default/passwd MINALPHA 7
Chapter 2 Framework Functions 75

Using Audit Functions
Two types of audit functions are provided in the software: private and public. The
functions defined in the audit_private.funcs file are private and not for public
use. Never use the private scripts defined in this file. Use only the public scripts
defined in the audit_public.funcs file.

The public functions define audit functions used in audit scripts, which are located
in JASS_AUDIT_DIR. Functions defined in this file are public and can be freely used
in both standard and custom audit scripts. Note that in many cases, the functions
defined in this file are stubs that call functions defined in the
audit_private.funcs file. These stubs were implemented to allow users to code
their scripts to these public interfaces without needing to care if the underlying code
is modified or enhanced in newer releases.

Use these functions as part of audit scripts to assess components of the system’s
stored and runtime configurations. The following functions are public interfaces to
the Solaris Security Toolkit software’s audit framework.

When customizing or creating audit scripts, use the following functions to perform
standard operations.

■ “check_fileContentsExist and check_fileContentsNotExist” on
page 77

■ “check_fileExists and check_fileNotExists” on page 78
■ “check_fileGroupMatch and check_fileGroupNoMatch” on page 78
■ “check_fileModeMatch and check_fileModeNoMatch” on page 79
■ “check_fileOwnerMatch and check_fileOwnerNoMatch” on page 80
■ “check_fileTemplate” on page 80
■ “check_fileTypeMatch and check_fileTypeNoMatch” on page 81
■ “check_if_crontab_entry_present” on page 82
■ “check_keyword_value_pair” on page 82
■ “check_minimized” on page 83
■ “check_minimized_service” on page 83
■ “check_packageExists and check_packageNotExists” on page 84
■ “check_patchExists and check_patchNotExists” on page 85
■ “check_processArgsMatch and check_processArgsNoMatch” on page 85
■ “check_processExists and check_processNotExists” on page 86
■ “check_serviceConfigExists and check_serviceConfigNotExists” on

page 87
■ “check_serviceDisabled and check_serviceEnabled” on page 87
■ “check_serviceInstalled and check_serviceNotInstalled” on

page 88
■ “check_serviceOptionEnabled and check_serviceOptionDisabled” on

page 88
76 Solaris Security Toolkit 4.2 Reference Manual • July 2005

■ “check_servicePropDisabled” on page 89
■ “check_serviceRunning and check_serviceNotRunning” on page 89
■ “check_startScriptExists and check_startScriptNotExists” on

page 89
■ “check_stopScriptExists and check_stopScriptNotExists” on page 90
■ “check_userLocked and check_userNotLocked” on page 91
■ “finish_audit” on page 91
■ “get_cmdFromService” on page 91
■ “start_audit” on page 92

check_fileContentsExist and
check_fileContentsNotExist

Use these functions to determine if a designated file has content matching a supplied
search string. The search string can be in the form of a regular expression. These
functions display a 0 for success, 1 for failure, and 255 for an error condition.

You can supply the following arguments to these functions:

■ String value representing the name of the file or files to test.

■ String value representing the search pattern.

■ Non-negative integer representing the vulnerability value to be used if the audit
check fails.

■ String value representing the logging status of the function. If this value is
equivalent to the string value LOG, then the results are logged automatically by
either the log_FileContentsExist or the log_FileContentsNotExist
functions. If any other string keyword is supplied, logging is not automatic, and
the calling program code must log any status messages.

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional). If used, this information is simply passed
to the logging function if the environment variable is set to LOG.

Example Usage:

check_fileContentsExist /etc/default/inetinit "TCP_STRONG_ISS=2" 1 LOG
Chapter 2 Framework Functions 77

check_fileExists and
check_fileNotExists

Use these functions to determine if a file exists on a target system. These functions
display a status of 0 for success, 1 for failure, and 255 for any error condition.

You can supply the following arguments to these functions:

■ String value representing the name of the file or files to test.

■ Non-negative integer representing the vulnerability value to be used if the audit
check fails.

■ String value representing the logging status of the function. If this value is
equivalent to the string value LOG, then the results of this function are logged
automatically. If any other string keyword is supplied, logging is not automatic
and the calling program code must log any status messages.

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional). If used, this information is simply passed
to the logging function if the environment variable is set to LOG.

Example Usage:

check_fileGroupMatch and
check_fileGroupNoMatch

Use these functions to determine if a file belongs to a group on a target system.
These functions display a status of 0 for success, 1 for failure, and 255 for any error
condition.

You can supply the following arguments to these functions:

■ String value representing the name of the file or files to test.

■ String value representing the group to check. The group value can be a name or a
group identifier (GID). If a group name is numeric and does not appear in a name
service table, it is taken as a GID.

■ Non-negative integer representing the vulnerability value to be used if the audit
check fails.

■ String value representing the logging status of the function. If this value is
equivalent to the string value LOG, then the results of this function are logged
automatically. If any other string keyword is supplied, logging is not automatic,
and the calling program code must log any status messages.

check_fileExists /etc/inet/inetd.conf 1 LOG
78 Solaris Security Toolkit 4.2 Reference Manual • July 2005

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional). If used, this information is simply passed
to the logging function if the environment variable is set to LOG.

Example Usage:

check_fileModeMatch and
check_fileModeNoMatch
Use these functions to determine if a file has the permissions specified on a target
system. These functions display a status of 0 for success, 1 for failure, and 255 for
any error condition.

You can supply the following arguments to these functions:

■ String value representing the name of the file or files to test.

■ String value representing the mode or permissions to check. The permissions
value can be either a symbolic or octal value. This function accepts the same
values for this environment variable as does the find(1) command’s perm option.

■ Non-negative integer representing the vulnerability value to be used if the audit
check fails.

■ String value representing the logging status of the function. If this value is
equivalent to the string value LOG, then the results of this function are logged
automatically. If any other string keyword is supplied, logging is not automatic,
and the calling program code must log any status messages.

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional). If used, this information is simply passed
to the logging function if the environment variable is set to LOG.

Example Usage:

check_fileGroupMatch /etc/passwd sys 1 LOG

check_fileGroupMatch /etc/passwd 3 1 LOG

check_fileModeMatch /etc/passwd "0444" 1 LOG

check_fileModeMatch /etc/passwd "ugo=r" 1 LOG
Chapter 2 Framework Functions 79

check_fileOwnerMatch and
check_fileOwnerNoMatch

Use these functions to determine if a file belongs to a specific user on a target
system. These functions display a status of 0 for success, 1 for failure, and 255 for
any error condition.

You can supply the following arguments to these functions:

■ String value representing the name of the file or files to test.

■ String value representing the user to check. The user value can be either a name
or a user identifier.

■ Non-negative integer representing the vulnerability value to use if the audit check
fails.

■ String value representing the logging status of the function. If this value is
equivalent to the string value LOG, then the results of this function are logged
automatically. If any other string keyword is supplied for this argument, logging
is not automatic, and the calling program code must log any status messages.

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional). If used, this information is simply passed
to the logging function if the above environment variable is set to LOG.

Example Usage:

check_fileTemplate

Use this function to determine if a file template defined by the Solaris Security
Toolkit software matches its counterpart installed on a target system. For example, if
you were to use this function to check the file template /etc/motd, this function
would compare the contents of JASS_FILES_DIR/etc/motd with /etc/motd to
determine if they were the same. If they were identical, this function would display
0 for success, 1 for failure, or 255 for any error condition. If you specify more than
one file, they all must pass to get a display code of 0.

You can supply the following arguments to this function:

■ String value representing the name or a list of files separated by spaces (for
example, a b c) to test.

check_fileOwnerMatch /etc/passwd root 1 LOG

check_fileOwnerMatch /etc/passwd 0 1 LOG
80 Solaris Security Toolkit 4.2 Reference Manual • July 2005

■ Non-negative integer representing the vulnerability value to be used if the check
fails.

■ String value representing the logging status of the function. If this value is
equivalent to the string value LOG, then the results of this function are logged
automatically. If any other string keyword is supplied, logging is not automatic,
and the calling program code must log any status messages.

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional). If used, this information is simply passed
to the logging function if the environment variable is set to LOG.

Example Usage:

check_fileTypeMatch and
check_fileTypeNoMatch

Use these functions to determine if a file system object is a specific object type on a
target system. These functions display a 0 for success, 1 for failure, and 255 for any
error condition.

You can supply the following arguments to these functions:

■ String value representing the name of the file or files to test.

■ String value representing the file type to check. For more information on available
types, see “logFileTypeMatch and logFileTypeNoMatch” on page 25.

TABLE 2-7 lists the file types detected by the software:

check_fileTemplate /etc/motd 1 LOG

TABLE 2-7 File Types Detected by the check_fileTypeMatch Function

File Type Description

b Block special file

c Character special file

d Directory

D Door

f Regular file

l Symbolic link

p Named pipe (fifo)

s Socket
Chapter 2 Framework Functions 81

■ Non-negative integer representing the vulnerability value to be used if the check
fails.

■ String value representing the logging status of the function. If this value is
equivalent to the string value LOG, then the results of this function are logged
automatically. If any other string keyword is supplied, logging is not automatic,
and the calling program code must log any status messages.

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional). If used this information is simply passed
to the logging function if the environment variable is set to LOG.

Example Usage:

check_if_crontab_entry_present

Use this function to check if crontab entry $2 is present in the crontab file for
user $1.

Arguments: $1 - User name of the crontab file owner
$2 - Program name to check in the crontab table

Returns: 0 - $2 is present
non-zero - crontab entry $2 missing or crontab file is missing

Example Usage:

check_keyword_value_pair

Use this function for a more convenient way to check a keyword-value pair in a file,
which is a common audit task. The keyword must be the first non-whitespace
character on a line, separated from its value by an equal sign (=). The file being
checked must exist; otherwise, the function’s behavior is undefined.

Arguments: $1 - File to be checked
$2 - Keyword to be checked against value in $3
$3 - Value to be checked against keyword in $2

check_fileTypeMatch /etc/passwd f 1 LOG

check_fileTypeMatch /etc d 1 LOG

check_if_crontab_entry_present adm /usr/lib/acct/ckpacct
82 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Returns: None

Example Usage:

check_minimized

Use this function when a package check should only be performed on a minimized
platform. (A minimized platform is one that has had Solaris OS packages removed
that are not needed.) This function is similar to the check_packagesNotExist
function, except that its behavior is controlled by the JASS_CHECK_MINIMIZED
environment variable. If a target system is not minimized, then the
JASS_CHECK_MINIMIZED environment variable should be set to 0. In this case, this
function does not perform any of its checks and simply displays a value of 0 with a
notice indicating that a check was not run. Otherwise, this function behaves exactly
as the check_packageNotExists function and displays a 0 for success, 1 for
failure, and 255 for any error condition.

You can supply the following arguments to this function:

■ String value representing the name of the package or packages to test.

■ Non-negative integer representing the vulnerability value to be used if the check
fails.

■ String value representing the logging status of the function. If this value is
equivalent to the string value LOG, then the results of this function are logged
automatically. If any other string keyword is supplied, logging is not automatic,
and the calling program code must log any status messages.

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional). If used, this information is simply passed
to the logging function if the above environment variable is set to LOG.

Example Usage:

check_minimized_service

Note – Use this function only for SMF on systems running the Solaris 10 OS.

check_keyword_value_pair {JASS_ROOT_DIR}etc/security/policy.conf
CRYPT_DEFAULT 1

check_minimized SUNWatfsu 1 LOG
Chapter 2 Framework Functions 83

Use this function to check for services that are not installed. Use this function in the
special case when the existence of packages is not necessarily an error; for example,
when the system has not been minimized. This function is controlled by the
environment variable JASS_CHECK_MINIMIZED = 1 (see Chapter 7 for more
details).

Arguments: $1 - services - List of services to check
$2 - vulnValue - Vulnerability value (integer)
$3 - logStatus - Logging status (optional)

Returns: 255 - If an error occurs or the supplied arguments are invalid
0 - If none of the packages exist
1 - If at least one of the packages exist

Example Usage:

check_packageExists and
check_packageNotExists

Use these functions to determine if software package are installed on a target
system. These functions display a 0 for success, 1 for failure, and 255 for any error
condition.

You can supply the following arguments to these functions:

■ String value representing the name of the package or packages to test.

■ Non-negative integer representing the vulnerability value to be used if the audit
check fails.

■ String value representing the logging status of the function. If this value is
equivalent to the string value LOG, then the results of this function are logged
automatically. If any other string keyword is supplied, logging is not automatic,
and the calling program code must log any status messages.

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional). If used, this information is simply passed
to the logging function if the environment variable is set to LOG.

Example Usage:

check_minimized_service “svc:/network/finger:default” 1 LOG

check_packageExists SUNWsshdu 1 LOG
84 Solaris Security Toolkit 4.2 Reference Manual • July 2005

check_patchExists and
check_patchNotExists

Use these functions to determine if software patches are installed on a target system.
These functions display a 0 for success, 1 for failure, and 255 for any error
condition.

You can supply the following arguments to these functions:

■ String value representing the name of the patch or patches to test.

■ Non-negative integer representing the vulnerability value to be used if the check
fails.

■ String value representing the logging status of the function. If this value is
equivalent to the string value LOG, then the results of this function are logged
automatically. If any other string keyword is supplied, logging is not automatic,
and the calling program code must log any status messages.

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional). If used, this information is simply passed
to the logging function if the environment variable is set to LOG.

Example Usage:

Note – You can specify a patch revision. If you do, then any installed revision must
be equal to or greater than the revision specified. If you do not specify a revision,
then this function indicates success if any version of the patch is installed.

check_processArgsMatch and
check_processArgsNoMatch

Use these functions to determine if a process is running on the system with specific
runtime arguments. These functions display a 0 for success, 1 for failure, and 255
for any error condition.

You can supply the following arguments to these functions:

■ String value representing the name of the process or processes to test.

■ String value representing the runtime arguments to check.

check_patchExists 123456 1 LOG

check_patchExists 123456-01 1 LOG
Chapter 2 Framework Functions 85

■ Non-negative integer representing the vulnerability value to be used if the check
fails.

■ String value representing the logging status of the function. If this value is
equivalent to the string value LOG, then the results of this function are logged
automatically. If any other string keyword is supplied, logging is not automatic,
and the calling program code must log any status messages.

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional). If used, this information is simply passed
to the logging function if the above environment variable is set to LOG.

Example Usage:

check_processExists and
check_processNotExists

Use these functions to determine if processes are running on a target system. These
functions display a 0 for success, 1 for failure, and 255 for any error condition.

You can supply the following arguments to these functions:

■ String value representing the name of the process or processes to test.

■ Non-negative integer representing the vulnerability value to be used if the check
fails.

■ String value representing the logging status of the function. If this value is
equivalent to the string value LOG, then the results of this function are logged
automatically. If any other string keyword is supplied, logging is not automatic,
and the calling program code must log any status messages.

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional). If used, this information is simply passed
to the logging function if the above environment variable is set to LOG.

Example Usage:

check_processArgsMatch /usr/sbin/syslogd "-t" 1 LOG

check_processExists sshd 1 LOG
86 Solaris Security Toolkit 4.2 Reference Manual • July 2005

check_serviceConfigExists and
check_serviceConfigNotExists

Use these functions to determine if service configuration files exist on a target
system. These functions display a 0 for success, 1 for failure, and 255 for any error
condition.

You can supply the following arguments to these functions:

■ String value representing the name of the service configuration file or files to test.

■ Non-negative integer representing the vulnerability value to be used if the check
fails.

■ String value representing the logging status of the function. If this value is
equivalent to the string value LOG, then the results of this function are logged
automatically. If any other string keyword is supplied, logging is not automatic,
and the calling program code must log any status messages.

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional). If used, this information is simply passed
to the logging function if the above environment variable is set to LOG.

Example Usage:

check_serviceDisabled and
check_serviceEnabled

Note – These functions are used only for SMF in Solaris 10.

Use these functions to check a list of services to see whether each service is disabled
or enabled.

Arguments: $1 - services - List of services to check
$2 - vulnValue - Vulnerability value
$3 - logStatus - Logging status (set to LOG if logging desired on

failures)
$4 - relatedInfo - Related information string

Returns: 255 - If an error occurs or the supplied arguments are invalid
0 - If all services are disabled/enabled
1 - If at least one service is disabled/enabled

check_serviceConfigExists /etc/ssh/sshd_config 1 LOG
Chapter 2 Framework Functions 87

check_serviceInstalled and
check_serviceNotInstalled

Note – These functions are used only for SMF in Solaris 10.

Use these functions to check a list of services to see whether each service is installed.

Arguments: $1 - services - List of services to check
$2 - vulnValue - Vulnerability value
$3 - logStatus - Logging status (set to LOG if logging desired on

failures)
$4 - relatedInfo - Related information string

Returns: 255 - if an error occurs or the supplied arguments are invalid
0 - If none/all of the services exist
1 - If at least one of the packages exists/does not exist

Example Usage:

check_serviceOptionEnabled and
check_serviceOptionDisabled

Note – These functions are used only for SMF in Solaris 10.

Use these functions to have an SMF command check if an option of a service’s
property is enabled or disabled.

Arguments: $1 - List of services to check
$2 - Property of the service to check for
$3 - Pattern before the option
$4 - Option
$5 - Integer vulnerability value
$6 - Set to “LOG” if logging desired on failures (optional)
$7 - Related information string (optional)

Returns: 255 - if an error occurs or the supplied arguments are invalid
0 - Service option is enabled (disabled)
1 - Service option is disabled (enabled)

check_serviceInstalled svc:/network/ssh:default 1 LOG
88 Solaris Security Toolkit 4.2 Reference Manual • July 2005

check_servicePropDisabled

Note – This function is used only for SMF in Solaris 10.

Use this function to have an SMF command check to see if an option of a service’s
property is disabled.

Arguments: $1 - List of FMRIs
$2 - property
$3 - vulnvalue
$4 - logStatus

Returns: 255 - if an error occurs or the supplied arguments are invalid
0 - Property is enabled (disabled)
1 - Property is disabled (enabled)

check_serviceRunning and
check_serviceNotRunning

Note – These functions are used only for SMF in Solaris 10.

Use these functions to check a list of services to see whether each service is running.

Arguments: $1 - List of services
$2 - vulnvalue
$3 - logStatus
$4 - related Info

Returns: 255 - if an error occurs or the supplied arguments are invalid
0 - All services are running/not running
1 - At least one service is not running

check_startScriptExists and
check_startScriptNotExists

Use these functions to determine if run-control start scripts exist on a target system.
These functions display a 0 for success, 1 for failure, and 255 for any error
condition.

You can supply the following arguments to these functions:
Chapter 2 Framework Functions 89

■ String value representing the name of the run-control start script or scripts to test.

■ Non-negative integer representing the vulnerability value to be used if the check
fails.

■ String value representing the logging status of the function. If this value is
equivalent to the string value LOG, then the results of this function are logged
automatically. If any other string keyword is supplied, logging is not automatic,
and the calling program code must log any status messages.

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional). If used, this information is simply passed
to the logging function if the above environment variable is set to LOG.

Example Usage:

check_stopScriptExists and
check_stopScriptNotExists

Use these functions to determine if a run-control stop script exists on a target
system. These functions display a 0 for success, 1 for failure, and 255 for any error
condition.

You can supply the following arguments to these functions:

■ String value representing the name of the run-control stop script or scripts to test.

■ Non-negative integer representing the vulnerability value to be used if the check
fails.

■ String value representing the logging status of the function. If this value is
equivalent to the string value LOG, then the results of this function are logged
automatically. If any other string keyword is supplied, logging is not automatic,
and the calling program code must log any status messages.

■ String value representing related information that you want displayed for users
after a PASS or FAIL message (optional). If used, this information is simply passed
to the logging function if the above environment variable is set to LOG.

Example Usage:

check_startScriptExists /etc/rc3.d/S89sshd 1 LOG

check_stopScriptExists /etc/rc2.d/K03sshd 1 LOG
90 Solaris Security Toolkit 4.2 Reference Manual • July 2005

check_userLocked and
check_userNotLocked

Note – Use these functions only for systems running the Solaris 10 OS.

Use these functions to check if a user account is locked.

Arguments: $1 - User ID

Returns: 255 - If an error occurs, or the supplied arguments are invalid
0 - If the user is locked
1 - If the user is not locked

finish_audit

Use this function to signal that a check script has completed all of its processing and
that a score for the script must be computed. This function is typically the last entry
in a check script. If you want to display a message indicating a script’s termination,
then pass a single string argument to this function.

Example Usage:

get_cmdFromService

Note – Use this function only for systems running the Solaris 10 OS.

Use this function to obtain a list of commands, or processes, for a running service.

Arguments: $1 - Service name

Returns: ““ - If no process is associated with the service
process list - processes associated with a particular service in the

form { pid user comm [pid user common] }

finish_audit

finish_audit "End of script"
Chapter 2 Framework Functions 91

Example Usage:

start_audit

Use this function to call an audit script. This function is typically the first instruction
in an audit script, not including comments or variable declarations. This function
defines the name of the script, displays the banners, and resets the script score to 0.

Arguments: $1 - Audit script name
$2 - Audit script description, can be multiple lines and is formatted

using the logFormattedMessage function.
$3 - Related information that you want displayed for users after a

PASS or FAIL message (optional), formatted using the
logFormattedMessage function.

Returns: 255 - If an error occurs, or the supplied arguments are invalid
0 - If the user is locked
1 - If the user is not locked

Example Usage:

Example Output:

get_cmdFromService svc:/network/ssh:default

start_audit disable-apache.aud "Apache" "Description of Check"

#--
Apache
#
Description of Check
#--
92 Solaris Security Toolkit 4.2 Reference Manual • July 2005

CHAPTER 3

File Templates

This chapter provides reference information about how to use, modify, and
customize the file templates included in the Solaris Security Toolkit software. This
chapter also describes how drivers process functions and other information that is
stored in file templates.

This chapter contains the following topics:

■ “Customizing File Templates” on page 93
■ “Understanding Criteria for How Files Are Copied” on page 95
■ “Using Configuration Files” on page 96
■ “Using File Templates” on page 100

Customizing File Templates
File templates are an integral part of the Solaris Security Toolkit software. These files
provide a mechanism for you to customize and distribute scripts easily through
environment variables, OS version numbers, keywords, and client host names. You
can leverage the contents of the Files directory in combination with finish and
audit scripts to isolate related changes, depending on the design of your security
profile (driver).

This section provides instructions and recommendations for customizing file
templates, including instructions for creating new files in the Files directory.

For information about customizing drivers, finish scripts, and audit scripts, see the
following chapters:

■ To customize drivers, see Chapter 4.
■ To customize finish scripts, see Chapter 5.
■ To customize audit scripts, see Chapter 6.
93

Note – Consider submitting a request for enhancement if you think that your
customized files could benefit a wider audience. The Solaris Security Toolkit
development team is always looking for ways to improve the software to benefit
users.

▼ To Customize a File Template
Use the following steps to customize file templates (files) so that your custom
versions are available and not overwritten if newer versions of software are released
and installed on your systems.

1. Copy the files and any related files that you want to customize.

2. Rename the copies with names that identify the files as custom files.

For recommendations, refer to “Configuring and Customizing the Solaris Security
Toolkit Software”, Chapter 1, Solaris Security Toolkit 4.2 Administration Guide.

3. If necessary, modify your custom drivers to call the uniquely named files.

The following code sample shows a modification to the JASS_FILES environment
variable that customizes which files are copied to a particular host.

In this case, a customized hardening driver called
abccorp-server-hardening.driver uses a custom nddconfig file. Instead of
modifying the nddconfig original file, which could be overwritten with an updated
Solaris Security Toolkit software release, create a custom nddconfig script by
appending the host name of the destination system to the file name in the Files
directory. The following example shows a custom nddconfig script that has the
host name of the destination system in the script file name.

where hostname099 is the host name of the system.

JASS_FILES="
[...]
 /etc/init.d/nddconfig
 /etc/rc2.d/S70nddconfig
[...]
"

/opt/SUNWjass/Files/etc/init.d/nddconfig.hostname099
94 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Note – In some cases a script name cannot be changed because a specific name is
required by the software. In these cases, use a suffix, as described in this chapter, or
create a finish script that makes the copies and renames the files as necessary. If you
use this latter option, make sure that the copy and rename operations are compatible
with reversing the changes through an undo run. For more information about
customizing files, drivers, and scripts so that changes can be reversed, refer to
Chapter 4, Solaris Security Toolkit 4.2 Administration Guide.

Understanding Criteria for How Files
Are Copied
Files are copied automatically by the software from the JASS_HOME_DIR/Files
directory based on the way you define certain environment variables, such as
JASS_FILES and JASS_FILE_OS_VERSION environment variables. For information
about all environment variables, see Chapter 7.

The Solaris Security Toolkit software differentiates between multiple files in the
JASS_HOME_DIR/Files directory and the definitions in the environment variables,
such as JASS_FILES and JASS_FILE_OS_VERSION.

The files that are copied by this function are selected by the following criteria, which
are listed in the order of precedence used to match. For example, if a host-specific
and generic file both exist, the host-specific file is used if the name of a target system
matches the host name defined by the host-specific file. The following examples use
/opt/SUNWjass as the home directory specified in the JASS_HOME_DIR
environment variable, but you might have specified a different home directory. In
our examples, the directory tree being searched is /opt/SUNWjass/Files/.

Note – The copy_files function ignores any objects listed that are not found in the
JASS_HOME_DIR/Files directory tree.

1.Host-specific version - /opt/SUNWjass/Files/file.JASS_HOSTNAME

In this option, the software copies the file only if the name of the host target
platform matches the value specified by the JASS_HOSTNAME environment
variable. For example, if the file name is etc/issue and the JASS_HOSTNAME is
eng1, a file copied under this criteria would be:

/opt/SUNWjass/Files/etc/issue.eng1
Chapter 3 File Templates 95

2. Keyword + OS-specific version - /opt/SUNWjass/Files/file+
JASS_FILE_COPY_KEYWORD+JASS_OS_VERSION

In this option, the software copies the file only if the name of the keyword and OS
version match the values specified by the JASS_FILE_COPY_KEYWORD and the
JASS_OS_VERSION environment variables.

For example, if the file being searched for is /etc/hosts.allow,
JASS_FILE_COPY_KEYWORD is “secure” (for secure.driver), and the
JASS_OS_VERSION is 5.10, a file copied under this criteria could be:

/opt/SUNWjass/Files/etc/hosts.allow-secure+5.10

3. Keyword-specific version - /opt/SUNWjass/Files/file+
JASS_FILE_COPY_KEYWORD

In this option, the software copies the file only if the keyword matches the value
specified by the JASS_FILE_COPY_KEYWORD environment variable. For example,
if the JASS_FILE_COPY_KEYWORD is “server”, a file copied under this criteria
could be:

/opt/SUNWjass/Files/etc/hosts.allow-server

4. OS-specific version - /opt/SUNWjass/Files/file+JASS_OS_REVISION

In this option, the software copies the file only if the OS revision of the target
platform matches the value specified by the JASS_OS_REVISION environment
variable. For example, if the file being searched for is /etc/hosts.allow and
JASS_OS_REVISION is “5.10”, a file copied under this criteria could be:

/opt/SUNWjass/Files/etc/hosts.allow+5.10

5. Generic version - /opt/SUNWjass/Files/file

In this option, the software copies the file to a target system.

For example, if the file name is etc/hosts.allow, a file copied under this
criteria would be:

/opt/SUNWjass/Files/etc/hosts.allow

6. Source file is of size 0 - When the file length/size is zero, the file is not copied to
the system.

Using Configuration Files
You can configure the Solaris Security Toolkit software by editing configuration files
that reference environment variables. This feature allows you to use the Solaris
Security Toolkit software drivers in different environments, without modifying
finish or audit scripts directly.
96 Solaris Security Toolkit 4.2 Reference Manual • July 2005

All Solaris Security Toolkit environment variables are maintained in a set of
configuration files. These configuration files are imported by drivers, which make
the variables available to finish and audit scripts as they are called by the drivers.

The Solaris Security Toolkit software has three primary configuration files, all of
which are stored in the Drivers directory:

■ driver.init
■ finish.init
■ user.init.SAMPLE

driver.init

This file contains environment variables that define aspects of the Solaris Security
Toolkit software framework and overall operation.

Note – Do not alter the driver.init file, because it is overwritten when you
upgrade to subsequent versions of the Solaris Security Toolkit software.

Core environment variables such as JASS_VERSION and JASS_ROOT_DIR are in the
driver.init script.

This script loads the user.init script, thereby incorporating any user variables or
environment variable overrides. This script also loads the contents of the
finish.init file to set any finish script variables that might not have been defined.
This script serves as the public interface used by drivers to load all of the variables
used by the Solaris Security Toolkit software. None of the other initialization
functions are supposed to be directly accessed by any of the driver, finish, or audit
scripts.

Each of the environment variables included in this .init script are described in
Chapter 7.

finish.init

This file contains environment variables that define the behavior of the individual
finish scripts. The two factors that contribute to how a system is hardened are as
follows:

■ The driver selected contains the list of finish scripts to execute and files to install.

■ The finish.init file defines how the executed finish scripts act.
Chapter 3 File Templates 97

Note – Do not alter the finish.init file, because it is overwritten when you
upgrade to subsequent versions of the Solaris Security Toolkit software.

Each of the environment variables included in this .init script are described in
Chapter 7.

user.init.SAMPLE

You can override variables defined in the driver.init and finish.init files by
defining the variables in the user.init file. You can also add user-defined
variables in this file. This feature allows administrators to customize the Solaris
Security Toolkit software to suit their site needs and requirements without
modifying the Solaris Security Toolkit software itself.

A user.init.SAMPLE is included to provide an example of what must be defined
for the software to function properly. Copy user.init.SAMPLE to user.init, and
then modify it to fit your environment. Because a user.init file is not included
with the software, you can create and customize it without it being overwritten
during subsequent software upgrades.

The user.init file provides default values for the following environment
variables:

■ JASS_PACKAGE_MOUNT
■ JASS_PATCH_MOUNT

The default values for these two variables are JumpStart-server-IP
address/jumpstart/Packages and JumpStart-server-IP
address/jumpstart/Patches, respectively. These are the recommendations made
in Chapter 5, Solaris Security Toolkit 4.2 Administration Guide and in the Sun
BluePrints™ book JumpStart Technology: Effective Use in the Solaris Operating
Environment. If you follow the recommendations made in these other sources, then
no changes are required in the user.init.SAMPLE file. Simply copy this file to
user.init.

However, if you move the JumpStart environment from one site to another, verify
these variables, as they must be modified to reference your JumpStart server and
directory paths. Each of these environment variables is described in Chapter 7.

You can also make modifications to the JASS_SVCS_ENABLE and
JASS_SVCS_DISABLE variables and other environment variables through the
user.init file. However, because variables might already be used in specific
drivers, care must be taken when modifying the behavior of the Solaris Security
Toolkit software.
98 Solaris Security Toolkit 4.2 Reference Manual • July 2005

For example, the suncluster3x-secure.driver uses JASS_SVCS_ENABLE to
leave certain services enabled in the /etc/inetd.conf file. If you want other
services enabled, create and customize a version of the suncluster3x driver file,
comment out the definition of JASS_SVCS_ENABLE, and add a new
JASS_SVCS_ENABLE definition to the user.init file.

Based on the order of variable definition, any definitions included in the user.init
file overwrite all other definitions of that variable. Even so, it is still a good idea to
comment out JASS_SVCS_ENABLE in the suncluster3x-secure.driver,
although it is not required.

Note – If you remove SUNWjass using the pkgrm command, the user.init and
user.run files, if created, are not removed. However, the Files directory and
sysidcfg files exist in the current distribution of the Solaris Security Toolkit
software, and would, therefore, be removed.

▼ To Add a New Variable to the user.init script
You can add environment variables to the user.init script by doing the following.

1. Add the variable declaration with its default value.

1. Export the new variable in the user.init file.

This process provides a global default value that you can subsequently change as
needed by overriding it within a security profile (driver).

In the CODE EXAMPLE 3-1, the code adds a new variable JASS_ACCT_DISABLE to the
user.init file to disable a list of user accounts. These accounts are disabled when
finish scripts are run.

Note – Do not add environment variables or make any other modifications to the
user.run script. The user.run script is not available for your modification. All
environment variable overwrites must be contained in the user.init script.

CODE EXAMPLE 3-1 Adding a User-Defined Variable

JASS_ACCT_DISABLE=”user1 user2 user3”; export JASS_ACCT_DISABLE
Chapter 3 File Templates 99

▼ To Append Entries to Variables Using the
user.init File
CODE EXAMPLE 3-2 illustrates how to append entries to variables using the
user.init File.

Using File Templates
The software uses the Files directory with the JASS_FILES environment variable
and the copy_files function. This directory stores file templates that are copied to
a JumpStart client during a hardening run.

The following file templates are in the Files directory, and the following
subsections describe each of these files:

■ “.cshrc” on page 101
■ “.profile” on page 102
■ “etc/default/sendmail” on page 102
■ “etc/dt/config/Xaccess” on page 102
■ “etc/ftpd/banner.msg” on page 103
■ “etc/hosts.allow and etc/hosts.deny” on page 103
■ “etc/hosts.allow-15k_sc” on page 104
■ “etc/hosts.allow-server” on page 104
■ “etc/hosts.allow-suncluster” on page 104
■ “etc/init.d/nddconfig” on page 105
■ “etc/init.d/set-tmp-permissions” on page 105
■ “etc/init.d/sms_arpconfig” on page 105
■ “etc/init.d/swapadd” on page 105
■ “etc/issue and etc/motd” on page 106

CODE EXAMPLE 3-2 Appending Entries to Variables Using user.init File

if [-f ${JASS_HOME_DIR}/Drivers/finish.init]; then
 . ${JASS_HOME_DIR}/Drivers/finish.init
fi

JASS_AT_ALLOW="${JASS_AT_ALLOW} newuser1"
export JASS_AT_ALLOW

JASS_CRON_ALLOW="${JASS_CRON_ALLOW} newuser1"
export JASS_CRON_ALLOW

JASS_CRON_DENY="${JASS_CRON_DENY} newuser2"
export JASS_CRON_DENY
100 Solaris Security Toolkit 4.2 Reference Manual • July 2005

■ “etc/notrouter” on page 106
■ “etc/opt/ipf/ipf.conf” on page 106
■ “etc/opt/ipf/ipf.conf-15k_sc” on page 106
■ “etc/opt/ipf/ipf.conf-server” on page 107
■ “etc/rc2.d/S00set-tmp-permissions and

etc/rc2.d/S07set-tmp-permissions” on page 107
■ “etc/rc2.d/S70nddconfig” on page 107
■ “etc/rc2.d/S73sms_arpconfig” on page 108
■ “etc/rc2.d/S77swapadd” on page 108
■ “etc/security/audit_control” on page 108
■ “etc/security/audit_class+5.8 and etc/security/audit_event+

5.8” on page 108
■ “etc/security/audit_class+5.9 and etc/security/audit_event+

5.9” on page 109
■ “etc/sms_domain_arp and /etc/sms_sc_arp” on page 109
■ “etc/syslog.conf” on page 109
■ “root/.cshrc” on page 110
■ “root/.profile” on page 110
■ “var/opt/SUNWjass/BART/rules” on page 110
■ “var/opt/SUNWjass/BART/rules-secure” on page 111

.cshrc

Note – For systems running the Solaris 10 OS, this file is necessary. It is used with
the set-root-home-dir.fin script if ROOT_HOME_DIR is a forward slash (/). For
systems running versions of the Solaris Operating System other than version 10, this
file is not required for the software to function properly and can be modified or
replaced as needed for your environment.

This configuration file is provided as a sample. It provides some base-level
configuration for csh users by setting some common csh variables such as file
completion and history. In addition, it sets the kill and erase terminal options, as
well as a command-line prompt that includes the path to the current working
directory.

This file is installed by the set-root-home-dir.fin script if ROOT_HOME_DIR is a
forward slash (/). Otherwise, the Solaris Security Toolkit uses root/.cshrc if the
ROOT_HOME_DIR is /root, the default value.
Chapter 3 File Templates 101

.profile

Note – For systems running the Solaris 10 OS, this file is necessary. It is used with
the set-root-home-dir.fin script if ROOT_HOME_DIR is a forward slash (/). For
systems running versions of the Solaris Operating System other than version 10, this
file is not required for the software to function properly and can be modified or
replaced as needed for your environment.

This configuration file is provided as a sample. As distributed with the software, this
configuration only defines a UMASK, the PATH, and MANPATH for any root sh started
shells.

This file is installed by the set-root-home-dir.fin script if ROOT_HOME_DIR is a
forward slash (/). Otherwise, the Solaris Security Toolkit uses root/.profile if
the ROOT_HOME_DIR is /root, the default value.

etc/default/sendmail

Note – This file is used only for systems running the Solaris 8 OS.

With the release of Solaris 8 OS, a sendmail configuration file can be used to run
sendmail in queue processing mode only. This file is copied only onto Solaris 8 OS
systems being hardened by the disable-sendmail.fin script.

The disable-sendmail.fin script is OS-version aware and modifies the behavior
of sendmail based on the OS being hardened. For more information, refer to the Sun
BluePrints OnLine article titled “Solaris Operating Environment Security: Updated
for Solaris 9 OE.”

By default, this file is copied by the disable-sendmail.fin to any Solaris 8 OS
being hardened.

etc/dt/config/Xaccess

This file disables all remote access, whether direct or broadcast, to any X server
running on the system. Depending on the X support requirements and the
environment the Solaris Security Toolkit software is used in, this file might not be
appropriate.

By default, this file is copied by the hardening.driver to the system being
hardened.
102 Solaris Security Toolkit 4.2 Reference Manual • July 2005

etc/ftpd/banner.msg

Note – This file is used only on systems running Solaris OS versions 9 and 10.

This defines the connection banner for the File Transfer Protocol (FTP) service..

By default, this file is copied by the server-secure.driver to the system being
hardened by the set-banner-ftpd.fin script.

etc/hosts.allow and
etc/hosts.deny

Note – These two files are used only on systems running Solaris OS versions 9 and
10.

These two files are installed on the Solaris 9 and 10 OS systems by the finish script
enable-tcpwrappers.fin. After installing the hosts.allow and hosts.deny
files, the finish script enables Transmission Control Protocol (TCP) wrappers by:

■ Modifying the /etc/default/inetd configuration file for systems running the
Solaris 9 OS

■ Calling the relevant SMF operations on systems running the Solaris 10 OS to
enable the use of TCP wrappers for inetd, sendmail, and rpc-based services.

The hosts.allow and hosts.deny files are samples to customize for your security
profile based on local policies, procedures, and requirements. The secure driver
version of the hosts.allow file defines permitted Solaris Secure Shell (SSH) access
to be LOCAL, which means that SSH connections are only permitted from the subnet
to which the system is connected. The secure driver version of the hosts.deny file
is to deny all connection attempts not permitted in the hosts.allow.

By default, this file is copied by the enable-tcpwrappers.fin to the system being
hardened.

Note – Solaris Security Toolkit 4.2 software supports keywords, which are used to
differentiate between the different hosts.allow files include in the distribution
package. The keywords are in the JASS_FILE_COPY_KEYWORD environment
variable and are “15k_sc”, “server”, and “suncluster” for the three files
following this note.
Chapter 3 File Templates 103

etc/hosts.allow-15k_sc

Note – This file is used only on systems running Solaris OS versions 9 and 10.

This hosts.allow file for Sun Fire high-end systems is used to control access using
the tcpwrappers(4) command. The file is installed by the
enable-tcpwrappers.fin script, and should be configured to meet your site’s
requirements.

etc/hosts.allow-server

Note – This file is used only on systems running Solaris OS versions 9 and 10.

This hosts.allow file for Sun servers other than Sun Fire high-end systems is used
to control access using the tcpwrappers(4) command. The file is installed by the
enable-tcpwrappers.fin script, and should be configured to meet your site’s
requirements.

etc/hosts.allow-suncluster

Note – This file is used only on systems running Solaris OS versions 9 and 10.

This hosts.allow file for Sun Cluster systems is used to control access using the
tcpwrappers(4) command. The file is installed by the enable-tcpwrappers.fin
script, and should be configured to meet your site’s requirements.

Caution – After you have applied the suncluster3x-secure.driver, you need
to add the fully qualified domain names of the cluster nodes to the
hosts.allow-suncluster file.
104 Solaris Security Toolkit 4.2 Reference Manual • July 2005

etc/init.d/nddconfig

This file copies over the nddconfig startup script required to implement network
settings, which improves security. For information about configuring network
settings for security, refer to the Sun BluePrints OnLine article titled “Solaris
Operating Environment Network Settings for Security: Updated for the Solaris 9
Operating Environment.”

By default, this file is copied by the hardening.driver to the system being
hardened.

etc/init.d/set-tmp-permissions

This file sets the correct permissions on the /tmp and /var/tmp directories when a
system is rebooted. If an inconsistency is found, it is displayed to standard output
and logged using SYSLOG. This file is installed in /etc/rc2.d twice to permit this
check to be performed both before and after the mountall command is run from
S01MOUNTFSYS. This check helps ensure that both the mount point and the
mounted file system have the correct permissions and ownership.

By default, this file is copied by the hardening.driver to the system being
hardened.

etc/init.d/sms_arpconfig

This file, in combination with the /etc/rc2.d/S73sms_arpconfig,
/etc/sms_domain_arp, and /etc/sms_sc_arp files, is for use on Sun Fire
high-end systems to implement static Address Resolution Protocol (ARP) on the
internal IP-based management network for additional security. For information
about how to use these capabilities, refer to the Sun BluePrints OnLine articles titled
“Securing the Sun Fire 12K and 15K System Controllers” and “Securing the Sun Fire
12K and 15K Domains.”

By default, this file is copied by the s15k-static-arp.fin to the system being
hardened.

etc/init.d/swapadd

This file is used by the disable-nfs-client.[fin|aud] scripts to ensure that
swap space is added using the swapadd command even when NFS is disabled.
Chapter 3 File Templates 105

etc/issue and
etc/motd

These files are based on United States government recommendations and provide
legal notice that user activities could be monitored. If an organization has specific
legal banners, they can be installed into these files.

These files are provided as default templates. Have your legal counsel provide or
review notices that apply to your organization.

By default, this file is copied by the hardening.driver to the system being
hardened.

etc/notrouter

Note – Use this file only with systems running the Solaris 9 OS or earlier versions.

This file is used to disable IP forwarding between interfaces on systems running the
Solaris 9 OS and earlier releases by creating an /etc/notrouter file. The client no
longer functions as a router regardless of the number of network interfaces.

By default, this file is copied by the hardening.driver to the system being
hardened.

etc/opt/ipf/ipf.conf

This file is a general ipfilter configuration file, used by the ipfilter service
(svc:/network/ipfilter:default). This service is enabled by the
enable-ipfilter.fin script, and the file is installed. This file should be
configured to meet your site’s requirements.

etc/opt/ipf/ipf.conf-15k_sc

This file is an ipfilter configuration file for Sun Fire high-end systems system
controllers, used by the ipfilter service (svc:/network/ipfilter:default).
This service is enabled by the enable-ipfilter.fin script, and the file is
installed. This file should be configured to meet your site’s requirements.
106 Solaris Security Toolkit 4.2 Reference Manual • July 2005

etc/opt/ipf/ipf.conf-server

This file is an ipfilter configuration file for Sun servers , used by the ipfilter
service (svc:/network/ipfilter:default). This service is enabled by the
enable-ipfilter.fin script, and the file is installed. This file should be
configured to meet your site’s requirements.

etc/rc2.d/S00set-tmp-permissions and
etc/rc2.d/S07set-tmp-permissions

Note – These files are symbolic links to /etc/init.d/set-tmp-permissions.

These files set the correct permissions on the /tmp and /var/tmp directories when
a system is rebooted. If an inconsistency is found, it is displayed to standard output
and logged using SYSLOG. These scripts are installed into /etc/rc2.d twice to
permit this check to be performed both before and after the mountall command is
run from S01MOUNTFSYS. This check helps ensure that both the mount point and the
mounted file system have the correct permissions and ownership.

By default, these files are copied by the hardening.driver to the system being
hardened.

etc/rc2.d/S70nddconfig

Note – This file is a symbolic link to /etc/init.d/nddconfig.

This file copies over the S70nddconfig startup script required to implement
network settings, which improves security. Refer to the Sun BluePrints OnLine
article titled “Solaris Operating Environment Network Settings for Security:
Updated for Solaris 9 Operating Environment.”

By default, this file is copied by the hardening.driver to the system being
hardened.
Chapter 3 File Templates 107

etc/rc2.d/S73sms_arpconfig

Note – This file is a symbolic link to /etc/init.d/sms_arpconfig.

This file, in combination with the /etc/init.d/sms_arpconfig,
/etc/sms_domain_arp, and /etc/sms_sc_arp files, is for use on Sun Fire
high-end systems to implement static Address Resolution Protocol (ARP) on the
internal IP-based management network for additional security. For information
about how to use these capabilities, refer to the Sun BluePrints OnLine articles titled
“Securing the Sun Fire 12K and 15K System Controllers” and “Securing the Sun Fire
12K and 15K Domains.”

By default, this file is copied by the s15k-static-arp.fin to the system being
hardened.

etc/rc2.d/S77swapadd

This file is installed when disable-nfs-client.fin runs. As
disable-nfs-client.fin normally starts the swap space, this run-control script
is added by the Solaris Security Toolkit software to perform this task.

etc/security/audit_control

This is a configuration files for the Solaris OS auditing subsystem, also referred to as
the Solaris Basic Security Module. If you add this file to a Solaris 8, 9, or 10 OS
system, it configures the auditing subsystem.

This files are installed by the Solaris Security Toolkit software on Solaris 8, 9, and 10
OS systems. For more information, refer to the Sun BluePrints OnLine article titled
“Auditing in the Solaris 8 Operating Environment.”

By default, these files are copied by the enable-bsm.fin to the Solaris 8, 9, or 10
OS being hardened.

etc/security/audit_class+5.8 and
etc/security/audit_event+5.8

These are configuration files for the Solaris OS auditing subsystem, also referred to
as the Solaris Basic Security Module. If you add these files to a Solaris 8 OS system,
it configures the auditing subsystem.
108 Solaris Security Toolkit 4.2 Reference Manual • July 2005

These files are installed by the Solaris Security Toolkit software on Solaris 8 OS
systems. For more information, refer to the Sun BluePrints OnLine article titled
“Auditing in the Solaris 8 Operating Environment.”

By default, these files are copied by the enable-bsm.fin to the any Solaris 8 OS
being hardened.

etc/security/audit_class+5.9 and
etc/security/audit_event+5.9

These are configuration files for the Solaris OS auditing subsystem, also referred to
as the Solaris Basic Security Module. If you add these files to a Solaris 9 OS system,
it configures the auditing subsystem.

These files are installed by the Solaris Security Toolkit software on Solaris 9 OS
systems. For more information, refer to the Sun BluePrints OnLine article titled
“Auditing in the Solaris 8 Operating Environment.”

By default, these files are copied by the enable-bsm.fin to any Solaris 9 OS being
hardened.

etc/sms_domain_arp and
/etc/sms_sc_arp

These files, in combination with the /etc/init.d/sms_arpconfig and
/etc/S70sms_arpconfig files, are for use on Sun Fire high-end systems to
implement static Address Resolution Protocol (ARP) on the internal IP-based
management network for additional security. For information about how to use
these capabilities, refer to the Sun BluePrints OnLine articles titled “Securing the Sun
Fire 12K and 15K System Controllers” and “Securing the Sun Fire 12K and 15K
Domains.”

By default, these files are copied by the s15k-static-arp.fin to the system being
hardened.

etc/syslog.conf

This file performs additional logging. It serves as a placeholder for organizations to
add their own centralized log servers so that proactive log analysis can be done.
Chapter 3 File Templates 109

By default, this file is copied by the hardening.driver to the system being
hardened.

root/.cshrc

Note – For systems running the Solaris 10 OS, this file is necessary. It is used with
the set-root-home-dir.fin script if ROOT_HOME_DIR is a forward slash (/). For
systems running versions of the Solaris Operating System other than version 10, this
file is not required for the software to function properly and can be modified or
replaced as needed for your environment.

This configuration file is provided as a sample. It provides some base-level
configuration for csh users by setting some common csh variables such as file
completion and history. In addition, it sets the kill and erase terminal options, as
well as a command-line prompt that includes the path to the current working
directory.

root/.profile

Note – For systems running the Solaris 10 OS, this file is necessary. It is used with
the set-root-home-dir.fin script if ROOT_HOME_DIR is a forward slash (/). For
systems running versions of the Solaris Operating System other than version 10, this
file is not required for the software to function properly and can be modified or
replaced as needed for your environment.

This configuration file is provided as a sample. As distributed with the software, this
configuration only defines a UMASK, the PATH, and MANPATH for any root sh started
shells.

var/opt/SUNWjass/BART/rules

This rules file is used by the Basic Auditing and Reporting Tool (BART) in Solaris 10
OS systems in the enable-bart{.fin|aud} scripts. See “enable-bart.fin” on
page 154 for details of the rules file.
110 Solaris Security Toolkit 4.2 Reference Manual • July 2005

var/opt/SUNWjass/BART/rules-secure

This rules file is used by the secure.driver for the Basic Auditing and Reporting
Tool (BART) in Solaris 10 OS systems in the enable-bart{.fin|aud} scripts. See
“enable-bart.fin” on page 154 for details of the rules file.
Chapter 3 File Templates 111

112 Solaris Security Toolkit 4.2 Reference Manual • July 2005

CHAPTER 4

Drivers

This chapter provides reference information about using, adding, modifying, and
removing drivers. This chapter describes the drivers used by the Solaris Security
Toolkit software to harden, minimize, and audit Solaris OS systems. A series of
drivers and related files make up a security profile.

The secure.driver is the driver most commonly used as a starting point for
developing a secured system configuration using the Solaris Security Toolkit
software. The secure.driver disables all services, including network services, not
required for the OS to function, with the exception of the Solaris Secure Shell (SSH)
software. This action might not be appropriate for your environment. Evaluate
which security modifications are required for your system, then make adjustments
by using the information in this chapter and related chapters.

This chapter contains the following topics:

■ “Understanding Driver Functions and Processes” on page 113
■ “Customizing Drivers” on page 118
■ “Using Standard Drivers” on page 122
■ “Using Product-Specific Drivers” on page 127

Understanding Driver Functions and
Processes
The core processing for hardening and audit runs is defined by the functions in the
driver.run script. During these operations, the driver in use calls the driver.run
script after the security profile is configured. That is, after the driver.init file is
called and the JASS_FILES and JASS_SCRIPTS environment variables are defined,
the driver calls the driver.run script functions. This script processes each of the
entries contained in the JASS_FILES and JASS_SCRIPTS environment variables in
both the hardening and audit operations.
113

Caution – A system secured using the secure.driver will not be able to use
JumpStart or NIS as the disable-rpc.fin script is included. Instead, a new driver
must be created, which does not include the disable-rpc.fin script.If you have
used the disable-rpc.fin script on a machine using JumpStart and NIS, and you
cannot log in, reboot the system to single-user mode (boot -s) and enable bind
using SMF (svcadm enable bind), or change your name service to not use NIS
(using /etc/nsswitch.conf and the /var/svc/profile/ns_* SMF files).

The high-level processing flow of this script is as follows:

1. Load functionality (.funcs) files

These functionality files are all stored in the JASS_HOME_DIR/Drivers directory.

2. Perform basic checks

3. Load user functionality overrides

4. Mount file systems to JumpStart client (JumpStart mode only)

5. Copy or audit files specified by the JASS_FILES environment variable (optional)

6. Execute scripts specified by the JASS_SCRIPTS environment variable (optional)

7. Compute total score for the run (audit operation only)

8. Unmount file systems from JumpStart client (JumpStart mode only)

Each of these functions is described in detail in the following subsections.

Load Functionality Files
The first task of the driver.run script is to load the functionality files. Loading
these files at this stage allows the driver.run script to take advantage of the
functionality in each of the files. Any scripts that are executed can take advantage of
the common functions. The functionality files loaded during this task are the
following:

■ audit_private.funcs
■ audit_public.funcs
■ clean_private.funcs
■ driver_private.funcs
■ driver_public.funcs
■ common_misc.funcs
■ common_log.funcs
114 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Perform Basic Checks
The Solaris Security Toolkit software checks to determine if core environment
variables are set. This check ensures that the software is properly executed. If any of
the checks fail, the software reports an error and exits. The software checks to ensure
the following:

■ The JASS_OS_REVISION environment variable is defined. If this environment
variable was not defined, it is possible that either the driver.init script was
not called or the environment variable was improperly modified.

■ For JumpStart mode, the JASS_PACKAGE_MOUNT environment variable is defined.
If this environment variable is not properly defined, then the software might not
be able to locate the Packages directory during a JumpStart installation.

■ For JumpStart mode, the JASS_PATCH_MOUNT environment variable is defined. If
this environment variable is not properly defined, then the software might not be
able to locate the Patches directory during a JumpStart installation.

Load User Functionality Overrides
Before continuing to process the current profile, the Solaris Security Toolkit software
loads the user.run file, if it exists. This file stores all site- or organization-specific
functions, including those that override any Solaris Security Toolkit software default
functions. By default, this file does not exist and must be manually created by the
user if this functionality is needed.

This capability allows you to extend or enhance the functionality of the software by
implementing new functions or customizing existing ones to better suit your
environment. This file is similar to the user.init, except that this file is for
functions, whereas the user.init file is for environment variables.

Mount File Systems to JumpStart Client

Note – If using a local, bootable CD-ROM for JumpStart installation, modify this
functionality to access the directories from the local media. No changes are necessary
if accessing the Patches and Packages directory from a remote server using the
Network File System (NFS).

In JumpStart mode, the driver.run script calls an internal subroutine called
mount_filesystems. This routine mounts the following directories onto the
JumpStart client:

■ JASS_PACKAGE_MOUNT, which is mounted onto JASS_PACKAGE_DIR
Chapter 4 Drivers 115

■ JASS_PATCH_MOUNT, which is mounted onto JASS_PATCH_DIR

If other file system mount points are required, use the user.run script to
implement them. This routine is JumpStart mode specific and is not executed during
stand-alone mode runs.

Copy or Audit Files
After the software establishes its foundation by loading common functions,
initializing environment variables, and mounting file systems (if needed), it is ready
to begin its work. Whether performing a hardening or audit operation, the software
assembles a complete list of file templates to be copied to or verified on a target
system. The software does this task by concatenating the entries found in the
JASS_FILES global environment variable with entries found in the
JASS_FILES_x_xx OS-version environment variable (for example,
JASS_FILES_5_10 for Solaris 10 OS). Note that both the global and OS
environment variables are optional, and either or none can be defined. The
combined list is stored in the JASS_FILES environment variable. For more
information about this variable, see Chapter 7, “JASS_FILES” on page 234.

If the resulting list has at least one entry, the software prepends the JASS_SCRIPTS
list with a special finish script called install-templates.fin. In hardening runs,
this script takes the contents of the resulting list and copies it to a target system
before other finish scripts are run. In audit runs, the install-templates.aud
script verifies that the files match those on the target system.

Execute Scripts
The software executes the scripts defined by the JASS_SCRIPTS environment
variable. Whether performing a hardening or audit operation, the software
assembles a complete list of file templates to be copied to or verified on a target
system. The software does this task by concatenating the entries found in the
JASS_SCRIPTS global environment variable with entries found in the
JASS_SCRIPTS_x_xx OS-version environment variable (for example,
JASS_SCRIPTS_5_10 for Solaris 10 OS). Note that both the global and OS
environment variables are optional, and either or none can be defined. The
combined list is stored in the JASS_SCRIPTS environment variable. For more
information about this variable, see Chapter 7, “JASS_FINISH_DIR” on page 238.

In hardening runs, each finish script is executed in turn. The finish scripts are stored
in the JASS_FINISH_DIR directory.
116 Solaris Security Toolkit 4.2 Reference Manual • July 2005

In audit runs, some additional processing must be done first. Before a script defined
by JASS_SCRIPTS executes, it must first be transformed from its finish script name
to its audit script counterpart. The Solaris Security Toolkit software automatically
changes the file name extension from .fin to .aud. In addition, the software
expects the audit script to be in the JASS_AUDIT_DIR. After this alteration is made,
the software executes each audit script in turn.

The output of the scripts is processed in one or more of the following ways:

■ Logged to the file specified by the jass-execute -o option. If a file is not
specified, the output is directed to standard output. This option is available only
in stand-alone mode.

■ Logged into the /var/sadm/system/logs/finish.log file on the JumpStart
client during JumpStart installations. The
/var/sadm/system/logs/finish.log is the standard log file used by any
JumpStart command run on the client. This option is available only in JumpStart
mode.

■ Logged to the file JASS_REPOSITORY/timestamp/jass-install-log.txt or
jass-audit-log.txt. The timestamp is a fully qualified time parameter of the
form YYYYMMDDHHMMSS. This value is constant for each run of the Solaris
Security Toolkit software and represents the time at which the run was started.
For example, a run started at 1:30 a.m. on July 1, 2005 would be represented by
the value 20050701013000. These log files are generated during every run. In
hardening runs, the software creates the jass-install-log.txt file. In audit
runs, the software creates the jass-audit-log.txt file. Do not modify the
contents of these files.

Compute Total Score for the Run
In audit runs, after all of operations are completed for a driver, the software
calculates the driver’s total score. This score denotes the status of the driver and is
part of the grand total if multiple drivers are called. If only one driver is used, then
this total and the grand total are the same value. The score is zero if all of the checks
passed. If any checks fail, the score is a number representing how many checks or
subchecks fail.

Unmount File Systems From JumpStart Client
When operating in JumpStart mode, after all operations are completed for a driver,
the software unmounts those file systems mounted during the process “Mount File
Systems to JumpStart Client” on page 115. This functionality typically marks the end
Chapter 4 Drivers 117

of a JumpStart client’s installation. At this point, control returns to the calling driver.
The driver can either exit and end the run or it can call other drivers and start new
processing.

Customizing Drivers
Modifying the Solaris Security Toolkit drivers is one of the tasks done most often
because each organization’s policies, standards, and application requirements differ,
even if only slightly. For this reason, the Solaris Security Toolkit software supports
the ability to customize tasks undertaken by a driver.

If your system or application requires some of the services and daemons that are
disabled by the selected driver, or if you want to enable any of the inactive scripts,
do so before executing the Solaris Security Toolkit software.

Similarly, if there are services that must remain enabled, and the selected driver
disables them, override the selected driver’s configuration before executing the
selected driver in the Solaris Security Toolkit software. Review the configuration of
the software and make all necessary customization before changing the system’s
configuration. This approach is more effective than discovering that changes must be
reversed and reapplied using a different configuration.

There are two primary ways in which services can be disabled using the Solaris
Security Toolkit software. The first way involves modifying drivers to comment out
or remove any finish scripts defined by the JASS_SCRIPTS parameter that should
not be run. This approach is one of the most common ways to customize drivers.

For example, if your environment requires NFS-based services, you can leave them
enabled. Comment out the disable-nfs-server.fin and disable-rpc.fin
scripts by prepending a # sign before them in your local copy of the
hardening.driver. Alternatively, you can remove them entirely from the file. As a
general rule, it is recommended that any entries that are commented out or removed
should be documented in the file header, including information such as:

■ Name of the script that is disabled

■ Name of the person who disabled the script

■ Timestamp indicating when the change was made

■ Brief description for why this change was necessary

Including this information can be very helpful in maintaining drivers over time,
particularly when they must be updated for newer versions of the software.
118 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Note – Never make changes directly to the drivers distributed with the Solaris
Security Toolkit software. Always modify copies of drivers included in the Solaris
Security Toolkit distribution package, so that the changes made are not impacted by
removing or upgrading the Solaris Security Toolkit software.

The other method for disabling services is to customize environment variables. This
approach is typically done in either the driver or the user.init file. Make changes
in the user.init file only if the changes are global in nature and used by all of the
drivers. Otherwise, localize the change to just the drivers requiring the change.

For example, to enable or disable services started by the inetd daemon, use the
JASS_SVCS_ENABLE and JASS_SVCS_DISABLE environment variables. See
Chapter 7 for detailed information about using variables, and see “Customizing and
Assigning Variables” on page 223 in Chapter 7.

▼ To Customize a Driver
Use the following steps to customize a driver so that newer versions of the original
files do not overwrite your customized versions. Furthermore, this step should be
taken to help ensure that customized files are not accidentally deleted during
software upgrades or removal.

1. Copy the driver and any related files that you want to customize.

For example, if you want to create a secure.driver specific to your organization,
copy the following drivers located in the Drivers directory:

■ secure.driver
■ config.driver
■ hardening.driver

The config.driver and hardening.driver must be copied because they are
called by the secure.driver. If the driver you are customizing does not call or use
other drivers, copy only the driver being customized.

2. Rename the copies with names that identify the files as custom drivers.

For example, using your company’s name, your files would look like:

■ abccorp-secure.driver
■ abccorp-config.driver
■ abccorp-hardening.driver

For more information, refer to “Configuring and Customizing the Solaris Security
Toolkit Software”, Chapter 1, Solaris Security Toolkit 4.2 Administration Guide.
Chapter 4 Drivers 119

3. Modify your custom prefix-secure.driver to call the new related
prefix-config.driver and prefix-hardening.driver files accordingly.

This step is necessary to prevent the new prefix-secure.driver from calling the
original config.driver and hardening.driver. This step is not necessary if the
drivers being customized do not call or use other drivers.

4. To copy, add, or remove files from a driver, modify the JASS_FILES environment
variable.

For detailed information about this variable, see Chapter 7.

The following code example is an excerpt taken from the
Drivers/config.driver file. This security profile performs basic configuration
tasks on a platform. The security profile provides clear samples of how both file
templates and finish scripts are used.

In the following example, the driver is configured to copy the /.cshrc and
/.profile files from the JASS_HOME_DIR/Files/ directory onto the target
platform when the driver.run function is called.

a. To change the contents of either of these files, modify the files located in the
JASS_HOME_DIR/Files/ directory.

b. If you only need to add or remove file templates, adjust the JASS_FILES
variable accordingly.

c. If you want to define the Solaris OS version, append the major and minor
operating system version to the end of the JASS_FILES variable, separated by
underscores (_).

Note – In step c, you can also define and append other criteria in addition to the
Solaris OS version. See the discussion in “copy_files” on page 60 of all the
various criteria you can use.

The Solaris Security Toolkit software supports operating system-version specific
file lists. These file lists are added to the contents of the general file list only when
the Solaris Security Toolkit software is run on a defined version of the Solaris OS.
For example, Solaris 10 OS would be specified

JASS_FILES="
/.cshrc
/.profile
"

JASS_FILES_5_10
120 Solaris Security Toolkit 4.2 Reference Manual • July 2005

5. To add or remove scripts from a driver, modify the JASS_SCRIPTS variable.

For detailed information about this variable, see Chapter 7.

6. To call other drivers, create a nested or hierarchical security profile.

This technique is often useful when attempting to enforce standards across the
majority of platforms while still providing for platform- or application-specific
differences.

CODE EXAMPLE 4-1 is an excerpt from the secure.driver file. This file is used as a
wrapper to call both configuration and hardening drivers that, in this case,
implement the actual functionality of the security profile. Although this is often the
model used, it should be noted that this need not be the case. In fact, each driver
supports the JASS_FILES and JASS_SCRIPTS convention, even if it is not always
used (as is the case in CODE EXAMPLE 4-1).

CODE EXAMPLE 4-2 illustrates a slightly more complex configuration where the driver
not only calls other foundational drivers, but also implements its own functionality.
In this case, this new security profile installs the /etc/named.conf file and runs
the configure-dns.fin script after it runs the config.driver and
hardening.driver drivers.

CODE EXAMPLE 4-1 Creating a Nested or Hierarchical Security Profile

DIR="`/bin/dirname $0`"
export DIR

. ${DIR}/driver.init

. ${DIR}/config.driver

. ${DIR}/hardening.driver

CODE EXAMPLE 4-2 Having a Driver Implement Its Own Functionality

DIR="`/bin/dirname $0`"
export DIR

. ${DIR}/driver.init

. ${DIR}/config.driver

. ${DIR}//hardening.driver

JASS_FILES="
/etc/named.conf
"

JASS_SCRIPTS="
configure-dns.fin
"

. ${DIR}/driver.run
Chapter 4 Drivers 121

Note – CODE EXAMPLE 4-2 shows a sample of how you can nest drivers to provide
various levels of functionality and coverage. The /etc/named.conf and
configure-dns.fin references are for example purposes only. Those files are not
supplied by default with the Solaris Security Toolkit software.

7. When finished customizing your driver, save it in the Drivers directory.

8. Test the driver to ensure that it functions properly.

Using Standard Drivers
This section describes the following drivers, which are supplied by default in the
Drivers directory:

■ “config.driver” on page 122
■ “hardening.driver” on page 123
■ “secure.driver” on page 126

In addition to these standard drivers, other drivers are also included with the Solaris
Security Toolkit distribution. For a list of product-specific drivers, see “Using
Product-Specific Drivers” on page 127.

config.driver

This driver is called by the secure.driver and is responsible for implementing
tasks associated with that driver set. By grouping related functions into a single
driver, you can create common functions and use them as building blocks to
assemble more complex configurations. In the following example, machines with
different security requirements can share the same base Solaris OS configuration
driver because similar tasks are separated into their own driver.
122 Solaris Security Toolkit 4.2 Reference Manual • July 2005

CODE EXAMPLE 4-3 shows an exempt from the config.driver.

The config.driver performs several tasks:

1. Calls the driver.init file to initialize the Solaris Security Toolkit framework
and to configure its runtime environment.

2. Sets both the JASS_FILES and JASS_SCRIPTS environment variables.

These variables define the actual configuration changes that are undertaken by
this driver.

3. Calls the driver.run script. The driver.run script completes the installation
of the files and executes all configuration-specific scripts.

In CODE EXAMPLE 4-3, the .cshrc file contained in JASS_HOME_DIR/Files
directory is copied to /.cshrc and the finish scripts (set-root-password.fin
and set-term-type.fin) are run on the target system.

hardening.driver

Most of the security-specific scripts included in the Solaris Security Toolkit software
are listed in the hardening.driver. This driver builds upon those changes by
implementing additional security enhancements that are not included in the
hardening.driver. This driver, similar to the config.driver, defines scripts to
be run by the driver.run script.

The following scripts are listed in this driver:

CODE EXAMPLE 4-3 Exempt From config.driver

DIR="‘/bin/dirname $0‘"
export DIR

. ${DIR}/driver.init

JASS_FILES="
/.cshrc
"

JASS_SCRIPTS="
set-root-password.fin
set-term-type.fin
"

. ${DIR}/driver.run
Chapter 4 Drivers 123

■ disable-ab2.fin
■ disable-apache.fin
■ disable-apache2.fin
■ disable-appserv.fin
■ disable-asppp.fin
■ disable-autoinst.fin
■ disable-automount.fin
■ disable-dhcpd.fin
■ disable-directory.fin
■ disable-dmi.fin
■ disable-dtlogin.fin
■ disable-face-log.fin
■ disable-IIim.fin
■ disable-ipv6.fin
■ disable-kdc.fin
■ disable-keyserv-uid-nobody.fin
■ disable-ldap-client.fin
■ disable-lp.fin
■ disable-mipagent.fin
■ disable-named.fin
■ disable-nfs-client.fin
■ disable-nfs-server.fin
■ disable-nscd-caching.fin
■ disable-ppp.fin
■ disable-preserve.fin
■ disable-power-mgmt.fin
■ disable-remote-root-login.fin
■ disable-rhosts.fin
■ disable-routing.fin
■ disable-rpc.fin
■ disable-samba.fin
■ disable-sendmail.fin
■ disable-ssh-root-login.fin
■ disable-slp.fin
■ disable-sma.fin
■ disable-snmp.fin
■ disable-spc.fin
■ disable-syslogd-listen.fin
■ disable-system-accounts.fin
■ disable-uucp.fin
■ disable-vold.fin
■ disable-xserver-listen.fin
■ disable-wbem.fin
■ disable-xfs.fin
■ enable-bart.fin
■ enable-account-lockout.fin
■ enable-coreadm.fin
124 Solaris Security Toolkit 4.2 Reference Manual • July 2005

■ enable-ftpaccess.fin
■ enable-ftp-syslog.fin
■ enable-inetd-syslog.fin
■ enable-ipfilter.fin
■ enable-password-history.fin
■ enable-priv-nfs-ports.fin
■ enable-process-accounting.fin
■ enable-rfc1948.fin
■ enable-stack-protection.fin
■ enable-tcpwrappers.fin
■ install-at-allow.fin
■ install-ftpusers.fin
■ install-loginlog.fin
■ install-md5.fin
■ install-nddconfig.fin
■ install-newaliases.fin
■ install-sadmind-options.fin
■ install-security-mode.fin
■ install-shells.fin
■ install-sulog.fin
■ remove-unneeded-accounts.fin
■ set-banner-dtlogin.fin
■ set-banner-ftpd.fin
■ set-banner-sendmail.fin
■ set-banner-sshd.fin
■ set-banner-telnetd.fin
■ set-flexible-crypt.fin
■ set-ftpd-umask.fin
■ set-login-retries.fin
■ set-power-restrictions.fin
■ set-root-group.fin
■ set-root-home-dir.fin
■ set-rmmount-nosuid.fin
■ set-strict-password-checks.fin
■ set-sys-suspend-restrictions.fin
■ set-system-umask.fin
■ set-tmpfs-limit.fin
■ set-user-password-reqs.fin
■ set-user-umask.fin
■ update-at-deny.fin
■ update-cron-allow.fin
■ update-cron-deny.fin
■ update-cron-log-size.fin
■ update-inetd-conf.fin
■ install-md5.fin
■ install-fix-modes.fin
Chapter 4 Drivers 125

Note – All changes made by the finish scripts provided are reversible, except for
changes made by the install-strong-permissions.fin script. The changes
made by this script must be manually reversed in the event that the changes are no
longer wanted. The install-strong-permissions.fin script does not run on
the Solaris 10 OS.

In addition, the following scripts are listed in the hardening.driver, but are
commented out:
■ disable-keyboard-abort.fin
■ disable-picld.fin
■ print-rhosts.fin
■ enable-bsm.fin
■ install-strong-permissions.fin

For descriptions of these scripts, see Chapter 5.

secure.driver

The secure.driver is the driver most commonly included in the sample rules
listed in the rules.SAMPLE file used for client installation. This driver is a
ready-to-use driver that implements all the hardening functionality in the Solaris
Security Toolkit software. This driver performs the initialization tasks required, then
calls the config.driver and hardening.driver to configure the system and
perform all the hardening tasks.

CODE EXAMPLE 4-4 lists the contents of the secure.driver.

CODE EXAMPLE 4-4 secure.driver Contents

DIR="‘/bin/dirname $0‘"
export DIR

. ${DIR}/driver.init

. ${DIR}/config.driver

. ${DIR}/hardening.driver
126 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Using Product-Specific Drivers
This section lists product-specific drivers, which are used to harden specific Sun
products or configurations. These drivers are included with the Solaris Security
Toolkit in the Drivers directory. TABLE 4-1 lists product specific drivers.

New drivers are released periodically to harden new and updated Sun products.
Newer versions of the Solaris Security Toolkit software might offer new and revised
drivers.

Note – In all discussions of server-secure.driver,
suncluster3x-secure.driver, and sunfire_15k_sc-secure.driver,
understand that although the *-secure.driver is used with the jass-execute
-d command, it takes all three of the drivers listed above to generate the correct
results.

TABLE 4-1 Product-Specific Drivers

Product Driver Name

Server systems1

1 Prior to Solaris Security Toolkit version 4.2 software, these drivers were named desktop instead of server.

server-secure.driver

server-config.driver

server-hardening.driver

Sun Cluster 3.x software suncluster3x-secure.driver

suncluster3x-config.driver

suncluster3x-hardening.driver

Sun Fire high-end systems system
controllers

sunfire_15k_sc-secure.driver

sunfire_15k_sc-config.driver

sunfire_15k_sc-hardening.driver
Chapter 4 Drivers 127

server-secure.driver

Note – Prior to Solaris Security Toolkit 4.2 software, this driver was called
desktop-secure.driver. For systems running Solaris Security Toolkit 4.2
software and using the Solaris 10 OS, this driver now incorporates the functionality
in the sunfire_15k_domain-secure.driver and the
jumpstart-secure.driver of previous Solaris Security Toolkit versions.

This driver is provided as an example, based on the secure.driver, to highlight
what changes might be necessary to secure a system other than a Sun Fire high-end
systems system controller. This script is a guide; therefore, you might need to
customize it, depending on your environment. The differences between this and the
secure.driver are as follows:

■ The following inetd services are not disabled:

■ telnet (Telnet)
■ ftp (File Transfer Protocol)
■ dtspc (CDE subprocess control service)
■ rstatd (kernel statistics server)
■ rpc.smserverd (removable media device server)

■ The following file templates are not used:

■ /etc/dt/config/Xaccess
■ /etc/syslog.conf

■ The following finish scripts are commented out in the server-secure.driver:

■ disable-autoinst.fin
■ disable-automount.fin
■ disable-keyboard-abort.fin
■ disable-dtlogin.fin
■ disable-lp.fin
■ disable-nfs-client.fin
■ disable-rpc.fin
■ disable-vold.fin
■ disable-xserver-listen.fin
■ print-rhosts.fin

suncluster3x-secure.driver

This driver provides a baseline configuration for hardening Sun™ Cluster 3.x
software releases. You can modify the driver to remove Solaris OS functionality
being disabled; however, do not alter enabled services that are required for the Sun
Cluster software to work properly. For more information, refer to the Sun BluePrints
OnLine article titled “Securing the Sun Cluster 3.x Software.”
128 Solaris Security Toolkit 4.2 Reference Manual • July 2005

sunfire_15k_sc-secure.driver

This driver is the only supported mechanism by which Sun Fire high-end systems
system controllers (SC) can be secured. All services not required by the SC are
disabled by this driver. If some of the disabled services are required, you can modify
the driver to not disable them. For more information, refer to the Sun BluePrints
OnLine article titled “Securing the Sun Fire 12K and 15K System Controllers.”

Caution – After you have applied the suncluster3x-secure.driver, you need
to add the fully qualified domain names of the cluster nodes to the
hosts.allow-suncluster file.
Chapter 4 Drivers 129

130 Solaris Security Toolkit 4.2 Reference Manual • July 2005

CHAPTER 5

Finish Scripts

This chapter provides reference information about using, adding, modifying, and
removing finish scripts. This chapter describes the scripts used by the Solaris
Security Toolkit software to harden and minimize Solaris OS systems.

The default scripts in the Solaris Security Toolkit software disable all services,
including network services, not required for the OS to function. This action might not
be appropriate for your environment. Evaluate which security modifications are
required for your system, then make adjustments by using the information in this
chapter.

This chapter contains the following topics:

■ “Customizing Finish Scripts” on page 131
■ “Using Standard Finish Scripts” on page 137
■ “Using Product-Specific Finish Scripts” on page 179

Customizing Finish Scripts
Finish scripts serve as the heart of the Solaris Security Toolkit software. These scripts
collectively implement the majority of security modifications. The finish scripts
isolate related changes into single files that can be combined and grouped in any
number of ways, depending on the design of the security profile (driver).

This section provides instructions and recommendations for customizing existing
finish scripts and creating new finish scripts. This section also provides guidelines
for using finish script functions.
131

Note – Consider submitting a bug report or request for enhancement if you think
that the change could benefit a wider audience. The Solaris Security Toolkit
development team is always looking for ways to improve the software to better
support its users.

Customize Existing Finish Scripts
Just as with Solaris Security Toolkit drivers, you can customize finish scripts. Do not
modify scripts that are supplied with the Solaris Security Toolkit software. Always
modify a copy of the finish script and not the original script directly. Failure to do so
might result in a loss of changes upon Solaris Security Toolkit software upgrade or
removal. Wherever possible, try to minimize and document the modifications made
to scripts.

Customize finish scripts by using environment variables. The behavior of most finish
scripts included in the Solaris Security Toolkit can be tailored using this technique,
thereby eliminating the need to modify the actual script. If this is not possible, then
you might find it necessary to modify the code.

For a list of all environment variables and guidelines for defining them, see
Chapter 7.

Note – When you install the Solaris Security Toolkit software on a JumpStart server,
the finish scripts run from a memory-resident miniroot running on the JumpStart
client. The miniroot contains almost all of the Solaris OS functions. If you create
finish scripts, it is sometimes necessary to execute commands using the chroot
command, because the client disk is mounted on /a. This limitation is not present
during a stand-alone mode execution of the Solaris Security Toolkit software.

▼ To Customize a Finish Script
Use the following steps to customize a finish script so that new versions of the
original files do not overwrite your customized versions. Furthermore, these files are
not removed if the software is removed using the pkgrm command.

1. Copy the script and the related files that you want to customize.

2. Rename the copies with names that identify the files as custom scripts and files.

For naming guidelines, refer to “Configuring and Customizing the Solaris Security
Toolkit Software”, Chapter 1, Solaris Security Toolkit 4.2 Administration Guide.
132 Solaris Security Toolkit 4.2 Reference Manual • July 2005

3. Modify your custom script and files accordingly.

CODE EXAMPLE 5-1 shows how to automate software installation using
install-openssh.fin. In this example, the code expects the version of OpenSSH
to be “2.5.2p2”, however, the current version of OpenSSH is “3.5p1”. Obviously,
the version to install varies depending on when the software is installed. This script
can also be altered to support a commercial version of the Secure Shell product.

In this case, the only way to adjust this script to support a different version of
OpenSSH is to modify it directly. After completing the changes, be sure to change
the security profile that uses this script, to account for its new name.

Note – As noted previously, this method of modifying a script directly should rarely
be necessary, because most of the Solaris Security Toolkit software’s functionality
can be customized through variables.

CODE EXAMPLE 5-1 Sample install-openssh.fin Script

#!/bin/sh
NOTE: This script is not intended to be used for Solaris 9+.
 logMessage "Installing OpenSSH software.\n"
if check_os_revision 5.5.1 5.8 ; then
 OPENSSH_VERSION="2.5.2p2"
 OPENSSH_NAME="OBSDssh"
 OPENSSH_PKG_SRC="${OPENSSH_NAME}-${OPENSSH_VERSION}-`uname -p`
`uname -m`-`uname -r`.pkg"
 OPENSSH_PKG_DIR="${JASS_ROOT_DIR}/${JASS_PACKAGE_DIR}"
Install the OpenSSH package onto the client
 if ["${JASS_STANDALONE}" = "1"]; then
 logNotice "This script cannot be used in standalone mode due
to the potential for overwriting the local OBSHssh installation."
 else
logMessage "Installing ${OPENSSH_NAME} from
${OPENSSH_PKG_DIR}/${OPENSSH_PKG_SRC}"
 if [-f ${OPENSSH_PKG_DIR}/${OPENSSH_PKG_SRC}]; then
 add_pkg -d ${OPENSSH_PKG_DIR}/${OPENSSH_PKG_SRC}
${OPENSSH_NAME} add_to_manifest X "pkgrm ${OPENSSH_NAME}"
 else
 logFileNotFound "${OPENSSH_NAME}"
[...]
Chapter 5 Finish Scripts 133

Prevent kill Scripts From Being Disabled

Note – For systems running the Solaris 10 OS and for services that have been fully
converted in the Solaris 10 OS to smf(5), the following section does not apply. These
init.d scripts are not longer used, instead svc.startd(1M) controls these
functions. For these services, the Solaris Security Toolkit does not use the
JASS_KILL_SCRIPT_DISABLE variable at all on the Solaris 10 OS. Since SMF
handles all startups and shutdowns, the separation of start and stop scripts is no
longer required.

Finish scripts that begin with the keyword disable are typically responsible for
disabling services. Many of these scripts modify shell scripts that are located in the
run-control directories (/etc/rc*.d). In most cases, run-control scripts are of two
flavors: start and kill scripts. As their name implies, start scripts start services
and kill scripts stop services. The start scripts begin with the capital letter S and
kill scripts begin with the capital letter K.

Kill scripts are most often used to prepare a system for shutting down or
rebooting. These scripts shut down services in a logical order so that changes are not
lost and the system state is maintained. Typically, both start and kill scripts are
hard links to files in the /etc/init.d directory, although this is not always the case.

The default action of the Solaris Security Toolkit software is to disable both start
and kill scripts. This behavior can be altered using the
JASS_KILL_SCRIPT_DISABLE environment variable. By default, this variable is set
to 1, instructing the Solaris Security Toolkit software to disable both start and
kill scripts.

There are times when this action is not preferred. For example, kill scripts are often
used to stop services that were manually started by an administrator. If these scripts
are disabled by the Solaris Security Toolkit software, then these services might not be
stopped properly or in the correct sequence. To prevent kill scripts from being
disabled, simply set the JASS_KILL_SCRIPT_DISABLE environment variable to 0
in the user.init file or in the relevant driver.

Create New Finish Scripts
You can create new finish scripts and integrate them into your deployment of the
Solaris Security Toolkit software. Because most finish scripts must be developed in
the Bourne shell, it is relatively easy to add new functionality. On the Solaris 10 OS,
Perl is available during stand-alone audit and hardening, so Solaris Security Toolkit
scripts for system running the Solaris 10 OS can be written in Perl. For those who are
134 Solaris Security Toolkit 4.2 Reference Manual • July 2005

less experienced in UNIX shell scripting, examine existing finish scripts that perform
similar functions to gain an understanding of how to accomplish a given task and to
understand the correct sequence of actions.

Consider the following conventions when developing new finish scripts.
Understanding these conventions ensures that the scripts are functional in
stand-alone mode and JumpStart mode.

Whenever adding new finish scripts, be sure to add a companion audit script. Audit
scripts are used to determine the state of changes made on an existing system. For
more information, see Chapter 6.

■ Ensure that the finish script understands the relative root directory.

The scripts must not be configured to rely on the fact that the / directory is the
actual root directory of the system. Incorrect configuration prevents the script
from working in JumpStart mode when the target’s actual root directory is /a.
This convention is easily implemented using the JASS_ROOT_DIR environment
variable. For more information about this and other environment variables, see
Chapter 7.

In some cases, the program used in a finish script might not support a relocated
root directory. In these cases, it might be necessary to use the chroot(1M)
command to force the command to run within a relative root directory, such as
that described previously. For example, the usermod(1M) command does not
allow the user to specify an alternate root directory. In this case, it is necessary to
use the chroot(1M) command as follows.

The Solaris Security Toolkit software automatically detects the location of the
platform’s real root directory and assigns that value to the JASS_ROOT_DIR
variable. Use this variable in place of hard-coding a specific path for the root file
system. For example, in place of using /etc/default/login within the finish
script, use JASS_ROOT_DIR/etc/default/login.

■ Where possible, use the Solaris Security Toolkit software’s framework when
creating new directories, copying files, or backing up existing files.

Using the framework functions ensures that the changes made by a new script are
consistent with those done elsewhere, and that they can be safely undone. For a
list of framework functions, see Chapter 2.

Examples of framework functions that ensure correct and consistent operation of
all Solaris Security Toolkit capabilities are as follows:

■ backup_file
■ create_a_file
■ disable_conf_file
■ disable_rc_file

chroot ${JASS_ROOT_DIR} /usr/sbin/usermod ...arguments...
Chapter 5 Finish Scripts 135

■ disable_service
■ enable_service

■ Wherever possible, attempt to use standard, supportable ways to configure or
tune a system.

For example, programs like usermod(1M) are preferred over directly modifying
the /etc/passwd file. This preference is necessary to make the software as
flexible as possible and to make the resulting finish scripts as OS-version
independent as possible. Complicated or obscure ways of configuring a system
could actually be harder to debug or maintain over the life of a script. For an
example of methods on supportable ways in which changes can be made, refer to
the Sun BluePrints OnLine article titled “Solaris Operating Environment Security:
Updated for Solaris Operating Environment 9.”

■ Make sure that new finish scripts are OS-version aware.

If a particular function is not needed on a version of the OS, then do not attempt
to use it. This approach helps to make the software backward compatible with
existing releases and more likely to support future releases. Furthermore, by
making finish scripts OS-version aware, the number of warning and error
messages can be dramatically reduced. The Solaris Security Toolkit software’s
finish directory contains example scripts that are aware of the OS on which they
are being used and that only make changes when necessary. Some sample scripts
that use this capability are as follows:

■ enable-rfc1948.fin
■ install-ftpusers.fin

To make this process simpler for software developers, the framework includes the
following two functions:

■ check_os_min_revision
■ check_os_revision

For detailed information about these functions, see Chapter 2.

■ A final consideration when developing or customizing finish scripts is that the
Solaris Security Toolkit software could be run more than once on a single
platform.

The finish scripts must be able to detect whether a change actually needs to be
made.
136 Solaris Security Toolkit 4.2 Reference Manual • July 2005

For example, the enable-rfc1948.fin script checks to see if the
/etc/default/inetinit script already has the setting TCP_STRONG_ISS=2. If
this setting is present, there is no need to back up files or make other changes.

This technique not only reduces the number of unnecessary backup files, but also
helps prevent errors and confusion resulting from multiple, redundant changes
made in the same files. By implementing this functionality, you also are well on
your way toward developing the code necessary to implement the finish script’s
companion audit script.

Using Standard Finish Scripts
Finish scripts perform system modifications and updates during hardening runs.
These scripts are not used in any other runs or operations of the software.

The finish.init handles all finish script configuration variables. You can override
the default variables by modifying the user.init file. This file is heavily
commented to explain each variable, its impact, and its use in finish scripts.
Additionally, see Chapter 7 for a description of each variable.

Using variables found in the finish.init script, you can customize most of the
finish scripts to suit your organization’s security policy and requirements. You can
customize nearly every aspect of the Solaris Security Toolkit software through
variables, without needing to alter the source code. The use of this script is strongly
recommended so as to minimize migration issues with new Solaris Security Toolkit
software releases.

This section describes the standard finish scripts, which are in the Finish directory.
Each of the scripts in the Finish directory is organized into the following
categories:

■ disable

if [`grep -c "TCP_STRONG_ISS=2" ${INETINIT}` = 0]; then
The following command will remove any exiting TCP_STRONG_ISS
value and then insert a new one where TCP_STRONG_ISS is set
to 2. This value corresponds to enabling RFC 1948
unique-per-connection ID sequence number generation.
logMessage "\nSetting 'TCP_STRONG_ISS' to '2' in ${INETINIT}.\n"
backup_file ${INETINIT}
cat ${INETINIT}.${JASS_SUFFIX} |\
sed '/TCP_STRONG_ISS=/d' > ${INETINIT}
echo "TCP_STRONG_ISS=2" >> ${INETINIT}
fi
Chapter 5 Finish Scripts 137

■ enable
■ install
■ minimize
■ print
■ remove
■ set
■ update

In addition to these standard finish scripts, the Solaris Security Toolkit software
provides product-specific finish scripts. For a list of product-specific finish scripts,
see “Using Product-Specific Finish Scripts” on page 179.

Disable Finish Scripts
The following disable finish scripts are described in this section:

■ “disable-ab2.fin” on page 139
■ “disable-apache.fin” on page 139
■ “disable-apache2.fin” on page 139
■ “disable-appserv.fin” on page 140
■ “disable-asppp.fin” on page 140
■ “disable-autoinst.fin” on page 140
■ “disable-automount.fin” on page 141
■ “disable-dhcp.fin” on page 141
■ “disable-directory.fin” on page 141
■ “disable-dmi.fin” on page 142
■ “disable-dtlogin.fin” on page 142
■ “disable-face-log.fin” on page 142
■ “disable-IIim.fin” on page 143
■ “disable-ipv6.fin” on page 143
■ “disable-kdc.fin” on page 143
■ “disable-keyboard-abort.fin” on page 144
■ “disable-keyserv-uid-nobody.fin” on page 144
■ “disable-ldap-client.fin” on page 144
■ “disable-lp.fin” on page 145
■ “disable-mipagent.fin” on page 145
■ “disable-named.fin” on page 145
■ “disable-nfs-client.fin” on page 145
■ “disable-nfs-server.fin” on page 146
■ “disable-nscd-caching.fin” on page 146
■ “disable-picld.fin” on page 147
■ “disable-power-mgmt.fin” on page 147
■ “disable-ppp.fin” on page 147
■ “disable-preserve.fin” on page 148
■ “disable-remote-root-login.fin” on page 148
■ “disable-rhosts.fin” on page 148
138 Solaris Security Toolkit 4.2 Reference Manual • July 2005

■ “disable-routing.fin” on page 148
■ “disable-rpc.fin” on page 149
■ “disable-samba.fin” on page 149
■ “disable-sendmail.fin” on page 149
■ “disable-slp.fin” on page 150
■ “disable-sma.fin” on page 150
■ “disable-snmp.fin” on page 150
■ “disable-spc.fin” on page 151
■ “disable-ssh-root-login.fin” on page 151
■ “disable-syslogd-listen.fin” on page 151
■ “disable-system-accounts.fin.” on page 152
■ “disable-uucp.fin” on page 152
■ “disable-vold.fin” on page 152
■ “disable-wbem.fin” on page 153
■ “disable-xfs-fin” on page 153
■ “disable-xserver.listen.fin” on page 153

disable-ab2.fin

Note – Use this script only on systems running Solaris OS versions 2.5.1 through 8,
because the ab2 software is no longer used after the Solaris 8 OS.

This script prevents the AnswerBook2™ (ab2) server from starting. The ab2 server
software is distributed on the Documentation CD in the Solaris OS Server pack.

disable-apache.fin

Note – Use this script only for systems running Solaris OS versions 8 and 9.

This script prevents the Apache Web server, shipped with Solaris OS versions 8 and
9 distribution packages only, from starting. This script does not impact other Apache
distributions installed on the system. For more information on this service, refer to
the apache(1M) manual page.

disable-apache2.fin

Note – Use this script only for systems running the Solaris 10 OS.
Chapter 5 Finish Scripts 139

This script prevents the Apache 2 service, shipped with Solaris 10 OS distribution
package only, from starting. This script does not impact other Apache distributions
installed on the system. For more information on this service, refer to the
apache(1M) manual page.

disable-appserv.fin

Note – Use this script only for systems running the Solaris 10 OS.

This script prevents the Sun Java™ Application Server, shipped with the Solaris 10
Operating System distribution package, from starting.

disable-asppp.fin

Note – Use this script only on Solaris OS versions 2.5.1 through 8. For Solaris OS
versions 9 and 10, this service has been replaced with the PPP service and is disabled
using the disable-ppp.fin finish script.

This script disables the Asynchronous Point-to-Point Protocol (ASPPP) service from
starting. This service implements the functionality described in Remote Function
Call (RFC) 1331, the Point-to-Point Protocol (PPP) for the transmission of
multi-protocol datagrams over Point-to-Point links. For more information on this
functionality, refer to the aspppd(1M) manual page.

disable-autoinst.fin

Caution – Do not use the disable-autoinst.fin script if there might be a need
to use the functionality provided by the sys-unconfig(1M) program to restore a
system’s configuration to an as-manufactured state.

Caution – If you are using a JumpStart environment, disable the run-control or
startup scripts mentioned in the following paragraph to help prevent an intruder
from reconfiguring the system. These run-control scripts are never used in a
JumpStart environment.
140 Solaris Security Toolkit 4.2 Reference Manual • July 2005

This script prevents a system from being re-installed, by disabling the run-control
scripts associated with automatic configuration. These scripts are used only if the
/etc/.UNCONFIGURED or /AUTOINSTALL files are created. After initial installation
and configuration, there is generally little reason for these scripts to remain
available.

disable-automount.fin

Note – Because the NFS automount service relies on the Remote Procedure Call
(RPC) port mapper, if disable-automount.fin is not used, then the
disable-rpc.fin script should not be used either.

This script disables the NFS automount service. The automount service answers file
system mount and unmount requests from the autofs file system. When this script
is used, the NFS automount service is disabled and all forms of automount maps are
affected. For more information on this functionality, refer to the automountd(1M)
manual page.

disable-dhcp.fin

Note – Use this script only for systems running Solaris OS versions 8, 9, and 10.

This script disables the Dynamic Host Configuration Protocol (DHCP) server
included in Solaris OS versions 8, 9, and 10. For more information on this server,
refer to the dhcpd(1M) manual page.

disable-directory.fin

Note – Use this script only with the Sun Java System Directory server, bundled with
Solaris OS versions 9 and 10.

This script prevents the Sun Java System Directory server, formerly the Sun ONE
Directory server, from starting. This script does not affect either the unbundled
product or the Sun Java System Directory server software provided with Solaris OS
versions other than 9 and 10. By default, the Solaris Security Toolkit software
disables only the services supplied with the Solaris OS. For more information on this
server, refer to the directoryserver(1M) manual page.
Chapter 5 Finish Scripts 141

disable-dmi.fin

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script prevents the Desktop Management Interface (DMI) from starting. For
more information on this service, refer to the dmispd(1M) and snmpXdmid(1M)
manual pages.

disable-dtlogin.fin

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

Note – Because this service relies on the RPC port mapper, if disable-rpc.fin is
not used, then the disable-dtlogin.fin script should not be used either.

This script prevents any windowing environment from being started at boot time,
for example, the Common Desktop Environment (CDE) service. However, this script
does not prevent a windowing environment from being started at a later time (for
example, after a system is booted). For more information on this service, refer to the
dtlogin(1X) and dtconfig(1) manual pages.

disable-face-log.fin

Note – Use this script only for systems running the Solaris 10 OS.

The SUNWfac package, Framed Access Command Environment (FACE), includes a
world-writable log file /usr/oasys/tmp/TERRLOG. This script removes the Group
and Other write permissions, so only the root account can write to the file. In other
words, the script changes the permissions on the file from:

-rw--w--w-

to:

-rw-------

Because the log file /usr/oasys/tmp/TERRLOG is under /usr, which is often on the
root file system, instead of /var, this can be used for a denial-of-service attack. While
FACE logging can be a useful function, it might not be critical for system operation. If
this facility is not needed, it should be disabled.
142 Solaris Security Toolkit 4.2 Reference Manual • July 2005

disable-IIim.fin

Note – Use this script only for systems running Solaris OS versions 9 and 10.

This script prevents the Internet-Intranet Input Method (IIim) daemon and
HyperText Transfer (htt) server from starting. The IIim daemon is an htt agent
that binds to a port and awaits requests from htt software. Upon receiving a request
IIim processes the requests, collects the requested information, performs any
requested operations, and, finally, returns information to the requester. IIim is
especially useful in transferring information in international languages, such as
Korea, Simplified Chinese, or Traditional Chinese.

disable-ipv6.fin

Note – Use this script only for systems running Solaris OS versions 8, 9, and 10. Do
not use this script if IPv6 functionality is required on the system.

This script disables the use of IPv6 on specific network interfaces by removing the
associated host name files in /etc/hostname6.*. This mechanism also prevents
the in.ndpd service from running.

disable-kdc.fin

Note – Use this script only for systems running Solaris OS versions 9 and 10.

This script prevents the Kerberos Key Distribution Center (KDC) service from
starting.

■ For the Solaris 9 OS, if JASS_DISABLE_MODE is set to conf, the kdc.conf file is
disabled, thus impacting the ability to act as a Kerberos client. This script should
not be used in that manner if the system must act as a Kerberos client.

■ For the Solaris 10 OS, the disable_service() function is used to disable the
krb5kdc FMRI.

For more information on this service, refer to the krb5kdc(1M) and kdc.conf(4)
manual pages.
Chapter 5 Finish Scripts 143

disable-keyboard-abort.fin

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

Note – Some systems feature key switches with a secure position. On these systems,
setting the key switch to the secure position overrides any software default set with
this command.

This script configures the system ignore keyboard abort sequences. Typically, when a
keyboard abort sequence is initiated, the operating system is suspended and the
console enters the OpenBoot™ PROM monitor or debugger. Using this script
prevents the system from being suspended. For more information on this capability,
refer to the kbd(1) manual page.

disable-keyserv-uid-nobody.fin

Note – Use this script only for systems running Solaris OS versions 9 and 10.

This script disables the nobody UID access to secure RPC:

■ For Solaris OS versions 9 and 10, access is disabled by setting the
ENABLE_NOBODY_KEYS variable in the /etc/init.d/rpc to NO.

■ For versions earlier than Solaris 9 OS, access is disabled by adding the -d option
to the keyserv command in the /etc/init.d/rpc run-control file.

For more information on this service, refer to the keyserv(1M) manual page.

disable-ldap-client.fin

Note – Use this script only for systems running Solaris OS versions 8, 9, and 10.

This script prevents the Lightweight Directory Access Protocol (LDAP) client
daemons from starting on the system. This service provides the directory lookup
capability for the system. If the system is acting as an LDAP client or requires the
directory lookup capability, then this script should not be used. For more
information on this service, refer to the ldap_cachemgr(1M) and ldapclient(1M)
manual pages.
144 Solaris Security Toolkit 4.2 Reference Manual • July 2005

disable-lp.fin

This script prevents the line printer (lp) service from starting. Note that in addition
to disabling the service, this script removes the lp user’s access to the cron
subsystem by adding lp to the /etc/cron.d/cron.deny file, and removing all lp
commands in the /var/spool/cron/crontabs directory.

This functionality is distinct from the update-cron-deny.fin script, because the
lp packages might or might not be installed on a system. In addition, the lp
subsystem might be necessary, while the functions removed by the
cron-deny-update.fin script are not.

disable-mipagent.fin

Note – Use this script only for systems running Solaris OS versions 8, 9, and 10.

This script prevents the Mobile Internet Protocol (MIP) agents from starting. This
service implements the MIP home agent and foreign agent functionality described in
RFC 2002, IP Mobility Support. For more information on this service, refer to the
mipagent(1M) manual page.

disable-named.fin

Note – This script is intended to be used only with the Domain Name System (DNS)
service shipped with the Solaris OS. Disabling this service does not affect the ability
of the system to act as a DNS client.

This script prevents the DNS server from starting using the named(1M) command.

disable-nfs-client.fin

Note – If the NFS client service is required, then this script should not be used.
Further, because this service relies on the RPC service, the disable-rpc.fin script
also should not be used.

This script prevents the NFS client service from starting. This script also disables the
network status monitor (statd) and lock manager (lockd) daemons. Note that an
administrator can still mount remote file systems onto the system, even if this script
Chapter 5 Finish Scripts 145

is used. Those file systems, however, do not take advantage of the status monitor or
lock manager daemons. For more information on this service, refer to the statd(1M)
and lockd(1M) manual pages.

disable-nfs-server.fin

Note – Do not use this script if the system must share its file systems with remote
clients. If the NFS server service is required, then this script should not be used.
Further, because this service relies on the RPC service, the disable-rpc.fin script
also should not be used.

This script prevents the NFS service from starting. This script also disables the
daemons that provide support for NFS logging, mounting, access checks, and client
service. For more information on this service, refer to the nfsd(1M), mountd(1M),
and dfstab(4) manual pages.

disable-nscd-caching.fin

Caution – There might be a performance impact on systems that use name services
intensively.

This script disables caching for passwd, group, hosts, and ipnodes entries by the
Name Service Cache Daemon (NSCD). For the Solaris 8 OS, patch 110386 version 02
at minimum must be applied to fix a bug in the Role-Based Access Control (RBAC)
facility, otherwise the Solaris Security Toolkit software generates an error message.

The NSCD provides caching for name service requests. It exists to provide a
performance boost to pending requests and reduce name service network traffic. The
nscd maintains cache entries for databases such as passwd, group, and hosts. It
does not cache the shadow password file for security reasons. All name service
requests made through system library calls are routed to nscd. With the addition of
IPv6 and RBAC in Solaris 8 OS, the nscd caching capability was expanded to
address additional name service databases.

Because caching name service data makes spoofing attacks easier, it is recommended
that the configuration of nscd be modified to cache as little data as possible. This
task is accomplished by setting the positive time-to-live (ttl) to zero in the
/etc/nscd.conf file for the name service requests deemed vulnerable to spoofing
attacks. In particular, the configuration should be modified so that passwd, group,
and Solaris 8, 9, and 10 OS RBAC information has a positive and negative ttl of
zero.
146 Solaris Security Toolkit 4.2 Reference Manual • July 2005

The nscd -g option can be used to view the current nscd configuration on a server
and is a helpful resource when tuning nscd.

Disabling nscd entirely is not recommended because applications make name
service calls directly, which exposes various bugs in applications and name service
backends.

disable-picld.fin

Note – Use this script only for systems running Solaris OS versions 8 and 9.

This script prevents the Platform Information and Control Library (PICL) service
from starting. Disabling this service could impact the ability of the system to
monitor environmental conditions and should, therefore, be used with care. For
more information on this service, refer to the picld(1M) manual page.

disable-power-mgmt.fin

Note – This script applies only to systems running Solaris OS versions 2.6 through
10.

This script prevents the power management service from starting. (The power
management service allows the system to power down monitors, spin down disks,
and even power off the system itself.) Using this script disables the power
management functionality. Additionally, a noautoshutdown file is created to
prevent a system administrator from being asked about the state of power
management during an automated JumpStart mode installation. For more
information on this service, refer to the powerd(1M), pmconfig(1M), and
power.conf(4) manual pages.

disable-ppp.fin

Note – Use this script only for systems running Solaris OS versions 8, 9, and 10.

This script prevents the Point-to-Point Protocol (PPP) service from starting. This
service was introduced in the Solaris 8 OS (7/01) and supplements the older
Asynchronous PPP (ASPPP) service. This service provides a method for transmitting
datagrams over serial point-to-point links. For more information on this service,
refer to the pppd(1M) and pppoed(1M) manual pages.
Chapter 5 Finish Scripts 147

disable-preserve.fin

This script prevents the moving of saved files (that were previously edited) to
/usr/preserve when a system is rebooted. These files are typically created by
editors that are abruptly terminated due to a system crash or loss of a session. These
files are normally located in /var/tmp with names beginning with Ex.

disable-remote-root-login.fin

This script changes the CONSOLE variable in the /etc/default/login file to
prevent direct remote root logins. Although this was the default behavior for the
Solaris OS since the final update of 2.5.1, it is included to ensure that this setting has
not been altered. Note that this setting has no impact on programs, such as Secure
Shell, that can be configured to not use the /bin/login program to grant access to
a system. For more information on this capability, refer to the login(1) manual
page.

disable-rhosts.fin

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script disables rhosts authentication for rlogin and rsh by modifying the
Pluggable Authentication Module (PAM) configuration in /etc/pam.conf.

The disable-rlogin-rhosts.fin finish script was renamed
disable-rhosts.fin to be more indicative of its actions. In addition, both rsh
and rlogin entries are commented out in the /etc/pam.conf file to ensure that
rhosts authentication is not enabled for either service.

For more information on this capability, refer to the in.rshd(1M),
in.rlogind(1M), and pam.conf(4) manual pages.

disable-routing.fin

This script disables routing, or packet forwarding, of network packets from one
network to another.

■ For the Solaris 9 OS or earlier, routing is disabled by creating the
/etc/notrouter file.

■ For the Solaris 10 OS, routing is disabled with /usr/bin/routeadm.
148 Solaris Security Toolkit 4.2 Reference Manual • July 2005

disable-rpc.fin

Caution – The RPCport mapper function should not be disabled if any of the
following services are used on the system: automount, NFS, Network Information
Services (NIS), NIS+, CDE, and volume management (Solaris OS versions 9 and 10
only).

This script prevents the remote procedure call (RPC) service from starting. Note that
disabling this service impacts bundled services such as NFS and CDE, and
unbundled services such as Sun Cluster software. Some third-party software
packages also expect that this service is available. Before disabling this service, verify
that no services or tools require RPC services. For more information on this service,
refer to the rpcbind(1M) manual page.

Caution – A system secured using the secure.driver will not be able to use
JumpStart or NIS, because the disable-rpc.fin script is included. Instead, a new
driver must be created which does not include the disable-rpc.fin script.

disable-samba.fin

Note – Use this script only for systems running Solaris OS versions 9 and 10.

This script prevents the Samba file and print sharing service from starting. This
script disables only the Samba services included in the Solaris OS distribution. This
script does not impact other Samba distributions installed on the system. For more
information on this service, refer to the smbd(1M), nmbd(1M), and smb.conf(4)
manual pages.

disable-sendmail.fin

Note – The Solaris Security Toolkit software modifications only prevent a Solaris OS
from receiving email. Outgoing email is still processed normally.

This script disables various sendmail options depending on the Solaris OS version
the system is running:
Chapter 5 Finish Scripts 149

■ For the Solaris 10 OS, the script prevents the sendmail service from receiving
mail from other hosts. The script creates and installs a modified sendmail
configuration, which makes the sendmail daemon listen only on the IPv4 loopback
interface.

■ For the Solaris 9 OS, another sendmail option is implemented in which the
daemon listens only on the loopback interface. For more information, refer to the
Sun BluePrints OnLine article titled “Solaris Operating Environment Security:
Updated for Solaris Operating Environment 9.”

■ For the Solaris 8 OS, the /etc/default/sendmail file is installed, which
implements similar functionality. This method of purging outgoing mail is more
secure than having the daemon run continually.

■ For Solaris OS versions 2.5.1, 2.6, and 7, the script disables the sendmail daemon
startup and shutdown scripts, and adds an entry to the cron subsystem, which
executes sendmail once an hour.

disable-slp.fin

Note – Use this script only for systems running Solaris OS versions 8, 9, and 10.

This script prevents the Service Location Protocol (SLP) service from starting. This
service provides common server functionality for the SLP versions 1 and 2, as
defined by the Internet Engineering Task Force (IETF) in RFC 2165 and RFC 2608. SLP
provides a scalable framework for the discovery and selection of network services.
For more information on this service, refer to the slpd(1M) manual page.

disable-sma.fin

Note – Use this script only for systems running the Solaris 10 OS.

This script prevents the System Management Agent (SMA) service, based on the
NET-SNMP service, from starting.

disable-snmp.fin

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.
150 Solaris Security Toolkit 4.2 Reference Manual • July 2005

This script prevents the Simple Network Management Protocol (SNMP) service from
starting. This script does not prevent third-party SNMP agents from functioning on
the system. This script only affects the SNMP agent provided in the Solaris OS
distribution package. For more information on this service, refer to the snmpdx(1M)
and mibiisa(1M) manual pages.

disable-spc.fin

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script disables all SunSoft™ Print Client startup scripts.

disable-ssh-root-login.fin

Note – Use this script only for systems running Solaris OS versions 9 and 10.

This script configures the Secure Shell service distributed in the Solaris OS versions
9 and 10 to restrict remote access to the root account. By default, remote root
access is denied using the version of Secure Shell shipped with the Solaris 9 and 10
OS. This script verifies that functionality, thereby implementing a mechanism similar
to that of the disable-remote-root-login.fin script. The script sets the
PermitRootLogin parameter in /etc/ssh/sshd_config to no. For more
information on this capability, refer to the sshd_config(4) manual page.

disable-syslogd-listen.fin

Note – Do not use this script on a SYSLOG server, because a SYSLOG server must be
able to listen and receive SYSLOG messages for other machines on the network and
that ability is disabled by this finish script. Use this script only on systems running
Solaris OS versions 8, 9, and 10.

This script prevents the log system messages (syslogd) service from accepting
remote log messages:

■ For Solaris 8 OS, this scripts adds the -t option to the syslogd(1M) command
line.

■ For Solaris OS versions 9 and 10, this script sets the LOG_FROM_REMOTE variable
to NO in the /etc/default/syslogd file.
Chapter 5 Finish Scripts 151

This script prevents the daemon from listening on User Diagram Protocol (UDP)
port 514. This script is useful for systems that either store SYSLOG messages locally
or forward their SYSLOG messages to another network-accessible system.

disable-system-accounts.fin.

This script disables specific unused system accounts other than root. The list of
accounts to be disabled on the system are explicitly enumerated in the
JASS_ACCT_DISABLE variable.

disable-uucp.fin

This script disables the UNIX-to-UNIX Copy (UUCP) startup script. In addition, the
nuucp system account is removed with the uucp crontab entries in the
/var/spool/cron/crontabs directory. For more information on this service, refer
to the uucp(1C) and uucico(1M) manual pages.

disable-vold.fin

Note – Do not use this script if you need the automatic mounting and unmounting
of removable media (such as diskettes and CD-ROMs).

Note – Do not use this script if the VOLD service is required in the Solaris 9 OS.
Further, because this service relies on both the RPC and the rpc.smserverd
services, do not disable them either. Similarly, to prevent the rpc.smserverd
service from being disabled, its RPC service number, 100155 (or
svc:/network/rpc/smserver:default for the Solaris 10 OS), must be added to
the JASS_SVCS_ENABLE environment variable to ensure the service is not
mistakenly disabled.

This script prevents the Volume Management Daemon (VOLD) from starting. The
vold creates and maintains a file system image rooted at /vol, by default, that
contains symbolic names for diskettes, CD-ROMs, and other removable media
devices. For more information on this service, refer to the vold(1M) manual page.
152 Solaris Security Toolkit 4.2 Reference Manual • July 2005

disable-wbem.fin

Note – Use this script only for systems running Solaris OS versions 8, 9, and 10.

Note – Do not use this script if the WBEM service is required, or if the use of the
Solaris Management Console is needed. Because this service also relies on the RPC
service, the disable-rpc.fin script should not be used.

This script prevents the Web-Based Enterprise Management (WBEM) service from
starting. The WBEM is a set of management and Internet-related technologies that
unify management of enterprise computing environments. Developed by the
Distributed Management Task Force (DMTF), the WBEM enables organizations to
deliver an integrated set of standards-based management tools that support and
promote World Wide Web technology. For more information on this service, refer to
the wbem(5) manual page.

disable-xfs-fin

Note – Use this script only for systems running the Solaris 10 OS.

This script disables the X Font Server (XFS), a TCP/IP-based service that serves font
files to its clients. XFS is not needed to run a X-based graphical user interface (GUI).

disable-xserver.listen.fin

Note – Use this script only for systems running Solaris OS versions 9 and 10.

This script disables the X11 server’s ability to listen to and accept requests over TCP
on port 6000. This script adds the option -nolisten TCP to the X server
configuration line in the /etc/dt/config/Xservers file. If this file does not exist,
it is copied from the master location at /usr/dt/config/Xservers. For more
information on this capability, refer to the Xserver(1) manual page.

Enable Finish Scripts
The following enable finish scripts are described in this section:
Chapter 5 Finish Scripts 153

■ “enable-account-lockout.fin” on page 154
■ “enable-bart.fin” on page 154
■ “enable-bsm.fin” on page 156
■ “enable-coreadm.fin” on page 156
■ “enable-ftpaccess.fin” on page 157
■ “enable-ftp-syslog.fin” on page 157
■ “enable-inetd-syslog.fin” on page 157
■ “enable-ipfilter.fin” on page 158
■ “enable-password-history.fin” on page 159
■ “enable-priv-nfs-ports.fin” on page 160
■ “enable-process-accounting.fin” on page 160
■ “enable-rfc1948.fin” on page 160
■ “enable-stack-protection.fin” on page 161
■ “enable-tcpwrappers.fin” on page 161

enable-account-lockout.fin

Note – Use this script only for systems running the Solaris 10 OS.

This script ensures that the value of the LOCK_AFTER_RETRIES variable in the
/etc/security/policy.conf file is defined correctly. Once defined, if an account
exceeds the value specified by LOCK_AFTER_RETRIES, it is locked and requires
administrator assistance to unlock.

Caution – When an account is unlocked by a System Administrator, its password is
removed. The account should have a new password set immediately to prevent
unauthorized logins.

enable-bart.fin

Note – Use this script only for systems running the Solaris 10 OS.

The Basic Auditing and Report Tool (BART) is a file tracking tool that operates
entirely at the file system level. Using BART allows you to quickly, easily, and
reliably gather information about the components of the software stack that is
installed on deployed systems. Using BART can greatly reduce the costs of
administering a network of systems by simplifying time-consuming administrative
tasks.
154 Solaris Security Toolkit 4.2 Reference Manual • July 2005

BART enables you to determine what file-level changes have occurred on a system,
relative to a known baseline. The bart create command creates a baseline or
control manifest from a fully installed and configured system. The bart compare
command compares this baseline with a snapshot of the system at a later time,
generating a report that lists file-level changes that have occurred on the system
since it was installed.

Note – Sometimes the bart compare command fails because svc edits some files
under /etc that are not under Solaris Security Toolkit control. These failures
actually might not be failures, but you need to review the log.

The Solaris Security Toolkit 4.2 software installs two BART rules files:

■ rules-secure for secure.driver (CODE EXAMPLE 5-2), which by default is in
/var/opt/SUNWjass/BART/rules-secure

■ rules for all other drivers (CODE EXAMPLE 5-3), which by default is in
/var/opt/SUNWjass/BART/rules

Output from a BART file-level check of the system is stored in the
/var/opt/SUNWjass/BART/manifests directory in the JASS_TIMESTAMP.txt
file..

This enable-bart.fin script enables BART. It determines if a BART rules file is
present, and if so, determines if its configuration is consistent with the driver being
run and its BART rules files.

CODE EXAMPLE 5-2 Default BART rules-secure File

/ !core !tmp/ !var/ !S82mkdtab
 CHECK all
 IGNORE contents mtime

 /etc/rc*.d S* !S82mkdtab
 sbin !core
 /usr/bin !core
 /usr/sbin !core
 CHECK contents

CODE EXAMPLE 5-3 Default BART rules File

 /etc/rc*.d S* !S82mkdtab
 sbin !core
 /usr/bin !core
 /usr/sbin !core
 CHECK contents
Chapter 5 Finish Scripts 155

If the BART rules file configuration is not consistent with the driver being run and its
BART rules file, the script copies the rules file from
$JASS_FILES/var/opt/SUNWjass/bart/. Once the correct BART configuration
file is in place, the script executes BART to generate a new manifest file in
/var/opt/SUNWjass/BART/manifests named JASS_TIMESTAMP.txt; for
example, 20050711152248.txt.

Note – The Solaris Security Toolkit 4.2 software does not provide an interface for
checking BART manifest files.

enable-bsm.fin

Note – Use this script only for systems running Solaris OS versions 8 through 10.
For the Solaris 10 OS, be sure you enable BSM first in the global zone, before you
enable it in a child zone.

This script enables the SunSHIELD™ Solaris Basic Security Module (BSM) auditing
service. Additionally, this script installs a default audit configuration that is
described in the Sun BluePrints OnLine article titled “Auditing in the Solaris 8
Operating Environment.” An audit_warn alias is added, if necessary, and assigned
to the root account, and the abort disable code is overridden to permit abort
sequences. This setting is most often used in a lights-out data center environment,
where physical access to the platform is not always possible. After the system is
rebooted, the Solaris BSM subsystem is enabled and auditing begins. For more
information on this service, refer to the bsmconv(1M) manual page.

enable-coreadm.fin

Note – Use this script only for systems running Solaris OS versions 7 through 10.

This script configures the coreadm functionality that is present in the Solaris OS
versions 7 through 10. The script configures the system to store generated core files
under the directory specified by JASS_CORE_DIR. Further, each of the core files are
tagged with a specification denoted by the JASS_CORE_PATTERN so that
information about the core files can be collected. Typically, the information collected
includes the process identifier, effective user identifier, and effective group
identifiers of the process, as well as name of the process executable and time the core
file was generated. For more information on this capability, refer to the
coreadm(1M) manual page.
156 Solaris Security Toolkit 4.2 Reference Manual • July 2005

enable-ftpaccess.fin

Note – Use this script only for systems running Solaris OS versions 9 and 10.

This script enables the ftpaccess functionality for the FTP service in the Solaris 9
and Solaris 10 OS. This functionality is necessary so that security modifications
made by the set-banner-ftp.fin and set-ftpd-umask.fin scripts are used.
For example, modifications to set the default greeting, file creation mask, and other
parameters are documented in ftpaccess(4) manual pages.

■ For the Solaris 9 OS, this script adds the -a argument to the in.ftpd entry in
the /etc/inet/inetd.conf file.

■ For the Solaris 10 OS, the “a” option is added to the svc:/network/ftp
inetdstart/exec property.

For more information, refer to the in.ftpd(1M) manual page.

enable-ftp-syslog.fin

This script forces the in.ftpd daemon to log all File Transfer Protocol (FTP) access
attempts through the SYSLOG subsystem.

■ For the Solaris 9 OS and earlier, this option is enabled by adding the -l option to
the in.ftpd command in the /etc/inetd/inetd.conf file.

■ For the Solaris 10 OS, the “l” option is added to the svc:/network/ftp
inetdstart/exec property.

For more information, refer to the in.ftpd(1M) manual page.

enable-inetd-syslog.fin

This script configures the Internet services daemon (INETD) to log all incoming TCP
connection requests. That is, a log entry occurs through SYSLOG if a connection is
made to any TCP service for which the inetd daemon is listening.

■ For Solaris OS versions prior to Solaris 9 OS, this script enables logging by
adding the -t option to the inetd command line.

■ For the Solaris 9 OS, the script sets the ENABLE_CONNECTION_LOGGING variable
in the /etc/default/inetd file to YES.

■ For the Solaris 10 OS, the defaults/tcp_trace property is set to true for the
svc:/network/inetd service.

For more information, refer to the inetd.conf(4) manual page.
Chapter 5 Finish Scripts 157

enable-ipfilter.fin

Note – Use this script only for systems running the Solaris 10 OS.

The Solaris 10 OS provides an integrated firewall capability by integrating the
freeware IP Filter (ipfilter), which filters IP packets by content. This script
enables ipfilter for all available network interfaces and creates a default set of
rules specific to the driver being run. These preconfigured rules files use the
file_copy keyword suffix to differentiate which files are associated with which
drivers.

The following preconfigured IPF rules are included with the Solaris Security Toolkit
in the $JASS/FILES/etc/opt/ipf directory:

■ ipf.conf configuration file for secure.driver – ipfilter is enabled by
default with the following ipf.conf file:

■ ipf.conf-server configuration file for server-secure.driver – ipfilter
is enabled by default with the following ipf.conf file:

CODE EXAMPLE 5-4 secure.driver Default IP Filter Rules File

to load/reload rules use /sbin/ipf -Fa -f /etc/opt/ipf/ipf.conf

block in log proto tcp from any to any
block in log proto udp from any to any

allow connections originating from local machine out
pass out quick proto tcp from any to any flags S/SA keep state
pass out quick proto udp from any to any keep state

CODE EXAMPLE 5-5 server-secure.driver Default IP Filter Rules File

to load/reload rules use /sbin/ipf -Fa -f /etc/opt/ipf/ipf.conf

block in log proto tcp from any to any
block in log proto udp from any to any

allow connections originating from local machine out
pass out quick proto tcp from any to any flags S/SA keep state
pass out quick proto udp from any to any keep state

allow ssh (port 22)
(these ip-addresses are also protected by tcp-wrappers)
(if you change it here, you also need to change /etc/hosts.allow)
pass in quick proto tcp from any to any port = 22
158 Solaris Security Toolkit 4.2 Reference Manual • July 2005

■ ipf.conf-15k-sc configuration file for sunfire_15k_sc-secure.driver –
ipfilter is enabled by default with the following ipf.conf file:

Note – Sun Cluster 3x software does not support IP Filter; therefore, do not use this
script on the suncluster3x-secure.driver.

The enable-ipfilter.fin script does the following:

■ Checks for plumbed interfaces that are not present in the /etc/ipf/pfil.ap file
and audits or adds them as necessary. If some interfaces are present, which are not
in the file backup, the scripts adds them. Refer to the ipfilter(5) command in
the Solaris Security Toolkit 4.2 Man Page Guide or the man pages.

■ Reviews any existing /etc/ip/ipf.conf file on the system to see if it is the
same as the keyword-specific file. If any keyword-specific file is not the same, the
script backs up the existing /etc/opt/ipf/ipf.conf file and copies the
$JASS_FILES/etc/opt/ipf/ipf.conf file, using the keyword-specific option.

■ Enables the network/ipfilter service with the svcadm enable ipfilter
command through the Service Management Facility (SMF).

enable-password-history.fin

Note – Use this script only for systems running the Solaris 10 OS.

CODE EXAMPLE 5-6 sunfire_15k_sc-secure.driver Default IP Filter Rules File

to load/reload rules use /sbin/ipf -Fa -f /etc/opt/ipf/ipf.conf

block in log proto tcp from any to any
block in log proto udp from any to any

allow connections originating from local machine out
pass out quick proto tcp from any to any flags S/SA keep state
pass out quick proto udp from any to any keep state

allow ssh (port 22)
(these ip-addresses are also protected by tcp-wrappers)
(if you change it here, you also need to change /etc/hosts.allow)
pass in quick proto tcp from any to any port = 22

allow all necessary communication in from other SC
pass out quick proto tcp from any to any flags S/SA keep state
pass out quick proto udp from any to any keep state
Chapter 5 Finish Scripts 159

This script enables password history checks on the system by permitting the
definition of different HISTORY values based on a driver’s JASS_PASS_HISTORY
environment value. The script checks the /etc/default/passwd file to determine
if a HISTORY value is specified.

■ If a HISTORY value is specified in the /etc/default/passwd file, the script
checks it against the value in the JASS_PASS_HISTORY environment variable to
see if it is correct.

■ If the HISTORY value is not correct as specified in the JASS_PASS_HISTORY
environment variable or is not set properly, the script corrects the value.

enable-priv-nfs-ports.fin

This script modifies the /etc/system file to enable restricted NFS port access. After
setting the variable, only NFS requests originating from ports less than 1024 are
accepted.

If the keyword value pair is defined incorrectly in the /etc/system file, the value is
rewritten in the file. Otherwise, the keyword value pair is appended to the file.

enable-process-accounting.fin

If the required Solaris OS packages (currently SUNWaccr and SUNWaccu) are
installed on the system, this script enables Solaris OS process accounting. For more
information on this service, refer to the acct(1M) manual page.

enable-rfc1948.fin

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script creates or modifies the /etc/default/inetinit file to enable support
of RFC 1948. (This RFC defines unique-per-connection ID sequence number
generation.) The script sets the variable TCP_STRONG_ISS to 2 in the
/etc/default/inetinit file. For more information, refer to
http://ietf.org/rfc1948.html.
160 Solaris Security Toolkit 4.2 Reference Manual • July 2005

enable-stack-protection.fin

Note – Use this script only for SPARC systems running Solaris OS versions 2.6
through 10.

Note – Enabling this feature makes the system noncompliant with the SPARC
version 8 Application Binary Interface (ABI), therefore it is possible that some
applications might fail.

For SPARC systems only, this script modifies the /etc/system file to enable stack
protections and exception logging. These options are enabled by adding the
noexec_user_stack and noexec_user_stack_log to the /etc/system file.

If the key word value pairs are already defined in the /etc/system file, their
values are rewritten in the file to verify that they are set properly. Otherwise, the
keyword value pairs are appended to the file. After the system is rebooted with
these variables set, the system denies attempts to execute the stack directly, and logs
any stack execution attempt through SYSLOG. This facility is enabled to protect the
system against common buffer overflow attacks.

In Solaris OS versions 9 and 10, many of the core Solaris executables are linked
against a map file (/usr/lib/ld/map.noexstk). This map file provides
functionality similar to the script by making the program’s stack non-executable.
Using the script is still recommended, however, because its changes are global to the
system.

enable-tcpwrappers.fin

Note – Use this script only on systems running Solaris OS versions 9 and 10 using
the bundled TCP wrapper packages.

Note – The sample hosts.allow and hosts.deny files should be customized
prior to their use to ensure that their configuration is appropriate for your
organization. File templates are available in JASS_ROOT_DIR/Files/etc.

This script configures the system to use TCP wrappers. Included with late updates
to the Solaris 9 OS and all releases of the Solaris 10 OS, TCP wrappers allow an
administrator to restrict access to TCP services. By default, all services in
/etc/inet/inetd.conf that are defined as stream, nowait are protected. This
Chapter 5 Finish Scripts 161

script configures the /etc/default/inetd file to set the ENABLE_TCPWRAPPERS
parameter to YES. Further, this script installs sample /etc/hosts.allow and
/etc/hosts.deny files that control access to services protected by TCP wrappers.

For Solaris 10 OS only:

■ Enables inetd use of tcp_wrappers

■ Enables rpcbind use of tcp_wrappers

■ Copies keyword-specific versions of the hosts.allow|deny files

Install Finish Scripts
The following install finish scripts are described in this section:

■ “install-at-allow.fin” on page 162
■ “install-fix-modes.fin” on page 163
■ “install-ftpusers.fin” on page 163
■ “install-jass.fin” on page 163
■ “install-loginlog.fin” on page 164
■ “install-md5.fin” on page 164
■ “install-nddconfig.fin” on page 164
■ “install-newaliases.fin” on page 164
■ “install-openssh.fin” on page 165
■ “install-recommended-patches.fin” on page 165
■ “install-sadmind-options.fin” on page 165
■ “install-security-mode.fin” on page 165
■ “install-shells.fin” on page 166
■ “install-strong-permissions.fin” on page 166
■ “install-sulog.fin” on page 166
■ “install-templates.fin” on page 167

install-at-allow.fin

This script restricts the at command execution by creating an at.allow file in
/etc/cron.d. The file is then populated with the list of users defined in the
JASS_AT_ALLOW variable. All users who require at access must be added to the
at.allow file. This script should be used with the update-at-deny.fin script to
determine access to the at and batch facilities. For more information on this
capability, refer to the at(1) manual page.
162 Solaris Security Toolkit 4.2 Reference Manual • July 2005

install-fix-modes.fin

Note – Use this script only on systems running Solaris OS versions 2.5.1 through 9.
Although the changes implemented by the FixModes software are integrated into
the Solaris 9 OS, the use of FixModes is still recommended because many unbundled
and third-party applications benefit from its use.

This script both copies the fix-modes software from the JASS_PACKAGE_DIR
directory to the client, then executes the program. Use the FixModes software to
tighten permissions of a Solaris system.

install-ftpusers.fin

This script creates or modifies the ftpusers file that is used to restrict access to the
FTP service. This script adds users listed in the JASS_FTPUSERS variable to the
ftpusers file. This script adds a user to the file only if the user’s name is not
already in the file.

A default ftpusers file is included with Solaris OS versions 8, 9, and 10. The path
to the file varies:

■ For Solaris 9 and 10 OS, the path is /etc/ftpd.

■ For Solaris 8 OS and earlier, the file path is /etc.

All accounts not allowed to use the incoming FTP service should be specified in this
file. At a minimum, this should include all system accounts (for example, bin, uucp,
smtp, sys, and so forth) in addition to the root account. These accounts are often
targets of intruders and individuals attempting to gain unauthorized access.
Frequently, root access to a server over Telnet is disabled and root FTP access is
not. This configuration provides a back door for intruders who might modify the
system’s configuration by uploading modified configuration files.

install-jass.fin

This script automates the installation of the Solaris Security Toolkit software onto a
JumpStart client when the Solaris Security Toolkit software is being run. Use this
approach so that the Solaris Security Toolkit software is available to be run after
initial installation of the client. The installation is performed by installing the Solaris
Security Toolkit software package distribution with the Solaris OS command
pkgadd. This script expects the Solaris Security Toolkit software to be installed in
the JASS_PACKAGE_DIR directory. The Solaris Security Toolkit software package
SUNWjass is installed by default in the /opt directory.
Chapter 5 Finish Scripts 163

install-loginlog.fin

This script creates the /var/adm/loginlog file used by the system to log
unsuccessful login attempts. The failed logins are logged after the maximum number
of failed logins is exceeded. This number is specified in the RETRIES variable, set in
the /etc/default/login configuration file. See also the
set-login-retries.fin script. For more information, refer to the loginlog(4)
manual page.

install-md5.fin

Note – Use this script only on systems running Solaris OS versions 2.5.1 through 9.

This script automates the installation of the message-digest 5 (MD5) algorithm
software. This software is used for creating digital fingerprints of file system objects
and is referenced in the Sun BluePrints OnLine article titled “The Solaris Fingerprint
Database - A Security Tool for Solaris Software and Files.” By default, the MD5
software is installed in the directory specified by the JASS_MD5_DIR parameter.

install-nddconfig.fin

This script installs the nddconfig file that is used to set more secure values for
various networking parameters, based on the Sun BluePrints OnLine article, “Solaris
Operating Environment Network Settings for Security.”

install-newaliases.fin

Note – Use this script only on systems running Solaris OS versions 2.5.1 through 8.

This script adds the newaliases symbolic link to the /usr/lib/sendmail
program. This link is required in some cases of minimized installations if the
SUNWnisu package is not installed or is removed. This link is necessary for systems
running the Solaris OSs 2.5.1 through 8, where the newaliases was a part of the
SUNWnisu package.
164 Solaris Security Toolkit 4.2 Reference Manual • July 2005

install-openssh.fin

Note – Use this script only for systems running Solaris OS versions 2.5.1 through 8.
Solaris 9 and 10 OS includes a version of the Secure Shell software, therefore this
script is not used if you install Solaris 9 or 10 OS.

This script installs the OpenBSD version of OpenSSH into /opt/OBSDssh. The
distribution for which this script is written is based on the Sun BluePrints OnLine
article titled “Configuring OpenSSH for the Solaris Operating Environment.” This
script does not overwrite host keys if they exist.

The installation is based on having a Solaris OS, stream-formatted package called
OBSDssh-3.5p1-sparc-sun4u-5.8.pkg in the JASS_PACKAGE_DIR directory.

install-recommended-patches.fin

Note – Use this script only for systems running Solaris OS 2.5.1 through 10.

This script installs patches from the JASS_HOME_DIR/Patches directory on the
JumpStart server. The Recommended and Security Patch Clusters must be
downloaded and extracted to the JASS_HOME_DIR/Patches directory for the script
to execute properly.

install-sadmind-options.fin

Note – Use this script only for systems running Solaris OS 2.5.1 through 9.

This script adds the options specified in the JASS_SADMIND_OPTIONS environment
variable to the sadmind daemon entry in /etc/inet/inetd.conf. For more
information on this service, refer to the sadmind(1M) manual page.

install-security-mode.fin

Note – Use this script only on SPARC-based systems.

This script displays the current status of the OpenBoot PROM security mode. This
script does not set the EEPROM password directly; it is not possible to script the
setting of the EEPROM password during a JumpStart installation. The output of the
Chapter 5 Finish Scripts 165

script provides instructions on how to set the EEPROM password from the
command line. For more information on this capability, refer to the eeprom(1M)
manual page.

install-shells.fin

Note – This script adds a shell to the /etc/shells file only if the shell exists on the
system, is executable, and is not in the file.

This script adds the user shells specified in the JASS_SHELLS environment variable
to the /etc/shells file. The Solaris OS function getusershell(3C) is the primary
user that the /etc/shells file uses to determine valid shells on a system. For more
information, refer to the shells(4) manual page. For more information about the
JASS_SHELLS environment variable, see “JASS_SHELLS” on page 272.

install-strong-permissions.fin

Note – Do not use this script for systems running the Solaris 10 OS.

Caution – Exercise care when using this script, because its changes cannot be
undone automatically by the Solaris Security Toolkit software. Always ensure that the
permissions set by this script are correct for your environment and applications.

This script changes a variety of permissions and ownerships to enhance security by
restricting group and user access on a system.

This script is not used for the Solaris 10 OS, because the Solaris 10 OS has
incorporated many permission and ownership changes. This script is not undoable,
and the resulting support impact is no longer worth the security improvement given
the changes to the Solaris 10 OS.

install-sulog.fin

This script creates the /var/adm/sulog file, which enables logging of all superuser
(su) attempts. For more information on this capability, refer to the sulog(4) manual
page.
166 Solaris Security Toolkit 4.2 Reference Manual • July 2005

install-templates.fin

Note – This special purpose script should not be called directly by any driver.

This script is automatically called by the driver.run program if the JASS_FILES
parameter or any of its OS-specific values is not empty. This script automates the
copying of file templates onto a target system. This functionality was originally in
the driver.run script, but was separated to better support the verification of file
templates. If needed, based on the contents of the JASS_FILES parameter, this script
is the first finish script to run.

Print Finish Scripts
The following print finish scripts are described in this section:

■ “print-jass-environment.fin” on page 167
■ “print-jumpstart-environment.fin” on page 167
■ “print-rhosts.fin” on page 168
■ “print-sgid-files.fin” on page 168
■ “print-suid-files.fin” on page 168
■ “print-unowned-objects.fin” on page 168
■ “print-world-writable-objects.fin” on page 168

print-jass-environment.fin

Note – Do not use this script for systems running the Solaris 10 OS.

This script prints out all the environment variables used in the Solaris Security
Toolkit software. This script is provided for diagnostic purposes and is often called
at the beginning of a driver so that the state of the environment variables can be
recorded prior to their use.

print-jumpstart-environment.fin

This script prints out all the environment variables used by a JumpStart installation.
This script is provided for diagnostic purposes to aid in debugging problems
encountered during a JumpStart installation.
Chapter 5 Finish Scripts 167

print-rhosts.fin

Note – The print-rhosts.fin script needs to be enabled manually if the extra
processing time the script requires is acceptable.

This script lists all the .rhosts and hosts.equiv files contained in any directory
under the JASS_ROOT_DIR directory. The results are displayed on standard output
unless the JASS_RHOSTS_FILE variable is defined. If this variable is defined, then
all of the results are written to that file.

print-sgid-files.fin

This script prints all files in any directory under the JASS_ROOT_DIR directory with
set group ID permissions. The results are displayed on standard output unless the
JASS_SGID_FILE variable is defined. If this variable is defined, all of the results are
written to that file.

print-suid-files.fin

This script prints all files in any directory under the JASS_ROOT_DIR directory with
set user ID permissions. The results are displayed on standard output unless the
JASS_SUID_FILE variable is defined. If this variable is defined, all of the results are
written to that file.

print-unowned-objects.fin

This script lists all files, directories, and other objects on a system, starting from
JASS_ROOT_DIR, that do not have valid users or groups assigned to them. The
results are displayed on standard output unless the JASS_UNOWNED_FILE variable
is defined. If this variable is defined, then all of the results are written to that file.

print-world-writable-objects.fin

This script lists all world-writable objects on a system, starting from
JASS_ROOT_DIR. The results are displayed on standard output unless the
JASS_WRITABLE_FILE variable is defined. If this variable is defined, then all of the
results are written to that file.
168 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Remove Finish Script
The following remove finish script is described in this section:

■ “remove-unneeded-accounts.fin” on page 169

remove-unneeded-accounts.fin

Note – Use this script only for systems running Solaris OS 2.5.1 through 9.

The remove-unneeded-accounts.fin script removes unused Solaris OS accounts
from the /etc/passwd and /etc/shadow files using the passmgmt command.
This script removes those accounts defined by the JASS_ACCT_REMOVE variable.

Set Finish Scripts
The following set finish scripts are described in this section:

■ “set-banner-dtlogin.fin” on page 170
■ “set-banner-ftpd.fin” on page 170
■ “set-banner-sendmail.fin” on page 170
■ “set-banner-sshd.fin” on page 171
■ “set-banner-telnet.fin” on page 171
■ “set-flexible-crypt.fin” on page 171
■ “set-ftpd-umask.fin” on page 172
■ “set-login-retries.fin” on page 173
■ “set-power-restrictions.fin” on page 173
■ “set-rmmount-nosuid.fin” on page 173
■ “set-root-group.fin” on page 174
■ “set-root-home-dir.fin” on page 174
■ “set-root-password.fin” on page 175
■ “set-strict-password-checks.fin” on page 175
■ “set-sys-suspend-restrictions.fin” on page 175
■ “set-system-umask.fin” on page 176
■ “set-term-type.fin” on page 176
■ “set-tmpfs-limit.fin” on page 176
■ “set-user-password-reqs.fin” on page 176
■ “set-user-umask.fin” on page 177
Chapter 5 Finish Scripts 169

set-banner-dtlogin.fin

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script installs a service banner for the dtlogin service. This banner is
presented to a user after successfully authenticating to a system using a graphical
interface, such as is provided by the Common Desktop Environment (CDE) or the
GNU Network Object Model Environment (GNOME). This script configures the
system to display the contents of a file specified by the file template
JASS_ROOT_DIR/etc/dt/config/Xsession.d/0050.warning. By default the
contents of the /etc/motd file are displayed.

set-banner-ftpd.fin

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script installs the File Transfer Protocol (FTP) service banner:

■ For the Solaris 8 OS and earlier, this banner is defined using the
JASS_BANNER_FTPD variable in the /etc/default/ftpd file.

■ For the Solaris 9 and 10 OS, this banner is defined using the
/etc/ftpd/banner.msg file. For more information, refer to the in.ftpd(1M)
or ftpaccess(4) Solaris 9 or 10 OS manual pages.

Note – If the install-ftpaccess.fin script is not used, then the change made
by the set-banner-ftpd.fin script on a Solaris 9 or 10 OS system does not take
effect.

set-banner-sendmail.fin

Note – Use this script only for systems running Solaris OS versions 9 and 10.

This script installs the Sendmail service banner defined by the variable
JASS_BANNER_SENDMAIL. This banner is defined using the
SmtpGreetingMessage or De parameter in the /etc/mail/sendmail.cf file. For
Solaris OS versions 9 through 10, the SmtpGreetingMessage parameter is used.

For more information, refer to the sendmail(1M) manual page.
170 Solaris Security Toolkit 4.2 Reference Manual • July 2005

set-banner-sshd.fin

Note – Use this script only for systems running Solaris OS versions 9 and 10.

This script installs the Secure Shell service banner by configuring the Secure Shell
service to display the contents of /etc/issue to the user prior to authenticating to
the system. This task is accomplished by setting the Banner parameter to
/etc/issue in the /etc/ssh/sshd_config file. For more information on this
functionality, refer to the sshd_config(4) manual page.

set-banner-telnet.fin

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script installs the Telnet service banner defined by the variable
JASS_BANNER_TELNET. This banner is defined using the BANNER variable in the
/etc/default/telnetd file. For more information, refer to the in.telnetd(1M)
manual page.

set-flexible-crypt.fin

Note – Use this script only for systems running the Solaris 10 OS.

The Solaris 10 OS introduced several new tunables, which control the algorithms
used for password encryption on a system. The new algorithms can be used for local
password storage as well as name service–based storage with LDAP, NIS+, and NIS.
The steps involved in enabling this feature for name services can be found in the
Solaris 10 System Administration Guide: Security Services, “System, File, and Device
Security” chapter.

This script enables the use of strong passwords by using different password hashing
algorithms for locally stored passwords. Only the secure.driver expires all
passwords, so that users are forced to pick new passwords, which are encrypted
with the new encryption algorithm.
Chapter 5 Finish Scripts 171

The tunables are added to the /etc/security/policy.conf files as follows:

The CRYPT_ALGORITHMS_ALLOW values map to the following:

■ 1 – BSD/Linux md5
■ 2a – BSD Blowfish
■ md5 – Sun md5

The secure.driver passwords are expired if:

■ JASS_FORCE_CRYPT_EXPIRE is 1, and

■ Passwords have not been expired since the last policy.conf change was made by
the Solaris Security Toolkit, or

■ Configuration changed during this run

All other drivers display a message stating that passwords will be re-encrypted with
the new encryption algorithm when users change their user passwords.

set-ftpd-umask.fin

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script sets the default file creation mask for the FTP service:

■ For versions prior to Solaris 9 OS, the script sets the default file creation mask by
adding a UMASK value, defined by the JASS_FTPD_UMASK variable, to the
/etc/default/ftpd file.

CODE EXAMPLE 5-7 Password Encryption Tunables for Solaris Security Toolkit Drivers

secure.driver:
 CRYPT_ALGORITHMS_ALLOW = 1,2a,md5
 CRYPT_DEFAULT = 1
 JASS_FORCE_CRYPT_EXPIRE = 1
server-secure.driver:
 CRYPT_ALGORITHMS_ALLOW = 1,2a,md5
 CRYPT_DEFAULT = 1
 JASS_FORCE_CRYPT_EXPIRE = 0
suncluster3x-secure:
 CRYPT_ALGORITHMS_ALLOW = 1,2a,md5
 CRYPT_DEFAULT = 1
 JASS_FORCE_CRYPT_EXPIRE = 0
sunfire_15k_sc-secure:
 CRYPT_ALGORITHMS_ALLOW = 1,2a,md5
 CRYPT_DEFAULT = 1
 JASS_FORCE_CRYPT_EXPIRE = 0
172 Solaris Security Toolkit 4.2 Reference Manual • July 2005

■ For Solaris 9 and 10 OS, the script sets the defumask parameter defined in the
/etc/ftpd/ftpaccess file. For more information, refer to the in.ftpd(1M) or
ftpaccess(4) (for Solaris 9 or 10 OS) manual pages.

Note – If the install-ftpaccess.fin script is not used, then the change made
by the set-ftpd-umask.fin script on a Solaris 10 OS 9 or 10 system does not take
effect.

set-login-retries.fin

This script sets the RETRIES variable in the /etc/default/login file to the value
defined by the JASS_LOGIN_RETRIES variable. By reducing the logging threshold,
additional information might be gained. The install-loginlog.fin script
enables the logging of failed login attempts. For more information on this capability,
refer to the login(1) manual page.

set-power-restrictions.fin

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

Note – This script works only on software-controllable power supplies, for example,
power off at the PROM prompt.

This script alters the configuration of /etc/default/power to restrict user access
to power management functions using the JASS_POWER_MGT_USER and
JASS_CPR_MGT_USER variables. As a result, access to the system’s power
management and suspend/resume functionality is controlled.

set-rmmount-nosuid.fin

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.
Solaris OS versions 8 through 10 are configured to mount removable media with the
nosuid option by default. This script performs the necessary checks regardless of
the default settings.
Chapter 5 Finish Scripts 173

This script adds two entries to the /etc/rmmount.conf file to disable mounting of
Set-UID files. It is important to disable mounting, because someone with access to a
system could insert a diskette or CD-ROM and load Set-UID binaries, thereby
compromising the system. For more information on this capability, refer to the
rmmount.conf(4) manual page.

set-root-group.fin

This script changes the root user’s primary group to JASS_ROOT_GROUP from
group identifier #1 (GID 1, other) to group identifier #0 (GID 0, root). This script
prevents the root user from sharing a common group with non-privileged users.

set-root-home-dir.fin

Note – Use this script only for systems running the Solaris 10 OS.

Many Solaris security hardening scripts and procedures recommend giving the root
account a home directory other than a single forward slash (/). Changing the home
directory of the root account for the Solaris OS has benefits in security and system
management and makes the Solaris OS more compatible with other UNIX systems,
including Linux/*BSD:

■ You can now have root account’s home directory permissions be 0700
automatically.

■ You can now distinguish between the three common uses of /:

■ / as the home directory of uid 0, loginame root

■ / as the value of the home directory automatically assigned when a user’s
home directory is not found.

By changing the root directory to /root, you remove the risk of getting the
root user’s dot files instead of your own dot files.

■ / as the top of the directory tree

This script checks to see if the root account has a home directory of / in the
/etc/passwd file, and if it does, the script:

■ Creates a new directory /root with ownership root:root and permissions
0700

■ Moves the following dot files to /root if owned by root:

■ /.cshrc
■ /.profile
■ /.login
■ /.ssh
174 Solaris Security Toolkit 4.2 Reference Manual • July 2005

■ Verifies permissions on all of the above

■ Changes the root home directory definition through usermod

set-root-password.fin

Note – This script executes only during a JumpStart software installation. It does not
execute when the Solaris Security Toolkit software is started from the command line.

This script automates setting the root password by setting the password to an
initial value as defined by JASS_ROOT_PASSWORD. The password used in this script
should be used only during installation and must be changed immediately after the
JumpStart installation process has successfully completed. By default, the password
used by the JASS_ROOT_PASSWORD parameter is t00lk1t.

Caution – When Solaris Security Toolkit runs in JumpStart mode, it sets the root
password. If an undo operation is performed later, the root password reverts to its
former setting of no password. That means anyone could log in to the root account
with no password at all. Remember to set the root password with the passwd(1)
command if you perform an undo operation immediately after a JumpStart
installation.

set-strict-password-checks.fin

Note – Use this script only for systems running the Solaris 10 OS.

This script installs stricter password requirements for users in their local
environment. The passwd(1) command in the Solaris 10 OS defines a new set of
features for stronger user passwords. The Solaris Security Toolkit software sets a
number of these values to stronger than the default settings. This script ensures that
the correct values for the various password checks are defined correctly in the
/etc/default/passwd file in the JASS_PASS_* environment variables. See
Chapter 7 for definitions and values of these and other environment variables.

set-sys-suspend-restrictions.fin

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.
Chapter 5 Finish Scripts 175

This script alters the configuration of /etc/default/sys-suspend to restrict user
access to suspend and resume functionality based on the JASS_SUSPEND_PERMS
variable. For more information, refer to the sys-suspend(1M) manual page.

set-system-umask.fin

This script ensures that all of the run-control scripts execute with a safe file-creation
mask based on the setting of JASS_UMASK. This setting is important because using a
poorly chosen file-creation mask could leave critical files writable by any user.

■ For versions prior to Solaris 8 OS, this script creates startup scripts at each run
level, thereby setting the file creation mask to JASS_UMASK.

■ For Solaris OS versions 8 through 10, the CMASK variable in
/etc/default/init is set to JASS_UMASK. For more information on this
capability, refer to the init(1M) manual page.

set-term-type.fin

This script sets a default terminal type of vt100 to avoid issues with systems not
recognizing dtterm. This script is mainly for use on systems that do not have
graphical consoles and are generally accessed over a terminal console or other serial
link. This script is provided as a convenience only and does not impact the security
of the system.

set-tmpfs-limit.fin

Note – Do not use the set-tmpfs-limit.fin script for systems running the
Solaris 2.5.1 OS, because this functionality is unsupported.

This script installs a limit on the disk space that can be used as part of a tmpfs file
system. This limit can help prevent memory exhaustion. The usable space is limited
by default in this script to the value defined by JASS_TMPFS_LIMIT. For more
information on this capability, refer to the mount_tmpfs(1M) manual page.

set-user-password-reqs.fin

The changes implemented by this script configure the password policy of a system
for the next time that passwords are changed on a system. This profile might need to
be further tuned to ensure that applications and operational functions are not
adversely impacted by the hardening process.
176 Solaris Security Toolkit 4.2 Reference Manual • July 2005

This script enables more strict password requirements by enabling:

■ Password aging
■ Minimum intervals between password changes
■ Minimum password length

This script accomplishes the requirements by using the values defined by the
following variables to set the correct entries in the /etc/default/passwd file:

■ JASS_AGING_MINWEEKS
■ JASS_AGING_MAXWEEKS
■ JASS_AGING_WARNWEEKS
■ JASS_PASSLENGTH

This script is especially recommended for systems with nonprivileged user access.

This script modifies only the settings in the /etc/default/passwd file. It does not
enable password aging for any user. The password aging requirements are
implemented for each user upon the next password change. To enable password
aging for a user without waiting for a password change event, use the passwd(1)
command.

set-user-umask.fin

This script sets the default file creation mask (UMASK) to the value defined by
JASS_UMASK for the following user startup files: /etc/.login, /etc/profile,
/etc/skel/local.cshrc, /etc/skel/local.login,
/etc/skel/local.profile, and /etc/default/login.

Update Finish Scripts
The following update finish scripts are described in this section:

■ “update-at-deny.fin” on page 178
■ “update-cron-allow.fin” on page 178
■ “update-cron-deny.fin” on page 178
■ “update-cron-log-size.fin” on page 178
■ “update-inetd-conf.fin” on page 179
Chapter 5 Finish Scripts 177

update-at-deny.fin

This script adds the accounts listed in JASS_AT_DENY to the
/etc/cron.d/at.deny file. This script prevents those users from using at and
batch facilities. This script is used with the install-at-allow.fin file to
determine access to at and batch facilities. For more information on this capability,
refer to the at(1) manual page.

update-cron-allow.fin

This script adds the accounts listed in JASS_CRON_ALLOW to the
/etc/cron.d/cron.allow file. This script allows those users to use the cron
facility. This script is used with the update-cron-deny.fin script to determine
access to the cron facility. For more information on this capability, refer to the
crontab(1) manual page.

update-cron-deny.fin

This script adds the accounts listed in JASS_CRON_DENY to the
/etc/cron.d/cron.deny file. This script prevents those users from accessing the
cron facility. This script is used with the update-cron-allow.fin script to
determine access to the cron facility. This script does not disable access for the root
account user. For more information on this capability, refer to the crontab(1)
manual page.

update-cron-log-size.fin

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script adjusts the maximum limit used for storing cron log information:

■ For Solaris OS versions prior to Solaris 9 OS, this script adjusts the LIMIT
variable in the /etc/cron.d/logchecker script.

■ For Solaris 9 and 10 OS, this script adjusts the -s parameter in the
/etc/logadm.conf file (for the /var/cron/log entry).

The size limit used by this script is determined by the JASS_CRON_LOG_SIZE
environment variable. By default, the limit defined by the Solaris OS is 0.5
megabytes.
178 Solaris Security Toolkit 4.2 Reference Manual • July 2005

update-inetd-conf.fin

This script disables all services, started from the inetd, that are defined by the
JASS_SVCS_DISABLE variable. This script enables the services listed by the
JASS_SVCS_ENABLE variable. If the same service is in both variables, the service is
enabled. The JASS_SVCS_ENABLE variable takes precedence.

All services, including common services such as in.telnetd, in.ftpd, and
in.rshd, in the base OS are disabled by default in Solaris OS versions 2.5.1 through
10.

■ In the Solaris 9 OS and earlier versions, the services are disabled after the script
inserts a # at the start of each line for service entries in the
/etc/inet/inetd.conf file. Additional services installed by unbundled or
third-party software are not disabled.

■ In the Solaris 10 OS, services are controlled through the Service Management
Facility and its commands, such as svcadm(1m).

Using Product-Specific Finish Scripts
Product-specific finish scripts are for hardening specific Sun products. These scripts
are in the Finish directory. TABLE 5-1 lists product-specific finish scripts.

New finish scripts are released periodically to harden new and updated Sun
products. For the latest list of scripts, refer to the Security Web site:

http://www.sun.com/security/jass

TABLE 5-1 Product-Specific Finish Scripts

Product Driver Name

Sun Cluster 3.x software suncluster3x-set-nsswitch-conf.fin

Sun Fire high-end systems domains s15k-static-arp.fin

Sun Fire high-end systems system
controllers

s15k-static-arp.fin

s15k-exclude-domains.fin

s15k-sms-secure-failover.fin
Chapter 5 Finish Scripts 179

suncluster3x-set-nsswitch-conf.fin

Note – Use this script only on Sun Cluster 3.x systems; it does not execute on other
systems.

This script automates the configuration of a system as a Sun Cluster 3.x node. This
script installs the cluster keyword into the /etc/nsswitch.conf file to simplify
deploying Sun Cluster 3.x systems. The keyword should be located in the hosts field.
For more information, refer to the Sun BluePrints OnLine article titled “Securing Sun
Cluster 3.x Software.”

s15k-static-arp.fin

Note – Use this script only on Sun Fire high-end systems SCs and domains; it does
not execute on other systems. Use this script only on System Management Services
(SMS) versions 1.2 through 1.4.1.

This script enables the use of static ARP addresses on the I1 MAN network. The I1
MAN network is a network internal to the Sun Fire high-end systems chassis, which
is used for TCP/IP-based communication between the SCs and domains. By using
static ARP instead of dynamic ARP, several ARP-based attacks against the SC no
longer have any effect.

The following four files are used by the Sun Fire high-end systems optional
s15k-static-arp.fin script:

■ /etc/sms_sc_arp
■ /etc/sms_domain_arp
■ /etc/rc2.d/S73sms_arpconfig
■ /etc/init.d/sms_arpconfig

For more information, refer to the Sun BluePrints OnLine article titled “Securing the
Sun Fire 12K and 15K System Controller” and the article titled “Securing the Sun
Fire 12K and 15K Domains.”

s15k-exclude-domains.fin

This script disables TCP/IP connectivity between the SC and one or more domains.
For more information, refer to the Sun BluePrints OnLine article titled “Securing the
Sun Fire 12K and 15K System Controller.”
180 Solaris Security Toolkit 4.2 Reference Manual • July 2005

s15k-sms-secure-failover.fin

Note – Use this script only on Sun Fire high-end systems SCs; it does not execute on
other systems.

This script automates enabling the use of Secure Shell by the failover daemon fomd.
This script automates much of the Secure Shell configuration, in addition to
disabling the use of legacy r* services.

For more information, refer to the Sun BluePrints OnLine article titled “Securing the
Sun Fire 12K and 15K System Controller.”
Chapter 5 Finish Scripts 181

182 Solaris Security Toolkit 4.2 Reference Manual • July 2005

CHAPTER 6

Audit Scripts

This chapter provides reference information on using, adding, modifying, and
removing audit scripts. Audit scripts provide an easy method for periodically
checking the security posture of a system. Check your systems regularly to make
sure that their security matches your security profile.

The standard audit scripts confirm that modifications controlled by finish scripts
were made to the system, and they report any discrepancies that occurred since the
hardening run. Audit scripts use the same name as their correlating finish script,
except they have a different suffix. Audit scripts use the .aud suffix instead of .fin.

This chapter contains the following topics:

■ “Customizing Audit Scripts” on page 183
■ “Using Standard Audit Scripts” on page 187
■ “Using Product-Specific Audit Scripts” on page 220

Customizing Audit Scripts
This section provides instructions and recommendations for customizing existing
audit scripts or creating new audit scripts. In addition, guidelines are provided for
using audit script functions.

Customize Standard Audit Scripts
Just as with Solaris Security Toolkit drivers and finish scripts, you can customize
audit scripts.
183

Caution – Be careful when modifying scripts that are supplied with the Solaris
Security Toolkit software. Always modify a copy of the script and not the original.
Failure to do so may result in a loss of functionality during Solaris Security Toolkit
software upgrade or removal.

Make as few changes as necessary to the code whenever possible and document
those changes.

Use environment variables to customize an audit script. The behavior of most scripts
can be significantly altered through environment variables, thereby eliminating the
need to modify the script’s code directly. If this is not possible, you may find it
necessary to modify the function by developing a customized one for use in the
user.run script. For a list of all environment variables and guidelines for defining
them, see Chapter 7.

Caution – Whenever you customize the standard finish scripts or develop new
ones, be sure to make the corresponding changes to related audit scripts.

Note – Consider submitting a bug report or request for enhancement if you think
that the change could benefit a wider audience. The Solaris Security Toolkit
development team is always looking for ways to improve the software to better
support its users.

▼ To Customize An Audit Script
Use the following steps to customize a standard audit script for your system and
environment. Use these instructions so that newer versions of the original files do
not overwrite your customized versions. Note that these files are not removed if you
use the pkgrm command to remove the Solaris Security Toolkit software.

1. Copy the audit script and related files that you want to customize.

Refer to Chapter 6 in the Solaris Security Toolkit 4.2 Administration Guide for
information about audit scripts and their related files.

2. Rename the copies with names that identify the files as custom scripts and files.

For naming guidelines, refer to “Guidelines,” Chapter 1, Solaris Security Toolkit 4.2
Administration Guide.
184 Solaris Security Toolkit 4.2 Reference Manual • July 2005

3. Modify your custom script and files accordingly.

The finish.init file provides all audit script configuration variables. You can
override the variable’s default value specified in the finish.init file by adding
the variable and its correct value to the user.init file. This file is heavily
commented to explain each variable, its impact, and its use in audit scripts. For more
information about this file and modifying its variables, see Chapter 3. If you want
the change to be localized rather than to apply to all drivers, modify the driver.

When you customize audit scripts, it is critical to the accuracy of the audit
functionality that both finish and audit scripts are able to access your customization.
This goal is most easily and effectively achieved by modifying environment
variables in the user.init script instead of modifying other init files or
modifying scripts directly.

CODE EXAMPLE 6-1 shows how the install-openssh.audit script validates a
correct software installation by checking whether the software package is installed,
configured, and set up to run whenever the system reboots. In this example, these
checks ensure that the software package is installed, configured, and set up to run
whenever the system reboots.

CODE EXAMPLE 6-1 Sample install-openssh.aud Script

#!/bin/sh
Copyright (c) 2005 by Sun Microsystems, Inc.
All rights reserved.
#
#ident "@(#)install-openssh.aud 1.3 07/12/05 SMI"
#

Service definition section.

#--
service="OpenSSH"
servfil="install-openssh.aud"
servhdr_txt="
#Rationale for Verification Check:
#This script will attempt to determine if the OpenSSH software is
#installed, configured and running on the system. Note that this
#script expects the OpenSSH software to be installed in package
#form in accordance with the install-openssh.fin Finish script.

#Determination of Compliance:

#It indicates a failure if the OpenSSH package is not installed,
#configured, or running on the system.
"

#--
Chapter 6 Audit Scripts 185

servpkg="
 OBSDssh
"

#--

servsrc="
 ${JASS_ROOT_DIR}/etc/rc3.d/S25openssh.server
"

#--

servcfg="
 ${JASS_ROOT_DIR}/etc/sshd_config
"

#--

servcmd="
 /opt/OBSDssh/sbin/sshd
"

**
Check processing section.

**

start_audit "${servfil}" "${service}" "${servhdr_txt}"

logMessage "${JASS_MSG_SOFTWARE_INSTALLED}"

if check_packageExists "${servpkg}" 1 LOG ; then
 pkgName="‘pkgparam -R ${JASS_ROOT_DIR} ${servpkg} NAME‘"
 pkgVersion="‘pkgparam -R ${JASS_ROOT_DIR} ${servpkg} VERSION‘"
 pkgBaseDir="‘pkgparam -R ${JASS_ROOT_DIR} ${servpkg} BASEDIR‘"
 pkgContact="‘pkgparam -R ${JASS_ROOT_DIR} ${servpkg} EMAIL‘"

 logNotice "Package has description ’${pkgName}’"
 logNotice "Package has version ’${pkgVersion}’"
 logNotice "Package has base directory ’${pkgBaseDir}’"
 logNotice "Package has contact ’${pkgContact}’"

 logMessage "\n${JASS_MSG_SOFTWARE_CONFIGURED}"
 check_startScriptExists "${servsrc}" 1 LOG

CODE EXAMPLE 6-1 Sample install-openssh.aud Script (Continued)

186 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Create New Audit Scripts
You can create new audit scripts and integrate them into your deployment of the
Solaris Security Toolkit software. Because scripts are developed in Bourne shell or
Perl on the Solaris 10 OS, it is relatively easy to add new functionality. For those who
are less experienced in UNIX shell scripting, examine existing audit scripts that
perform similar functions to gain an understanding of how to accomplish a given
task and to understand the correct sequence of actions.

The same conventions for developing new finish scripts apply to developing new
audit scripts. For these conventions, see “Customizing Finish Scripts” on page 131.

Note – Audit and finish scripts work together. Whenever you add new audit scripts,
be sure to add their companion finish scripts.

Using Standard Audit Scripts
Audit scripts provide an automated way within the Solaris Security Toolkit software
to validate a security posture by comparing it to a predefined security profile. Use
audit scripts to validate that security modifications were made correctly, and to
obtain reports on any discrepancies between a system’s security posture and your
security profile. For details on using audit scripts to validate system security, refer to
Chapter 6 in the Solaris Security Toolkit 4.2 Administration Guide.

This section describes the standard audit scripts, which are in the Audit directory.
Only the functionality performed by the audit scripts is described.

Each of the scripts in the Audit directory is organized into the following categories,
which mirror those of the finish scripts in the Finish directory:

■ disable

 check_serviceConfigExists "${servcfg}" 1 LOG

 logMessage "\n${JASS_MSG_SOFTWARE_RUNNING}"
 check_processExists "${servcmd}" 1 LOG
fi

finish_audit

CODE EXAMPLE 6-1 Sample install-openssh.aud Script (Continued)

Chapter 6 Audit Scripts 187

■ enable
■ install
■ minimize
■ print
■ remove
■ set
■ update

In addition to these standard audit scripts, Solaris Security Toolkit software provides
product-specific audit scripts. For a list of product-specific audit scripts, see “Using
Product-Specific Audit Scripts” on page 220.

Disable Audit Scripts
The following disable audit scripts are described in this section:

■ “disable-ab2.aud” on page 189
■ “disable-apache.aud” on page 189
■ “disable-apache2.aud” on page 189
■ “disable-appserv.aud” on page 190
■ “disable-asppp.aud” on page 190
■ “disable-autoinst.aud” on page 190
■ “disable-automount.aud” on page 190
■ “disable-dhcpd.aud” on page 191
■ “disable-directory.aud” on page 191
■ “disable-dmi.aud” on page 191
■ “disable-dtlogin.aud” on page 191
■ “disable-face-log.aud” on page 192
■ “disable-IIim.aud” on page 192
■ “disable-ipv6.aud” on page 192
■ “disable-kdc.aud” on page 192
■ “disable-keyboard-abort.aud” on page 193
■ “disable-keyserv-uid-nobody.aud” on page 193
■ “disable-ldap-client.aud” on page 193
■ “disable-lp.aud” on page 193
■ “disable-mipagent.aud” on page 194
■ “disable-named.aud” on page 194
■ “disable-nfs-client.aud” on page 194
■ “disable-nfs-server.aud” on page 194
■ “disable-nscd-caching.aud” on page 195
■ “disable-picld.aud” on page 195
■ “disable-power-mgmt.aud” on page 195
■ “disable-ppp.aud” on page 195
■ “disable-preserve.aud” on page 195
■ “disable-remote-root-login.aud” on page 196
■ “disable-rhosts.aud” on page 196
188 Solaris Security Toolkit 4.2 Reference Manual • July 2005

■ “disable-routing.aud” on page 196
■ “disable-rpc.aud” on page 196
■ “disable-samba.aud” on page 197
■ “disable-sendmail.aud” on page 197
■ “disable-slp.aud” on page 198
■ “disable-sma.aud” on page 198
■ “disable-snmp.aud” on page 198
■ “disable-spc.aud” on page 198
■ “disable-ssh-root-login.aud” on page 199
■ “disable-syslogd-listen.aud” on page 199
■ “disable-system-accounts.aud” on page 199
■ “disable-uucp.aud” on page 199
■ “disable-vold.aud” on page 200
■ “disable-wbem.aud” on page 200
■ “disable-xfs.aud” on page 200
■ “disable-xserver.listen.aud” on page 200

disable-ab2.aud

Note – Use this script only for systems running the Solaris OS versions 2.5.1 through
8, because the AnswerBook2 software is no longer used in Solaris OS versions 9 and
10.

This script determines if the AnswerBook2 service is installed, configured, or
running on the system. It indicates a failure if the software is installed, configured to
run, or running on the system.

disable-apache.aud

Note – This script checks only for the Apache Web Server that was packaged by Sun
and shipped as part of Solaris OS versions 8 and 9.

This script determines if the Apache Web Server is installed, configured, or running
on the system. It indicates a failure if the software is installed, configured to run, or
running on the system.

disable-apache2.aud

Note – Use this script only for systems running the Solaris 10 OS.
Chapter 6 Audit Scripts 189

This script determines if the Apache 2 service is installed, configured, or running on
the system. It indicates a failure if the software is installed, configured to run, or
running on the system.

disable-appserv.aud

Note – Use this script only for systems running the Solaris 10 OS.

This script determines if the Sun Java Application Server is installed, configured, or
running on the system. The script indicates a failure if the software is installed or
configured to run.

disable-asppp.aud

Note – Use this script only for systems running Solaris OS versions 2.5.1 through 8.
For Solaris 9 and 10 OS, this service was replaced with the PPP service and is
verified using the disable-ppp.aud script.

This script determines if the ASPPP service is installed, configured, or running on
the system. It indicates a failure if the software is installed, configured to run, or
running on the system.

disable-autoinst.aud

This script determines if automated installation functionality is installed or enabled
on the system. It indicates a failure if the software is installed or configured to run.

disable-automount.aud

Note – If the automount service is required, then do not use this script. Because this
service also relies on the RPC service, do not use the disable-rpc.aud script.

This script determines if the automount service is installed, configured, or running
on the system. It indicates a failure if the software is installed, configured to run, or
running on the system.
190 Solaris Security Toolkit 4.2 Reference Manual • July 2005

disable-dhcpd.aud

Note – Use this script only on the DHCP server included in Solaris OS versions 8
through 10.

This script determines if the DHCP service is installed, configured, or running on the
system. It indicates a failure if the software is installed, configured to run, or running
on the system.

disable-directory.aud

Note – This audit script checks only for the Solaris 9 or 10 OS-bundled Sun Java
System Directory Server. This script does not audit either the unbundled product or
the Sun Java System Directory Server software provided with other Solaris OS
versions.

This script determines if the Sun Java System Directory service is installed,
configured, or running on the system. It indicates a failure if the software is
installed, configured to run, or running on the system.

disable-dmi.aud

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script determines if the DMI service is installed, configured, or running on the
system. It indicates a failure if the software is installed, configured to run, or running
on the system.

disable-dtlogin.aud

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script determines if the CDE login server, or dtlogin, is installed, configured,
or running on the system. It indicates a failure if the software is installed, configured
to run, or running on the system.
Chapter 6 Audit Scripts 191

disable-face-log.aud

Note – Use this script only for systems running the Solaris 10 OS.

This script verifies that the /usr/oasys/tmp/TERRLOG file is present and has no
write permissions for Group and Other. The script indicates a failure if the file has
global write permissions by Group or Other.

disable-IIim.aud

Note – Use this script only for systems running Solaris OS versions 9 and 10.

This script determines if the IIim service is installed, configured, or running on the
system. The script indicates a failure if the software is installed, configured to run, or
actually running on the system.

disable-ipv6.aud

Note – Use this script only for systems running Solaris OS versions 8, 9, and 10.

This script checks for the absence of the IPv6 host name files, /etc/hostname6.*,
that cause IPv6 interfaces to be plumbed. This script checks if the in.ndpd service is
started. It indicates a failure if any IPv6 interfaces are configured, plumbed, or if the
service is running.

disable-kdc.aud

Caution – On the Solaris 9 OS, if JASS_DISABLE_MODE is set to conf, the
kdc.conf file is disabled, thus determining the ability of the system to act as both a
Kerberos client and KDC server. Do not use this script in that manner if the system
must act as a Kerberos client.

Note – Use this script only for systems running Solaris OS versions 9 and 10.
192 Solaris Security Toolkit 4.2 Reference Manual • July 2005

This script determines if the KDC service is installed, configured, or running on the
system. It indicates a failure if the software is installed, configured to run, or running
on the system.

disable-keyboard-abort.aud

Note – Use this script only on systems running Solaris OS versions 2.6 through 10.

Note – Some systems feature key switches with a secure position. On these systems,
setting the key switch to the secure position overrides any software default set with
the kdb command.

This script determines if the system is configured to ignore keyboard abort
sequences. Typically, when a keyboard abort sequence is initiated, the operating
system is suspended and the console enters the OpenBoot PROM monitor or
debugger. This script determines if the system can be suspended in this way.

disable-keyserv-uid-nobody.aud

This script determines if the keyserv service is not configured to prevent the use of
default keys for the user nobody. This script indicates a failure if the keyserv
process is not running with the -d flag and the ENABLE_NOBODY_KEYS parameter is
not set to NO (for Solaris OS versions 9 and 10).

disable-ldap-client.aud

Note – Use this script only on systems running Solaris OS versions 8 through 10.

This script determines if the LDAP client service is installed, configured, or running
on the system. It indicates a failure if the software is installed, configured to run, or
running on the system.

disable-lp.aud

This script determines if the line printer (lp) service is installed, configured, or
running on the system. It indicates a failure if the software is installed, configured to
run, or running on the system. This script also indicates a failure if the lp user is
permitted to use the cron facility or has a crontab file installed.
Chapter 6 Audit Scripts 193

disable-mipagent.aud

Note – Use this script only for Solaris OS versions 8 through 10.

This script determines if the Mobile IP service is installed, configured, or running on
the system. It indicates a failure if the software is installed, configured to run, or
running on the system.

disable-named.aud

Note – Disabling this service does not affect the ability of the system to act as a
Domain Name System (DNS) client.

This script determines if the DNS server is installed, configured, or running on the
system. This script indicates a failure if the software is installed, configured to run
(through a configuration file), or actually running on the system.

This script checks only for the DNS server that was packaged by Sun Microsystems
and shipped as part of the Solaris OS.

disable-nfs-client.aud

Caution – If the NFS client service is required, then do not use this script. Because
this service also relies on the RPC service, do not use the disable-rpc.aud script.

This script determines if the NFS client service is configured or running on the
system. It indicates a failure if the software is configured to run or is running on the
system.

disable-nfs-server.aud

Caution – If the NFS service is required, then do not use this script. Because this
service also relies on the RPC service, do not use the disable-rpc.aud script.

This script determines if the NFS service is configured or running on the system. It
indicates a failure if the software is configured to run or is running on the system.
194 Solaris Security Toolkit 4.2 Reference Manual • July 2005

disable-nscd-caching.aud

This script determines if any of the passwd, group, host, or ipnodes services have
a positive time-to-live or negative time-to-live value that is not set to 0. The script
indicates a failure if the value is not 0.

disable-picld.aud

Note – Use this script only for systems running Solaris OS versions 8 and 9.

This script determines if the PICL service is installed, configured, or running on the
system. It indicates a failure if the software is installed, configured to run, or running
on the system.

disable-power-mgmt.aud

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script determines if the power management service is installed, configured, or
running on the system. It indicates a failure if the software is installed, configured to
run, or running on the system.

disable-ppp.aud

Note – This service was introduced in Solaris 8 OS (7/01) and supplements the
older ASPPP service. Use this script only for systems running Solaris OS versions 8
through 10.

This script determines if the PPP service is installed, configured, or running on the
system. It indicates a failure if the software is installed, configured to run, or running
on the system.

disable-preserve.aud

This script determines if the preserve functionality is enabled. If enabled, a failure is
indicated.
Chapter 6 Audit Scripts 195

disable-remote-root-login.aud

Note – Other mechanisms to access systems, such as the use of Solaris Secure Shell,
that do not use /bin/login might still provide direct root access, even if the
system passes this test.

This script determines, and indicates a failure, if a root user is permitted to directly
log in to or execute commands on a system remotely through programs using
/bin/login, such as telnet.

disable-rhosts.aud

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script determines if the rhosts and hosts.equiv functionality is enabled
through PAM configuration in /etc/pam.conf. The script indicates a failure if this
functionality is enabled using the pam_rhosts_auth.so.1 module in the
/etc/pam.conf file.

disable-routing.aud

Note – Use this script only for systems running Solaris OS versions 5.51 through 10.

This script determines if routing, or packet forwarding, of network packets from one
network to another is disabled.

disable-rpc.aud

Caution – The RPC port mapper function should not be disabled if any of the
following services are used on the system: automount, NFS, NIS, NIS+, CDE, and
volume management (Solaris 9 and 10 OS only).

This script determines if the RPC service is installed, configured, or running on the
system. It indicates a failure if the software is installed, configured to run, or running
on the system. In addition, this script indicates a failure for each service registered
with the rpcbind port mapper.
196 Solaris Security Toolkit 4.2 Reference Manual • July 2005

disable-samba.aud

Note – Use this script only for systems running Solaris OS versions 9 and 10.

This script determines if the Samba service is installed, configured, or running on
the system. It indicates a failure if the software is installed, configured to run, or
running on the system. Only Samba services included in the Solaris OS distribution
are verified as being disabled. This script does not impact other Samba distributions
installed on the system.

disable-sendmail.aud

Note – The Solaris Security Toolkit software modifications verify only that a Solaris
OS system is not configured to receive email. Outgoing email is still processed
normally.

By default, the sendmail service is configured to both forward local mail and to
receive incoming mail from remote sources. If a system is not intended to be a mail
server, then the sendmail service can be configured not to accept incoming
messages. This script checks that the sendmail service is configured not to accept
incoming messages.

This check is performed in a variety of ways depending on the version of the Solaris
OS used.

■ For Solaris OS versions 9 and 10, this script checks for the existence of the
following in the /etc/mail/sendmail.cf file:

■ For Solaris 8 OS, this script checks the /etc/default/sendmail file to
determine if the MODE parameter is set to "" (nothing).

■ For earlier versions of the Solaris OS, this script determines if the sendmail run-
control scripts are disabled and an entry added to the root user’s crontab file to
automate the processing of queued mail.

This script indicates a failure if the sendmail service is not disabled in accordance
with the checks specific to the Solaris OS version.

Name=NoMTA4, Family=inet, Addr=127.0.0.1
Chapter 6 Audit Scripts 197

disable-slp.aud

Note – Use this script only for systems running Solaris OS versions 8, 9, and 10.

This script determines if the SLP service is installed, configured, or running on the
system. It indicates a failure if the software is installed, configured to run, or running
on the system.

disable-sma.aud

Note – Use this script only for systems running the Solaris 10 OS.

This script determines if the SMA service is installed, configured, or running on the
system. This script indicates a failure if the software is called, configured to run, or
actually running on the system.

disable-snmp.aud

Note – This script checks only the SNMP agent provided in Solaris OS versions 2.6
through 10.

This script determines if the SNMP service is installed, configured, or running on the
system. It indicates a failure if the software is installed, configured to run, or running
on the system. This script does not verify whether third-party SNMP agents are
functioning on the system.

disable-spc.aud

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script determines if the SPC service is installed, configured, or running on the
system. It indicates a failure if the software is installed, configured to run, or running
on the system.
198 Solaris Security Toolkit 4.2 Reference Manual • July 2005

disable-ssh-root-login.aud

Note – Use this script only for systems running at Solaris 9 or 10 OS with the Solaris
Secure Shell packages installed and enabled.

This script indicates a failure if the Solaris Secure Shell service distributed in the
Solaris OS versions 9 and 10 does not restrict access to the root account.

disable-syslogd-listen.aud

Note – Do not use this script on a SYSLOG server, because a SYSLOG server’s
function is to accept remotely generated SYSLOG log messages. Use this script only
for systems running the Solaris OS versions 8 through 10.

The script sets options to disallow the remote logging functionality of the syslogd
process. This script determines if the SYSLOG service is configured to accept remote
log connections. The script indicates a failure if the syslogd process is not running
with the -t flag (Solaris 8 OS) and the LOG_FROM_REMOTE parameter is not set to NO
(Solaris OS versions 9 and 10).

disable-system-accounts.aud

For each account name listed in the JASS_ACCT_DISABLE environment variable,
this script indicates a failure for each account that is not configured to use the shell
defined by the JASS_SHELL_DISABLE variable. This script also indicates a failure if
the shell program listed in the JASS_SHELL_DISABLE variable does not exist on the
system.

Note – This script only checks accounts that are listed in the /etc/passwd file. It
does not check for accounts listed in any other naming service (NIS, NIS+, or LDAP).

disable-uucp.aud

This script determines if the UUCP service is installed, configured, or running on the
system. It indicates a failure if the software is installed, configured to run, or running
on the system. This script also indicates a failure if the nuucp user exists (Solaris 9
OS and earlier), or is not locked (Solaris 10), if in.uucpd exists in
/etc/inetd.conf, or if a uucp crontab file is installed.
Chapter 6 Audit Scripts 199

disable-vold.aud

Note – Do not use this script if the systems needs automatic mounting and
unmounting of removable media, such as diskettes and CD-ROMs.

This script determines if the VOLD service is installed, configured, or running on the
system. It indicates a failure if the software is installed, configured to run, or is
running on the system.

disable-wbem.aud

Note – If the WBEM service is required, then do not use this script. Because this
service also relies on the RPC service, do not use the disable-rpc.fin script. Do not use
this script if you use the Solaris Management Console. Use this script only for
systems running Solaris OS versions 8 through 10.

This script determines if the WBEM service is installed, configured, or running on
the system. It indicates a failure if the software is installed, configured to run, or
running on the system.

disable-xfs.aud

Note – Use this script only for systems running the Solaris 10 OS.

This script determines if the xfs service is installed, enabled, or running on the
system. This script indicates a failure if the software is enabled to run or actually
running on the system.

disable-xserver.listen.aud

Note – Use this script only for systems running Solaris OS versions 9 and 10.

This script indicates a failure if the X11 server is configured to accept client
connections using the TCP transport. In addition, it indicates a failure if the X11
server is running in a configuration that permits use of the TCP transport.
200 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Enable Audit Scripts
The following enable audit scripts are described in this section:

■ “enable-account-lockout.aud” on page 201
■ “enable-bart.aud” on page 201
■ “enable-bsm.aud” on page 202
■ “enable-coreadm.aud” on page 202
■ “enable-ftp-syslog.aud” on page 202
■ “enable-ftpaccess.aud” on page 203
■ “enable-inetd-syslog.aud” on page 203
■ “enable-ipfilter.aud” on page 203
■ “enable-password-history.aud” on page 204
■ “enable-priv-nfs-ports.aud” on page 204
■ “enable-process-accounting.aud” on page 204
■ “enable-rfc1948.aud” on page 204
■ “enable-stack-protection.aud” on page 205
■ “enable-tcpwrappers.aud” on page 205

enable-account-lockout.aud

Note – Use this script only for systems running the Solaris 10 OS.

This script verifies that the value of LOCK_AFTER_RETRIES is defined correctly in
the /etc/security/policy.conf file. In addition, this script checks to ensure
that no users have a different value than LOCK_AFTER_RETRIES specified in
/etc/user_attr.

enable-bart.aud

Note – Use this script only for systems running the Solaris 10 OS.

This script verifies that BART has been run and compares BART rules and manifests
files.

The script determines if a BART rules file is present, and if so, determines if its
configuration is consistent with the driver being run and its BART rules file. If the
BART rules file configuration is not consistent with the driver being run and its
BART rules file, the script copies a rules file from
$JASS_FILES/var/opt/SUNWjass/bart/rules. This script also creates a new
manifest in /var/opt/SUNWjass/BART/manifests named
JASS_TIMESTAMP.txt; for example, 20050711152248.txt.
Chapter 6 Audit Scripts 201

The script also reports any differences between the new and most recent manifest
files, generates audit messages containing the names of the BART manifests used,
and suggests that the user check against earlier manifest files or the FingerPrint
Database for any issues found.

Note – Errors reported by the enable-bart.aud script are not necessarily cause for
alarm. Errors are reported whenever changes are found in the directories the script
checks, such as added, deleted, or modified files, or file permissions. However, the
output produced by the enable-bart.aud script does need to be reviewed for any
potential problems.

enable-bsm.aud

Note – Use this script only for systems running Solaris OS versions 8 through 10.

This script determines if the SunSHIELD Solaris Basic Security Module (Solaris
BSM) auditing functionality is enabled and running on the system, if the service is
loaded in the /etc/system file, and if the audit_warn alias is defined in
/etc/mail/aliases. If one or more of these checks fail, then the script indicates a
failure.

enable-coreadm.aud

Note – Use this script only for systems running Solaris OS versions 7 through 10.

This script verifies that the system stores generated core files under the directory
specified by JASS_CORE_DIR. It indicates a failure if the coreadm functionality
present in the Solaris OS versions 7 through 10 is not configured. An error condition
also is generated if core files are not tagged with the specification denoted by
JASS_CORE_PATTERN.

enable-ftp-syslog.aud

This script determines if the FTP service is not configured to log session and
connection information. A failure is indicated if the FTP service logging is not
enabled.
202 Solaris Security Toolkit 4.2 Reference Manual • July 2005

enable-ftpaccess.aud

Note – Use this script only for systems running Solaris OS versions 9 and 10.

This script determines if the FTP service is configured to use the
/etc/ftpd/ftpaccess file. A failure is indicated if FTP is not configured properly.

enable-inetd-syslog.aud

This script determines if the Internet services daemon (inetd) service is configured
to log session and connection information:

■ For the Solaris 9 OS, this script checks that the -t option was added to the
inetd command line and that the ENABLE_CONNECTION_LOGGING variable in
the /etc/default/inetd file is set to YES. A failure is indicated if either of
these checks fail.

■ For the Solaris 10 OS, this script checks whether the defaults/tcp-trace
property is defined for the FMRI svc:/network/inetd. The script also checks
any running inetd processes that have the -t option specified.

enable-ipfilter.aud

Note – Use this script only for systems running the Solaris 10 OS.

This script reviews the ipfilter configuration of all available network interfaces
and verifies that the correct IP Filter rule set is installed. The script does the
following:

■ Parses /etc/ipf/pfil.ap to determine if any network interfaces are
commented out. If some network interfaces are commented out, the script
generates a security policy violation message.

■ Reviews the existing /etc/ip/ipf.conf file on the system to see if it is the
same as the keyword-specific driver. If it is not, the script generates a security
policy violation message.

■ Verifies that the network/ipfilter service is enabled. If it is not, the script
generates a security policy violation.
Chapter 6 Audit Scripts 203

enable-password-history.aud

Note – Use this script only for systems running the Solaris 10 OS.

This script verifies the correct configuration of password history on the system. The
script checks the /etc/default/passwd file to determine if a HISTORY value is
specified:

■ If a HISTORY value is specified in the /etc/default/passwd file, the script
checks it against the value in the JASS_PASS_HISTORY environment variable to
see if it is correct.

■ If the HISTORY value is not correct as specified in the JASS_PASS_HISTORY
environment variable, the script corrects the value.

■ If the HISTORY value is not set properly, the script corrects the value and issues
an audit security violation.

enable-priv-nfs-ports.aud

This script determines if the NFS service is configured to accept only client
communication that originates from a port in the privileged range below 1024. A
failure is indicated if the NFS service is not configured properly.

enable-process-accounting.aud

This script determines if the processing accounting software is installed, enabled, or
running on the system. A failure is indicated if this is not true.

enable-rfc1948.aud

Note – Use this script only on systems running Solaris OS versions 2.6 through 10.

This script determines if the system is configured to use RFC 1948 for its TCP
sequence number generation. This script checks both the stored configuration and
the actual runtime setting. A failure is displayed if the system is not configured to
use RFC 1948–compliant TCP sequence number generation.
204 Solaris Security Toolkit 4.2 Reference Manual • July 2005

enable-stack-protection.aud

Note – Use this script only on systems running Solaris OS versions 2.6 through 10.

This script determines if the noexec_user_stack and noexec_user_stack_log
options are set in the /etc/system file to enable stack protections and exception
logging. If these options are not enabled, a failure is reported.

enable-tcpwrappers.aud

Note – Use this script only on systems running Solaris OS versions 9 and 10 using
the bundled TCP wrapper packages.

This script determines if TCP wrappers are not installed or configured using the
hosts.allow|deny templates included with the Solaris Security Toolkit software
or enabled by using the ENABLE_TCPWRAPPERS variable. A failure is reported if the
system is not using TCP wrappers.

For Solaris 10 OS only:

In addition, this script:

■ Verifies that inetd is using tcp_wrappers

■ Verifies that rpcbind is using tcp_wrappers

■ Verifies the contents of the related keyword-specific hosts.allow|deny by
using the function check_fileContentsexist to compare the keyword-
specific file in $JASS_FILES against the hosts.allow|deny on the system to
determine if the contents match. If the contents do not match, the script logs an
error.

Install Audit Scripts
The following install audit scripts are described in this section:

■ “install-at-allow.aud” on page 206
■ “install-fix-modes.aud” on page 206
■ “install-ftpusers.aud” on page 206
■ “install-jass.aud” on page 206
■ “install-loginlog.aud” on page 207
■ “install-md5.aud” on page 207
■ “install-nddconfig.aud” on page 207
■ “install-newaliases.aud” on page 207
Chapter 6 Audit Scripts 205

■ “install-openssh.aud” on page 208
■ “install-recommended-patches.aud” on page 208
■ “install-sadmind-options.aud” on page 208
■ “install-security-mode.aud” on page 208
■ “install-shells.aud” on page 209
■ “install-strong-permissions.aud” on page 209
■ “install-sulog.aud” on page 210
■ “install-templates.aud” on page 210

install-at-allow.aud

This script determines if a user name is listed in the JASS_AT_ALLOW variable and
does not exist in the /etc/cron.d/at.allow file. The list of user names defined
by JASS_AT_ALLOW is empty by default. To pass this check, each user name must
exist in both the /etc/passwd file and the /etc/cron.d/at.allow file.
Furthermore, a user name should not be in the /etc/cron.d/at.deny file. A
failure is displayed if a user name is not listed in both files.

install-fix-modes.aud

Note – Use this script only on systems running Solaris OS versions 2.5.1 through 9.

This script determines if the Fix Modes program was installed and run on the
system. It indicates a failure if the software is not installed or has not been run.
Further, this script uses Fix Modes in debug mode to determine if any additional file
system objects should be adjusted.

install-ftpusers.aud

This script determines if a user name listed in the JASS_FTPUSERS parameter does
not exist in the ftpusers file.

install-jass.aud

This script determines if the Solaris Security Toolkit (SUNWjass) package is installed
on the system. A failure is reported if this package is not installed.
206 Solaris Security Toolkit 4.2 Reference Manual • July 2005

install-loginlog.aud

This script checks for the existence, proper ownership, and permissions for the
/var/adm/loginlog file. It indicates a failure if the file does not exist, has invalid
permissions, or is not owned by the root account.

install-md5.aud

This script determines if the MD5 software is installed on the system. A failure is
reported if the software is not installed.

install-nddconfig.aud

This script determines if the nddconfig run-control script files identified in the Sun
BluePrints OnLine article, Solaris Operating Environment Network Settings for Security
and included with the Solaris Security Toolkit, have been copied to, and their
settings made active on, the target system.

The script performs the following checks per object:

1. Tests to ensure that the source and target file types (regular file, symbolic link, or
directory) match

2. Tests to ensure that the source and target file type contents are the same

This script also verifies that the settings defined by the nddconfig script are
actually in place on the running system. This script uses its own copy of the
nddconfig script in the Solaris Security Toolkit to provide more accurate reporting
of results, especially in cases where the script name has changed or where other
scripts are used to implement the same effects.

This script gives a failure when any of the checks described above are found to be
false.

install-newaliases.aud

Note – Use this script only on systems running Solaris OS versions 2.5.1 through 8.

This script checks for the existence of the /usr/bin/newaliases program. It
indicates a failure if this file does not exist or is not a symbolic link.
Chapter 6 Audit Scripts 207

install-openssh.aud

Note – Use this script only for systems running Solaris OS versions 2.5.1 through 8.
Solaris 9 and 10 OS includes a version of the Secure Shell software; therefore, do not
use this script if you install Solaris 9 and 10 OS.

This script determines if the OpenSSH package specified by the script is installed
and configured. A failure is reported if the package is not installed.

install-recommended-patches.aud

This script determines if the patches listed in the Recommended and Security Patch
Cluster file are installed on the system. The patch information is collected from
JASS_HOME_DIR/Patches directory, based on the Solaris OS version of the system
being tested. A failure is displayed if one or more of these patches are not installed.

Note that this script indicates success if the version of the patch installed is equal to
or greater than the version listed in the patch order file.

install-sadmind-options.aud

Note – Use this script only for systems running Solaris OS versions 2.5.1 through 9.

This script determines if the sadmind service exists in the /etc/inet/inetd.conf
file. If it does, this script checks to ensure that options are set to those defined by
the JASS_SADMIND_OPTIONS variable. The default setting is -S 2.

install-security-mode.aud

This script checks the status of the EEPROM security mode. It displays a warning if
the mode is not command or full. In addition, this script checks the PROM failed
login counter and displays a warning if it is not zero.

Note – Because the install-security-mode.fin script cannot change the
security mode of the system, this script only indicates a warning for noncompliance
rather than reporting a failure.
208 Solaris Security Toolkit 4.2 Reference Manual • July 2005

install-shells.aud

This script determines if any shell defined by the JASS_SHELLS parameter is not
listed in the shells file. TABLE 6-1 lists the shells defined by JASS_SHELLS.

A failure is displayed if any shells listed in JASS_SHELLS are not also listed in the
shells file.

install-strong-permissions.aud

Note – Do not use this script for systems running the Solaris 10 OS.

This script determines if any of the modifications recommended by the install-
strong-permissions.fin script were not implemented. A failure is displayed if
any of these modifications were not made.

This script is not used for the Solaris 10 OS, because the Solaris 10 OS has
incorporated many permission and ownership changes. This script is not undoable,
and the resulting support impact is no longer worth the security improvement given
the changes to the Solaris 10 OS.

TABLE 6-1 List of Shells Defined by JASS_SHELLS

/usr/bin/sh /usr/bin/csh

/usr/bin/ksh /usr/bin/jsh

/bin/sh /bin/csh

/bin/ksh /bin/jsh

/sbin/sh /sbin/jsh

/bin/bash /bin/pfcsh

/bin/pfksh /bin/pfsh

/bin/tcsh /bin/zsh

/usr/bin/bash /usr/bin/pfcsh

/usr/bin/pfksh /usr/bin/pfsh

/usr/bin/tcsh /usr/bin/zsh
Chapter 6 Audit Scripts 209

install-sulog.aud

This script checks for the proper ownership and permissions of the
/var/adm/sulog file. The script indicates a failure if the file does not exist, has
invalid permissions, or is not owned by the root account.

install-templates.aud

This script determines if the files defined by the JASS_FILES variable were
successfully copied to the target system. It indicates a failure if either of the two
following checks fail: a test to ensure that the source and target file types match
(regular file, symbolic link, or directory) and a test to ensure that their contents are
the same.

Print Audit Scripts
The following print audit scripts are described in this section:

■ “print-jass-environment.aud” on page 210
■ “print-jumpstart-environment.aud” on page 210
■ “print-rhosts.aud” on page 211
■ “print-sgid-files.aud” on page 211
■ “print-suid-files.aud” on page 211
■ “print-unowned-objects.aud” on page 211
■ “print-world-writable-objects.aud” on page 211

These scripts perform the same functions as the print finish scripts, except that they
are customized for audit use.

print-jass-environment.aud

Note – Do not use this script for systems running the Solaris 10 OS.

This script displays the variables and their content used by the Solaris Security
Toolkit. It does not perform any validation or other checks on the content.

print-jumpstart-environment.aud

This script is for JumpStart mode only. It is used to print out JumpStart environment
variable settings. This script does not perform any audit checks.
210 Solaris Security Toolkit 4.2 Reference Manual • July 2005

print-rhosts.aud

Note – The print-rhosts.aud script needs to be enabled manually if the extra
processing time the script requires is acceptable.

This script displays a notice for any files found with the name of .rhosts or
hosts.equiv. Further, this script displays the contents of those files for further
inspection.

print-sgid-files.aud

This script displays a notice for any files that have the set-gid bit set, and it
provides a full (long) listing for further review.

print-suid-files.aud

This script displays a notice for any files that have the set-uid bit set, and it
provides a full (long) listing for further review.

print-unowned-objects.aud

This script displays a notice for any files that are not assigned to a valid user and
group, and it provides a full (long) listing for further review.

print-world-writable-objects.aud

This script displays a notice for any matching files that are world-writable, and it
provides a full (long) listing for further review.

Remove Audit Script
The following remove audit script is described in this section:

■ “remove-unneeded-accounts.aud” on page 212
Chapter 6 Audit Scripts 211

remove-unneeded-accounts.aud

Note – Use this script only for systems running Solaris OS versions 2.5.1 through 9.

The remove-unneeded-accounts.aud script validates that unused Solaris OS
accounts, defined by the JASS_ACCT_REMOVE variable, were removed from the
system.

Set Audit Scripts
The following set audit scripts are described in this section:

■ “set-banner-dtlogin.aud” on page 212
■ “set-banner-ftpd.aud” on page 213
■ “set-banner-sendmail.aud” on page 213
■ “set-banner-sshd.aud” on page 213
■ “set-banner-telnet.aud” on page 213
■ “set-flexible-crypt.aud” on page 214
■ “set-ftpd-umask.aud” on page 214
■ “set-login-retries.aud” on page 214
■ “set-power-restrictions.aud” on page 214
■ “set-rmmount-nosuid.aud” on page 215
■ “set-root-group.aud” on page 215
■ “set-root-home-dir.aud” on page 215
■ “set-root-password.aud” on page 215
■ “set-strict-password-checks.aud” on page 216
■ “set-sys-suspend-restrictions.aud” on page 216
■ “set-system-umask.aud” on page 216
■ “set-term-type.aud” on page 216
■ “set-tmpfs-limit.aud” on page 216
■ “set-user-password-reqs.aud” on page 217
■ “set-user-umask.aud” on page 217

set-banner-dtlogin.aud

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script verifies that a service banner for the CDE or dtlogin service is defined.
This script verifies that the system displays the contents of /etc/motd by listing it
in the file template
JASS_ROOT_DIR/etc/dt/config/Xsession.d/0050.warning.
212 Solaris Security Toolkit 4.2 Reference Manual • July 2005

set-banner-ftpd.aud

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script checks that the FTP service banner matches the value defined by the
JASS_BANNER_FTPD variable. It indicates a failure if the service banner does not
match. The value of the variable is Authorized Use Only.

set-banner-sendmail.aud

Note – Use this script only for systems running Solaris OS versions 9 and 10.

This script verifies that the sendmail service is configured to display the service
banner as defined by the JASS_BANNER_SENDMAIL environment variable. This
banner is displayed to all clients connecting to the sendmail service over the
network.

set-banner-sshd.aud

Note – Use this script only for systems running Solaris OS versions 9 and 10.

This script verifies that the Secure Shell service banner is displayed by ensuring that
the Secure Shell service displays the contents of /etc/issue to the user prior to
authenticating access to the system.

set-banner-telnet.aud

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script checks that the Telnet service banner matches the value defined by the
JASS_BANNER_TELNETD variable It indicates a failure if the service banner does not
match. The value of the variable is Authorized Use Only.
Chapter 6 Audit Scripts 213

set-flexible-crypt.aud

Note – Use this script only for systems running the Solaris 10 OS.

This script verifies the use of strong passwords by checking that the changes
described in CODE EXAMPLE 5-7 on page 172 for each of the Solaris Security Toolkit
drivers have been made correctly.

If Perl is installed on the system during an audit by this script, the Solaris Security
Toolkit 4.2 software attempts to use it. If Perl is not on the system, the script issues
an error.

set-ftpd-umask.aud

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script checks that the FTP service banner matches the value defined by the
JASS_FTPD_UMASK variable. It indicates a failure if the file creation mask value does
not match. The value of variable is 022.

set-login-retries.aud

This script determines if the login RETRIES parameter is assigned the value defined
by the JASS_LOGIN_RETRIES variable. The variable default is set to 3. A failure is
displayed if the variable is not set to the default.

set-power-restrictions.aud

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script checks the /etc/default/power file and indicates a failure if the
PMCHANGEPERM and CPRCHANGEPERM parameters do not have a hyphen “-” as their
values.
214 Solaris Security Toolkit 4.2 Reference Manual • July 2005

set-rmmount-nosuid.aud

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.
Solaris OS versions 8 through 10 are configured to mount removable media with the
nosuid option by default. This script performs the necessary checks regardless of
the default settings.

This script determines if the /etc/rmmount.conf file restricts the mounting of a
removable Unix File System (UFS) or a High Sierra File System (HSFS) by enforcing
the nosuid parameter. A failure is displayed if this restriction is not defined in the
/etc/rmmount.conf file.

set-root-group.aud

This script determines if the root account’s primary group is set to the value
defined by the JASS_ROOT_GROUP variable. A failure is displayed if it is not defined
properly.

set-root-home-dir.aud

Note – Use this script only for systems running the Solaris 10 OS.

This script checks to see if the root account has a home directory of / in the
/etc/passwd file:

■ If the home directory is /, the script generates an audit error.

■ If the home directory is /root, the script checks the following:

■ Directory ownership should be root:root
■ Directory permissions should be 0700
■ Dot files (/.cshrc, /.profile, /llogin, /.ssh) are moved from / to /root
■ Dot file permissions should all be 0700

■ If the home directory is neither / nor /root, the script generates a warning, but
not an audit error.

set-root-password.aud

This script checks the password of the root account. It indicates a failure if the
value is the same as that of the JASS_ROOT_PASSWORD variable. This check is done
to encourage users to change the root password from the value defined by
JASS_ROOT_PASSWORD as soon as possible.
Chapter 6 Audit Scripts 215

set-strict-password-checks.aud

Note – Use this script only for systems running the Solaris 10 OS.

This script verifies that the correct values for the various password checks are
defined correctly in the /etc/default/passwd file.

set-sys-suspend-restrictions.aud

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script checks the /etc/default/sys-suspend file. It indicates a failure if the
PERMS parameter does not have a hyphen “-” as its value.

set-system-umask.aud

This script determines if the system’s default file creation mask is set to the value
defined by the JASS_UMASK variable. The default value is set to 022. A failure is
displayed if the variable is not properly defined.

set-term-type.aud

This script determines if the /etc/profile and the /etc/login files set the
default terminal type to vt100. A failure is displayed if the default terminal type is
not defined properly. This script is provided as a convenience only, and a failure
does not impact the security of a system.

set-tmpfs-limit.aud

Note – The set-tmpfs-limit.aud script does not run under Solaris 2.5.1 OS,
where this functionality is unsupported.

This script determines if any tmpfs file systems are defined in the /etc/vfstab
file without their size being limited to the JASS_TMPFS_SIZE variable, which is set
to a default of 512 megabytes. A failure is reported if the tmpfs file system size
does not comply with the JASS_TMPFS_SIZE value.
216 Solaris Security Toolkit 4.2 Reference Manual • July 2005

set-user-password-reqs.aud

This script reviews the password policy settings on the system as defined previously.
It indicates an error if the values do not match the following default values defined
by the Solaris Security Toolkit:

■ MINWEEKS - 1
■ MAXWEEKS - 8
■ WARNWEEKS - 1
■ PASSLENGTH - 8

The default values are contained in the following environment variables:

■ JASS_AGING_MINWEEKS
■ JASS_AGING_MAXWEEKS
■ JASS_AGING_WARNWEEKS
■ JASS_PASS_LENGTH

set-user-umask.aud

This script determines if any of the following files do not set the umask parameter to
the value defined by the JASS_UMASK variable, whose default value is set to022.

■ /etc/.login
■ /etc/profile
■ /etc/skel/local.cshrc
■ /etc/skel/local.login
■ /etc/skel/local.profile
■ /etc/default/login

A failure is displayed if these files do not set the umask parameter appropriately.

Update Audit Scripts
The following update audit scripts are described in this section:

■ “update-at-deny.aud” on page 218
■ “update-cron-allow.aud” on page 218
■ “update-cron-deny.aud” on page 218
■ “update-cron-log-size.aud” on page 219
■ “update-inetd-conf.aud” on page 219
Chapter 6 Audit Scripts 217

update-at-deny.aud

This script determines if a user account is listed in the JASS_AT_DENY variable and
is not listed in the /etc/cron.d/at.deny file. The list of user accounts defined by
the JASS_AT_DENY variable is as follows:

■ root
■ daemon
■ bin
■ sys
■ adm
■ lp
■ uucp
■ smmsp
■ nobody
■ noaccess

To pass this check, each user account must exist in both the /etc/passwd file and
the /etc/cron.d/at.deny file. The user account must not exist in the
/etc/cron.d/at.allow file, because it would override the setting (due to
precedence). A failure is displayed if any of these checks fail.

update-cron-allow.aud

This script determines if a user account is listed in the JASS_CRON_ALLOW variable
and not in /etc/cron.d/cron.allow file. By default, the value is only the root
user. A failure is displayed if this check fails.

update-cron-deny.aud

This script determines if a user account is listed in the JASS_CRON_DENY variable
and not in the /etc/cron.d/cron.deny file. The list of user accounts defined by
the JASS_CRON_DENY variable is as follows:

■ daemon
■ bin
■ sys
■ adm
■ lp
■ uucp
■ smmsp
■ nobody
■ noaccess
218 Solaris Security Toolkit 4.2 Reference Manual • July 2005

To pass this check, each user account must exist in both the /etc/passwd file and
the /etc/cron.d/cron.deny file. Furthermore, the user account must not exist in
the /etc/cron.d/cron.allow file, because it would override this setting (due to
precedence). A failure is displayed if any of these checks fail.

update-cron-log-size.aud

Note – Use this script only for systems running Solaris OS versions 2.6 through 10.

This script determines if the cron facility is configured to increase its default size
limit for log files. The check method is based on the version of the Solaris OS and the
value of the JASS_CRON_LOG_SIZE variable. The size limit defined by the
JASS_CRON_LOG_SIZE variable is 20480 kilobytes. A failure is displayed if the size
limitation is not correct.

update-inetd-conf.aud

This script determines if any of the services listed in the JASS_SVCS_DISABLE
variable are disabled in /etc/inetd.conf. This script also checks to ensure that
services listed in the JASS_SVCS_ENABLE variable are enabled in the
/etc/inetd.conf file. If a service is listed in both variables, then the service is left
enabled by the JASS_SVCS_ENABLE variable. A failure is displayed if any of these
checks fail.

The JASS_SVCS_DISABLE parameter is populated as shown in TABLE 6-2.

TABLE 6-2 Sample Output of JASS_SVCS_DISABLE

100068 100083 100087 100134 100146 100147

100150 100155 100166 100221 100229 100230

100232 100234 100235 100242 100424 300326

536870916 chargen comsat daytime discard dtspc

echo eklogin exec finger fs ftp

kerbd klogin kshell login name netstat

printer rexd rquotad rstatd rusersd rwalld

shell smtp sprayd sun-dr systat talk

telnet tftp time ufsd uucp uuidgen

walld xaudio
Chapter 6 Audit Scripts 219

The JASS_SVCS_ENABLE variable is, by default, empty. Some drivers may use it,
such as the suncluster3x-secure.driver.

Using Product-Specific Audit Scripts
TABLE 6-3 lists product-specific audit scripts for specific Sun products. These scripts
are in the Audit directory.

New audit scripts are released periodically for new and updated Sun products. For
the latest list of scripts, refer to the Security Web site:

http://www.sun.com/security/jass

suncluster3x-set-nsswitch-conf.aud

Note – This script applies only to Sun Cluster 3.x systems and should not be
executed on other systems.

This script determines if the /etc/nsswitch.conf file lists the cluster keyword
as the first source for the host’s database. A failure is displayed if this is not true.

For more information, refer to the Sun BluePrints OnLine article titled “Securing Sun
Cluster 3.x Software.”

TABLE 6-3 Product-Specific Audit Scripts

Product Driver Name

Sun Cluster 3.x software suncluster3x-set-nsswitch-conf.aud

Sun Fire high-end systems domains s15k-static-arp.aud

Sun Fire high-end systems system
controllers

s15k-static-arp.aud

s15k-exclude-domains.aud

s15k-sms-secure-failover.aud
220 Solaris Security Toolkit 4.2 Reference Manual • July 2005

s15k-static-arp.aud

For System Management Services (SMS) versions 1.2 through 1.4.1, this script
verifies that the static ARP configuration files are installed on Sun Fire high-end
systems system controllers (SCs) and domains. For system controllers, the file is
/etc/sms_sc_arp. For domains, the file is /etc/sms_domain_arp.

This script checks that all existing domains have Ethernet addresses as listed in the
SC static ARP startup script and corresponding data file.

For more information, refer to the Sun BluePrints OnLine article titled “Securing the
Sun Fire 12K and 15K System Controller” and “Securing the Sun Fire 12K and 15K
Domains.”

s15k-exclude-domains.aud

For SMS versions 1.2 and newer, this script determines if the
/etc/opt/SUNWSMS/SMS/config/MAN.cf file exists. If it does, this script checks
to ensure that all the domains listed are excluded from the I1 MAN. The script
excludes all domains from the I1 MAN. If the site has altered the script to exclude
only a subset of the domains, this script issues a warning about each domain that is
still part of the I1 MAN.

For more information, refer to the Sun BluePrints OnLine article titled “Securing the
Sun Fire 12K and 15K System Controller.”

s15k-sms-secure-failover.aud

For SMS versions 1.2 through 1.4.1, this script determines if the Sun Fire high-end
systems system controller is configured based on the recommendations in the Sun
BluePrints OnLine article titled “Securing the Sun Fire 12K and 15K System
Controller.” It indicates a failure if any of the services listed in the
SMS_SVCS_DISABLE variable are enabled in /etc/inet/inetd.conf.
Chapter 6 Audit Scripts 221

222 Solaris Security Toolkit 4.2 Reference Manual • July 2005

CHAPTER 7

Environment Variables

This chapter provides reference information about using environment variables. This
chapter describes all of the variables used by the Solaris Security Toolkit software
and provides tips and techniques for customizing their values.

This chapter contains the following topics:

■ “Customizing and Assigning Variables” on page 223
■ “Creating Environment Variables” on page 227
■ “Using Environment Variables” on page 228

Customizing and Assigning Variables
The Solaris Security Toolkit software contains environment variables that provide a
simple and easy way to customize and direct the behavior of its drivers and scripts.
Because they are simply Bourne shell variables, all of the rules that apply to shell
variables apply to Solaris Security Toolkit variables. This section provides
information and recommendations for customizing and assigning variables.

Within the Solaris Security Toolkit software, there are four categories of environment
variables:

■ Framework function variables
■ Finish and audit script variables
■ JumpStart mode variables
■ User variables

Note – All of the categories listed can be assigned or customized.
223

Before customizing variables, it is important that you understand the role of each
variable type and its purpose within the Solaris Security Toolkit software. Setting
and customizing variables are key to configuring the Solaris Security Toolkit
software to suit your system, environment, and security policies. For detailed
information about using variables, see “Using Environment Variables” on page 228.

In some cases, you might find that customizing the standard variables, drivers, and
scripts does not address your specific needs. In these cases, you might want to
develop variables, drivers, and scripts for your environment. For more information
about developing variables, see “Creating Environment Variables” on page 227.

This section contains the following topics:

■ “Assigning Static Variables” on page 224
■ “Assigning Dynamic Variables” on page 225
■ “Assigning Complex Substitution Variables” on page 225
■ “Assigning Global and Profile-Based Variables” on page 227

Assigning Static Variables
Static variables are those that are assigned a fixed or static value. This value is set
before the Solaris Security Toolkit run is initiated and, unless its value is changed by
the external factors, remains constant throughout the run. The value of these
variables does not change depending on the context or environment in which the
software is run.

Static variables are helpful when a policy setting is not dependent on external factors
such as the system’s type, network settings, or applications installed. For example,
password aging is usually defined by a corporate or divisional policy. Assigning a
static variable would apply a setting to all systems and devices within the
corporation or division. Because password aging is not dependent on external
factors, system administrators usually set it as a static variable.

The following is an example of assigning a static variable.

In this case, user passwords are configured to expire eight weeks after their most
recent change. Furthermore, the second variable, also defined as a static variable,
restricts user password changes to one per week maximum.

JASS_AGING_MAXWEEKS="8"
JASS_AGING_MINWEEKS="1"
224 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Assigning Dynamic Variables
Dynamic variables are those that generally require greater flexibility and whose
values are based on the output of commands or the contents of files. In this way, the
variable is more aware of the environment in which it is run and is able to adapt to
the environment more effectively. The following is an example of assigning a
dynamic variable.

In this case, each of the users defined in the JASS_PASSWD (for example,
JASS_ROOT_DIR/etc/passwd) file is added to the variable JASS_AT_DENY. The
list of users varies depending on the system on which the Solaris Security Toolkit
software is run. In this way, the software is more responsive to its environment.
Similar constructions can be made to include all users except for some predefined
exceptions. The following example illustrates such a case where every user on the
system is added to the JASS_CRON_DENY variable with the exception of the root
and ORACLE® accounts.

Assigning Complex Substitution Variables
Taking the assigning methods a step further is the notion of complex substitution.
Using this technique, more sophisticated values can be assigned to a variable based
perhaps on policy, file content, or other mechanisms.

An example of how this is achieved combines assigning both static and dynamic
variables. In this example, the JASS_FTPUSERS is assigned a value based both on a
static list and the output of the JASS_ROOT_DIR/etc/passwd file.

In this example, the guest account is always added to the JASS_FTPUSERS variable.
In addition, each user listed in JASS_PASSWD whose login name does not begin with
the prefix ftp is also added to the JASS_FTPUSERS variable. Using combinations of
these techniques, almost any configuration can be achieved capable of meeting the
needs of most organizations.

JASS_AT_DENY="`awk -F: '{ print $1 }' ${JASS_PASSWD}`"

JASS_CRON_DENY="‘awk -F: ’{ print $1 }’ ${JASS_PASSWD} |\
 egrep -v ’^root|^oracle’‘"

JASS_FTPUSERS="‘awk -F: ’$1 !~ /^ftp/ { print $1 }’ \
${JASS_PASSWD}‘ guest"
Chapter 7 Environment Variables 225

Another sophisticated technique is to define a substitution policy based on a shell
script or function. For such an example, refer to the declaration of the JASS_SHELLS
variable in the Drivers/finish.init file (CODE EXAMPLE 7-1). In this case, the
variable assignment is dependent on the version of the OS.

This type of functionality can be useful on minimized systems where some of the
shells are not available, such as /usr/bin/bash or /usr/bin/tcsh, which exist in
the SUNWbash and SUNWtcsh packages respectively. This technique helps to reduce
the number of notice and warning messages generated by the software due to
improper assignment of variables.

CODE EXAMPLE 7-1 Variable Assignment Based on OS Version

#
if [-z "${JASS_SHELLS}"]; then
These shells are by default found in Solaris 2.5.1 to Solaris 7
JASS_SHELLS="
 /usr/bin/sh /usr/bin/csh /usr/bin/ksh
 /usr/bin/jsh /bin/sh /bin/csh
 /bin/ksh /bin/jsh /sbin/sh
 /sbin/jsh"
This is to handle special cases by OS.
case ${JASS_OS_REVISION} in
 5.8 | 5.9)
 JASS_SHELLS="${JASS_SHELLS}
 /bin/bash /bin/pfcsh /bin/pfksh
 /bin/pfsh /bin/tcsh /bin/zsh
 /usr/bin/bash /usr/bin/pfcsh /usr/bin/pfksh
 /usr/bin/pfsh /usr/bin/tcsh /usr/bin/zsh"
 ;;
esac
fi
export JASS_SHELLS
This function could be further enhanced, for example, to remove
those shell entries that do not exist on the system. This
could be done by adding the following code:
tmpShells="${JASS_SHELLS}"
JASS_SHELLS=""
for shell in ${tmpShells}; do
 if [-x "${JASS_ROOT_DIR}${shell}”]; then
 if [-z "${JASS_SHELLS}"]; then
 JASS_SHELLS="${JASS_SHELLS}/${shell}"
 fi
 fi
done
226 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Assigning Global and Profile-Based Variables
Global variables can be assigned to override the default values of many of the
Solaris Security Toolkit variables. Customize the user.init file to define and
assign variables for which default values are to be overridden during each Solaris
Security Toolkit software run. This file is read by the driver.init program
whenever a software run is initiated.

You can also assign profile-based variables to override default values. This override
occurs within the profile itself, after the call to the driver.init file. Assigning
variables within a profile allows variables to be updated, extended, and overridden
for specific profiles rather than for all of them. For example, the file
server-secure.driver contains the following profile-based variable override:

In this case, the JASS_SVCS_ENABLE variable is assigned to include entries for
Telnet, FTP, dtspc, rstatd, and rpc.smserverd (100155) services. This
assignment instructs the software to leave these services enabled (or to enable them
if they were disabled). Normally, the default behavior of the software is to disable
those services, per the JASS_SVCS_DISABLE variable.

Creating Environment Variables
Although, typically, the standard Solaris Security Toolkit variables provide what you
need and can be customized for your system and environment, occasionally, you
might need to develop new variables. Often this requirement occurs when you
develop your own scripts. You can create new variables and assign them to support
your site-specific or custom scripts. Creating new variables enables you to take
advantage of the software’s framework and modularity.

To quickly and easily build new functionality or implement additional
customization, leverage the existing capabilities of the software. Use the standard
variables as samples from which to develop new variables. Whenever possible,
customize the standard variables rather than developing new ones. By using the
software’s framework in this way, you can develop and support less-customized
code.

Note – The prefix JASS_ is reserved for use by the Solaris Security Toolkit software
developers. Do not use this prefix when creating new variables. Use a prefix unique
to your company or organization.

JASS_SVCS_ENABLE="telnet ftp dtspc rstatd 100155"
Chapter 7 Environment Variables 227

To simplify portability and configuration issues, the environment variables defined
in the various .init scripts are used throughout the Solaris Security Toolkit
software.

If you require additional variables, add them as environment variables to the
user.init script.

To add a new variable, add the variable declaration with its default value and export
it in the user.init file. This process provides a global, default value that you can
subsequently change as needed by overriding it within a security profile (driver).
For example, the following code adds a new variable ABC_TESTING with a default
value of 0 to the user.init file.

There are times when the value of the variable should be set only if it is currently
undefined. This approach is most useful when permitting an administrator to
change values from the login shell. To accomplish this task, you would alter the
previous code sample as follows.

Using Environment Variables
This section provides descriptions of all the standard variables defined by the Solaris
Security Toolkit software, listed in alphabetical order. Where applicable,
recommendations and other helpful information are provided so that you can use
these variables more effectively.

Within the software, the four categories of environment variables are as follows:

■ Framework variables
■ Finish and audit script variables
■ JumpStart mode variables
■ User variables

Each of the variables described in this section is defined in one of the following files,
depending on its function within the Solaris Security Toolkit software. (As noted
previously, the functions are divided into categories based on their purpose.)

ABC_TESTING="0"
export ABC_TESTING

if [-z "${ABC_TESTING}"]; then
 ABC_TESTING="0"
fi
export ABC_TESTING
228 Solaris Security Toolkit 4.2 Reference Manual • July 2005

■ driver.init (framework and JumpStart mode variables)
■ finish.init (finish and audit script variables)
■ user.init (user variables and global override variables)

For detailed information about these files, see Chapter 3.

To simplify portability and configuration issues, the environment variables defined
in the various .init scripts are used throughout the Solaris Security Toolkit
software.

If you require additional variables, add them as environment variables to the
user.init script. For more information, see “Creating Environment Variables” on
page 227.

Note – The default environment variable values used by scripts are defined in the
finish.init script.

This section presents the variables in the following organization:

■ “Defining Framework Variables” on page 229
■ “Define Script Behavior Variables” on page 254
■ “Define JumpStart Mode Variables” on page 277

Defining Framework Variables
Framework variables are those that are defined and used by the Solaris Security
Toolkit software to either maintain configuration state or to provide core variables
that are used by the software. These variables are typically global and are in the
software framework, its core functions, and scripts.

You can dramatically change the behavior of the software by changing these
variables; therefore, change them only when absolutely necessary. Changes should be
made only by experienced administrators who clearly understand the impact of the
changes and can resolve any resulting problems.

Note – Not all framework variables can be modified. This limitation exists to
promote consistency between Solaris Security Toolkit software deployments and to
aid in supporting those configurations.

Caution – Never attempt to directly change any framework variables that cannot
otherwise be overridden.

This section describes the following framework variables:
Chapter 7 Environment Variables 229

■ “JASS_AUDIT_DIR” on page 231
■ “JASS_CHECK_MINIMIZED” on page 231
■ “JASS_CONFIG_DIR” on page 231
■ “JASS_DISABLE_MODE” on page 232
■ “JASS_DISPLAY_HOST_LENGTH” on page 232
■ “JASS_DISPLAY_HOSTNAME” on page 233
■ “JASS_DISPLAY_SCRIPT_LENGTH” on page 233
■ “JASS_DISPLAY_SCRIPTNAME” on page 233
■ “JASS_DISPLAY_TIME_LENGTH” on page 233
■ “JASS_DISPLAY_TIMESTAMP” on page 234
■ “JASS_FILE_COPY_KEYWORD” on page 234
■ “JASS_FILES” on page 234
■ “JASS_FILES_DIR” on page 237
■ “JASS_FINISH_DIR” on page 238
■ “JASS_HOME_DIR” on page 238
■ “JASS_HOSTNAME” on page 238
■ “JASS_ISA_CAPABILITY” on page 238
■ “JASS_LOG_BANNER” on page 239
■ “JASS_LOG_ERROR” on page 239
■ “JASS_LOG_FAILURE” on page 239
■ “JASS_LOG_NOTICE” on page 240
■ “JASS_LOG_SUCCESS” on page 240
■ “JASS_LOG_SUMMARY” on page 240
■ “JASS_LOG_WARNING” on page 240
■ “JASS_MODE” on page 241
■ “JASS_OS_REVISION” on page 241
■ “JASS_OS_TYPE” on page 241
■ “JASS_PACKAGE_DIR” on page 242
■ “JASS_PATCH_DIR” on page 242
■ “JASS_PKG” on page 242
■ “JASS_REPOSITORY” on page 242
■ “JASS_ROOT_DIR” on page 243
■ “JASS_ROOT_HOME_DIR” on page 243
■ “JASS_RUN_AUDIT_LOG” on page 243
■ “JASS_RUN_CHECKSUM” on page 244
■ “JASS_RUN_CLEAN_LOG” on page 244
■ “JASS_RUN_FINISH_LIST” on page 245
■ “JASS_RUN_INSTALL_LOG” on page 245
■ “JASS_RUN_MANIFEST” on page 245
■ “JASS_RUN_SCRIPT_LIST” on page 245
■ “JASS_RUN_UNDO_LOG” on page 246
■ “JASS_RUN_VALUES” on page 246
■ “JASS_RUN_VERSION” on page 246
■ “JASS_SAVE_BACKUP” on page 247
■ “JASS_SCRIPT” on page 247
■ “JASS_SCRIPT_ERROR_LOG” on page 247
■ “JASS_SCRIPT_FAIL_LOG” on page 248
230 Solaris Security Toolkit 4.2 Reference Manual • July 2005

■ “JASS_SCRIPT_NOTE_LOG” on page 248
■ “JASS_SCRIPT_WARN_LOG” on page 248
■ “JASS_SCRIPTS” on page 248
■ “JASS_STANDALONE” on page 250
■ “JASS_SUFFIX” on page 250
■ “JASS_TIMESTAMP” on page 251
■ “JASS_UNAME” on page 251
■ “JASS_UNDO_TYPE” on page 251
■ “JASS_USER_DIR” on page 252
■ “JASS_VERBOSITY” on page 252
■ “JASS_VERSION” on page 253
■ “JASS_ZONE_NAME” on page 254

JASS_AUDIT_DIR

Note – Normally, this variable should not require modification.

The convention used by the Solaris Security Toolkit software is to store all of the
audit scripts in the Audit directory. However, for flexibility, the JASS_AUDIT_DIR
environment variable is available for administrators who need to store audit scripts
in different locations. By default, this variable is set to JASS_HOME_DIR/Audit.

JASS_CHECK_MINIMIZED

This variable is used in audit runs only. The value of this variable determines how
the Solaris Security Toolkit software performs the check_minimized function that
is included in many of the audit scripts. If this variable is set to 0, which is the
default value, or has no value, then the check_minimized function responds
immediately without performing any of its checks. If this variable has a value of 1,
the script performs its checks.

This variable is included to permit the exclusion of these checks from a software run
when a system has not been minimized. Otherwise, the check_minimized
functions would result in failure messages on non-minimized systems, thereby
precluding an audit run passing successfully.

JASS_CONFIG_DIR

Starting with version 0.3 of the Solaris Security Toolkit software, the variable
JASS_CONFIG_DIR was renamed to JASS_HOME_DIR to provide a clearer meaning
as to its use. The JASS_CONFIG_DIR variable is deprecated and should no longer be
used. See “JASS_HOME_DIR” on page 238.
Chapter 7 Environment Variables 231

JASS_DISABLE_MODE

Note – This environment variable is not used for systems running the Solaris 10 OS.

This variable defines the approach used by the Solaris Security Toolkit software to
disable services that are started from run-control scripts. For Solaris 9 OS, this
variable is assigned the default value of conf, whereas all earlier releases default to
the value of script.

Note – If a particular service does not use a configuration file, or it does not check
for its existence prior to starting, then the software uses the script method when
disabling the service.

When the JASS_DISABLE_MODE variable is set to conf, the software disables a
service by moving aside its configuration file. This approach is effective on services
that first check for the existence of a configuration file prior to starting. This
approach leads to a more supportable and sustainable configuration because Solaris
OS patches rarely replace these disabled configuration files.

When this variable is set to script, the software disables services by moving aside
their respective run-control scripts. This approach is also effective because a service
is not able to run, if it is never permitted to start. This configuration is less
supportable, however, because Solaris OS patches install run-control scripts,
re-enabling services that were disabled.

Note – Do not change the default settings.

Note – If security scanners are used, they should be adequately tested using this
configuration. Setting this variable to conf could result in false positives, because
most scanners typically (and erroneously) check only for the existence of run-control
scripts. Note that the audit function does not have this limitation.

JASS_DISPLAY_HOST_LENGTH

This variable sets the number of characters printed for the host name when the
JASS_DISPLAY_HOSTNAME variable is set.
232 Solaris Security Toolkit 4.2 Reference Manual • July 2005

JASS_DISPLAY_HOSTNAME

Note – The JASS_DISPLAY_HOSTNAME variable is used only when
JASS_VERBOSITY is less than or equal to 2 (Brief).

This variable controls the display of host name information during audit runs. You
can select the level of verbosity to be used by the Solaris Security Toolkit software. In
single-line output modes (see “JASS_VERBOSITY” on page 252), you have the
option of tagging each line with the host name of the system on which the software
is being run. This value is the same as JASS_HOSTNAME. Including this information
can be useful when processing runs from multiple systems. If this variable is set to 1,
then the software prepends the host name of the target system to each line of output.
Otherwise, the software does not include this information. By default, the software
does not display this information.

JASS_DISPLAY_SCRIPT_LENGTH

This variable sets the number of characters printed for the script name when the
JASS_DISPLAY_SCRIPTNAME variable is set.

JASS_DISPLAY_SCRIPTNAME

Note – The JASS_DISPLAY_SCRIPTNAME variable is used only when
JASS_VERBOSITY is less than or equal to 2 (Brief).

This variable controls the display of the current script name during audit runs. You
can select the level of verbosity to be used by the Solaris Security Toolkit software. In
single-line output modes (see “JASS_VERBOSITY” on page 252), you have the
option of tagging each line with the name of the current audit script being run.
Including this information can be useful when attempting to determine the source of
failure messages. If this variable is set to 1, then the software prepends the current
audit script name to each line of output. Otherwise, the software does not include
this information. By default, the software includes this information.

JASS_DISPLAY_TIME_LENGTH

This variable sets the number of characters printed for the timestamp when the
JASS_DISPLAY_TIMESTAMP variable is set.
Chapter 7 Environment Variables 233

JASS_DISPLAY_TIMESTAMP

Note – The JASS_DISPLAY_TIMESTAMP variable is used only when
JASS_VERBOSITY is less than or equal to 2 (Brief).

This variable controls the display of timestamp information during audit runs. You
can select the level of verbosity to be used by the Solaris Security Toolkit software. In
single-line output modes (see “JASS_VERBOSITY” on page 252), you have the
option of tagging each line with the timestamp associated with the software run.
This value is the same as JASS_TIMESTAMP. Including this information can be useful
when processing multiple runs from a single system or set of systems. If this
variable is set to 1, then the software prepends the timestamp of the run to each line
of output. Otherwise, the software does not include this information. By default, the
software does not display this information.

JASS_FILE_COPY_KEYWORD

This variable contains the keyword-specific suffix used for file copies. This is used
by the copy_files() function to obtain different files for different drivers from the
JASS_FILES directory structure.

JASS_FILES

This variable specifies a list of file system objects that are copied to the target system.
Specify each of the objects listed in this variable by using its absolute path name.
Each object is stored in a file system hierarchy under the root directory of
JASS_HOME_DIR/Files.

Note – JASS_FILES cannot be added to the user.init file. To change this
variable, copy the relevant .driver file to a new name and modify the new file.

Specifying Files With the JASS_FILES Variable

Note – This functionality is basically equivalent to the JASS_FILES “+” function.
234 Solaris Security Toolkit 4.2 Reference Manual • July 2005

File lists are added to the contents of the general file list only when the Solaris
Security Toolkit software is run on a defined version of the Solaris OS. A
version-specific list is created by appending the major and minor operating system
version to the end of the JASS_FILES variable, separated by underscores. The
Solaris Security Toolkit software currently supports the options listed in TABLE 7-1.

For example, the /etc/logadm.conf file is only applicable to the Solaris 9 OS. To
install the Files/etc/logadm.conf file only on the Solaris 9 OS, use the following
syntax.

You can use the JASS_FILES variable to specify files in the following ways:

■ Specify the file that is copied from the Solaris Security Toolkit software to the
client

The following example is from the hardening.driver:

TABLE 7-1 Supporting OS Versions in the JASS_FILES Variable

Variable OS Version

JASS_FILES Applies to all versions of the Solaris OS, and overwrites
instead of appending

JASS_FILES_5_5_1 Applies only to Solaris 2.5.1 OS

JASS_FILES_5_6 Applies only to Solaris 2.6 OS

JASS_FILES_5_7 Applies only to Solaris 7 OS

JASS_FILES_5_8 Applies only to Solaris 8 OS

JASS_FILES_5_9 Applies only to Solaris 9 OS

JASS_FILES_5_10 Applies only to Solaris 10 OS

JASS_FILES_5_9="
/etc/logadm.conf

"

JASS_FILES="
 /etc/dt/config/Xaccess
 /etc/init.d/set-tmp-permissions
 /etc/issue
 /etc/motd
 /etc/rc2.d/S00set-tmp-permissions
 /etc/rc2.d/S07set-tmp-permissions
 /etc/syslog.conf
"

Chapter 7 Environment Variables 235

By defining the JASS_FILES environment variable to include this file, the
/etc/motd file on the client is replaced by the
JASS_HOME_DIR/Files/etc/motd file from the Solaris Security Toolkit
software distribution. You can copy any file, directory, or symbolic link this way
by simply including it in the Files directory and adding it to the JASS_FILES
definition in the corresponding driver.

■ Specify host-specific files

Host-specific files are those that are copied only if the host name of the target
system matches the host name assigned to the object in the Files directory. To
use this capability, simply create files in the Files directory of the following
form:

In this scenario, the JASS_HOME_DIR/Files/etc/syslog.conf.HOSTNAME
file is copied to JASS_ROOT_DIR/etc/syslog.conf on the target system only if
its host name matches the value defined by HOSTNAME. When there is both a
syslog.conf and syslog.conf.HOSTNAME, the host-specific file takes
precedence.

■ Specify OS release-specific files

OS release-specific files are similar in concept to host-specific files, but are copied
to the target system only if the target’s version of the Solaris OS matches that
assigned to the object in the Files directory. To use this functionality, create files in
the Files directory with the following form:

In this example, the JASS_HOME_DIR/Files/etc/syslog.conf+OS file is
copied to the target as JASS_ROOT_DIR/etc/syslog.conf only if the version of
the Solaris OS on the target system matches the value defined by OS.

The OS variable should mirror the output produced by the uname -r command.
For example, if Solaris 8 OS were being secured, then a file with the name of
JASS_HOME_DIR/Files/etc/syslog.conf+5.8 would be copied. This file
would not be copied to any other OS release. The OS-specific files take precedence
over generic files, but host-specific files take precedence over OS-specific files.

The JASS_FILES variable also supports OS-specific extensions. Use these extensions
to specify a list of file system objects that should be copied only for certain versions
of the Solaris OS. The OS-specific JASS_FILES extensions are supported for Solaris
OS versions 5.5.1, 5.6, 7, 8, 9, and 10. For example, to copy a list of files only for
Solaris 8 OS, define the JASS_FILES_5_8 variable and assign to it the list of files to
be copied.

/etc/syslog.conf.$HOSTNAME

/etc/syslog.conf+$OS
236 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Customizing the JASS_FILES Variable

This section describes and illustrates how to customize the JASS_FILES
environment variable. The following code examples are taken from the
Drivers/config.driver file. This profile file performs basic configuration tasks
on a platform. This is how the config.driver file looks at default:

The following example profile provides clear examples of how file templates,
drivers, and finish scripts are used. The config.driver is configured to copy the
/.cshrc and /.profile files from the JASS_HOME_DIR/Files directory onto the
target platform when the driver.run function is called.

To change the contents of either of these files, modify the copies of the files located
in the JASS_HOME_DIR/Files directory. If you need to add or remove file
templates only, simply adjust the JASS_FILES variable accordingly. Track changes to
the Solaris Security Toolkit configuration using a change-control mechanism. For
more information, refer to “Maintaining Version Control”, Chapter 1, Solaris Security
Toolkit 4.2 Administration Guide.

The software supports OS version-specific file lists. For detailed information, see the
previous section “Specifying Files With the JASS_FILES Variable” on page 234.

JASS_FILES_DIR

Note – Normally, this variable does not require modification.

This variable points to the location of the Files directory under JASS_HOME_DIR.
This directory contains all of the file system objects that can be copied to the client.

To copy objects to a system, you must list a file in a JASS_FILES variable or one of
its OS-specific extensions. These objects are copied to the client during hardening
runs by the install-templates.fin script. Set the JASS_FILES variable within
an individual driver. This variable is not defined by any other configuration file. For
other methods of copying files using this variable, see “JASS_FILES” on page 234.
By default, this variable is set to JASS_HOME_DIR/Files.

JASS_FILES="
"

JASS_FILES="
/.cshrc
/.profile
"

Chapter 7 Environment Variables 237

JASS_FINISH_DIR

Note – Normally, this variable should not require modification.

The convention used by the Solaris Security Toolkit software is to store all finish
scripts in the Finish directory. However, for flexibility, the JASS_FINISH_DIR
environment variable is for storing finish scripts in different locations. By default,
this variable is set to JASS_HOME_DIR/Finish.

JASS_HOME_DIR

Note – Normally this variable should not require modification, except when the
Solaris Security Toolkit software is installed into a subdirectory of a pre-existing
JumpStart installation. For these cases, append the path of the Solaris Security
Toolkit source to SI_CONFIG_DIR, as in SI_CONFIG_DIR/jass-n.n, where n.n is
the current version number of the software.

This variable defines the location of the Solaris Security Toolkit source tree. In
JumpStart mode, the JumpStart variable SI_CONFIG_DIR sets the JASS_HOME_DIR
variable. In stand-alone mode, it is set by the jass-execute script, which is
included in the base directory.

JASS_HOSTNAME

Caution – Do not change this variable, because several components of the
framework rely on this variable being set properly.

This variable contains the host name of the system on which the Solaris Security
Toolkit software is being run. This variable is set during software runs through the
Solaris OS uname -n command within the driver.init script.

JASS_ISA_CAPABILITY

Note – This environment variable has been removed from the Solaris Security Toolkit
software as of version 4.2.
238 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Note – Normally, this variable should not require modification.

This variable defines the Solaris OS instruction set potential of the target system. Use
this variable to determine if the system has the potential of operating in 32- or 64-bit
mode. This task is done to provide instruction set architecture (ISA) information for
use by finish scripts. The value of this variable is defined based on a check for the
existence of the Solaris OS package, SUNWkvmx. If this package is installed, then
the system is assumed to be 64-bit capable, and this variable is set to 64. Otherwise,
the system is assumed to be only 32-bit capable, and this variable is set to 32.

JASS_LOG_BANNER

Note – The logBanner function displays output only when JASS_VERBOSITY
variable is 3 (Full) or higher and the JASS_LOG_BANNER variable is not 0.

This variable controls the behavior of the logBanner function. The logBanner
function generates all of the banner messages used by the Solaris Security Toolkit
software. If this variable is set to 0, then the logBanner function responds
immediately without displaying any information. Otherwise, the logBanner
function displays the information passed to it as an argument. Use this variable to
adjust the output of the software to better suit your needs. By default, this variable
has no value and, therefore, the logBanner function operates normally.

JASS_LOG_ERROR

This variable controls the behavior of the logError function. The logError
function generates messages with the prefix [ERR]. If this variable is set to 0, then
the logError function responds immediately without displaying any information.
Otherwise, the logError function displays the information passed to it as an
argument. Use this variable to adjust the output of the software to better suit your
needs. By default, this variable has no value and, therefore, the logError function
operates normally.

JASS_LOG_FAILURE

This variable controls the behavior of the logFailure function. The logFailure
function generates messages with the prefix [FAIL]. If this variable is set to 0, then
the logFailure function responds immediately without displaying any
information. Otherwise, the logFailure function displays the information passed
Chapter 7 Environment Variables 239

to it as an argument. Use this variable to adjust the output of the software to better
your needs. By default, this variable has no value and, therefore, the logFailure
function operates normally.

JASS_LOG_NOTICE

This variable controls the behavior of the logNotice function. The logNotice
function generates messages with the prefix [NOTE]. If this variable is set to 0, then
the logNotice function responds immediately without displaying any information.
Otherwise, the logNotice function displays the information passed to it as an
argument. Use this variable to adjust the output of the software to suit your needs.
By default, this variable has no value and, therefore, the logNotice function
operates normally.

JASS_LOG_SUCCESS

This variable controls the behavior of the logSuccess function. The logSuccess
function generates messages with the prefix [PASS]. If this variable is set to 0, then
the logSuccess function responds immediately without displaying any
information. Otherwise, the logSuccess function displays the information passed
to it as an argument. Use this variable to adjust the output to suit your needs. By
default, this variable has no value and, therefore, the logSuccess function operates
normally.

JASS_LOG_SUMMARY

This variable controls the behavior of the logSummary function. The logSummary
function generates messages with the prefix [SUMMARY]. If this variable is set to 0,
then the logSummary function responds immediately without displaying any
information. Otherwise, the logSummary function displays the information passed
to it as an argument. Use this variable to adjust the output to suit your needs. By
default, this variable has no value and, therefore, the logSummary function operates
normally.

JASS_LOG_WARNING

This variable controls the behavior of the logWarning function. The logWarning
function generates messages with the prefix [WARN]. If this variable is set to 0, then
the logWarning function responds immediately without displaying any
information. Otherwise, the logWarning function displays the information passed
240 Solaris Security Toolkit 4.2 Reference Manual • July 2005

to it as an argument. Use this variable to adjust the output to suit your needs. By
default, this variable has no value and, therefore, the logWarning function operates
normally.

JASS_MODE

Caution – Do not change this variable.

This variable defines the way that the Solaris Security Toolkit software operates. This
variable accepts one of the following values:

■ APPLY
■ UNDO
■ AUDIT
■ CLEAN
■ HISTORY_LAST
■ HISTORY_FULL

In stand-alone mode, this variable is set to APPLY by the jass-execute command.
In JumpStart mode, the variable defaults to APPLY. For the purpose of this variable,
APPLY refers to hardening runs.

JASS_OS_REVISION

Caution – Do not change this variable, because it is set automatically.

This variable is a global variable specifying the OS version of the client on which the
Solaris Security Toolkit software is being used. This variable is set automatically in
the driver.init script through the uname -r command and exported so that all
other scripts can access it.

JASS_OS_TYPE

This variable determines if the system being hardened or audited is a Solaris OS
system. If the system is running a generic version of Solaris OS, it is set to Generic.
This variable is in the driver.init file.
Chapter 7 Environment Variables 241

JASS_PACKAGE_DIR

Note – Normally, this variable should not require modification.

The convention used by the Solaris Security Toolkit software is to store all software
packages to be installed in the Packages directory. However, for flexibility, the
JASS_PACKAGE_DIR variable is available to store packages in a different location.
By default, in stand-alone mode, this variable is set to JASS_HOME_DIR/Packages.

In JumpStart mode, however, this variable is defined as a transient mount point,
JASS_ROOT_DIR/tmp/jass-packages. The package directory, stored on the
JumpStart server, is mounted as this directory on this client during a JumpStart
installation.

JASS_PATCH_DIR

Note – Normally, this variable should not require modification.

The convention used by the Solaris Security Toolkit software is to store all of the
software patches to be installed in the Patches directory. However, for flexibility,
the JASS_PATCH_DIR variable is available to store patches in a different location. By
default, in stand-alone mode, this variable is set to JASS_HOME_DIR/Patches.

In JumpStart mode, however, this variable is defined as a transient mount point,
JASS_ROOT_DIR/tmp/jass-patches. The actual package directory, stored on the
JumpStart server, is mounted as this directory on this client during a JumpStart
installation.

JASS_PKG

Caution – Do not change this variable.

This variable defines the Solaris OS package name of the Solaris Security Toolkit
software. This variable has a value of SUNWjass.

JASS_REPOSITORY

Caution – Do not change this variable.
242 Solaris Security Toolkit 4.2 Reference Manual • July 2005

This variable is part of the execution log and undo functions. The path specified by
JASS_REPOSITORY defines the directory where the required run information is
stored. This functionality facilitates the capture of information related to each script
that is run, the resulting output of each, and the listing of files that were installed,
modified, or removed during a run.

This variable is dynamically altered during the execution of the software. Any
values assigned to this variable in any of the init files are overwritten. By default,
this variable is assigned the value of:

JASS_ROOT_DIR/var/opt/JASS_PKG/run/JASS_TIMESTAMP

JASS_ROOT_DIR

Caution – Do not change this variable, because it is automatically set.

This variable defines the root directory of the target’s file system. For JumpStart
mode, this directory is always /a. For stand-alone mode, this variable should be set
to / or the root directory of the system.

Starting with Solaris Security Toolkit software version 0.2, the software
automatically sets this variable’s value in the jass-execute script, so manual
modification is no longer required.

JASS_ROOT_HOME_DIR

Note – This variable is used only for systems running the Solaris 10 OS.

This variable, by default, defines the root home directory for Solaris 10 OS as /root:

■ For the Solaris 10 OS, if you do not want to change your root home directory
from / to /root, set this variable to /.

■ For other versions of the Solaris OS, the variable is / by default.

JASS_RUN_AUDIT_LOG

Caution – Do not change this variable.
Chapter 7 Environment Variables 243

This variable is part of the execution log. This variable defines the name and
absolute path to the file that stores the output generated during an audit run. This
information is collected to document which scripts were executed, in addition to the
output of each audit check tested during the course of the run.

Any errors or warnings generated are stored in this file. The information stored in
this file is equivalent to the output displayed on the screen during an audit run. By
default, this variable is set to JASS_REPOSITORY/jass-audit-log.txt.

JASS_RUN_CHECKSUM

Caution – Do not change this variable.

This variable is part of the execution log and undo functionality. This variable is also
used by the jass-check-sum program included in JASS_HOME_DIR. This variable
defines the name and absolute path to the file that stores all of the checksum
information used by the software. This information records the state of files both
before and after modification. This information is used to determine if files changed
since they were last modified by the software. This information is stored within the
JASS_REPOSITORY directory structure and has a default value of:

JASS_REPOSITORY/jass-checksums.txt

JASS_RUN_CLEAN_LOG

Caution – Do not change this variable.

This variable is part of the execution log. This variable defines the name and
absolute path to the file that stores the output generated during an cleanup run. This
information is collected to document which scripts were executed, in addition to
listing any files that were installed, removed, or modified during a run.

Any errors or warnings generated are stored in this file. The information stored in
this file is equivalent to the output displayed on the screen during an cleanup run.
By default, this variable is set to:

JASS_REPOSITORY/jass-cleanup-log.txt
244 Solaris Security Toolkit 4.2 Reference Manual • July 2005

JASS_RUN_FINISH_LIST

This variable’s name was changed before the Solaris Security Toolkit 4.0 software
release. See “JASS_RUN_SCRIPT_LIST” on page 245.

JASS_RUN_INSTALL_LOG

Caution – Do not change this variable.

This variable is part of the execution log. This variable defines the name and
absolute path to the file that stores the output generated during hardening runs. This
information is collected to document which scripts are executed, in addition to
listing any files that were installed, removed, or modified during a run.

Any errors or warnings generated are stored in this file. The information stored in
this file is equivalent to the output displayed on the screen during a hardening run.
By default, this variable is set to:

JASS_REPOSITORY/jass-install-log.txt

JASS_RUN_MANIFEST

Caution – Do not change this variable.

This variable is part of the execution log and undo functionality. This variable
defines the name and absolute path to the file that stores the manifest information
associated with a run. The manifest file records the operations conducted as part of
a hardening run. This file is also used in undo runs to determine which files must be
moved, and in what order, to restore a system to a previous configuration. By
default, this variable is set to:

JASS_REPOSITORY/jass-manifest.txt

JASS_RUN_SCRIPT_LIST

Caution – Do not change this variable.
Chapter 7 Environment Variables 245

This variable is part of the execution log. This variable defines the name and
absolute path to the file that stores a listing of all finish or audit scripts executed
during a run. This information is collected for informational and debugging
purposes and is stored within the JASS_REPOSITORY directory structure. By
default, this variable is set to:

JASS_REPOSITORY/jass-script-list.txt

JASS_RUN_UNDO_LOG

Caution – Do not change this variable.

This variable is part of the execution log. This variable defines the name and
absolute path to the file that stores the output generated during an undo run. This
information is collected to document which scripts were executed, in addition to
listing any files that were installed, removed, or modified during a run.

Any errors or warnings generated are stored in this file. The information stored in
this file is equivalent to the output displayed on the screen during an undo run. By
default, this variable is set to:

JASS_REPOSITORY/jass-undo-log.txt

JASS_RUN_VALUES

Caution – Do not change this variable.

This variable defines the name and absolute path to a file that holds variables saved
during a run using the set/get_stored_keyword_val functions. By default, this
variable is set to:

JASS_REPOSITORY/jass-values.txt

Note – Do not attempt to edit the JASS_REPOSITORY/jass-values.txt file.

JASS_RUN_VERSION

Caution – Do not change this variable.
246 Solaris Security Toolkit 4.2 Reference Manual • July 2005

This variable is part of the execution log. This variable defines the name and
absolute path to the file containing the version and associated information for a run.
This file typically includes information about the version, mode, and security profile
used by the Solaris Security Toolkit software during its run. This information is
collected to document the manner in which the software was used on a system. By
default, this variable is set to:

JASS_REPOSITORY/jass-version.txt

JASS_SAVE_BACKUP

Caution – The Solaris Security Toolkit undo feature is not available if you define the
value of JASS_SAVE_BACKUP as 0.

This variable controls the creation of backup files during hardening runs. The
default value is 1, which causes the software to create a backup copy of any file
modified on the client. If the value is changed to 0, then all backup copies created
during a run are removed at its completion.

Modify the user.run script if you want to prevent the creation of backup copies of
files. The value in the user.run script overrides any value set in the variable.

JASS_SCRIPT

Caution – Do not change this variable.

This variable contains the name of the currently executing finish or audit script.

JASS_SCRIPT_ERROR_LOG

Caution – Do not change this variable.

This variable contains a set of files holding a list of scripts that had errors during the
execution of the run. By default, this variable is set to:

JASS_REPOSITORY/jass-script-errors.txt
Chapter 7 Environment Variables 247

JASS_SCRIPT_FAIL_LOG

Caution – Do not change this variable.

This variable contains a set of files holding a list of scripts that had failures during
the execution of the run. By default, this variable is set to:

JASS_REPOSITORY/jass-script-failures.txt

JASS_SCRIPT_NOTE_LOG

Caution – Do not change this variable.

This variable contains a set of files holding a list of scripts that had notes during the
execution of the run. By default, this variable is set to:

JASS_REPOSITORY/jass-script-notes.txt

JASS_SCRIPT_WARN_LOG

Caution – Do not change this variable.

This variable contains a set of files holding a list of scripts that had warnings during
the execution of the run. By default, this variable is set to:

JASS_REPOSITORY/jass-script-warnings.txt

JASS_SCRIPTS

This variable specifies a list of finish scripts to execute on a target system when you
want to use a specific driver. For each entry, make sure you provide a corresponding
finish script with the same name located in the JASS_FINISH_DIR directory.

Store an audit script also in JASS_AUDIT_DIR, corresponding to each finish script
that is stored in JASS_FINISH_DIR.

Note – JASS_SCRIPTS cannot be added to the user.init file. To change this
variable, copy the relevant .driver file to a new name and modify the new file.
248 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Specifying Files With the JASS_SCRIPTS Variable

The JASS_SCRIPTS variable supports OS-specific extensions. Use these extensions
to specify a list of finish scripts to execute only when the target system is running
certain versions of the Solaris OS. Create a version-specific list by appending the
major and minor operating system versions to the end of the JASS_SCRIPTS
variable, separated by underscores. The Solaris Security Toolkit software supports
the options listed in TABLE 7-2.

For example, to use the disable-something.fin script only on the Solaris 9 OS,
you would add the following to the driver.

In this example, assuming that the operating system is the Solaris 9 OS, the
disable-something.fin script is added to the end of JASS_SCRIPTS.

Note – The OS-specific file and script lists are always appended to the generic list of
files and scripts. As a result, they are always executed after their more general
counterparts. For example, if JASS_SCRIPTS is a b and JASS_SCRIPTS_5_9 is c d,
after the append operation, JASS_SCRIPTS is a b c d and JASS_SCRIPTS_5_9 is
automatically discarded.

TABLE 7-2 Supporting OS Versions in the JASS_SCRIPTS Variable

Variable OS Version

JASS_SCRIPTS Applies to all versions of the Solaris OS, and overwrites
instead of appending

JASS_SCRIPTS_5_5_1 Applies only to the Solaris 2.5.1 OS

JASS_SCRIPTS_5_6 Applies only to the Solaris 2.6 OS

JASS_SCRIPTS_5_7 Applies only to the Solaris 7 OS

JASS_SCRIPTS_5_8 Applies only to the Solaris8 OS

JASS_SCRIPTS_5_9 Applies only to the Solaris 9 OS

JASS_SCRIPTS_5_10 Applies only to the Solaris 10 OS

JASS_SCRIPTS_5_9="
disable-something.fin
"

Chapter 7 Environment Variables 249

Customizing the JASS_SCRIPTS Variable

To add or remove finish scripts from a driver, modify the JASS_SCRIPTS variable as
needed. Drivers provide a mechanism for grouping file templates and scripts into a
single security profile. These profiles allow you to logically group customization. For
example, a single profile could be used to define a baseline that is applied to all of
the systems within an organization. Alternatively, a profile could define the
modifications that are done to secure systems operating as database servers. These
profiles can be used individually or combined into more complex profiles.

In this example, five different scripts are configured to run when the driver.run
function is executed. (See “Understanding Driver Functions and Processes” on
page 113 for more information about driver.run.) These five scripts are grouped
into the config.driver, because they represent system configuration changes that
are not directly related to hardening.

JASS_STANDALONE

Note – Normally, this variable should not require modification.

This variable controls whether the Solaris Security Toolkit software runs in
stand-alone or JumpStart mode. This variable defaults to 0 for JumpStart
installations and 1 when the jass-execute command is used to initiate a run.

JASS_SUFFIX

Caution – Do not change this variable.

This variable determines which suffixes must be appended onto backup copies of
files. By default, this variable is set to:

JASS.JASS_TIMESTAMP

JASS_SCRIPTS="
print-jass-environment.fin
install-recommended-patches.fin
install-jass.fin
set-root-password.fin
set-term-type.fin
"

250 Solaris Security Toolkit 4.2 Reference Manual • July 2005

During a run, the value of the timestamp field changes to reflect the time a file is
created. This action guarantees that all backup file names are unique.

This variable is dynamically altered during runs. Any value assigned to this variable
in the init files is overwritten.

JASS_TIMESTAMP

Note – Normally, this variable should not require modification.

This variable creates the JASS_REPOSITORY directory:

/var/opt/SUNWjass/run/JASS_TIMESTAMP

As noted previously, this directory contains the logs and manifest information for
each run of the Solaris Security Toolkit software. This variable contains the
timestamp associated with the start of a run, and its value is maintained for the
entire run. As a result, its value is unique for each run. This unique value allows
information for each run to be clearly separated from all others, based on the time
that the run was started. By default, this variable is set to date:

+%EY%m%d%OH%OM%S

This command creates a timestamp of the form YYYYMMDDHHMMSS. For
example, a run started at 1:30 a.m. on July 1, 2005 would be represented by the value
20050701013000.

JASS_UNAME

This variable was renamed to JASS_OS_REVISION before the Solaris Security
Toolkit 4.0 release. See “JASS_OS_REVISION” on page 241.

JASS_UNDO_TYPE

Caution – Do not change this variable.

This variable contains information about whether the jass-execute command was
started with any of the -b, -f, or -k options, or none of them. The possible values
are:

■ BACKUP
■ FORCE
Chapter 7 Environment Variables 251

■ KEEP
■ ASK

JASS_USER_DIR

This variable specifies the location of the configuration files user.init and
user.run. By default, these files are stored in the JASS_HOME_DIR/Drivers
directory. Use these files to customize the Solaris Security Toolkit software to meet
the needs of your organization.

If you need to customize the Solaris Security Toolkit software, do so in these files to
minimize the impact of Solaris Security Toolkit software upgrades in the future.

Global variables should be created and assigned either in the user.init file or
within a driver. New functions or overrides of existing functions should be
implemented in the user.run file. All variable or function overrides take
precedence over their counterparts defined in the Solaris Security Toolkit software.

JASS_VERBOSITY

Caution – Do not modify this variable directly. Instead, use the jass-execute
command with the -V option

This variable controls how the Solaris Security Toolkit software displays its results
when running during audit runs. The software currently supports five different
verbosity levels: 0 through 4. Set this variable to any of these values using the -V
option with the jass-execute command.

Note – In hardening runs and other operations, this variable is set to 3 (Full) and
normally should not be changed.
252 Solaris Security Toolkit 4.2 Reference Manual • July 2005

The verbosity levels used during audit runs are as listed in TABLE 7-3.

In the least verbose mode, level 0, only a single line is displayed representing the
overall result for a run. The output at this level would look like:

JASS_VERSION

Caution – Do not change this variable.

This variable defines the version of the Solaris Security Toolkit software associated
with the software distribution being used. This variable documents the version of
the software and permits its use with logging and other functions.

TABLE 7-3 Verbosity Levels for Audit Runs

Level Description

0 Final. This mode results in only one line of output that indicates the
combined result of the entire verification run. This mode is useful if a single
PASS or FAIL is needed.

1 Consolidated. In this mode, one line of output per audit script is generated
indicating the result of each audit script. In addition, subtotals are generated
at the end of each script, as well as a grand total at the end of the run.

2 Brief. This mode combines the attributes of the Consolidated verbosity level
and includes the results of the individual checks within each audit script.
This mode is useful for quickly determining those items that passed and
failed within a single audit script. The format of this mode still represents
one result per line.

3 Full. This is the first of the multiline verbosity modes. In this mode, banners
and headers are printed to illustrate more clearly the checks that are being
run, their intended purpose, and how their results are determined. This is
the default verbosity level and more suitable for those new to the Solaris
Security Toolkit verification capability.

4 Debug. This mode extends upon the Full verbosity mode by including all
entries that are generated by the logDebug logging function. Currently, this
is not used by any of the Solaris Security Toolkit audit scripts, but it is
included for completeness and to allow administrators to embed debugging
statements within their code.

./jass-execute -a secure.driver -V 0
secure.driver [PASS] Grand Total : 0 Error(s)
Chapter 7 Environment Variables 253

JASS_ZONE_NAME

Note – For Solaris OS versions 9 and earlier, which do not have Solaris zones,
JASS_ZONE_NAME is automatically set to global.

For the Solaris 10 OS, which enables the use of zones, certain Solaris Security Toolkit
scripts use this variable to check if they are in the global zone. Following is a list of
the Finish and Audit scripts that are zone aware:

■ disable-power-mgmt
■ enable-bsm
■ enable-ipfilter
■ enable-priv-nfs-ports
■ enable-rfc1948
■ enable-stack-protection
■ install-nddconfig
■ install-security-mode

For more information about zone-aware scripts, see TABLE 1-4.

If the scripts are not running in the global zone, the scripts log that information
with the logNotGlobalZone function and finish.

The JASS_ZONE_NAME variable is set in the Solaris Security Toolkit scripts at
initialization by using /usr/bin/zonename. If this command does not exist, the
variable is set to global.

Define Script Behavior Variables
Script behavior variables are those that are defined and used by the Solaris Security
Toolkit software to affect the behavior of finish and audit scripts. The Solaris
Security Toolkit software provides a robust and flexible framework for customizing
its functionality to suit individual site requirements. The Toolkit software limits the
amount of source code that has to be modified for users to implement site-specific
customization. The script variables provide an easy to use method for altering the
behavior of a script without modifying the script’s source code.

These variables are defined in the JASS_HOME_DIR/Drivers/finish.init file.
Although they are global, their use is typically limited to a small set of finish and
audit scripts. As described earlier in this chapter, you can customize these variables
using techniques such as static, dynamic, and complex assignment in either the
user.init file or within an individual driver.

Tune these variables where necessary to meet organizational or site security policy
and requirements. Used in this manner, the software provides the greatest value in
helping you improve and sustain the security posture of your environment.
254 Solaris Security Toolkit 4.2 Reference Manual • July 2005

This section describes the following script behavior variables:

■ “JASS_ACCT_DISABLE” on page 256
■ “JASS_ACCT_REMOVE” on page 257
■ “JASS_AGING_MAXWEEKS” on page 257
■ “JASS_AGING_MINWEEKS” on page 257
■ “JASS_AGING_WARNWEEKS” on page 257
■ “JASS_AT_ALLOW” on page 258
■ “JASS_AT_DENY” on page 258
■ “JASS_BANNER_DTLOGIN” on page 259
■ “JASS_BANNER_FTPD” on page 259
■ “JASS_BANNER_SENDMAIL” on page 259
■ “JASS_BANNER_SSHD” on page 259
■ “JASS_BANNER_TELNETD” on page 260
■ “JASS_CORE_PATTERN” on page 260
■ “JASS_CPR_MGT_USER” on page 260
■ “JASS_CRON_ALLOW” on page 260
■ “JASS_CRON_DENY” on page 261
■ “JASS_CRON_LOG_SIZE” on page 261
■ “JASS_CRYPT_ALGORITHMS_ALLOW” on page 262
■ “JASS_CRYPT_DEFAULT” on page 262
■ “JASS_CRYPT_FORCE_EXPIRE” on page 262
■ “JASS_FIXMODES_DIR” on page 262
■ “JASS_FIXMODES_OPTIONS” on page 263
■ “JASS_FTPD_UMASK” on page 263
■ “JASS_FTPUSERS” on page 263
■ “JASS_KILL_SCRIPT_DISABLE” on page 264
■ “JASS_LOGIN_RETRIES” on page 264
■ “JASS_MD5_DIR” on page 264
■ “JASS_NOVICE_USER” on page 265
■ “JASS_PASS_DICTIONDBDIR” on page 265
■ “JASS_PASS_DICTIONLIST” on page 265
■ “JASS_PASS_HISTORY” on page 266
■ “JASS_PASS_LENGTH” on page 266
■ “JASS_PASS_MAXREPEATS” on page 266
■ “JASS_PASS_MINALPHA” on page 266
■ “JASS_PASS_MINDIFF” on page 267
■ “JASS_PASS_MINDIGIT” on page 267
■ “JASS_PASS_MINLOWER” on page 268
■ “JASS_PASS_MINNONALPHA” on page 268
■ “JASS_PASS_MINSPECIAL” on page 268
■ “JASS_PASS_MINUPPER” on page 269
■ “JASS_PASS_NAMECHECK” on page 269
■ “JASS_PASS_WHITESPACE” on page 269
■ “JASS_PASSWD” on page 270
■ “JASS_POWER_MGT_USER” on page 270
■ “JASS_REC_PATCH_OPTIONS” on page 270
Chapter 7 Environment Variables 255

■ “JASS_RHOSTS_FILE” on page 270
■ “JASS_ROOT_GROUP” on page 271
■ “JASS_ROOT_PASSWORD” on page 271
■ “JASS_SADMIND_OPTIONS” on page 271
■ “JASS_SENDMAIL_MODE” on page 272
■ “JASS_SGID_FILE” on page 272
■ “JASS_SHELLS” on page 272
■ “JASS_SUID_FILE” on page 273
■ “JASS_SUSPEND_PERMS” on page 273
■ “JASS_SVCS_DISABLE” on page 274
■ “JASS_SVCS_ENABLE” on page 275
■ “JASS_TMPFS_SIZE” on page 276
■ “JASS_UMASK” on page 276
■ “JASS_UNOWNED_FILE” on page 276
■ “JASS_WRITABLE_FILE” on page 276

JASS_ACCT_DISABLE

This variable contains a list of user accounts that should be disabled on a system.
During hardening runs, these accounts are disabled by the
disable-system-accounts.fin script. During audit runs, the
disable-system-accounts.aud script inspects the accounts defined by this
variable, to ensure that they are disabled.

By default, the following accounts are assigned to the JASS_ACCT_DISABLE
variable:

■ daemon
■ bin
■ adm
■ lp
■ uucp
■ nuucp
■ nobody
■ smtp
■ listen
■ noaccess
■ nobody4
■ smmsp
256 Solaris Security Toolkit 4.2 Reference Manual • July 2005

JASS_ACCT_REMOVE

This variable contains a list of user accounts that should be removed from a system.
During hardening runs, these accounts are removed by the
remove-unneeded-accounts.fin script. During audit runs, the
remove-unneeded-accounts.aud script inspects the system to ensure that the
accounts do not exist.

By default, the following accounts are assigned to the JASS_ACCT_REMOVE variable:

■ smtp
■ listen
■ nobody4

JASS_AGING_MAXWEEKS

This variable contains a numeric value specifying the maximum number of weeks
passwords remain valid before they must be changed by users. The default value for
this variable is 8 (weeks). This variable is used by these scripts:

■ set-user-password-reqs.fin
■ set-user-password-reqs.aud

JASS_AGING_MINWEEKS

This variable contains a numeric value specifying the minimum number of weeks
that must pass before users can change their passwords. This variable has a default
value of 1 (week). This variable is used by these scripts:

■ set-user-password-reqs.fin
■ set-user-password-reqs.aud

JASS_AGING_WARNWEEKS

This variable contains a numeric value specifying the number of weeks before
passwords expire and users are warned. This warning is displayed to users upon
login during the warning period. The default value of this variable is 1 (week).

This variable is used by these scripts:

■ set-user-password-reqs.fin
■ set-user-password-reqs.aud
Chapter 7 Environment Variables 257

JASS_AT_ALLOW

This variable contains a list of user accounts that should be permitted to use the at
and batch facilities. During hardening runs, the install-at-allow.fin script
adds each user account defined by this variable to the
JASS_ROOT_DIR/etc/cron.d/at.allow file, if not already present. Similarly,
during audit runs, the install-at-allow.aud script determines if each user
account defined by this variable is listed in the at.allow file.

Note – For a user account to be added or checked, it must also exist in
JASS_PASSWD.

By default, this variable contains no user accounts.

JASS_AT_DENY

This variable contains a list of user accounts that should be prevented from using the
at and batch facilities. During hardening runs, the update-at-deny.fin script
adds each user account defined by this variable to the
JASS_ROOT_DIR/etc/cron.d/at.deny file, if not already present. Similarly,
during audit runs, the update-at-deny.aud script determines if each user account
defined by this variable is listed in the at.deny file.

Note – For a user account to be added or checked, it must also exist in
JASS_PASSWD.

By default, this variable contains all of the user accounts defined on the system in
the JASS_PASSWD file.

Note – If the JASS_AT_DENY variable definition is copied to the user.init file
from the finish.init file without modification, any use of this variable in finish
or audit scripts causes the the Solaris Security Toolkit software to appear to hang,
because it is waiting for input. To prevent this situation, ensure that the
JASS_PASSWD variable is defined prior to the JASS_AT_DENY variable in the
user.init file, or remove the reference to JASS_PASSWD.
258 Solaris Security Toolkit 4.2 Reference Manual • July 2005

JASS_BANNER_DTLOGIN

This variable contains a string value that represents a file name containing a banner
message to be displayed to users after logging into CDE. During hardening runs,
this banner is installed by the set-banner-dtlogin.fin script. During audit
runs, the existence of this banner is checked by the set-banner-dtlogin.aud
script. The default value of this variable is /etc/motd.

JASS_BANNER_FTPD

Note – This variable is only used for systems running Solaris OS version 2.6
through 8.

This variable contains a string value that is used as a banner displayed to users prior
to authenticating for FTP service. During hardening runs, this banner is installed by
the set-banner-ftpd.fin script. During audit runs, the existence of this banner
is checked by the set-banner-ftpd.aud script. The default value of this variable
is \"Authorized Use Only\".

Note – The back slash characters are required in the previous string to prevent the
quote characters from being interpreted by the command shell. When installed in the
relevant FTP configuration file, the string displays as “Authorized Use Only”.

JASS_BANNER_SENDMAIL

This variable contains a string value that is used as a banner displayed to clients
immediately after connecting to the sendmail service. During hardening runs, this
banner is installed by the set-banner-sendmail.fin script. During audit runs,
the existence of this banner is checked by the set-banner-sendmail.aud script.
The default value of this variable is Mail Server Ready.

JASS_BANNER_SSHD

This variable contains a string value that represents a file name containing a banner
message to be displayed to users prior to authenticating the Secure Shell service.
During hardening runs, this banner is installed by the set-banner-sshd.fin
script. During audit runs, the existence of this banner is checked by the
set-banner-sshd.aud script. The default value of this variable is
/etc/issue.
Chapter 7 Environment Variables 259

JASS_BANNER_TELNETD

This variable contains a string value that is used as a banner displayed to users prior
to authenticating for Telnet service. During hardening runs, this banner is installed
by the set-banner-telnetd.fin script. During audit runs, the existence of this
banner is checked by the set-banner-telnetd.aud script. The default value of
this variable is \"Authorized Use Only\".

Note – The back slash characters are required in the previous string to prevent the
quote characters from being interpreted by the command shell. When installed in the
relevant Telnet configuration file, the string displays as “Authorized Use Only”.

JASS_CORE_PATTERN

This variable contains a string value that represents the path name and core file
naming pattern used by the coreadm facility. This variable is used to configure
coreadm to restrict core files generated on the system to the specified directory and
name based on the file pattern defined by this variable. During hardening runs,
coreadm is configured by the enable-coreadm.fin script. During audit runs,
the coreadm configuration is checked by the enable-coreadm.aud script. The
default value of this variable is:

/var/core/core_%n_%f_%u_%g_%t_%p

For more information on the file naming options, refer to the coreadm(1M) manual
page.

JASS_CPR_MGT_USER

This variable contains a string value that defines which users are permitted to
perform checkpoint and resume functions on a system. During hardening runs, this
restriction is implemented by the set-power-restrictions.fin script. During
audit runs, this restriction is checked by the set-power-restrictions.aud
script. The default value of this variable is “-”, indicating that only the root account
is permitted to perform these management functions. For more information, see the
/etc/default/power information in Chapter 3.

JASS_CRON_ALLOW

This variable contains a list of user accounts that should be permitted to use the
cron facility. During hardening runs, the update-cron-allow.fin script adds
each user defined by this variable to the
260 Solaris Security Toolkit 4.2 Reference Manual • July 2005

JASS_ROOT_DIR/etc/cron.d/cron.allow file, if not already present. Similarly,
during audit runs, the update-cron-allow.aud script determines if each user
defined by this variable is listed in the cron.allow file.

Note – For a user account to be added or checked, it must also exist in
JASS_PASSWD.

By default, this variable contains only the root account.

JASS_CRON_DENY

This variable contains a list of user accounts that should be prevented from using the
cron facility. During hardening runs, the update-cron-deny.fin script adds each
user defined by this variable to the JASS_ROOT_DIR/etc/cron.d/cron.deny file,
if not already present. Similarly, during audit runs, the update-cron-deny.aud
script determines if each user defined by this variable is listed in the cron.deny
file.

Note – For a user account to be added or checked, it must also exist in
JASS_PASSWD.

By default, this variable contains all of the user accounts defined in the
JASS_PASSWD file with user identifiers less than 100 and greater than 60000.
Typically, the ranges below 100 and above 60000 are reserved for administrative
access. Note that by default, the root account is explicitly excluded from this list.

Note – If the JASS_CRON_DENY variable definition is copied to the user.init file
from the finish.init file without modification, any use of this variable in finish
or audit scripts causes the the Solaris Security Toolkit software to appear to hang,
because it is waiting for input. To prevent this situation, ensure that the
JASS_PASSWD variable is defined prior to the JASS_CRON_DENY variable in the
user.init file, or remove the reference to JASS_PASSWD.

JASS_CRON_LOG_SIZE

This variable contains a numeric value representing the maximum size, in blocks,
that the cron facility log file can be before it is rotated. During hardening runs, this
setting is installed by the update-cron-log-size.fin script. During audit runs,
this setting is checked by the update-cron-log-size.aud script. The default
value of this variable is 20480 (or 20 megabytes). This size is an increase over the
default Solaris OS value of 1024 (or 0.5 megabytes).
Chapter 7 Environment Variables 261

JASS_CRYPT_ALGORITHMS_ALLOW

This variable stores the allowed password encryption algorithms. The values can be
one or more of the following:

■ 1 – BSD/Linux md5
■ 2a – BSD Blowfish
■ md5 – Sun md5

JASS_CRYPT_DEFAULT

This variable contains the default cryptographic algorithm that is configured for the
system. The default setting is “1”, corresponding to BSD MD5. This variable is used
in the set-flexible-crypt.fin script to modify the Solaris OS default in the
/etc/security/crypt.conf file for the CRYPT_DEFAULT variable.

JASS_CRYPT_FORCE_EXPIRE

This variable tells the Solaris Security Toolkit whether to force the changing of all
passwords after a change in cryptographic settings. If set to 1, the
set-flexible-crypt.fin script uses the passwd -f command to force all users
to change their passwords at the next login. The defaults are:

■ Generic driver or secure.driver = 1
■ server drivers = 0
■ suncluster drivers = 0
■ sunfire_15k_sc drivers = 0

JASS_FIXMODES_DIR

This variable contains a string value representing the absolute path to the FixModes
software distribution, if present. If the FixModes software is installed from the
software distribution by the Solaris Security Toolkit, it is installed into the
directory defined by this variable. During hardening runs, this variable is used by
the install-fix-modes.fin script to install and run the FixModes software.
During audit runs, the FixModes software is run by the install-fix-modes.aud
script. The default value of this variable is /opt.
262 Solaris Security Toolkit 4.2 Reference Manual • July 2005

JASS_FIXMODES_OPTIONS

This variable contains a list of options that are passed to the FixModes software
when it is run during hardening runs from the install-fix-modes.fin script.
This variable is not used during audit runs. By default, no options are specified by
this variable.

JASS_FTPD_UMASK

This variable contains a numeric (octal) value that represents the file creation mask
(umask) to be used by the FTP service. During hardening runs, this setting is
installed by the set-ftpd-umask.fin script. During audit runs, this setting is
checked by the set-ftpd-umask.aud script. The default value of this variable is
022.

JASS_FTPUSERS

This variable contains a list of user accounts that should be prevented from using the
FTP service. During hardening runs, the install-ftpusers.fin script adds each
user defined by this variable to one of the following:

For the Solaris 8 OS or earlier, the JASS_ROOT_DIR/etc/ftpusers file

For the Solaris 9 or 10 OS, the JASS_ROOT_DIR/etc/ftpd/ftpusers file if not
already present

Similarly, during audit runs, the install-ftpusers.aud script determines if each
user account defined by this variable is listed in the ftpusers file. By default, this
variable contains all of the user accounts defined in the JASS_PASSWD file with user
identifiers less than 100 and greater than 60000. Typically the ranges below 100
and above 60000 are reserved for administrative access.

Note – If the JASS_FTPUSERS variable definition is copied to the user.init file
from the finish.init file without modification, any use of this variable in finish
or audit scripts causes the the Solaris Security Toolkit software to appear to hang,
because it is waiting for input. To prevent this situation, ensure that the
JASS_PASSWD variable is defined prior to the JASS_FTPUSERS variable in the
user.init file, or remove the reference to JASS_PASSWD.
Chapter 7 Environment Variables 263

JASS_KILL_SCRIPT_DISABLE

Note – This variable is not used on systems running the Solaris 10 OS, because
run-control scripts are managed by the Service Management Facility in the Solaris 10
OS.

This variable contains a Boolean value that determines whether the kill run-control
scripts should be disabled or simply left in place when a service is disabled. The
start run-control scripts are always disabled. Some administrators prefer to have the
kill scripts left in place so that any services that are started manually can be properly
terminated during a system shutdown or reboot. By default, this variable is set to 1
indicating that the kill run-control scripts should be disabled. Setting this variable to
0 configures the software to ignore kill run-control scripts.

JASS_LOGIN_RETRIES

This variable contains a numeric value specifying the number of consecutive failed
login attempts that can occur before the login process logs the failure and terminates
the connection, and, on systems running the Solaris 10 OS, locks the account to
prevent further login attempts. During hardening runs, this setting is installed by
the set-login-retries.fin script. During audit runs, the
set-login-retries.aud script checks that this setting is installed. By default,
this variable has a value of 3.

JASS_MD5_DIR

Note – This variable is not used for systems running the Solaris 10 OS, because the
/usr/bin/digest command provides MD5 functionality in the Solaris 10 OS.

This variable contains a string value representing the absolute path to the MD5
software distribution, if present. If the MD5 software is installed from the software
distribution by the Solaris Security Toolkit, it is installed into the directory defined
by this variable. During hardening runs, this variable is used by the
install-md5.fin script to install the MD5 software. During audit runs,
install-md5.aud script checks for the existence of the MD5 software at the
location defined by this variable. The default value of this variable is /opt.
264 Solaris Security Toolkit 4.2 Reference Manual • July 2005

JASS_NOVICE_USER

This variable controls the display of information for novice Solaris Security Toolkit
users. This variable provides additional guidance for less-experienced
administrators. The default is 1, which means you are a novice user. You can disable
this capability by setting the JASS_NOVICE_USER variable to 0 (zero) in the
JASS_HOME_DIR/Drivers/user.init file.

JASS_PASS_ Environment Variables

Unless otherwise specified, the JASS_PASS_ environment variables listed in this
section are used by the set-strict-password-checks.[fin|aud] scripts. They
are used by the Solaris Security Toolkit software to modify and audit the values in
the /etc/default/passwd file of the corresponding variables without the
JASS_PASS_ prefix in the Solaris 10 OS. Refer to the passwd(1) man page for more
information about the basic variables (without the JASS_PASS_ prefix).

JASS_PASS_DICTIONDBDIR

Note – This variable is used only for systems running the Solaris 10 OS.

This variable contains the directory where the generated dictionary databases reside.
The defaults are:

■ secure.driver = /var/password
■ server drivers = /var/password
■ suncluster drivers = /var/password
■ sunfire_15k_sc drivers = /var/password

(See “JASS_PASS_ Environment Variables” on page 265 for more information.)

JASS_PASS_DICTIONLIST

Note – This variable is used only for systems running the Solaris 10 OS.

This variable can contain a list of comma-separated dictionary files, such as
JASS_PASS_DICTIONLIST=file1,file2,file3. The defaults are:

■ secure.driver = /usr/share/lib/dict/words
■ server drivers = /usr/share/lib/dict/words
■ suncluster drivers = /usr/share/lib/dict/words
■ sunfire_15k_sc drivers = /usr/share/lib/dict/words
Chapter 7 Environment Variables 265

(See “JASS_PASS_ Environment Variables” on page 265 for more information.)

JASS_PASS_HISTORY

Note – This variable is used only for systems running the Solaris 10 OS.

This variable contains the HISTORY value for a specific driver and is used to check
password history on a driver by the enable-password-history.fin and
enable-password-history.aud scripts. The defaults are:

■ secure.driver = 10
■ server drivers = 4
■ suncluster drivers = 4
■ sunfire_15k_sc drivers = 4

JASS_PASS_LENGTH

This variable contains a numeric value specifying the minimum length of a user
password. The default value for this variable is 8 (characters). This variable is used
by the set-user-password-reqs.[fin|aud] scripts

JASS_PASS_MAXREPEATS

Note – This variable is used only for systems running the Solaris 10 OS.

This variable contains the maximum number of allowable consecutive repeating
characters in a password. The defaults are:

■ secure.driver = 1
■ server drivers = 2
■ suncluster drivers = 2
■ sunfire_15k_sc drivers = 2

(See “JASS_PASS_ Environment Variables” on page 265 for more information.)

JASS_PASS_MINALPHA

Note – This variable is used only for systems running the Solaris 10 OS.
266 Solaris Security Toolkit 4.2 Reference Manual • July 2005

This variable contains the minimum number of alpha characters required in a
password. The defaults are:

■ secure.driver = 4
■ server drivers = 3
■ suncluster drivers = 3
■ sunfire_15k_sc drivers = 3

(See “JASS_PASS_ Environment Variables” on page 265 for more information.)

JASS_PASS_MINDIFF

Note – This variable is used only for systems running the Solaris 10 OS.

This variable contains the minimum differences required between an old and a new
password. The defaults are:

■ secure.driver = 7
■ server drivers = 5
■ suncluster drivers = 5
■ sunfire_15k_sc drivers = 5

(See “JASS_PASS_ Environment Variables” on page 265 for more information.)

JASS_PASS_MINDIGIT

Note – This variable is used only for systems running the Solaris 10 OS.

This variable contains the minimum number of digits required for a password. The
defaults are:

■ secure.driver = 1
■ server drivers = 1
■ suncluster drivers = 1
■ sunfire_15k_sc drivers = 1

(See “JASS_PASS_ Environment Variables” on page 265 for more information.)

Note – If JASS_PASS_MINNONALPHA is set, the Solaris Security Toolkit uses that
value, and ignores JASS_PASS_MINDIGIT and JASS_PASS_MINSPECIAL.
Chapter 7 Environment Variables 267

JASS_PASS_MINLOWER

Note – This variable is used only for systems running the Solaris 10 OS.

This variable contains the minimum number of lower-case letters required. The
defaults are:

■ secure.driver = 2
■ server drivers = 2
■ suncluster drivers = 2
■ sunfire_15k_sc drivers = 2

(See “JASS_PASS_ Environment Variables” on page 265 for more information.)

JASS_PASS_MINNONALPHA

Note – This variable is used only for systems running the Solaris 10 OS.

This variable contains the minimum number of non-alpha, including numeric and
special, characters required for a password. The defaults are:

■ secure.driver = None
■ server drivers = 1
■ suncluster drivers = 1
■ sunfire_15k_sc drivers = 1

(See “JASS_PASS_ Environment Variables” on page 265 for more information.)

Note – If JASS_PASS_MINNONALPHA is set, the Solaris Security Toolkit uses that
value, and ignores JASS_PASS_MINDIGIT and JASS_PASS_MINSPECIAL.

JASS_PASS_MINSPECIAL

Note – This variable is used only for systems running the Solaris 10 OS.

This variable contains the minimum number of special, non-alpha and non-digit,
characters required for a password. The defaults are:

■ secure.driver = 1
■ server drivers = 1
■ suncluster drivers = 1
268 Solaris Security Toolkit 4.2 Reference Manual • July 2005

■ sunfire_15k_sc drivers = 1

(See “JASS_PASS_ Environment Variables” on page 265 for more information.)

Note – If JASS_PASS_MINNONALPHA is set, the Solaris Security Toolkit uses that
value, and ignores JASS_PASS_MINDIGIT and JASS_PASS_MINSPECIAL.

JASS_PASS_MINUPPER

Note – This variable is used only for systems running the Solaris 10 OS.

This variable contains the minimum number of upper-case letters required for a
password. The defaults are:

■ secure.driver = 2
■ server drivers = 2
■ suncluster drivers = 2
■ sunfire_15k_sc drivers = 2

(See “JASS_PASS_ Environment Variables” on page 265 for more information.)

JASS_PASS_NAMECHECK

Note – This variable is used only for systems running the Solaris 10 OS.

This variable is used to enable or disable checking the password against the login
name. The default value for all the drivers is YES, which means checking is enabled.
(See “JASS_PASS_ Environment Variables” on page 265 for more information.)

JASS_PASS_WHITESPACE

Note – This variable is used only for systems running the Solaris 10 OS.

This variable is used to determine if white-space characters are allowed in
passwords. The default value for all the drivers is YES, which means white-space
characters are allowed. (See “JASS_PASS_ Environment Variables” on page 265 for
more information.)
Chapter 7 Environment Variables 269

JASS_PASSWD

Note – This variable should not require modification.

This variable contains a string value that specifies the location of the password file
on the target system. This variable is used in many of the scripts and for dynamic
assignment of many variables. This variable has a default value of:

JASS_ROOT_DIR/etc/passwd

JASS_POWER_MGT_USER

This variable contains a string value that defines which users are permitted to
perform power management functions on a system. During hardening runs, this
restriction is implemented by the set-power-restrictions.fin script. During
audit runs, this restriction is checked by the set-power-restrictions.aud
script. The default value of this variable is “-”, indicating that only the root account
is permitted to perform these management functions. For more information, see the
/etc/default/power information in Chapter 3.

JASS_REC_PATCH_OPTIONS

This variable contains a string value that specifies options to be passed to the
patchadd or installpatch commands when installing a Solaris Recommended
and Security Patch Cluster on a system. For information on available options, refer
to the patchadd(1M) manual page or the installpatch program code. During
hardening runs, this variable is used by the install-recommended-patches.fin
script when installing the patch cluster on the system. This variable is not used
during audit runs. By default, no options are assigned to this variable.

JASS_RHOSTS_FILE

This variable contains a string value that specifies the file where the list of .rhosts
or hosts.equiv files found on the system are stored. This variable is used during
hardening runs by the print-rhosts.fin script. This variable is not used during
audit runs. By default, no file name is assigned to this variable. As a result, the
output of the print-rhosts.fin script is displayed on the screen.
270 Solaris Security Toolkit 4.2 Reference Manual • July 2005

JASS_ROOT_GROUP

This variable contains a numeric value that is used as the root user’s primary
group identifier value. During hardening runs, this setting is installed by the
set-root-group.fin script. During audit runs, this setting is checked by the
set-root-group.aud script. By default, this value is set to 0 (or root). This value
overrides the Solaris OS default value of 1 (or other).

JASS_ROOT_PASSWORD

Caution – Change the value of this string from the default value that ships with the
Solaris Security Toolkit software. Failure to do so could leave systems vulnerable
because the password is publicly known.

Note – This script operates only when the system is running from a miniroot during
a JumpStart installation, to prevent the root password from being accidentally
overwritten with a widely known value.

This variable contains a string value that is used as the encrypted password for the
root account. During hardening runs, this setting is installed by the
set-root-password.fin script. During audit runs, this setting is checked by the
set-root-password.aud script. By default, this variable is set to:

JdqZ5HrSDYM.o

This encrypted string equates to the clear-text string t00lk1t.

JASS_SADMIND_OPTIONS

This variable contains a string value specifying options to be used with the sadmind
daemon that is executed from the inetd process. During hardening runs, this
setting is installed by the install-sadmind-options.fin script. During audit
runs, these settings are checked by the install-sadmind-options.aud script. By
default, this variable has a value of -S 2 to instruct the sadmind daemon to use
strong authentication (AUTH_DES) when communicating with clients.
Chapter 7 Environment Variables 271

JASS_SENDMAIL_MODE

Note – Due to changes in sendmail versions and configurations, this variable is
used only for Solaris 8 OS. Other mechanisms are used for newer and earlier Solaris
OS versions to achieve the same goal. See “disable-sendmail.fin” on page 149
for more information.

This variable contains a string value specifying options to be used by the sendmail
daemon to determine its operation. During hardening runs, the
disable-sendmail.fin script configures the daemon for the operation specified
by this variable. During audit runs, the disable-sendmail.aud script checks to
ensure that the sendmail daemon is configured for the correct operation. The
default value of this variable is \"\". This value indicates that the sendmail
daemon should operate in queue-processing mode only. This value overrides the
default value where the sendmail daemon is configured to operate as a daemon
and receive incoming mail.

Note – The back slash characters are required in the previous string to prevent the
quotation marks from being interpreted by the command shell. When installed in the
relevant sendmail configuration file, the string displays as "".

JASS_SGID_FILE

This variable contains a string value that specifies the file where the list of
set-group-id files found on the system are stored. This variable is used during
hardening runs by the print-sgid-files.fin script. This variable is not used
during audit runs. By default, no file name is assigned to this variable. As a result,
the output of the print-sgid-files.fin script is displayed on the screen.

JASS_SHELLS

This variable contains a list of shells to add to the JASS_ROOT_DIR/etc/shells
file. During hardening runs, the install-shells.fin script adds each shell
defined by this variable to the JASS_ROOT_DIR/etc/shells file, if not already
present. Similarly, during audit runs, the install-shells.aud script determines
if each shell defined by this variable is listed in the shells file.

The default values for this variable are as follows:

■ /bin/csh
■ /bin/jsh
■ /bin/ksh
272 Solaris Security Toolkit 4.2 Reference Manual • July 2005

■ /bin/sh
■ /sbin/sh
■ /sbin/jsh
■ /usr/bin/csh
■ /usr/bin/jsh
■ /usr/bin/ksh
■ /usr/bin/sh

For Solaris 8 OS and later, the following shells are added to the default value:

■ /bin/bash
■ /bin/pfcsh
■ /bin/pfksh
■ /bin/pfsh
■ /bin/tcsh
■ /bin/zsh
■ /usr/bin/bash
■ /usr/bin/pfcsh
■ /usr/bin/pfksh
■ /usr/bin/pfsh
■ /usr/bin/tcsh
■ /usr/bin/zsh

JASS_SUID_FILE

This variable contains a string value that specifies the file where the list of
set-user-id files found on the system are stored. This variable is used during
hardening runs by the print-suid-files.fin script. This variable is not used
during audit runs. By default, no file name is assigned to this variable. As a result,
the output of the print-suid-files.fin script is displayed on the screen.

JASS_SUSPEND_PERMS

This variable contains a string value that defines which users are permitted to
perform system suspend or resume functions. During hardening runs, this
restriction is implemented by the set-sys-suspend-restrictions.fin script.
During audit runs, this restriction is checked by the
set-sys-suspend-restrictions.aud script. The default value of this variable
is “-”, indicating that only the root account is permitted to perform these
management functions. For more information, refer to the
/etc/default/sys-suspend file.
Chapter 7 Environment Variables 273

JASS_SVCS_DISABLE

Caution – When using the default list of services, be certain to have either console
access to the system, Secure Shell access (for Solaris 9 or 10 OS), or a nondefault
remote access capability because Telnet, RSH, and RLOGIN servers are all disabled
by most of the drivers included in the Solaris Security Toolkit.

For the Solaris 10 OS, this variable contains a list of SMF-ready services under
inetd control that you want to disable. The JASS_SVCS_DISABLE script disables
all services on the list that are SMF ready and that are installed on the system. The
entries on this list must be in the form of the FMRI listed in TABLE 1-1 in Chapter 1.
This list can also contain legacy non-SMF services. For these to have any effect, the
service must be defined in the JASS_ROOT_DIR/etc/inet/inetd.conf file,
otherwise the entry is ignored.

For Solaris OS versions earlier than 10, this variable simplifies the removal of
different services from the JASS_ROOT_DIR/etc/inet/inetd.conf file. During
hardening runs, the update-inetd-conf.fin script disables each inetd service
defined by this variable, unless it is also listed in the JASS_SVCS_ENABLE variable.
Similarly, during audit runs, the update-inetd-conf.aud script determines that
the correct inetd services are disabled on the system. By default, the list of services
disabled by this variable includes all of the entries that are provided by default with
the Solaris OS.

The JASS_SVCS_DISABLE and JASS_SVCS_ENABLE variables provide a
straightforward and easy-to-use mechanism for modifying the default behavior of
update-inetd-conf.fin without requiring any modifications to the script itself.
The four configuration possibilities for modifying these variables are as follows:

Example 1:

JASS_SVCS_DISABLE (defined)

JASS_SVCS_ENABLE (not defined)

This example is the default case for backward compatibility with older versions of
the Solaris Security Toolkit software. In this case, the services listed in
JASS_SVCS_DISABLE are disabled when the update-inetd-conf.fin script is
run.

Example 2:

JASS_SVCS_DISABLE (not defined)

JASS_SVCS_ENABLE (defined)
274 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Only services listed in JASS_SVCS_ENABLE are left enabled. All other services,
including those that are not Sun-specific, are disabled. This example permits the
implementation of the principle that all that is not explicitly permitted is denied.

Example 3:

JASS_SVCS_DISABLE (defined)

JASS_SVCS_ENABLE (defined)

The services in JASS_SVCS_DISABLE are disabled and JASS_SVCS_ENABLE are left
enabled. Services not covered in the list are unaffected. If a service is listed in both
JASS_SVCS_ENABLE and JASS_SVCS_DISABLE, then it is enabled because
JASS_SVCS_ENABLE takes precedence.

Example 4:

JASS_SVCS_DISABLE (not defined)

JASS_SVCS_ENABLE (not defined)

In this example, none of the services’ states are changed, because there is no explicit
direction defined.

JASS_SVCS_ENABLE

For the Solaris 10 OS, this variable contains a list of SMF-ready services under
inetd control that you want to enable. The entries on this list must be in the form of
the FMRI listed in TABLE 1-1 in Chapter 1. CODE EXAMPLE 7-2 shows an example of
code to add to the user.init file to enable rlogin for systems running the Solaris
10 OS. This list can also contain legacy non-SMF services. For these to have any
effect, the service must be defined in the JASS_ROOT_DIR/etc/inet/inetd.conf
file, otherwise the entry is ignored.

For Solaris OS versions earlier than 10, this variable contains a list of inetd
services that are expected to be enabled on a system. During hardening runs, the
update-inetd-conf.fin finish script enables any service listed in this variable
that is currently disabled. If the service is already enabled, no action is taken. During

CODE EXAMPLE 7-2 Adding rlogin to JASS_SVCS_ENABLE list

if [-z “${JASS_SVCS_ENABLE}”];then
 if [-f${JASS_HOME_DIR}/Drivers/finish.init];then
 ./${JASS_HOME_DIR}/Drivers/finish.init
 fi
 JASS_SVCS_ENABLE=”${JASS_SVCS_ENABLE} svc:/network/login:rlogin “
 export JASS_SVCS_ENABLE
fi
Chapter 7 Environment Variables 275

audit runs, the update-inetd-conf.aud script determines if the services defined
by this variable are enabled on the system. By default, this variable contains no
services. As a result, the behavior of the update-inetd-conf.fin script and
update-inetd-conf.aud script is controlled solely by the contents of the
JASS_SVCS_DISABLE variable.

JASS_TMPFS_SIZE

Note – Adjust this variable to ensure that it is large enough to meet the current and
expected /tmp needs for system functions and applications running on the system.

This variable contains a string value representing the amount of space to allocate to
the /tmp (tmpfs) file system. During hardening runs, this setting is installed by the
set-tmpfs-limit.fin script. During audit runs, this setting is checked by the
set-tmpfs-limit.aud script. This variable has a default value of 512 megabytes.

JASS_UMASK

This variable contains a numeric (octal) value that represents the file creation mask
(umask). During hardening runs, this setting is used by the
set-system-umask.fin and set-user-umask.fin scripts. During audit runs,
this setting is checked by the set-system-umask.aud and set-user-umask.aud
scripts. The default value of this variable is 022.

JASS_UNOWNED_FILE

This variable contains a string value that specifies the file where the list of unowned
files found on the system are stored. A file is considered unowned if its user or
group assignment does not correspond to a valid user or group on the system. This
variable is used during hardening runs by the print-unowned-objects.fin
script. This variable is not used during audit runs. By default, no file name is
assigned to this variable. As a result, the output of the
print-unowned-objects.fin script is displayed on the screen.

JASS_WRITABLE_FILE

This variable contains a string value that specifies the file where the list of
world-writable files found on the system are stored. This variable is used during
hardening runs by the print-world-writable-objects.fin script. This
276 Solaris Security Toolkit 4.2 Reference Manual • July 2005

variable is not used during audit runs. By default, no file name is assigned to this
variable. As a result, the output of the print-world-writable-objects.fin
script is displayed on the screen.

Define JumpStart Mode Variables
JumpStart mode variables are those that are defined and used by the Solaris Security
Toolkit software solely when operating in JumpStart mode. These variables facilitate
the use of the Solaris Security Toolkit software either as a JumpStart framework or
integrated as part of a larger build environment. These variables are mentioned
separately because they are relevant only during a JumpStart installation.

These variables are defined in the JASS_HOME_DIR/Drivers/user.init file.
They are in the user.init file because they typically require modification in
contrast to most of the other variables that can be used with no modification.

Note – In some cases, such as with multihomed JumpStart servers, special
customization might be required.

Tune these variables where necessary to best suit the environment in which the
Solaris Security Toolkit software is used.

This section describes the following JumpStart mode variables:

■ “JASS_PACKAGE_MOUNT” on page 277
■ “JASS_PATCH_MOUNT” on page 278

JASS_PACKAGE_MOUNT

This variable defines the named resource or location where the Solaris Security
Toolkit software expects to find the software packages that it might be required to
install onto a client. This resource is defined as an NFS path of the form: host
name:/path/to/software. This resource is mounted to JASS_PACKAGE_DIR by
the mount_filesystems function during the execution of the driver.run script.

The location of this resource must be specified by host name or IP address, and the
complete path must be listed to provide the NFS daemon enough information to
mount the directory during a run. Because a host name or IP address can be
specified in the value of the environment variable, it often requires modification.

The Solaris Security Toolkit software attempts to configure the correct host name and
directory path automatically; however, this automatic configuration might not be
applicable to your environment. By default, this variable is set to:

HOSTNAME:/jumpstart/Packages
Chapter 7 Environment Variables 277

The HOSTNAME variable is dynamically assigned to the address of the NFS server
from which the client has mounted the /cdrom file system.

JASS_PATCH_MOUNT

This variable defines the named resource or location where the Solaris Security
Toolkit software should expect to find the software patches that it may be required
to install onto the client. This resource is defined as an NFS path of the form: host
name:/path/to/patches. This resource is mounted to JASS_PATCH_DIR by the
mount_filesystems function during the execution of the driver.run script.

The location of this resource must be specified by host name or IP address, and the
complete path must be listed to provide the NFS daemon enough information to
mount the directory during the Toolkit run. Because a host name or IP address can
be specified in the value of the environment variable, it often requires modification.

The Solaris Security Toolkit software attempts to configure the correct host name and
directory path automatically; however, this automatic configuration might not be
applicable to your environment. By default, this variable is set to:

HOSTNAME:/jumpstart/Patches

The HOSTNAME variable is dynamically assigned to the address of the NFS server
from which the client has mounted the /cdrom file system.
278 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Glossary

This list defines abbreviations and acronyms in the Solaris Security Toolkit.

A
ab2 AnswerBook2

ABI Application Binary Interface

ARP Address Resolution Protocol

ASPPP Asynchronous Point-to-Point Protocol

B
BART Basic Auditing and Reporting Tool

BIND Berkeley Internet Name Domain

BSD Berkeley Software Distribution

BSM Basic Security Model (Solaris)

C
CD compact disc
279

CD-ROM compact disc–read-only memory

CDE Common Desktop Environment

cp(1) copy files command

cron(1M) clock daemon command

D
DHCP Dynamic Host Configuration Protocol

DMI Desktop Management Interface

DMTF Distributed Management Task Force

DNS Domain Name System

E
EEPROM electronically erasable programmable read-only memory

F
FACE Framed Access Command Environment

FMRI Fault Management Resource Identifier

FTP File Transfer Protocol

G
GID group identifier

GNOME GNU Network Object Model Environment

GUI graphical user interface
280 Solaris Security Toolkit 4.2 Reference Manual • July 2005

H
HSFS High Sierra File System

HTT HyperText Transfer

HTTP HyperText Transfer Protocol

I
ID identifier

IETF Internet Engineering Task Force

IIim Internet-Intranet Input Method

INETD Internet service daemon

IP Internet Protocol

IPF Internet Protocol Filter

ISA instruction set architecture

J
JASS JumpStart Architecture and Security Scripts, now Solaris Security Toolkit

K
KDC Kerberos Key Distribution
Glossary 281

L
LDAP Lightweight Directory Access Protocol

lp(1) line printer command (submit print request)

M
MAN management network (Sun Fire high-end systems internal I1 network)

MD5 message-digest 5 algorithm

MIP Mobile Internet Protocol

MSP midframe service processor

mv(1) move files command

N

NFS Network File System

NG Next Generation

NGZ non-global zone

NIS, NIS+ Network Information Services

NP no password

NSCD name service cache daemon

O
OEM Original Equipment Manufacturer
282 Solaris Security Toolkit 4.2 Reference Manual • July 2005

OS Operating System

P
PAM Pluggable Authentication Module

PDF Portable Document Format

Perl Practical Extraction and Report Language

PICL Platform Information and Control Library

PPP Point-to-Point Protocol

PROM programmable read-only memory

Q
QA quality assurance

R
RBAC role-based access control

rc run-control (file or script)

rlogin(1) remote login command

RFC Remote Function Call

RPC Remote Procedure Call

rsh(1) remote shell command

S
SA system administrator
Glossary 283

SC system controller (Sun Fire high-end and midrange systems)

scp(1) secure copy command (remote file copy program)

SCCS Source Code Control System

SLP Service Location Protocol

SMA System Management Agent

SMC Solaris Management Console

SMF Service Management Facility

SMS System Management Services

SNMP Simple Network Management Protocol

SP service provider

SPARC Scalable Processor Architecture

SPC SunSoft Print Client

SSH Secure Shell (Solaris 9 and 10 OS)

T
TCP Transmission Control Protocol

tftp(1) trivial file transfer program

ttl time-to-live

U
UDP User Diagram Protocol

UFS Unix File System

UID user identifier

UUCP UNIX-to-UNIX Copy
284 Solaris Security Toolkit 4.2 Reference Manual • July 2005

V
VOLD Volume Management daemon

W
WBEM Web-based Enterprise Management

X
XFS X Font Server
Glossary 285

286 Solaris Security Toolkit 4.2 Reference Manual • July 2005

Index
Symbols
.cshrc file, 101, 110
.profile file, 102, 110
.rhosts and hosts.equiv files

printing, 168
specifying, 270

/etc/default/sendmail file, 102
/etc/dt/config/Xaccess file, 102
/etc/hosts.allow file, 103
/etc/hosts.deny file, 103
/etc/init.d/

nddconfig file, 105, 107
set-tmp-permissions file, 105
sms_arpconfig file, 105

/etc/issue
as default value for JASS_BANNER_SSHD

variable, 259
/etc/issue file, 106
/etc/motd

as default value for JASS_BANNER_DTLOGIN
variable, 259

/etc/motd file, 106
/etc/notrouter file, 106
/etc/rc2.d/

S00set-tmp-permissions file, 107
S07set-tmp-permissions file, 107
S70nddconfig file, 105, 107
S73sms_arpconfig file, 108

/etc/security/
audit_class file, 108, 109
audit_control file, 108, 109

audit_event file, 108, 109
/etc/sms_domain_arp file, 109
/etc/sms_sc_arp file, 109
/etc/syslog.conf file, 109
/tmp needs, adjusting, 276
/usr/preserve startup script, disabling, 148

A
ABI

See Application Binary Interface (ABI)
absolute path, checksums, defining, 244
account names, status, 199
accounts

default assignments, 256
disabled, listing, 152
removing unneeded, 169, 212

acct(1M) manual page, 160
add_patch function, 50
add_pkg function, 50
add_to_manifest function, 51
adding

audit scripts, 183
drivers, 113
finish scripts, 131, 134
framework functions, 15

adding Solaris OS packages and patches, 50
Address Resolution Protocol (ARP)

enabling addresses, 180
implementing, 105

adjust permissions, 62
adjustScore function, 42
 287

AnswerBook2 (ab2) server, 139, 189
Apache Web Server, 139, 140
apache(1M) manual page, 139, 140
Application Binary Interface (ABI), 161
ARP

See Address Resolution Protocol (ARP)
as-manufactured state, returning, 140
ASPPP

See Asynchronous Point-to-Point Protocol
assigning variables, 225
Asynchronous Point-to-Point Protocol (ASPPP)

aspppd(1M) manual page, 140
service, determining status, 190
startup and shutdown scripts, 140

at
access, restricting, 162
at(1) manual page, 162
facilities, 178

audit directory, 187
audit runs

core processing, 113
displaying results, 252
variable, 231

audit scripts
calling, 92
configuration variables, 185
corresponding finish scripts, 187
creating, 15, 183
customizing, 183
customizing environment variables, 184
functions, 76
headers, 27
making changes, 185
naming conventions, 183
standard, 183
storing, 231
using standard, 187

audit_class file, 108, 109
audit_public.funcs file, 76
audit_warn alias, 156
auditing sub-system, configuring, 108, 109
audits

checking for valid arguments, 45
displaying host names, 233
displaying script names, 233
public interfaces, 76

storing output, 244
total score, 117

authentication
disabling rhosts, 148
remote services, 259

autofs file system, 141
automountd(1M) manual page, 141
automounter startup and shutdown scripts, 141,

190

B
back slash characters, 259, 260, 272
backing up

existing file system object, 53
files, 135

backup files
controlling, 247
reducing, 137

backup_file framework function, 15, 53
banner messages, 18
banner, authentication, 259
batch facilities, 178
bootable CD-ROM, 115
Bourne shell, 134, 187
broadcast access, denying, 102
BSM

See Solaris Basic Security Module (BSM)
buffer overflow attacks, preventing, 161

C
caching

name service data, 146
NSCD daemon, 146

check script, signal completion, 91
check_fileContentsExist function, 77
check_fileContentsNotExist function, 77
check_fileExists function, 77
check_fileGroupMatch function, 78
check_fileGroupNoMatch function, 78
check_fileModeMatch function, 79
check_fileModeNoMatch function, 79
check_fileNotExists function, 77
check_fileOwnerMatch function, 80
check_fileOwnerNoMatch function, 80
check_fileTemplate function, 80
288 Solaris Security Toolkit 4.2 Reference Manual • July 2005

check_fileTypeMatch function, 81
check_fileTypeNoMatch function, 81
check_minimized function, 83
check_os_min_version function, 56
check_os_revision function, 57
check_packageExists function, 84
check_packageNotExists function, 84
check_patchExists function, 85
check_patchNotExists function, 85
check_processArgsMatch function, 85
check_processArgsNoMatch function, 85
check_processExists function, 86
check_processNotExists function, 86
check_serviceConfigExists function, 87
check_serviceConfigNotExists function, 87
check_startScriptExists function, 89
check_startScriptNotExists function, 89
check_stopScriptExists function, 90
check_stopScriptNotExists function, 90
checkLogStatus function, 43
checkpoint resume functions, 260
checks

excluding on non-minimized systems, 231
checksum function, 58
checksums, absolute path, defining, 244
chmod command, 62
chown command, 62
chroot command, 132
chroot(1M) manual page, 135
clean_path function, 43
CMASK variable, 176
comment out function, 118
Common Desktop Environment (CDE)

checking status, 191
disabling startup and shutdown scripts, 142

common functions, 17
common group, 174
common_log.funcs file

contains logging and reporting functions, 17
common_misc.funcs file

contains common utility functions, 42
complex substitution variables, 225
config.driver, 122
configuration

audit scripts, variables, 185
files, editing, 96
framework functions, 16
returning to as-manufactured state, 140
simplifying, 228, 229

configuration files
/etc/issue, 106
/etc/motd, 106
audit_class, 108, 109
checking, 87
cshrc, 101, 110
disabling, 63
driver.init, 97
editing, 96
environment variables, maintained in, 97
exists, determining, 34
finish.init, 97
nddconfig, 105
notrouter, 106
profile, 102, 110
S00set-tmp-permissions, 107
S70nddconfig, 107
S73sms_arpconfig, 108
sendmail, 102
set-temp-permissions, 105
sms_arpconfig, 105
sms_domain_arp, 109
sms_sc_arp, 109
specifying location, 252
user.init, 98
Xaccess, 102

conventions, developing finish scripts, 135
copies, drivers, 119
copy_a_dir function, 59
copying a symbolic link

copy_a_symlink function, 59
copying files

copy_a_file function, 59
copy_files function, 60
file system objects, selectively, 60
framework function, 135
one file, 59

core environment variables
checking, 115
in driver.init script, 97

core files, stored in default location, 202
core processing, 113
Index 289

coreadm functionality, configuring, 156
coreadm(1M) manual page, 156
cp command, 15
creating

create_a_file function, 62
create_file_timestamp function, 63
nested or hierarchical security profiles, 121
new audit scripts, 183
new directories, 135
new finish scripts, 131

cron facility
accessing, 178
disabling send mail, 150
log file, maximum size limit, 178, 261
restricting access, 178

crontab
 files, 63
crontab(1M) manual page, 178

cshrc file, 101, 110
current script name, 26, 233
customizing

audit scripts, 183
drivers, 118
drivers and scripts, 223
finish scripts, 131
JASS_FILES environment variable, 237
JASS_SCRIPTS variable, 250
Solaris Security Toolkit, 118
variables for site requirements, 98

D
daemons

disabling, 118
enabling, 118

debugging
displaying messages, 19
JumpStart installation, 167

default
audit scripts, 183
drivers and scripts, 113, 131
environment variables, overriding, 137, 185
greeting, 157
overriding, 118, 227
values, environment variables, 98

designated file, content matching, 77
Desktop Management Interface (DMI)

See DMI

destination directory name, 59
destination file name, 59
developing new variables, 227
dfstab(1M) manual page, 146
DHCP

dhcpd(1M) manual page, 141
servers, disabling, 141, 191
service, status, 191

diagnostic, 167
direct access, denying, 102
directories

audit, 187
copying, recursively, 59
creating, 72
creating, software framework, 135
files, path, 237

directory tree, 60, 95
directoryserver(1M) manual page, 141
disable audit scripts, 188
disable finish scripts, 138
disable_conf_file function, 63
disable_file function, 63
disable_rc_file function, 64
disable-ab2.aud script, 189
disable-ab2.fin script, 139
disable-apache.aud script, 189, 190
disable-apache.fin script, 139, 140
disable-asppp.aud script, 190
disable-asppp.fin script, 140
disable-autoinst.aud script, 190
disable-autoinst.fin script, 141
disable-automount.aud script, 190
disable-automount.fin script, 141
disable-dhcp.aud script, 191
disable-dhcp.fin script, 141
disable-directory.aud script, 191
disable-directory.fin script, 141
disable-dmi.aud script, 191
disable-dmi.fin script, 142
disable-dtlogin.aud script, 191
disable-dtlogin.fin script, 142
disable-ipv6.aud script, 192
disable-ipv6.fin script, 143
disable-kdc.aud script, 193
290 Solaris Security Toolkit 4.2 Reference Manual • July 2005

disable-kdc.fin script, 143
disable-keyboard-abort.aud script, 193
disable-keyboard-abort.fin script, 144
disable-keyserv-uid-nobody.aud script, 193
disable-keyserv-uid-nobody.fin script, 144
disable-ldap-client.aud script, 193
disable-ldap-client.fin script, 144
disable-lp.aud script, 193
disable-lp.fin script, 145
disable-mipagent.aud script, 194
disable-mipagent.fin script, 145
disable-named.aud script, 194
disable-named.fin script, 145
disable-nfs-client.aud script, 194
disable-nfs-client.fin script, 145
disable-nfs-server.aud script, 194
disable-nfs-server.fin script, 146
disable-nscd-caching.aud script, 195
disable-nscd-caching.fin script, 146
disable-picld.aud script, 195
disable-picld.fin script, 147
disable-power-mgmt.aud script, 195
disable-power-mgmt.fin script, 147
disable-ppp.aud script, 195
disable-ppp.fin script, 147
disable-preserve.aud script, 195
disable-preserve.fin script, 148
disable-remote-root-login.aud script, 196
disable-remote-root-login.fin script, 148
disable-rhosts.aud script, 196
disable-rhosts.fin script, 148
disable-rlogin-rhosts.fin script

See disable-rhosts.fin script
disable-rpc.aud script, 196
disable-rpc.fin script, 149
disable-samba.aud script, 197
disable-samba.fin script, 149
disable-sendmail.aud script, 197
disable-sendmail.fin script, 149
disable-slp.aud script, 198
disable-slp.fin script, 150
disable-sma.aud script, 198
disable-sma.fin script, 150

disable-snmp.aud script, 198
disable-snmp.fin script, 151
disable-spc.aud script, 198
disable-spc.fin script, 151
disable-ssh-root-login.aud script, 199
disable-ssh-root-login.fin script, 151
disable-syslogd-listen.aud script, 199
disable-syslogd-listen.fin script, 151
disable-system-accounts.aud script, 199
disable-system-accounts.fin script, 152
disable-uucp.aud script, 199
disable-uucp.fin script, 152
disable-vold.aud script, 200
disable-vold.fin script, 152
disable-wbem.aud script, 200
disable-wbem.fin script, 153
disable-xserver.listen.aud script, 200
disable-xserver.listen.fin script, 153
disabling

files, 54, 63
nscd, 147
run-control file, 64
services, 119
Sun Java System Directory server, 141

disk space, tmpfs, 176, 276
Distributed Management Task Force (DMTF)

See DMTF
DMI

dmispd(1M) manual page, 142
service, status, 191
startup and shutdown scripts, disabling, 142

DMTF, 153
Domain Name System (DNS), 145, 194
driver.funcs script, 47
driver.init file

modifying, 97
understanding, 113
using, 97

driver.runscript, 113
drivers

customizing, 223
defaults, overriding, 118
functionality, 47
implementing own functionality, 121
listing, 122
Index 291

modifying copies, 119
product-specific, 127
using, 113

dtconfig(1) manual page, 142
dtlogin(1X) manual page, 142
Dynamic Host Configuration Protocol (DHCP)

See DHCP
dynamic variables, 225

E
EEPROM

eeprom(1M) manual page, 166
setting password, 165

empty file, creating, 62
enable finish scripts, 153, 201
enable-bsm.aud script, 202
enable-bsm.fin script, 156
enable-coreadm.aud script, 202
enable-coreadm.fin script, 156
enable-ftpaccess.aud script, 203
enable-ftpaccess.fin script, 157
enable-ftp-syslog.aud script, 202
enable-ftp-syslog.fin script, 157
enable-inetd-syslog.aud script, 203
enable-inetd-syslog.fin script, 157
enable-priv-nfs-ports.aud script, 204
enable-priv-nfs-ports.fin script, 160
enable-process-accounting.aud script, 204
enable-process-accounting.fin script, 160
enable-rfc1948.aud script, 204
enable-rfc1948.fin script, 160
enable-stack-protection.aud script, 205
enable-stack-protection.fin script, 161
enable-tcpwrappers.aud script, 205
enable-tcpwrappers.fin script, 103, 161
encrypted password, 271
environment variables

abstracting values, 16
adding to user files, 99, 228
alphabetical list, 228
core, 97
core, checking, 115
creating, 228, 229
customizing, 98, 223
default values, 98

overrides, 97
printing, 167
user defined, 98
user.init file, 98

environments, configuration files, 96
errors

ERR messages, 239
logging, 245
messages, invalid value, 27
preventing, 137
storing, 244, 246

exception logging, status, 205
execution log, 243, 244, 245, 246
extractComments function, 44

F
FAIL messages, 32, 239
failed login attempts

logging, 164, 173
setting, 264

failure messages, 20
file check, 21
file content

checking, 20
variables, 225

file creation mask
default, 172
enabling FTP, 157
protecting, 176
umask, setting, 263, 276

file exists, 77
file header, 118
file length/size is zero, 61, 96
file name extensions, 117
file not found messages, 23
file ownership check, 24
file permissions check, 22
file system objects

backing up, 53
copying, 60
copying to client, 237
copying, selectively, 60
specifying list to copy, 234
type, checking, 81

file systems
mounting and unmounting, 114
292 Solaris Security Toolkit 4.2 Reference Manual • July 2005

single, 17
target, 243

file templates
adding or removing, 237
checking match on target system, 80
directory, JumpStart client, 100
installing, 167
using, modifying, and customizing, 93

file type check, 25
files

checking, 77
checking ownership, 80
content matching, 77
copying, 114
directory, path, 237
disabling, 54, 63
matching, precedence, 60, 95
moving from one name to another, 72
permissions, checking, 79
recording state, 244
rules for copying, 95
specifying, 249
specifying copies to clients, 235
specifying list, 235
templates, checking match on target system, 80

finish and audit script variables, 223
finish scripts

adding or removing, 250
configuration variables, 137
convention for storing, 238
conventions, for developing, 135
corresponding audit scripts, 187
creating new, 15, 131
customizing, 131, 137
kill scripts, 134
listing ones to execute, 248
storing, 116
storing in alternate locations, 238
using standard, 137

finish.init file
defining behavior, 97
modifying, 98
purpose, 97

finish_audit function, 91
FixModes

default directory path, 262
options, 263

foreign agent functionality, 145

format, printing, 46
forward slash

removing redundant, 43
replacing with, 47

framework functions
creating new, 16
undo operations, caution, 16
using, 15
variables, 223

framework variables
changing, caution, 229
defining, 229

FTP
ftpaccess(4) manual page, 170
ftpusers file, 163
logging access attempts, 157
service banner, 170
service, status, 202

functionality
detecting in multiple releases, 56
extending, 15
files, loading, 114

functions
common miscellaneous, 42
new, 252
overriding, 252
site specific, 115

G
getusershell(3C), determining valid shells, 166
global changes, 119
global environment variables, 227, 241, 252
graphical consoles, systems without, 176
group access, restricting, 166
group identifier (GID)

name or numeric, 78
printing permissions, 168
root user, 271

group membership check, 22
groups, caching, 146
guest account, 225

H
hardening runs

core processing, 113
hardening.driver, 123
Index 293

host files, specifying, 236
host name

defining, 238
displaying during audits, 233

HOSTNAME variable, 278
hosts, caching, 146
hosts.allow and hosts.deny files, 103

I
I1 MAN network, 180
ignoring objects, 60, 95
in.ftpd(1M) manual page, 157
in.rlogind(1M) manual page, 148
in.rshd(1M) manual page, 148
incoming connection requests, logging, 157
INETD

configuring to log, 157
inetd daemon, 157
inetd services, enabling, 275
service, status, 203

init(1M) manual page, 176
initialization functions, 97
initialization, driver, 126
input arguments, checking, 46
install audit scripts, 205
install finish scripts, 162
install-at-allow.aud script, 206
install-at-allow.fin script, 162
installation

automated, determining status, 190
automating, 163
bootable CD-ROM, 115
checking packages, 84
JumpStart, debugging, 167
minimized, required link, 164
setting password, 175

install-fix-modes.aud script, 206
install-fix-modes.fin script, 163
install-ftpusers.aud script, 206
install-ftpusers.fin script, 163
install-jass.aud script, 206
install-jass.fin script, 163
install-loginlog.aud script, 207
install-loginlog.fin script, 164
install-md5.aud script, 207

install-md5.fin script, 164
install-nddconfig.aud script, 207
install-nddconfig.fin script, 164
install-newaliases.aud script, 207
install-newaliases.fin script, 164
install-openssh.aud script, 208
install-openssh.fin script, 165
installpatch commands, 270
install-recommended-patches.aud

script, 208
install-recommended-patches.fin

script, 165
install-sadmind-options.aud script, 208
install-sadmind-options.fin script, 165
install-security-mode.aud script, 208
install-security-mode.fin script, 165
install-shells.aud script, 209
install-shells.fin script, 166
install-strong-permissions.aud script, 209
install-strong-permissions.fin script, 166
install-sulog.aud script, 210
install-sulog.fin script, 166
install-templates.aud script, 210
install-templates.fin script, 167, 237
integrity, system, 51
intervals between password changes, 177
invalid arguments, checking, 45
invalidVulnVal function, 45
IP

IP forwarding, disabling, 106
IP Mobility Support, 145
IP-based management network, 105
IPv6 compatible network interfaces,

disabling, 143
IPv6 host name files, status, 192

is_patch_applied function, 67
is_patch_not_applied function, 67
isNumeric function, 46

J
JASS manifest file, storing path names, 47
JASS_ACCT_DISABLE environment variable, 256
JASS_ACCT_REMOVE environment variable, 257
294 Solaris Security Toolkit 4.2 Reference Manual • July 2005

JASS_AGING_MAXWEEKS environment
variable, 257

JASS_AGING_MINWEEKS environment
variable, 257

JASS_AGING_WARNWEEKS environment
variable, 257

JASS_AT_ALLOW environment variable, 258
JASS_AT_DENY environment variable, 258
JASS_AUDIT_DIR environment variable, 231
JASS_BANNER_DTLOGIN environment

variable, 259
JASS_BANNER_FTPD environment variable, 259
JASS_BANNER_SENDMAIL environment

variable, 259
JASS_BANNER_SSHD environment variable, 259
JASS_BANNER_TELNETD environment

variable, 260
JASS_CHECK_MINIMIZED environment

variable, 231
JASS_CONFIG_DIR environment variable, 231
JASS_CORE_PATTERN environment variable, 260
JASS_CPR_MGT_USER environment variable, 260
JASS_CRON_ALLOW environment variable, 260
JASS_CRON_DENY environment variable, 261
JASS_CRON_LOG_SIZE environment variable, 261
JASS_DISABLE_MODE environment variable, 27,

232
JASS_DISPLAY_HOSTNAME environment

variable, 26, 233
JASS_DISPLAY_SCRIPTNAME environment

variable, 26, 233
JASS_DISPLAY_TIMESTAMP environment

variable, 26, 234
JASS_FILES environment variable, 116, 234
JASS_FILES_DIR environment variable, 237
JASS_FINISH_DIR environment variable, 238
JASS_FIXMODES_DIR environment variable, 262
JASS_FIXMODES_OPTIONS environment

variable, 263
JASS_FTPD_UMASK environment variable, 263
JASS_FTPUSERS environment variable, 263
JASS_HOME_DIR environment variable, 231, 238
JASS_HOSTNAME environment variable, 26, 238
JASS_KILL_SCRIPT_DISABLE environment

variable, 264

JASS_LOG_BANNER environment variable, 19, 239
JASS_LOG_ERROR environment variable, 20, 239
JASS_LOG_FAILURE environment variable, 20, 21,

22, 23, 24, 26, 30, 31, 32, 33, 34, 38, 39, 239
JASS_LOG_NOTICE environment variable, 24, 28,

29, 240
JASS_LOG_SUCCESS environment variable, 21, 22,

23, 24, 26, 30, 31, 32, 34, 38, 39, 40, 240
JASS_LOG_WARNING environment variable, 42, 240
JASS_LOGIN_RETRIES environment variable, 264
JASS_MD5_DIR environment variable, 264
JASS_MODE environment variable, 241
JASS_NOVICE_USER environment variable, 265
JASS_OS_REVISION environment variable, 241
JASS_OS_TYPE environment variable, 241
JASS_PACKAGE_DIR environment variable, 242
JASS_PACKAGE_MOUNT environment variable, 277
JASS_PASS_LENGTH environment variable, 266
JASS_PASSWD environment variable, 270
JASS_PATCH_DIR environment variable, 242
JASS_PATCH_MOUNT environment variable, 278
JASS_PKG environment variable, 242
JASS_POWER_MGT_USER environment

variable, 270
JASS_REC_PATCH_OPTIONS environment

variable, 270
JASS_REPOSITORY environment variable, 243,

244, 245, 246, 251
JASS_RHOSTS_FILE environment variable, 270
JASS_ROOT_DIR environment variable, 47, 243
JASS_ROOT_GROUP environment variable, 271
JASS_ROOT_PASSWORD environment variable, 271
JASS_RUN_AUDIT_LOG environment variable, 244
JASS_RUN_CHECKSUM environment variable, 244
JASS_RUN_FINISH_LIST environment

variable, 245
JASS_RUN_INSTALL_LOG environment

variable, 245
JASS_RUN_MANIFEST environment variable, 245
JASS_RUN_SCRIPT_LIST environment

variable, 246
JASS_RUN_UNDO_LOG environment variable, 244,

246
JASS_RUN_VERSION environment variable, 247
Index 295

JASS_SADMIND_OPTIONS environment
variable, 271

JASS_SAVE_BACKUP environment variable, 247
JASS_SCRIPTS environment variable, 116, 248
JASS_SENDMAIL_MODE environment variable, 272
JASS_SGID_FILE environment variable, 272
JASS_SHELLS environment variable, 272
JASS_STANDALONE environment variable, 250
JASS_SUFFIX environment variable, 250
JASS_SUID_FILE environment variable, 273
JASS_SUSPEND_PERMS environment variable, 273
JASS_SVCS_DISABLE environment variable, 274
JASS_SVCS_ENABLE environment variable, 275
JASS_TIMESTAMP environment variable, 251
JASS_TMPFS_SIZE environment variable, 276
JASS_UMASK environment variable, 176, 276
JASS_UNAME environment variable, 251
JASS_UNOWNED_FILE environment variable, 276
JASS_USER_DIR environment variable, 252
JASS_VERBOSITY environment variable, 252
JASS_VERSION environment variable, 253
JASS_WRITABLE_FILE environment variable, 276
jass-execute command

JASS_STANDALONE variable defaults to 1, 250
log output (-o) option, 117
set JASS_HOME_DIR variable in stand-alone

mode, 238
set JASS_MODE variable in stand-alone

mode, 241
set JASS_ROOT_DIR variable, 243
verbosity (-V) option, 252

JumpStart client
file templates directory, 100
files, 100
mounting directories, 115

JumpStart environment
moving, 98
startup scripts, 140

JumpStart installation
bootable CD-ROM, 115
debugging, 167

JumpStart mode
specifying, 250
variables, 223, 277

K
kbd(1) manual page, 144
kdc.conf(4) manual page, 143
Kerberos Key Distribution Center (KDC)

preventing from starting, 143
service, status, 193

key
switches, 144, 193
word value pair, 160

keyboard abort sequences, status, 193
keyserv

command, 144
keyserv(1M) manual page, 144
service, status, 193

kill run-control scripts
disabling, 264
enabling, 134
script name prefix K, 64

krb5kdc(1M) manual page, 143

L
LDAP

See Lightweight Directory Access Protocol
(LDAP)

legal banners, installing, 106
lights-out data center environment, Solaris

BSM, 156
Lightweight Directory Access Protocol (LDAP)

client daemons, disabling, 144
client service, status, 193
ldap_cachemgr(1M) manual page, 144
ldapclient(1M) manual page, 144

LIMIT parameter, 178
line printer (lp)

access, removing, 145
service, 145, 193
user access, 145

localize changes, 119
lockd(1M) manual page, 146
log analysis, 109
log directory, 251
log files

standard, 117
log messages

displaying to users, 28
log server, adding centralized, 109
296 Solaris Security Toolkit 4.2 Reference Manual • July 2005

logBanner function, 18, 239
logDebug function, 19
logError function, 19, 239
logFailure function, 20, 239
logFileContentsExist function, 20
logFileContentsNotExist function, 20
logFileExists function, 21
logFileGroupMatch function, 22
logFileGroupNoMatch function, 22
logFileModeMatch function, 22
logFileModeNoMatch function, 22
logFileNotExists function, 21
logFileNotFound function, 23
logFileOwnerMatch function, 24
logFileOwnerNoMatch function, 24
logFileTypeMatch function, 25
logFileTypeNoMatch function, 25
logFinding function, 26
logFormattedMessage function, 27
logging

functions, 17
incoming connection requests, 157
performing additional, 109
stack execution attempts, 161
threshold, reducing, 173
verbosity, 18

login attempts
failed, setting maximum, 264
limiting, 164
logging failed, 164, 173

login(1) manual page, 148
login(1M) manual page, 173
loginlog(4) manual page, 164
logInvalidDisableMode function, 27
logInvalidOSRevision function, 28
logMessage function, 28
logNotice function, 29, 240
logPackageExists function, 30
logPackageNotExists function, 30
logPatchExists function, 30
logPatchNotExists function, 30
logProcessArgsMatch function, 31
logProcessArgsNoMatch function, 31
logProcessExists function, 32

logProcessNotExists function, 32
logProcessNotFound function, 32
logServiceConfigExists function, 34
logServiceConfigNotExists function, 34
logStartScriptExists function, 38
logStartScriptNotExists function, 38
logStopScriptExists function, 39
logStopScriptNotExists function, 39
logSuccess function, 39, 240
logWarning function, 41, 240
loopback interface, listening, 150

M
manifest file entries

automatically adding, 50
manually inserting, 51

manifest information
defining path, 245
directory, 251

MANPATH, 102, 110
manually inserting entries into manifest, 51
maximum number of failed logins, setting, 164
maximum size, cron log file, 261
MD5 software

default directory path, 264
memory exhaustion, preventing, 176
memory-resident, 132
messages, displaying for users, 28
mibiisa(1M) manual page, 151
migration issues, minimizing, 137
minimized installations, required link, 164
minimized platform, checking packages, 83
minimum password length, 177
miniroot, 132, 271
MIP

See Mobile Internet Protocol (MIP)
mirror directory, 64
mkdir_dashp function, 72
Mobile Internet Protocol (MIP)

mipagent(1M) manual page, 145
preventing agents from starting, 145
service, status, 194

modifying
audit scripts, 183
Index 297

drivers, 113
finish scripts, 131
framework functions, 15

mount point
implementing, finish script, 17
permissions, 105, 107
specifying, 116

mount removable media, 173
mount_filesystems function, 16
mount_filesystems routine, 115
mount_tmpfs(1M) manual page, 176
mountall command, 107
mountd(1M) manual page, 146
mounted filesystem, permissions, 105, 107
move_a_file function, 72
moving a file from one name to another, 72
multiple runs, processing, 234
multiple systems, processing runs, 233
mv command, 15

N
name service

databases, 146
requests, 146

Name Service Cache Daemon (NSCD)
disabling caching, 146
providing caching, 146
viewing nscd configuration, 147

nddconfig file, 105
Network File System (NFS)

See NFS
network settings, implementing, 105, 107
new directory, creating, 72
new functions, 252
newaliases symbolic link, 164
NFS

automount service, 141
client service, status, 194
client startup scripts, disabling, 115, 145
daemon, 277, 278
defined, 118
disabling automount, 141
path, 277
requests, restricting, 160
server service, status, 194
server startup scripts, disabling, 146

service, status, 204
nfsd(1M) manual page, 146
nmbd(1M) manual page, 149
nobody UID access, 144
non-privileged user access, implementing

passwords, 177
NOTE messages, 240
notice messages, 28, 29

reducing, 226
notrouter file, 106
NSCD

See Name Service Cache Daemon (NSCD)
nuucp system account entries, removing, 152

O
objects, listing, 168
OpenBoot PROM

monitor or debugger, 144
security mode, displaying status, 165

OpenBSD version, installing, 165
OS

release files, specifying, 236
revision, checking, 57
specific extensions, 236, 249
specific file and script, 249
type, determining, 241
variable, 236
version independent, 136
version, specifying for clients, 241

outgoing email, 149
output

audit runs, storing, 244
defining locations for, 245
tags, 26
undo runs, storing, 244, 246

overriding functions, 252

P
-p option, 72
package check, 83
PAM

modifying configuration to disable rhosts, 148
pam.conf(1M) manual page, 148

PASS messages, 39, 240
passwords

aging, 177
298 Solaris Security Toolkit 4.2 Reference Manual • July 2005

aging, maximum value, 257
aging, minimum value, 257
caching, 146
changes, minimal intervals between, 177
configuring policy, 176
expiration, warning, 257
file, specifying location, 270
passwd, group, host, or ipnodes services,

status, 195
requirements, implementing strict, 177
root, setting, 175
specifying minimum length, 266

patch 110386, 146
patchadd(1M) manual page, 270
patches

checking installation, 30, 85
checking numbers, 67
patchadd commands, 270

PATH, 102, 110
path names, formatting, 46
performance

boosting, 146
impacting, 146

permissions
checking, 79
creating file with, 62
inconsistency, 105
ownership, 105
restricting, 166
setting, 105, 107

PICL
disabling service, 147
picld(1M) manual page, 147
service, status, 195

pkgrm command, 132, 184
pkgrm command, removing SUNWjass package, 99
Platform Information and Control Library (PICL)

See PICL
Pluggable Authentication Module (PAM)

See PAM
pmconfig(1M) manual page, 147
Point-to-Point links, 140
Point-to-Point Protocol (PPP)

pppd(1M) manual page, 147
pppoed(1M) manual page, 147
service, status, 190, 195
transmitting multi-protocol datagrams, 140

policy, variables, 225
portability

abstracting actual values, 16
simplifying, 228, 229

power management functions
disabling, 147
permitting access, 270
restricting access, 173
status, 195

power.conf(4) manual page, 147
powerd(1M) manual page, 147
PPP

See Point-to-Point Protocol (PPP)
precedence, matching files, 60, 95
preserve functionality, status, 195
print

audit scripts, 210
disabling sharing, 149
environment variables, 167
files, 167, 210
finish scripts, 167
format, 46

print-jass-environment.aud script, 210
print-jass-environment.fin script, 167
print-jumpstart-environment.aud

script, 210
print-jumpstart-environment.fin

script, 167
printPretty function, 46
printPrettyPath function, 46
print-rhosts.fin script, 168
print-sgid-files.aud script, 211
print-sgid-files.fin script, 168
print-suid-files.aud script, 211
print-suid-files.fin script, 168
print-unowned-objects.aud script, 211
print-unowned-objects.fin script, 168
print-world-writable-objects.aud

script, 211
print-world-writable-objects.fin

script, 168
privileged ports, NFS requests, 160
processes

accounting software, status, 204
checking, 85
Index 299

checks, 32
flow of driver.run script, 114
running, 86

product-specific drivers, 127
profiles

sample, 102, 110
variables, 227

PROM prompt, 173
public interface

auditing, 76
used by drivers, 97

Q
queue processing mode, sendmail, 102

R
r* services, disabling, 181
RBAC, 146
Recommended and Security Patch Clusters

extracting, 165
reconfiguring system, preventing, 140
recursively copying files, 59
reinitializing systems, 141
reinstalling systems, preventing, 141
related resources, xxxii
relative root directory, 135
relocated root directory, 135
remote access, denying, 102
Remote Function Call (RFC)

See RFC
Remote Procedure Call (RPC)

See RPC
remove-unneeded-accounts.fin script, 169
removing

audit scripts, 183
drivers, 113
finish scripts, 131
framework functions, 15
Solaris OS packages, 73

reporting functions, 17
resume functionality, restricting, 176
RETRIES variable, 173
RFC

1331, 140
1948, 160, 204

2002, 145
2165, 150
2608, 150

rhosts and hosts.equiv functionality,
status, 196

rhosts authentication, disabling, 148
rm_pkg function, 73
rmmount.conf(1M) manual page, 174
Role-Based Access Control (RBAC)

See RBAC
root

account, encrypted password, 271
directory, defining, 243
directory, detecting location, 135
directory, relocated, 135
file system, path, 135
FTP access, 163
logins, disallowing, 148
partition, deleting, 52
password, 175
user, remote access, status, 196

RPC
defined, 149
port mapper, 141
rpcbind(1M) manual page, 149
secure access, disabling, 144
service, status, 196

run information, storing, 243
run-control

file, disabling, 64
scripts, 134
scripts, disabling, 232
start script exists, determining, 38, 89
stop script exists, determining, 39, 90

running processes, checking, 85
runs

processing multiple systems, 233
storing list of scripts, 246
version information, path, 247

runtime
configurations, 76
process arguments, checking, 31
setting, 204

S
S00set-tmp-permissions file, 107
s15k-exclude-domains.aud script, 221
300 Solaris Security Toolkit 4.2 Reference Manual • July 2005

s15k-exclude-domains.fin script, 180
s15k-sms-secure-failover.aud script, 221
s15k-sms-secure-failover.fin script, 181
s15k-static-arp.aud script, 221
s15k-static-arp.fin script, 180
S70nddconfig file, 107
S73sms_arpconfig file, 108
sadmind

 daemon, specifying options, 271
daemon, adding options, 165
sadmind(1M) manual page, 165

safe file creation mask, 176
Samba

file, disabling service, 149
service, status, 197

score, adjusting, 42
script behavior variables, 254
script method, 232
script names, displaying during audits, 233
scripts

audit, 187
default, 123
disable audit scripts, listing, 188
disable finish scripts, listing, 138
enable audit scripts, 201
enable finish scripts, listing, 153, 201
finish, 137
install audit scripts, listing, 205
install finish scripts, listing, 162
output, 117
print audit scripts, listing, 210
print finish scripts, listing, 167
processing flow, 114
remove finish script, 169
running, 114
separating security and configuration, 122
set audit scripts, listing, 212
set finish scripts, listing, 169
update audit scripts, listing, 217
update finish scripts, listing, 177

Secure Shell (SSH)
See SSH

secure.driver, 126
security modifications, validating, 187
security posture

auditing, 183

security profiles
auditing, 183
nested or hierarchical, 121

security-specific scripts, 123
sendmail

configuration file, 102
daemon startup, disabling, 150
daemon, specifying options, 272
executing hourly, 150
file, 102
sendmail(1M) manual page, 170
service banner, 170
service, status, 197

serial links, accessing systems, 176
serial point-to-point links, 147
server-secure.driver, 128
service banner

Secure Shell, 171
Sendmail, 170
setting, 170
Telnet, 171

service configuration files, disabling, 63
Service Location Protocol (SLP)

See SLP
services

defaults, 274
disabling, 118
disabling, caution, 274
enabling, 118
preventing Solaris Security Toolkit from

disabling, 118
removing, 274

set
audit scripts, 212
finish scripts, 169
group ID permissions, printing, 168
Set-UID binaries and files, 174
set-user-id files, 273
user ID permissions, file listing, 168
user ID permissions, printing, 168

set-banner-dtlogin.aud script, 212
set-banner-dtlogin.fin script, 170
set-banner-ftpd.aud script, 213
set-banner-ftpd.fin script, 170
set-banner-sendmail.aud script, 213
set-banner-sendmail.fin script, 170
Index 301

set-banner-sshd.aud script, 213
set-banner-sshd.fin script, 171
set-banner-telnet.aud script, 213
set-banner-telnet.fin script, 171
set-ftpd-umask.aud script, 214
set-ftpd-umask.fin script, 172
set-group-id files, 272
set-login-retries.aud script, 214
set-login-retries.fin script, 173
set-power-restrictions.aud script, 214
set-power-restrictions.fin script, 173
set-rmmount-nosuid.aud script, 215
set-rmmount-nosuid.fin script, 174
set-root-group.aud script, 215
set-root-group.fin script, 174
set-root-password.aud script, 215
set-root-password.fin script, 175
set-sys-suspend-restrictions.aud

script, 216
set-sys-suspend-restrictions.fin

script, 176
set-system-umask.aud script, 216
set-system-umask.fin script, 176
set-temp-permissions file, 105
set-term-type.aud script, 216
set-term-type.fin script, 176
set-tmpfs-limit.aud script, 216
set-tmpfs-limit.fin script, 176
set-user-password-reqs.aud script, 217
set-user-password-reqs.fin script, 176
set-user-umask.aud script, 217
set-user-umask.fin script, 177
shadow password file, 146
shells

adding, 272
determining validity, 166
shells(4) manual page, 166

shutdown scripts, disabling, 150
signal, sending, 91
Simple Network Management Protocol (SNMP)

See SNMP
single file system, 17
single line separators, 18
site-specific functions, 115

SLP
prevents from starting, 150
service, status, 198

SLPD
slpd(1M) manual page, 150

SMA
prevent from starting, 150
service, status, 198

smb.conf(4) manual page, 149
smbd(1M) manual page, 149
SMC

See Solaris Management Console (SMC)
sms_arpconfig file, 105
sms_domain_arp file, 109
sms_sc_arp file, 109
SNMP

daemons, 151
prevent from starting, 151
service, status, 198
snmpdx(1M) manual page, 151
snmpXdmid(1M) manual page, 142

software packages
checking installation, 84
default location, 277
determining if installed, 30
storing, 242

software patches
checking installation, 85
default named resource or location, 278
storing, 242

software upgrade or removal, keeping custom
changes, 184

software version, 253
Solaris Basic Security Module (BSM), 108, 109, 156

auditing, status, 202
bsmconv(1M) manual page, 156

Solaris Management Console (SMC), 153, 200
Solaris OS

auditing subsystem, configuration files, 108, 109
entries, disabling defaults, 179
invalid version, 28
package name, defining, 242
process accounting, 160
Recommended and Security Patch Cluster,

options, 270
Solaris Security Toolkit
302 Solaris Security Toolkit 4.2 Reference Manual • July 2005

upgrade or removal, 184
source

directory name, 59
link name, 59
tree, location, 238

SPC
service, status, 198
startup scripts, 151

spoofing attacks, 146
SSH

configuration, automating, 181
configuring, 151
connections, 103
service banner, 171
service, status, 199
sshd_config(4) manual page, 171
sssh_config(4) manual page, 151

stack
denying execution attempts, 161
logging execution, 161
protection, 161
protection, status, 205

stand-alone mode
specifying, 250

standard audit scripts, 183
start and kill scripts, 134
start run-control scripts, 64
start_audit function, 92
startup scripts, 141
statd(1M) manual page, 146
static ARP addresses, 180
static variables, 224
stopping services manually started, 134
stream formatted package, 165
strip_path function, 47
strong authentication, enabling, 271
substitution policy, 226
subsystems, scripts, 145
success messages, 39
suffixes, appending, 250
Sun Cluster 3.x

node, configuring, 180
software, 127, 179

Sun Fire high-end systems
system controllers, 127

Sun Java System
Directory server, disabling, 141
Directory service, status, 191

Sun products, hardening drivers, 127
suncluster3x-secure.driver, 128
suncluster3x-set-nsswitch-conf.aud

script, 220
suncluster3x-set-nsswitch-conf.fin

script, 180
sunfire_15k_sc-secure.driver, 129
SunSoft Print Client (SPC)

See SPC
SUNWjass package

adding, example, 51
default installation location, 163
default package name variable, 242
determining if installed on system, 206
removing, 99

SUNWnisu package, 164
superuser

su attempts, logging, 166
sulog(4) manual page, 166

suspend and resume functionality
permitting, 273
restricting, 173
restricting access, 176

suspended system, preventing, 144
symbolic link, copying, 59
syslog

daemon, preventing SYSLOG messages, 151
SYSLOG service, status, 199
sys-suspend(1M) manual page, 176
system

accounts, adding, 178
accounts, disabling, 152
library calls, 146
modifications, 137
noncompliant, 161

System Management Agent (SMA)
See SMA

sys-unconfig(1M) program, 140

T
target

file system, 243
host name, 26
Index 303

OS revision, 57
TCP

/IP connectivity, disabling, 180
sequence number generation, 204
service, 157
TCP_STRONG_ISS=2 setting, 137
wrappers, configuring system to use, 161
wrappers, enabling, 103
wrappers, status, 205

Telnet service banner, 171
terminal console, accessing systems, 176
terminal type default, 176
timestamp

creating unique value, 63
definition, 26, 117
displaying during audits, 234
use as JASS_SUFFIX variable, 251

total score, audit runs, 117
touch command, 62
transient mount-point, 242
Transmission Control Protocol (TCP)

See TCP
transmission of multi-protocol datagrams, 140
tuning

system, 136
variables, 254

U
U.S. government recommendations, profiles, 106
UMASK

defining, 102, 110
used by FTP service, 263
value, 172, 177

uname -n command, 238
uname -r command, 236
undo

permission script changes omitted, 166
unavailable, 247
X manifest option, 52

unique timestamp value, 63
unique-per-connection ID sequence number, 160
UNIX shell scripting, 135, 187
UNIX-to-UNIX Copy (UUCP)

See UUCP
unmount requests, 141
unmounting filesystems, 117

unowned files, finding, 276
update audit scripts, 217
update finish scripts, 177
update-at-deny.aud script, 218
update-at-deny.fin script, 178
update-cron-allow.aud script, 218
update-cron-allow.fin script, 178
update-cron-deny.aud script, 218
update-cron-deny.fin script, 178
update-cron-log-size.aud script, 219
update-cron-log-size.fin script, 178
update-inetd-conf.aud script, 219
update-inetd-conf.fin script, 179
updates, installation, 137
user access

restricting, 166
restricting power management functions, 173

user accounts
adding or checking, 258
at and batch facilities access, 258
cron facility access, 261
FTP service access, 263
listing, 256
removing, 257

User Diagram Protocol (UDP)
preventing daemon from listening on, 152

user ID permissions, printing, 168
user startup files, 177
user variables, 97, 223
user.init file

adding new environment variables, 99, 228
adding or modifying environment variables, 16
customizing to define and assign environment

variables, 227
default values, 98
defining JumpStart mode variables, 277
disabling information for novices, 265
disabling services, 119
loading, 97
overriding default audit script variables, 185
overriding default finish script variables, 137
preventing kill scripts from being

disabled, 134
specifying location of, 252
tuning script behavior variables, 254

user.init.SAMPLE file
304 Solaris Security Toolkit 4.2 Reference Manual • July 2005

adding user-defined variables, 98
copying to user.init, 98

user.run file
preventing creation of backup copies, 247

user-defined variables, 98
usermod(1M) manual page, 135, 136
uucico(1M) manual page, 152
UUCP

service, status, 199
startup script, disabling, 152
uucp crontab entries, removing, 152
uucp(1C) manual page, 152

V
variables

assignment, 226
complex substitution, 225
developing, 227
dynamic, 225
framework, 229
global, 227
profile based, 227
static, 224
user, 97
value undefined, setting, 228

verbosity levels, 19, 26, 27, 252
version

defining, 253
information, 247

VOLD
prevents from starting, 152
service, status, 200
vold(1M) manual page, 152

Volume Management Daemon (VOLD)
See VOLD

W
WARN messages, 41, 240
warning messages

log warnings, 41
logging, 245
reducing, 226
storing, 244, 246

WBEM, 153
prevents from starting, 153
service, status, 200
wbem(5) manual page, 153

Web-Based Enterprise Management (WBEM)
See WBEM

world-writable
files, finding, 276
objects, listing, 168

X
X manifest option, usage caution, 52
X server, 102
X11 server, status, 200
Xaccess file, 102
Xserver(1) manual page, 153
Index 305

306 Solaris Security Toolkit 4.2 Reference Manual • July 2005

	Solaris™ Security Toolkit 4.2 Reference Manual
	Contents
	Tables
	Code Samples
	Preface
	Introduction to Solaris 10 Operating System Support
	Using Perl With Solaris Security Toolkit 4.2 Software
	SMF and Legacy Services on Solaris 10 OS
	Scripts That Use the SMF-Ready Services Interface
	Scripts That SMF Recognizes as Legacy Services
	New Scripts for Solaris Security Toolkit 4.2 Release
	Scripts Not Used for Solaris 10
	Environment Variables Not Used for Solaris 10
	Using Solaris 10 OS Zones
	Sequence Matters in Hardening Global and Non- Global Zones
	Harden a Non-Global Zone From Within That Zone
	Some Scripts Are Not Relevant to Non-Global Zones
	Audits of Non-Global Zones Are Separate and Distinct From Audits of Global Zones
	Zone-Aware Finish and Audit Scripts
	Some Zone-Aware Scripts Require Action Before Use in Non-Global Zones

	rpcbind Disabled or Enabled Based on Drivers
	To Enable rpcbind

	Using TCP Wrappers
	TCP Wrappers Configuration for secure.driver
	TCP Wrappers Configuration for server-secure.driver
	TCP Wrappers Configuration for suncluster3x-secure.driver
	TCP Wrappers Configuration for sunfire_15k_sc-secure.driver

	Defining Environment Variables
	Earlier Solaris Security Toolkit Versions
	Solaris Security Toolkit 4.2

	Framework Functions
	Customizing Framework Functions
	Using Common Log Functions
	logBanner
	logDebug
	logError
	logFailure
	logFileContentsExist and logFileContentsNotExist
	logFileExists and logFileNotExists
	logFileGroupMatch and logFileGroupNoMatch
	logFileModeMatch and logFileModeNoMatch
	logFileNotFound
	logFileOwnerMatch and logFileOwnerNoMatch
	logFileTypeMatch and logFileTypeNoMatch
	logFinding
	logFormattedMessage
	logInvalidDisableMode
	logInvalidOSRevision
	logMessage
	logNotGlobalZone
	logNotice
	logPackageExists and logPackageNotExists
	logPatchExists and logPatchNotExists
	logProcessArgsMatch and logProcessArgsNoMatch
	logProcessExists and logProcessNotExists
	logProcessNotFound
	logScore
	logScriptFailure
	logServiceConfigExists and logServiceConfigNotExists
	logServiceDisabled and logServiceEnabled
	logServiceInstalled and logServiceNotInstalled
	logServiceOptionDisabled and logServiceOptionEnabled
	logServiceProcessList
	logServicePropDisabled and logServicePropEnabled
	logServiceRunning and logServiceNotRunning
	logStartScriptExists and logStartScriptNotExists
	logStopScriptExists and logStopScriptNotExists
	logSuccess
	logSummary
	logUserLocked and logUserNotLocked
	logUndoBackupWarning
	logWarning

	Using Common Miscellaneous Functions
	adjustScore
	checkLogStatus
	clean_path
	extractComments
	get_driver_report
	get_lists_conjunction
	get_lists_disjunction
	invalidVulnVal
	isNumeric
	printPretty
	printPrettyPath
	strip_path

	Using Driver Functions
	add_crontab_entry_if_missing
	add_option_to_ftpd_property
	add_patch
	add_pkg
	add_to_manifest
	backup_file
	backup_file_in_safe_directory
	change_group
	change_mode
	change_owner
	check_and_log_change_needed
	check_os_min_version
	check_os_revision
	check_readOnlyMounted
	checksum
	convert_inetd_service_to_frmi
	copy_a_dir
	copy_a_file
	copy_a_symlink
	copy_files
	create_a_file
	create_file_timestamp
	disable_conf_file
	disable_file
	disable_rc_file
	disable_service
	enable_service
	find_sst_run_with
	get_expanded_file_name
	get_stored_keyword_val
	get_users_with_retries_set
	is_patch_applied and is_patch_not_applied
	is_service_enabled
	is_service_installed
	is_service_running
	is_user_account_extant
	is_user_account_locked
	is_user_account_login_not_set
	is_user_account_passworded
	lock_user_account
	make_link
	mkdir_dashp
	move_a_file
	rm_pkg
	set_service_property_value
	set_stored_keyword_val
	unlock_user_account
	update_inetconv_in_upgrade
	warn_on_default_files
	write_val_to_file

	Using Audit Functions
	check_fileContentsExist and check_fileContentsNotExist
	check_fileExists and check_fileNotExists
	check_fileGroupMatch and check_fileGroupNoMatch
	check_fileModeMatch and check_fileModeNoMatch
	check_fileOwnerMatch and check_fileOwnerNoMatch
	check_fileTemplate
	check_fileTypeMatch and check_fileTypeNoMatch
	check_if_crontab_entry_present
	check_keyword_value_pair
	check_minimized
	check_minimized_service
	check_packageExists and check_packageNotExists
	check_patchExists and check_patchNotExists
	check_processArgsMatch and check_processArgsNoMatch
	check_processExists and check_processNotExists
	check_serviceConfigExists and check_serviceConfigNotExists
	check_serviceDisabled and check_serviceEnabled
	check_serviceInstalled and check_serviceNotInstalled
	check_serviceOptionEnabled and check_serviceOptionDisabled
	check_servicePropDisabled
	check_serviceRunning and check_serviceNotRunning
	check_startScriptExists and check_startScriptNotExists
	check_stopScriptExists and check_stopScriptNotExists
	check_userLocked and check_userNotLocked
	finish_audit
	get_cmdFromService
	start_audit

	File Templates
	Customizing File Templates
	To Customize a File Template

	Understanding Criteria for How Files Are Copied
	Using Configuration Files
	driver.init
	finish.init
	user.init.SAMPLE
	To Add a New Variable to the user.init script
	To Append Entries to Variables Using the user.init File

	Using File Templates
	.cshrc
	.profile
	etc/default/sendmail
	etc/dt/config/Xaccess
	etc/ftpd/banner.msg
	etc/hosts.allow and etc/hosts.deny
	etc/hosts.allow-15k_sc
	etc/hosts.allow-server
	etc/hosts.allow-suncluster
	etc/init.d/nddconfig
	etc/init.d/set-tmp-permissions
	etc/init.d/sms_arpconfig
	etc/init.d/swapadd
	etc/issue and etc/motd
	etc/notrouter
	etc/opt/ipf/ipf.conf
	etc/opt/ipf/ipf.conf-15k_sc
	etc/opt/ipf/ipf.conf-server
	etc/rc2.d/S00set-tmp-permissions and etc/rc2.d/S07set-tmp-permissions
	etc/rc2.d/S70nddconfig
	etc/rc2.d/S73sms_arpconfig
	etc/rc2.d/S77swapadd
	etc/security/audit_control
	etc/security/audit_class+5.8 and etc/security/audit_event+5.8
	etc/security/audit_class+5.9 and etc/security/audit_event+5.9
	etc/sms_domain_arp and /etc/sms_sc_arp
	etc/syslog.conf
	root/.cshrc
	root/.profile
	var/opt/SUNWjass/BART/rules
	var/opt/SUNWjass/BART/rules-secure

	Drivers
	Understanding Driver Functions and Processes
	Load Functionality Files
	Perform Basic Checks
	Load User Functionality Overrides
	Mount File Systems to JumpStart Client
	Copy or Audit Files
	Execute Scripts
	Compute Total Score for the Run
	Unmount File Systems From JumpStart Client

	Customizing Drivers
	To Customize a Driver

	Using Standard Drivers
	config.driver
	hardening.driver
	secure.driver

	Using Product-Specific Drivers
	server-secure.driver
	suncluster3x-secure.driver
	sunfire_15k_sc-secure.driver

	Finish Scripts
	Customizing Finish Scripts
	Customize Existing Finish Scripts
	To Customize a Finish Script
	Prevent kill Scripts From Being Disabled
	Create New Finish Scripts

	Using Standard Finish Scripts
	Disable Finish Scripts
	disable-ab2.fin
	disable-apache.fin
	disable-apache2.fin
	disable-appserv.fin
	disable-asppp.fin
	disable-autoinst.fin
	disable-automount.fin
	disable-dhcp.fin
	disable-directory.fin
	disable-dmi.fin
	disable-dtlogin.fin
	disable-face-log.fin
	disable-IIim.fin
	disable-ipv6.fin
	disable-kdc.fin
	disable-keyboard-abort.fin
	disable-keyserv-uid-nobody.fin
	disable-ldap-client.fin
	disable-lp.fin
	disable-mipagent.fin
	disable-named.fin
	disable-nfs-client.fin
	disable-nfs-server.fin
	disable-nscd-caching.fin
	disable-picld.fin
	disable-power-mgmt.fin
	disable-ppp.fin
	disable-preserve.fin
	disable-remote-root-login.fin
	disable-rhosts.fin
	disable-routing.fin
	disable-rpc.fin
	disable-samba.fin
	disable-sendmail.fin
	disable-slp.fin
	disable-sma.fin
	disable-snmp.fin
	disable-spc.fin
	disable-ssh-root-login.fin
	disable-syslogd-listen.fin
	disable-system-accounts.fin.
	disable-uucp.fin
	disable-vold.fin
	disable-wbem.fin
	disable-xfs-fin
	disable-xserver.listen.fin

	Enable Finish Scripts
	enable-account-lockout.fin
	enable-bart.fin
	enable-bsm.fin
	enable-coreadm.fin
	enable-ftpaccess.fin
	enable-ftp-syslog.fin
	enable-inetd-syslog.fin
	enable-ipfilter.fin
	enable-password-history.fin
	enable-priv-nfs-ports.fin
	enable-process-accounting.fin
	enable-rfc1948.fin
	enable-stack-protection.fin
	enable-tcpwrappers.fin

	Install Finish Scripts
	install-at-allow.fin
	install-fix-modes.fin
	install-ftpusers.fin
	install-jass.fin
	install-loginlog.fin
	install-md5.fin
	install-nddconfig.fin
	install-newaliases.fin
	install-openssh.fin
	install-recommended-patches.fin
	install-sadmind-options.fin
	install-security-mode.fin
	install-shells.fin
	install-strong-permissions.fin
	install-sulog.fin
	install-templates.fin

	Print Finish Scripts
	print-jass-environment.fin
	print-jumpstart-environment.fin
	print-rhosts.fin
	print-sgid-files.fin
	print-suid-files.fin
	print-unowned-objects.fin
	print-world-writable-objects.fin

	Remove Finish Script
	remove-unneeded-accounts.fin

	Set Finish Scripts
	set-banner-dtlogin.fin
	set-banner-ftpd.fin
	set-banner-sendmail.fin
	set-banner-sshd.fin
	set-banner-telnet.fin
	set-flexible-crypt.fin
	set-ftpd-umask.fin
	set-login-retries.fin
	set-power-restrictions.fin
	set-rmmount-nosuid.fin
	set-root-group.fin
	set-root-home-dir.fin
	set-root-password.fin
	set-strict-password-checks.fin
	set-sys-suspend-restrictions.fin
	set-system-umask.fin
	set-term-type.fin
	set-tmpfs-limit.fin
	set-user-password-reqs.fin
	set-user-umask.fin

	Update Finish Scripts
	update-at-deny.fin
	update-cron-allow.fin
	update-cron-deny.fin
	update-cron-log-size.fin
	update-inetd-conf.fin

	Using Product-Specific Finish Scripts
	suncluster3x-set-nsswitch-conf.fin
	s15k-static-arp.fin
	s15k-exclude-domains.fin
	s15k-sms-secure-failover.fin

	Audit Scripts
	Customizing Audit Scripts
	Customize Standard Audit Scripts
	To Customize An Audit Script
	Create New Audit Scripts

	Using Standard Audit Scripts
	Disable Audit Scripts
	disable-ab2.aud
	disable-apache.aud
	disable-apache2.aud
	disable-appserv.aud
	disable-asppp.aud
	disable-autoinst.aud
	disable-automount.aud
	disable-dhcpd.aud
	disable-directory.aud
	disable-dmi.aud
	disable-dtlogin.aud
	disable-face-log.aud
	disable-IIim.aud
	disable-ipv6.aud
	disable-kdc.aud
	disable-keyboard-abort.aud
	disable-keyserv-uid-nobody.aud
	disable-ldap-client.aud
	disable-lp.aud
	disable-mipagent.aud
	disable-named.aud
	disable-nfs-client.aud
	disable-nfs-server.aud
	disable-nscd-caching.aud
	disable-picld.aud
	disable-power-mgmt.aud
	disable-ppp.aud
	disable-preserve.aud
	disable-remote-root-login.aud
	disable-rhosts.aud
	disable-routing.aud
	disable-rpc.aud
	disable-samba.aud
	disable-sendmail.aud
	disable-slp.aud
	disable-sma.aud
	disable-snmp.aud
	disable-spc.aud
	disable-ssh-root-login.aud
	disable-syslogd-listen.aud
	disable-system-accounts.aud
	disable-uucp.aud
	disable-vold.aud
	disable-wbem.aud
	disable-xfs.aud
	disable-xserver.listen.aud

	Enable Audit Scripts
	enable-account-lockout.aud
	enable-bart.aud
	enable-bsm.aud
	enable-coreadm.aud
	enable-ftp-syslog.aud
	enable-ftpaccess.aud
	enable-inetd-syslog.aud
	enable-ipfilter.aud
	enable-password-history.aud
	enable-priv-nfs-ports.aud
	enable-process-accounting.aud
	enable-rfc1948.aud
	enable-stack-protection.aud
	enable-tcpwrappers.aud

	Install Audit Scripts
	install-at-allow.aud
	install-fix-modes.aud
	install-ftpusers.aud
	install-jass.aud
	install-loginlog.aud
	install-md5.aud
	install-nddconfig.aud
	install-newaliases.aud
	install-openssh.aud
	install-recommended-patches.aud
	install-sadmind-options.aud
	install-security-mode.aud
	install-shells.aud
	install-strong-permissions.aud
	install-sulog.aud
	install-templates.aud

	Print Audit Scripts
	print-jass-environment.aud
	print-jumpstart-environment.aud
	print-rhosts.aud
	print-sgid-files.aud
	print-suid-files.aud
	print-unowned-objects.aud
	print-world-writable-objects.aud

	Remove Audit Script
	remove-unneeded-accounts.aud

	Set Audit Scripts
	set-banner-dtlogin.aud
	set-banner-ftpd.aud
	set-banner-sendmail.aud
	set-banner-sshd.aud
	set-banner-telnet.aud
	set-flexible-crypt.aud
	set-ftpd-umask.aud
	set-login-retries.aud
	set-power-restrictions.aud
	set-rmmount-nosuid.aud
	set-root-group.aud
	set-root-home-dir.aud
	set-root-password.aud
	set-strict-password-checks.aud
	set-sys-suspend-restrictions.aud
	set-system-umask.aud
	set-term-type.aud
	set-tmpfs-limit.aud
	set-user-password-reqs.aud
	set-user-umask.aud

	Update Audit Scripts
	update-at-deny.aud
	update-cron-allow.aud
	update-cron-deny.aud
	update-cron-log-size.aud
	update-inetd-conf.aud

	Using Product-Specific Audit Scripts
	suncluster3x-set-nsswitch-conf.aud
	s15k-static-arp.aud
	s15k-exclude-domains.aud
	s15k-sms-secure-failover.aud

	Environment Variables
	Customizing and Assigning Variables
	Assigning Static Variables
	Assigning Dynamic Variables
	Assigning Complex Substitution Variables
	Assigning Global and Profile-Based Variables

	Creating Environment Variables
	Using Environment Variables
	Defining Framework Variables
	JASS_AUDIT_DIR
	JASS_CHECK_MINIMIZED
	JASS_CONFIG_DIR
	JASS_DISABLE_MODE
	JASS_DISPLAY_HOST_LENGTH
	JASS_DISPLAY_HOSTNAME
	JASS_DISPLAY_SCRIPT_LENGTH
	JASS_DISPLAY_SCRIPTNAME
	JASS_DISPLAY_TIME_LENGTH
	JASS_DISPLAY_TIMESTAMP
	JASS_FILE_COPY_KEYWORD
	JASS_FILES
	JASS_FILES_DIR
	JASS_FINISH_DIR
	JASS_HOME_DIR
	JASS_HOSTNAME
	JASS_ISA_CAPABILITY
	JASS_LOG_BANNER
	JASS_LOG_ERROR
	JASS_LOG_FAILURE
	JASS_LOG_NOTICE
	JASS_LOG_SUCCESS
	JASS_LOG_SUMMARY
	JASS_LOG_WARNING
	JASS_MODE
	JASS_OS_REVISION
	JASS_OS_TYPE
	JASS_PACKAGE_DIR
	JASS_PATCH_DIR
	JASS_PKG
	JASS_REPOSITORY
	JASS_ROOT_DIR
	JASS_ROOT_HOME_DIR
	JASS_RUN_AUDIT_LOG
	JASS_RUN_CHECKSUM
	JASS_RUN_CLEAN_LOG
	JASS_RUN_FINISH_LIST
	JASS_RUN_INSTALL_LOG
	JASS_RUN_MANIFEST
	JASS_RUN_SCRIPT_LIST
	JASS_RUN_UNDO_LOG
	JASS_RUN_VALUES
	JASS_RUN_VERSION
	JASS_SAVE_BACKUP
	JASS_SCRIPT
	JASS_SCRIPT_ERROR_LOG
	JASS_SCRIPT_FAIL_LOG
	JASS_SCRIPT_NOTE_LOG
	JASS_SCRIPT_WARN_LOG
	JASS_SCRIPTS
	JASS_STANDALONE
	JASS_SUFFIX
	JASS_TIMESTAMP
	JASS_UNAME
	JASS_UNDO_TYPE
	JASS_USER_DIR
	JASS_VERBOSITY
	JASS_VERSION
	JASS_ZONE_NAME

	Define Script Behavior Variables
	JASS_ACCT_DISABLE
	JASS_ACCT_REMOVE
	JASS_AGING_MAXWEEKS
	JASS_AGING_MINWEEKS
	JASS_AGING_WARNWEEKS
	JASS_AT_ALLOW
	JASS_AT_DENY
	JASS_BANNER_DTLOGIN
	JASS_BANNER_FTPD
	JASS_BANNER_SENDMAIL
	JASS_BANNER_SSHD
	JASS_BANNER_TELNETD
	JASS_CORE_PATTERN
	JASS_CPR_MGT_USER
	JASS_CRON_ALLOW
	JASS_CRON_DENY
	JASS_CRON_LOG_SIZE
	JASS_CRYPT_ALGORITHMS_ALLOW
	JASS_CRYPT_DEFAULT
	JASS_CRYPT_FORCE_EXPIRE
	JASS_FIXMODES_DIR
	JASS_FIXMODES_OPTIONS
	JASS_FTPD_UMASK
	JASS_FTPUSERS
	JASS_KILL_SCRIPT_DISABLE
	JASS_LOGIN_RETRIES
	JASS_MD5_DIR
	JASS_NOVICE_USER
	JASS_PASS_ Environment Variables
	JASS_PASS_DICTIONDBDIR
	JASS_PASS_DICTIONLIST
	JASS_PASS_HISTORY
	JASS_PASS_LENGTH
	JASS_PASS_MAXREPEATS
	JASS_PASS_MINALPHA
	JASS_PASS_MINDIFF
	JASS_PASS_MINDIGIT
	JASS_PASS_MINLOWER
	JASS_PASS_MINNONALPHA
	JASS_PASS_MINSPECIAL
	JASS_PASS_MINUPPER
	JASS_PASS_NAMECHECK
	JASS_PASS_WHITESPACE
	JASS_PASSWD
	JASS_POWER_MGT_USER
	JASS_REC_PATCH_OPTIONS
	JASS_RHOSTS_FILE
	JASS_ROOT_GROUP
	JASS_ROOT_PASSWORD
	JASS_SADMIND_OPTIONS
	JASS_SENDMAIL_MODE
	JASS_SGID_FILE
	JASS_SHELLS
	JASS_SUID_FILE
	JASS_SUSPEND_PERMS
	JASS_SVCS_DISABLE
	JASS_SVCS_ENABLE
	JASS_TMPFS_SIZE
	JASS_UMASK
	JASS_UNOWNED_FILE
	JASS_WRITABLE_FILE

	Define JumpStart Mode Variables
	JASS_PACKAGE_MOUNT
	JASS_PATCH_MOUNT

	Glossary
	Index

