
OpenSolaris Service
Management Facility Guide

Liane Praza

OpenSolaris Service Management Facility Guide
by Liane Praza

Published April 2007
Copyright © 2007 Sun Microsystems, Inc.

The contents of this Documentation are subject to the Public Documentation License Version 1.01 (the "License"); you may only use this
Documentation if you comply with the terms of this License. A copy of the License is available at http://www.opensolaris.org/os/community/
documentation/license.

iv

Table of Contents
Preface ... viii

Who Should Use This Book .. viii
How This Book Is Organized .. viii
Related Information ... viii

1. Introduction ... 1
What it does .. 1
Benefits of participation .. 1
Levels of Service Integration .. 1

2. Service Concepts .. 2
Service Model .. 2
Service and Service Instance .. 2
Property Groups and Properties ... 2
Property Stability .. 3
Service Restarter and Delegation ... 3
Service Methods ... 3
Service Dependencies .. 3
Service Repository .. 3
Configuration Snapshots .. 4
Service Manifest .. 4
Profiles ... 4
Milestones ... 5
Service States .. 5
Legacy Services ... 5

3. Service Lifecycle .. 7
Determine service suitability .. 7
Write service methods ... 7
Write service manifest ... 7
Import manifest .. 7
Test/fix ... 7
Package manifest and methods .. 7
Install service .. 7
Service startup/runtime .. 7
Configure/modify service ... 7
Upgrade service with no loss of configuration ... 7
Remove service .. 7

4. smf(5)Commands .. 8
Command overview .. 8
Service listings ... 8

5. Contracts and Service Restart .. 10
Hardware error handling before smf(5) ... 10
Hardware error handling within a service with smf(5) .. 10
Fault propagation between services with smf(5) .. 11
Fault handling for legacy services .. 12
Handling faults within Zones .. 12
Ignoring errors in your service .. 12

6. svc.startd(1M) Service Development .. 14
Manifest Creation ... 14

Name your service .. 14
Identify whether your service may have multiple concurrent instances 15
Identify your service model .. 15
Identify how your service is started/stopped. .. 16

OpenSolaris Service
Management Facility Guide

v

Determine faults to be ignored .. 18
Identify dependencies .. 19
Identify dependents ... 20
If appropriate, insert your service into a milestone ... 20
Create, if appropriate, a default instance .. 21
Create template information to describe your service ... 21
Write/update an administrative command .. 22
Remove your script from /etc/rc?.d locations and /etc/init.d 22

Method Context .. 22
Method Creation ... 22
Moving configuration to repository .. 22
Importing and Testing ... 22
Manifest to repository mapping ... 22
Examples ... 22

7. inetd(1M) Service Development ... 29
inetconv(1M) ... 29
/etc/services ... 29
Describing the service ... 29
Examples ... 29

8. Delegated Administration ... 30
9. Service Packaging ... 31

Delivery Locations .. 31
Using the manifest class-action scripts .. 31

10. Service Testing and XXX ... 32
Service debugging modes ... 32
Temporary disable .. 32
Changing the restarter of a service ... 32

11. Compatibility .. 33
init ... 33
inetd ... 33
inittab ... 33

12. Troubleshooting .. 34
Problem: Service not running .. 34
Problem: Manifest won't import .. 34
Problem: Service restarting too rapidly ... 34
Problem: Repository corrupt or missing .. 34
Problem: System hangs during boot ... 34

vi

List of Tables
4.1. smf(5) Commands .. 8

vii

List of Examples
4.1. What services are enabled and running? ... 8
4.2. What services are available on the system? ... 8
4.3. What services are provided on the system? ... 8
4.4. How do I find out more about a specific service? ... 9
6.1. Creating a simple standalone daemon manifest ... 23
6.2. Creating a simple configuration service manifest .. 26
6.3. Converting an existing init.d(4) service ... 28
6.4. Creating a new smf(5) service .. 28

viii

Preface
The Service Management Facility is a mechanism to define, deliver, and manage self-healing application
services for the Solaris™ Operating System or other OpenSolaris™ works. The Service Management
Facility (more compactly known as smf(5)) significantly augments the traditional init.d(4) and
inetd.conf(4) models for service delivery. The OpenSolaris Service Management Facility Guide
introduces important smf(5) concepts and provides details on delivering services which can be managed
by the Service Management Facility.

Who Should Use This Book
If you have ever written or modified an init.d(4) script or inetd.conf(4) line, this book is for you. All
administrators will also benefit from this book, as it expands significantly on the smf(5) administrative
concepts introduced in System Administration Guide: Basic Administration.

How This Book Is Organized
XXX: need a definitive structure before writing this section. Remember to cross-link.

Related Information
• System Administration Guide: Basic Administration

• Application Packaging Developer's Guide

• System Administration Guide: Solaris Containers -- Resource Management and Solaris Zones

• OpenSolaris Service Management Facility Community: http://opensolaris.org/os/community/smf

• Predictive Self-Healing BigAdmin site: http://www.sun.com/bigadmin/content/selfheal

1

Chapter 1. Introduction
What it does

smf(5) promotes a service to a first-class operating system object. It allows administrators to:

• access information about misconfigured/misbehaving services,

• enable and disable services persistently across upgrades and patches,

• directly bind services to resource management configurations,

• delegate tasks to non-root users securely, and

• more reliably access the console in repair scenarios.

smf(5) gives developers:

• automated restart of services in dependency order due to administrative errors, software bugs, or
uncorrectable hardware errors,

• a single API for service management, configuration, and observation, and

• simplified boot-process debugging.

Benefits of participation

Levels of Service Integration
No integration: compatibility. See the compatibility section.

Trivial integration: Create simple service manifest, convert init script to service methods, minimal testing

Full Restartability : Build on trivial conversion to split monolithic services -- each separately restartable
component becomes its own service

2

Chapter 2. Service Concepts
Understanding a set of basic concepts will ease your interactions with smf(5) whether you're developing a
complex suite of software or administering a Solaris system. These concepts apply to all services managed
by smf(5). There are some concepts which are specific to the type of service being implemented or
managed, and subsequent chapters will cover the specifics of delivering individual service classes.

Service Model
The Service Management Facility defines a programming model for providing persistently running
applications called services, and an extensive infrastructure for managing those services. An smf(5) service
can represent a variety of software facilities, such as a single daemon, a set of running processes, a set of
system configuration parameters, or even just a group of other services.

Adapting existing software to smf(5) brings a number of advantages. Services are automatically restarted
if they fall victim to hardware failure, unexpected service failure, or administrative error. Participation in
the service management facility also enhances observibility (with svcs(1) as well as future-planned GUI
tools) and ease of management (with svcadm(1M) and other Solaris management tools). All that's required
to adapt existing software to smf(5) is usually just the creation of a short XML file called a service manifest
and a few simple modifications to the service init.d(4) script.

Service and Service Instance
Services are implemented as service instances. A service is the parent of one or more instances, and
contains configuration information that is shared among all of the instances. The service should be
considered only a configuration store, where the instance is the entity that executes on the system. The
configuration of an instance is determined by composing configuration from the service and the instance.
The instance's configuration will always be used for configuration defined both on the service and the
instance.

All properties that would not be changed by a different copy of your service running (if your service
supports that) should be defined at the service level. If your service may be implemented differently by a
different instance (e.g. the smtp service may be implemented by sendmail, postfix, qmail,
...), properties that are specific to the current implementation should be specified at the instance, not the
service.

Each service and service instance is named by a unique FMRI (Fault Managed Resource Identifier). The
FMRI is prefixed with svc: and contains the service category, service and instance. For example, the
FMRI for the default instance of the fmd(1M) service is svc:/system/fmd:default.

Property Groups and Properties
Service configuration is organized into a set of properties. These properties are typed to reduce incidence
of administrative error. All properties are organized into property groups. The property group is where
composition of service instances occurs. f a property group with a given name is defined both on the
service and the instance, the instance's settings are used. As all configuration is stored as properties, a
single interface can be used to view and modify any service configuration property.

While most properties groups are persistent, meaning that their settings are saved across system reboot,
smf(5) also provides non-persistent property groups, which disappear when the system is rebooted. These
non-persistent property groups are used for run-time information about services which needs to be re-
generated when the system is rebooted.

Service Concepts

3

A primary piece of configuration information is whether the service is enabled. This is also stored as a
property. XXX?

Property Stability

Service Restarter and Delegation
In order to provide restart capabilities for services with different run-time characteristics, smf(5) allows
for a variety of service models. The service model is implemented by a service restarter. The restarter
sets up the environment for the service and starts, stops, restarts, and communicates configuration change
to the service. Currently, these models are provided by the svc.startd(1M) and inetd(1M) restarters.
Additional models may be provided in the future by either these restarters or by additional restarters.
While this document describes the models for svc.startd(1M) and inetd(1M), please also see the restarter
documentation for more detail on the application model it provides.

XXX: specifics about delegation

Service Methods
A service's interface with its restarter is the service method. Each restarter defines the methods it requires
for the services it manages. Most restarters minimally require a service provides a start method and a stop
method.

Service Dependencies
Dependencies define the relationships between services. Dependency effects are tracked by the master
restarter, svc.startd(1M). When a service starts, fails, etc., svc.startd(1M) communicates the change to
the service's restarter.

XXX -- more details about dependencies: restart_on and grouping

Service Repository
A service's configuration is kept in the service repository. The repository is a transactional database that
contains the authoritative copy of service configuration. This configuration is used by the master restarter,
svc.startd(1M), the service's restarter, the service itself, and any management applications which wish to
access information about the service. Once services have been delivered on a system, administrators or
administrative applications may customize service settings in the repository.

The service repository has a number of characteristics which are important to the system.

• Transactional.

All of the core smf(5) daemons are designed to be completely restartable if they fail due to hardware,
software, or administrative failure. This requires a transactional backing store for all of our service
information, including things like service state. If any core smf(5)daemons die halfway through an
operation, they pick up where they left off when they return. Thus, the repository must be transactional
to allow uto implement recoverability.

• Typed.

Service Concepts

4

A strong typing system allows smf(5) to validate that configuration information is at least of the
appropriate form. This reduces the chance of accidental misconfiguration by the administrator.

• Single point of access.

All configuration and runtime data is accessed through a single API: libscf(3LIB). This reduces the time
required to write a management application for a service, and elimiates the need to write service-specific
configuration parsers.

• Access control.

A subset of configuration changes and administrative actions can be safely delegated to non-root users,
without requiring that all changes and actions be allowed by those users.

There are, however, no provisions for configuration data to be hidden from unprivileged users or
applications. While modification is protected, reading is not. The repository should not be used for
secret data.

• Snapshots.

Allow administrators to easily revert to previous configuration versions.

• Checkable consistency.

It must be simple to confirm on startup that the format of the system's configuration data is correct.
Obvious filesystem corruption is flagged explicitly rather than parsed by higher-level applications as
lack of or incorrect configuration.

• Fast

Recovery algorithms require storing state in the repository, so updates must be fast for systems with
many services.

The repository is split in implementation between the persistent properties which are not lost when the
system restarts and non-persistent properties which are reset when the system reboots. The persistent
database is critical for backup and is stored in /etc/svc/repository.db. The non-persistent
database has no value in backups as its contents are regenerated every system boot. It is located in /etc/
svc/volatile/svc_nonpersist.db.

Configuration Snapshots

Service Manifest
To deliver a service on a Solaris system, you create a service manifest, an XML file which describes
a service and any instances associated with that service. The service manifest is imported into the
repository either at boot time, or by using the svccfg import subcommand. The XML format of the
service manifest is specified by the Service description DTD, located at /usr/share/lib/xml/dtd/
service_bundle.dtd.1. The comments in the DTD will answer many questions about authoring
service manifests.

Profiles

Service Concepts

5

Milestones
A milestone service aggregates a set of service dependencies. Usually, a milestone service does nothing
useful itself, but declares a specific state of system-readiness which other services can depend upon.
One example is the name-services milestone service. The name-services milestone service is
considered online as long as any name services which are enabled are running. Thus, smf(5) milestones
are useful points for setting dependencies, as they reflect a specific state of system readiness. Milestone
services are treated as normal services by smf(5).

The standard Unix system run-levels are represented in smf(5) as milestone services. The single-user,
multi-user, and multi-user-server milestone services correspond to run-levels S, 2, and 3,
respectively.

smf(5) also allows you to reduce or increase the number of services running on the system by specifying.
You can choose which milestone represents the set of services you want running, and ask to set the system
milestone to the one you've selected. The svcadm milestoneaccepts the run-level milestone services, as
well as the special all and none keywords. These aren't actual services, but shorthand for either no
services, or all enabled services, respectively. This set of five special milestones can either be booted
directly to (boot -m milestone=) or reached by running svcadm milestone.

A limited milestone (any special milestone but all) is reached by temporarily disabling all services which
aren't required by the services defined in the milestone. If a service isn't a dependency of the milestone or
one of the milestone's dependencies, it will be temporarily disabled when in that limited milestone. The
console-login service, for example, is not a dependency of any of the reduced milestones and will
always appear as disabled when in those milestones.

Reduced run-levels should still be reached by using boot -s or the init(1M) command directly. These
commands set both the milestone and the run-level. Running svcadm milestone directly only sets the
milestone, but not the system run-level.

Note

For system maintenance procedures, use the traditional init(1M) or boot -s invocations, not
the svcadm milestone or boot -m milestone invocations. As the existing commands provide
the same functionality they have in previous releases of the Solaris system, they offer the least
incidence of surprise to the user when performing critical system maintenance.

Service States
Each service instance is always in a well-defined state. Define states XXX

Service states are stored in a non-persistent group, as the state must always be reset when the system
reboots.

A Solaris service is only started if it is marked as enabled (by the administrator), and once all of its
dependencies are satisfied.

Legacy Services
smf(5) provides start and stop of scripts placed in the /etc/rc?.d/ directories. As these services aren't
fully described to the system with a set of dependencies, they are called legacy services. Legacy services
created for releases of the Solaris system older than 10 will continue to work without modification in
almost all cases, starting when the system starts, and being shutdown during system shutdown or a change

Service Concepts

6

in the run-level. However, these services aren't monitored by smf(5) after they're started, and will never
be automatically restarted by the system.

7

Chapter 3. Service Lifecycle
The service lifecycle describes

Determine service suitability
Not all software is appropriate for execution by smf(5).

Write service methods

Write service manifest

Import manifest

Test/fix
Always look for errors or unusual messages in the service's log file, if it exists.

Package manifest and methods

Install service

Service startup/runtime
Start when...

Logfiles...

Configure/modify service

Upgrade service with no loss of configuration

Remove service

8

Chapter 4. smf(5)Commands
There is a rich smf(5) command set available too developers and administrators alike. The Solaris System
Administration Guide: Basic Administration book focuses on administrators, while here we focus on
commands a service developer might find valuable. First, an overview of general smf(5) commands.

Command overview

Table 4.1. smf(5) Commands

Command Purpose

svcs(1) List services, service information, discover and
diagnose service problems.

svcadm(1M) Perform general service administration.

svcprop(1) Service information queries, suitable for scripting.

svccfg(1M) Repository manipulation tool.

Service listings

Example 4.1. What services are enabled and running?

svcs(1) with no options answers that easily:

$ svcs
...
online Feb_04 svc:/network/ntp:default
online Feb_04 svc:/network/service:default
online Feb_04 svc:/application/x11/xfs:default
online Feb_04 svc:/application/font/stfsloader:default

Example 4.2. What services are available on the system?

Just ask svcs(1) to list all services, including the disabled ones:

$ svcs -a
disabled Feb_04 svc:/system/metainit:default
disabled Feb_04 svc:/network/rpc/nisplus:default
disabled Feb_04 svc:/network/nis/server:default

Example 4.3. What services are provided on the system?

Again, just ask svcs(1). This time, get the service description too:

$ svcs -a -o FMRI,DESC
svc:/milestone/name-services:default name services milestone
svc:/platform/i86pc/kdmconfig:default Display configuration
svc:/system/cron:default clock daemon (cron)

smf(5)Commands

9

Example 4.4. How do I find out more about a specific service?

svcs(1M) gives more detailed information about a service with both the -x and -l options combined with
the service name. The manpage references in svcs -x are particularly helpful.

$ svcs -x system-log
svc:/system/system-log:default (system log)
 State: online since Fri Feb 04 19:30:11 2005
 See: syslogd(1M)
 See: /var/svc/log/system-system-log:default.log
Impact: None.

$ svcs -l system-log
fmri svc:/system/system-log:default
name system log
enabled true
state online
next_state none
state_time Fri Feb 04 19:30:11 2005
logfile /var/svc/log/system-system-log:default.log
restarter svc:/system/svc/restarter:default
contract_id 51
dependency require_all/none svc:/milestone/sysconfig (online)
dependency require_all/none svc:/system/filesystem/local (online)
dependency optional_all/none svc:/system/filesystem/autofs (online)
dependency require_all/none svc:/milestone/name-services (online)

The svcs -p command allows you to determine which processes, if any, are in the service.

$ svcs -p system-log
STATE STIME FMRI
online 21:06:05 svc:/system/system-log:default
 21:06:05 272 syslogd

Additionally, svcprop(1) provides a dump of all service configuration. By default, it chooses to display
the running configuration of the instance.

$ svcprop system-log
general/package astring SUNWcsr
general/enabled boolean true
general/single_instance boolean true
general/action_authorization string solaris.smf.manage.system-log

10

Chapter 5. Contracts and Service
Restart

The Service Management Facility cooperates with the Solaris Fault Manager through service contracts
to isolate and recover from hardware and software faults on the system. The Fault Manager essentially
detects and predicts hardware faults, retiring bad hardware when it is appropriate and possible.

Hardware error handling before smf(5)
Earlier versions of the Solaris Operating System could often detect hardware faults, but couldn't usually
recover from them without rebooting the system. For example, physical memory on the system can
go bad. Depending on the type of memory and the type of error encountered, it can generate either a
correctable error, or an uncorrectable one. The Solaris Operating System has always recovered gracefully
from correctable errors. They're handled by the kernel and never seen by a user process.

But, uncorrectable ones mean that the system is unable find a good copy of the data. The error can occur
either in the kernel's address space or in a user process's address space. An error in kernel address space
means that the kernel is paniced immediately, restarting the system. An error in user space can be dealt
with more gracefully. As we know which process the error affected, the kernel can kill it before it causes
any more damage.

Prior to SMF, the relationships between user processes were unknown. As the system didn't know if the
corrupted/absent memory in one process would cause corruption in another process which was cooperating
very closely with the one that received the error, the entire system had to be gracefully shut down.

Hardware error handling within a service with
smf(5)

Now fmd(1M) can take hardware that's about to have a failure offline in advance of that failure, or after
that failure occurs. But, when a failure does slip through it is smf(5)'s job to know the relationships between
processes/services on the system. There are two main types of relationships:

• processes part of the same service or fault boundary, and

• services which depend upon each other.

To track processes as part of the same service, the smf(5) restarters use the new kernel mechanism,
process(4) contracts to group and monitor related processes. Certain types of events can be classified as
important:

• empty - the last member of a process was killed

• fork - a new process was added to the contract

• exit - a member of the contract exited

• core - a process dumped core

• signal - a process received a fatal signal

• hwerr - a process was killed due to an uncorrectable hardware error

Contracts and Service Restart

11

Each of these events is detected by the kernel, and passed to the contract owner. In the specific case of
hwerr, if an uncorrectable hardware error does occur in a user process the kernel detects it and kills the
process where the error occurs, just as in previous versions of the Solaris Operating System. With the
introduction of SMF, we no longer need to restart the system - with smf(5) and process(4) contracts,
we can just restart the "associated processes".

Contracts are written with three types of event sets: informative, critical, and fatal.
Informative and critical only differ really in the guarantees about event delivery. fatal means all
processes in the contract are killed if a fatal event is received. smf(5) puts the hwerr event into the
critical event set. A few commands allow you to explore contract settings on the system. First, you
can find out about contract and process relationships using:

 $ ptree -c `pgrep sendmail`
 [process contract 1]
 1 /sbin/init
 [process contract 4]
 7 /lib/svc/bin/svc.startd
 [process contract 513]
 18676 /usr/lib/sendmail -Ac -q15m
 18678 /usr/lib/sendmail -bd -q15m

You can see that sendmail is in contract 513. Using that information, you can look at the terms of the
contract:

 ctstat -vi 513
 CTID ZONEID TYPE STATE HOLDER EVENTS QTIME NTIME
 513 0 process owned 7 0 - -
 cookie: 0x20
 informative event set: none
 critical event set: hwerr empty
 fatal event set: none
 parameter set: inherit regent
 member processes: 18676 18678
 inherited contracts: none

That output confirms what was described above: hwerr is in the critical event set. If there's a hwerr
in either of the sendmail processes, the contract owner (7, svc.startd(1M) as you see above) will get a
critical error. svc.startd(1M) then responds to the error by stopping the service, and restarting it if
possible. Thus, when an uncorrectable memory error occurs in a process managed as an smf(5) service,
smf(5) is able to detect an uncorrectable memory error in a process, and repair it by restarting the service.

Fault propagation between services with
smf(5)

The previous section handles fault propagation within the first relationship type described above -
processes related as part of the same service or fault boundary. Fault propagation between services are
handled differently.

Service relationships are expressed by smf(5) dependencies. Most dependencies are used to specify startup
order, by using grouping=require_all and restart_on=none. However, you can also specify
that a service is restarted if its dependency experiences any type of error (hardware error, core dump, etc.).
You do this by using restart_on=error as opposed to none. Then when the dependency is stopped
due to that error, your dependent service will be too.

Contracts and Service Restart

12

Fault handling for legacy services
Uncorrectable errors are handled differently for processes that aren't explicitly part of an smf(5) service.
How does SMF know what to do if you didn't write a service manifest to describe how faults should be
handled? Since init(1M) is in a process(4) contract, all processes are part of a process(4) contract. If no
software creates a new contract, the process is in the same contract as its parent. The default terms for a
contract are not the same as what svc.startd(1M) uses. Instead, the default process(4) contract is written
such that hardware errors are fatal. Remember, that means all processes in the contract are killed if any
process sees an uncorrectable memory error. svc.startd(1M) also helpfully puts each legacy-run service
in its own contract. Thus, if any processes launched out of a legacy-run service (e.g. vold or dtlogin) fall
victim to an uncorrectable memory error, all processes in the contract will be killed.

$ ptree -c `pgrep vold`
 [process contract 81]
 481 /usr/sbin/vold
 $ ctstat -vi 81
 CTID ZONEID TYPE STATE HOLDER EVENTS QTIME NTIME
 81 0 process orphan - 0 - -
 cookie: 0
 informative event set: core signal
 critical event set: hwerr empty
 fatal event set: hwerr
 parameter set: none
 member processes: 481
 inherited contracts: none

Note that for vold's process, hwerr is in the fatal event set. But, since there's no service manifest to tell
SMF how to deal with the legacy-run service, the system can't restart it. This is a primary reason why
adapting your service to smf(5) is valuable, even though compatibility is provided for legacy services.

Handling faults within Zones
As a zone doesn't have a kernel of its own, an uncorrectable memory error in the kernel still means that
the entire system goes down. However, each zone has its own copy of smf(5) inside which is completely
separate from the other zones on the system. As smf(5) runs inside the zone as well, faults are handled
inside the local zone the same was as they are in the global zone. There's no need to isolate the fault
to the zone because we isolate the fault to a finer granularity -- the service. smf(5)and zones are highly
complementary technologies.

Ignoring errors in your service
If you've specified the following with your service manifest, you've told smf(5) that you don't care about
what happens to the processes that your start method starts up.

<property_group name='startd' type='framework'>
 <propval name='duration' type='astring' value='transient' />
</property_group>

We provided this functionality for configuration services which need to tell smf(5) that they don't have
processes that need to be restarted if they fail. Basically, no processes in the contract isn't an error. But, this
has also (understandably) been abused to shoehorn legacy services which may or may not have processes
running when their start method exits into smf(5). Some of these examples of incomplete conversions

Contracts and Service Restart

13

even exist within SMF. svc:/network/initial may start up a number of daemons on your system,
but you don't see them under svcs -p. That's because the duration property is set to transient. You
can see this with:

$ svcprop -p startd/duration network/initial transient

svc.startd(1M) believes there are no important processes to worry about restarting, so it doesn't track them
under svcs -p, and won't restart the service if one of the processes is killed due to an uncorrectable
memory error. These services will be converted more thoroughly in a future release of SMF. But, if
you want the processes in your service to be restarted on failure, never set startd/duration to
transient.

14

Chapter 6. svc.startd(1M) Service
Development

XXX: first confirm the service's model (start, stop, etc.) is compatible with svc.startd's.

Manifest Creation

Name your service
Services have names, which may have slashes included in the name. Unlike in the filesystem, the / is
not special in the service name. This allows categories to be included in the service name, which allows
administrators to easily group service types and refer to them more easily. These categories aren't used by
the system, but help the administrator in identifying the general use of the service. These categories are
shown in /var/svc/manifest, and include:

application higher level applications, such as apache

milestone collections of other services, such as name-services

platform platform-specific services, such as Dynamic Reconfiguration daemons

system OpenSolaris system services, such as coreadm

device device-specific services

network network/internet services, such as protocol implementations

site site specific descriptions

Categories may also have subcategories to further classify similar services. For example, network/rpc
is used for RPC services. Additional subcategories may be added if a Java™ - style reversed domain
prefix or your companies stock symbol are used in the category name to avoid conflicts with other add-on
products.

The service name should describe what is being provided, and includes both any category and subcategory
identifier and the actual service name, separated by '/'. Service names should usefully identify to the
administrator the service being provided.

The instance name describes any specific features about the instance. Most services deliver a 'default'
instance. Some (e.g. ORACLE™ software or other services with complex configuration) may want to only
create instances based on administrative configuration choices.

Services that are shipped as part of a product or generally extend beyond a site-specific definition should
include either the stock symbol or Java™-style reversed domain prefix followed by a comma as part of
the category or service name for uniqueness. As an example of the naming conventions above, the cron
service specifies as its prelude:

<service

svc.startd(1M)
Service Development

15

 name='system/cron'
 type='service'
 version='1'>

Identify whether your service may have multiple
concurrent instances

If multiple binaries of your service running simultaneously on the system would cause an error, you must
define it as a single_instance service. This tag tells the restarter to not start multiple service instances
simultaneously, regardless of administrative configuration.

Most configuration and system services require single_instance tags. Services such as web servers
or databases which could run multiple configurations simultaneously (such as use a different database
source or run on a different port) should not be specified as single_instance.

Specify after the service block:

<single_instance />

Identify your service model
svc.startd(1M) is a process-based restarter. It provides three distinct models for service processes:

contract Most services are contract services. That is, they are implemented by long-running
processes. Standard system daemons are almost always contract services. They require
processes which run forever once started to provide service. Death of all processes in a
contract service is considered a service error, which will cause svc.startd(1M) to restart
the service. The default service model is contract. No additions to the manifest are required
to use this service model.

transient A transient service is expected not to start a long-running process. Transient services are
often configuration services, which require no long-running processes to provide service.
Common transient services perform boot-time cleanup or load configuration properties
into the kernel.

svc.startd(1M) does not monitor the child processes of a transient service beyond the
execution of the method - processes started by a transient service aren't considered part
of the service once the method exits. Failures in the child processes are not detected
as an error. Transient services are therefore sometimes used to overcome difficulties
in conforming to the method requirements for contract or wait services. This is not
recommended and should be considered a stopgap measure.

svc.startd(1M) treats a service as transient if its startd/duration property is set to
transient. If your service should be defined as transient, insert the following into your
service manifest:

<property_group

svc.startd(1M)
Service Development

16

 name='startd' type='framework'>
 <propval
 name='duration'
 type='astring'
 value='transient' />
</property_group>

wait Wait services are implemented by a single child process, and are restarted when that
process exits. Wait services are very rare; consider use of a different service model first.

svc.startd(1M) treats a service as transient if its startd/duration property is set to
child. If your service should be defined as wait, insert the following into your service
manifest:

<property_group
 name='startd' type='framework'>
 <propval
 name='duration'
 type='astring'
 value='child' />
</property_group>

Identify how your service is started/stopped.
smf(5) manipulates a service with methods. Methods are procedures specified by a services' properties.
svc.startd(1M) requires services to provide stop and start methods. svc.startd(1M) methods can name a
program, such as a shell script or a binary, or an action to be taken by svc.startd(1M)The refresh method
is optional for svc.startd(1M) managed services. Different restarters may require different methods.

Existing init.d scripts can usually serve as the basis for service methods. The following rules and
guidance are appropriate for the methods supported by svc.startd(1M):

all methods • Shell scripts should include /lib/svc/share/smf_include.sh to
gain access to convenience functions and return value definitions.

• Failures must cause explicit error returns. All non-0 values are considered
errors. Additional information (for example, to avoid restart due to
configuration errors) may be provided to the restarter with the SMF_EXIT_*
shell variable definitions. See the individual method descriptions for further
details on exit code behavior.

• Method should print messages to stdout or stderr on error or failure.
They'll be redirected by svc.startd(1M) to the service log file, which the
administrator will be directed to in case of error so they can determine potential
courses for repair.

• The keywords :kill and :true are available for all method definitions.
:true instructs svc.startd(1M) to do nothing. :kill kills all processes
started by your start method. The list of all processes is determined by the
service's contract.

svc.startd(1M)
Service Development

17

:kill is primarily effective for contract services. svc.startd(1M) doesn't
track processes for transient and wait services in the service's primary contract.
Therefore, :kill will not effectively kill all processes in transient and wait
services.

start methods • A start method is required for all svc.startd(1M)-managed services.

• start methods are only run when the service is enabled and dependencies
are already met.

• start methods should exit with $SMF_EXIT_ERR_CONFIG if the service
cannot come online due to any configuration error. XXX - other exit codes and
their meanings

• For contract services, the start method must leave your daemon running if
returning success, as exit of all processes will cause the service to be restarted.
That is, the start method should only return with exit code 0 once the processes
have started and will likely stay running until an explicit error occurs.

• Contract and transient service start methods should not return success until
the service is completely ready to talk to its clients. Note that this is true
for daemons as well; daemons shouldn't fork then exit from their initial
process, they should wait to return until startup errors have been accumulated
and can be reported. Many init.d scripts traditionally execute a daemon
and return immediately without waiting for the service to start, counting on
the fact that the serial boot took 'a while' to start dependent services. Now that
dependent services are started precisely (often immediately) after your service
returns successfully from its start method, precise semantics are required.

If code changes to the daemon/service can't be made, the method should wait
for service to be provided before returning success. If no other options are
available, insert an appropriately long sleep before successful return.

stop methods • A stop method is required for all svc.startd(1M)-managed services.

• Stop methods are run in a number of different scenarios, including when a
dependency (with restart_on set to something more than none) has gone
offline or failed, when the service fails, and when an administrator requests
disable or restart.

• Thus, stop methods should return success if the service is no longer running
after execution is complete, even if the service wasn't running when the
execution started. This is because stop methods may be called in error
scenarios.

refresh methods • Refresh methods are optional for all svc.startd(1M)-managed services.

• Any defined refresh method must have very precise semantics; it must
reload appropriate configuration parameters from the repository or other
configuration source without interrupting service. It must not cause exit of the
existing processes for contract or wait services.

Timeouts must be specified for all methods. svc.startd(1M) will consider the method to have failed if the
timeout expires during the method's execution. The timeout should be defined to be the maximal amount
of time in seconds that your method might take to run on a slow system or under heavy load. A method

svc.startd(1M)
Service Development

18

which exceeds its timeout will be killed. If the method could potentially take an unbounded amount of
time, such as a large filesystem fsck, an infinite timeout may be specified as '0'.

We strongly discourage expecting user interaction (i.e. via console input) as part of the service methods.
Scripts which do so will not work without modification, as the stdin/stdout/stderr are not /dev/
console for service methods. XXX - example needed

We provide a set of method tokens available for use in method specification for commonly used property
values. A comprehensive list is available in smf_method(5). XXX - example needed

The default method environment is inherited from init(1M), with the PATH set to /usr/sbin:/
usr/bin. Variables beginning with SMF_ are reserved for framework use. The SMF_ variables
defined in smf_method(5) are provided to all methods; these include SMF_FMRI, SMF_METHOD, and
SMF_RESTARTER.

Finally, each method may specify a method_context, to define system, resource management, and
security attributes used during method execution. We recommend long-running services are started with
reduced privileges and safe uids and gids, when possible. XXX - examples

An example of a start method specification is below.

<exec_method
 type='method'
 name='start'
 exec='/lib/svc/method/svc-cron'
 timeout_seconds='60'
 <method_context>
 <method_credential
 user='root'
 group='root' />
 </method_context>
</exec_method>

Determine faults to be ignored
If either your service is poorly behaved itself, or it might spawn poorly behaved subprocesses, you will
want to inform the restarter that certain errors are expected and don't constitute service faults.

You may specify that coredumps from service subprocesses or fatal signals from processes outside the
service aren't fatal to the service. An example of specifying that neither are errors is below.

<property_group
 name='startd'
 type='framework'>
 <propval
 name='ignore_error'
 type='astring'
 value='core,signal' />
</property_group>

svc.startd(1M)
Service Development

19

XXX - separate examples?

Identify dependencies
This is the most difficult part of service conversion, as most dependencies are not explicitly stated. There
are two different types of dependencies; file and service dependencies. XXX - warn about file:
dependencies

First, identify what other services are required for yours to be started. For example, does your service
require the network to be plumbed, local devices to be configured, name services to be available? Are
there services that yours would be useless without?

Once you've decided what your service is dependent on, you'll need to determine and specify the fault
propagation model. For each dependency, decide whether your service should restart if:

none service can withstand faults and restarts in the dependency

fault restart if the dependency has a fault (core dump, system fault, etc.)

restart if the dependency is restarted for any reason, including fault, your service should be

refresh if the dependency is refreshed (its configuration is changed), restarted, or has a fault, your
service should be restarted

These values correspond to the ability to handle restart of the specified dependency, via the restart_on
property.

Dependencies may be grouped. The potential groupings are:

require_all all in the group must be running (online or degraded) before the dependency can be
started

require_any any one of the services in the group must be online or degraded before the dependency
can be started

optional_all all services must be running (online or degraded), disabled, in the maintenance state,
or not present before the dependency can be started. In other words, if the dependency
will get to online or degraded, wait for it, including if it gets stuck in offline due to
unsatisfied dependencies.

exclude_all if the dependency is enabled and online or degraded, the service should not be started

Dependencies may specify service FMRIs or instance FMRIs. A dependency on the instance is
evaluated precisely. Dependencies specified on a service rather than a specific instance are evaluated as
require_any for all configured instances. If your service does not require a specific instance, always
use the service as the dependency for maximum flexibility.

If your service is dependent on a legacy script having run, we strongly recommend you either convert or
encourage your vendor to convert the legacy script to an smf(5) service. Barring that, you can specify
a dependency on the milestone that script is part of. Since svc.startd(1M) doesn't track legacy services,
this will never propagate errors from the legacy service, so only makes sense as a restart_on=none
dependency.

Finally, since you did the hard work to determine why a certain dependency was required, write a comment
to help future maintainers!

svc.startd(1M)
Service Development

20

<!-- Must be able to resolve hostnames. -->
<dependency
 name='nameservice'
 type='service'
 grouping='require_all'
 restart_on='none'>
 <service_fmri
 value='svc:/milestone/name-services' />
</dependency>

Identify dependents
If you wish to deliver a service on which another service should depend, you can specify this in your
manifest without modifying the manifest you don't own. That is, dependent specifications are an easy way
to have your service run before a service delivered by Sun.

If not all of your dependent services have been converted, you'll either need to convert those too, or specify
the milestone the legacy service runs in as a dependent. See the next section for instructions.

To avoid conflicts, we require prefacing your dependent name with the name of your service.

For example, if you're delivering a service (mysvc in the example below) that must start before syslog,
use the following:

<dependent
 name='mysvc_syslog'
 grouping='optional_all'
 restart_on='none'>
 <service_fmri
 value='svc:/system/system-log' />
</dependent>

If appropriate, insert your service into a milestone
If your service was previously delivered into an rc?.d directory, you should make the milestone
corresponding to your previous delivery location a dependent. A milestone should almost never be restarted
due to failure of your service. Therefore, restart_on should be specified as none.

For example, if your service was previously started at runlevel 2, this clause will make sure that runlevel
2 is not considered complete until your service has started.

<dependent
 name='mysvc_multi-user'
 grouping='require_all'
 restart_on='none'>
 <service_fmri value='svc:/milestone/multi-user' />
</dependent>

svc.startd(1M)
Service Development

21

Note that the dependent name is created by connecting your service name and the dependent's name by
an underscore (_).

Create, if appropriate, a default instance
If your service does not require extensive configuration before it can be started the first time, you should
configure a default instance for your service.

If the instance has no configuration differences from the service, this can easily be done with:

<create_default_instance enabled='false' />

Alternatively, you can explicitly define the instance.

<instance name='default' enabled='false'>
 <!-- instance-specific properties, methods, etc. go here. -->
</instance>

We recommend that all instances are delivered as disabled unless if they are critical to system boot.
Customization can then be done by either the administrator or a profile (described elsewhere).

Create template information to describe your service
Document at least a common name in the C locale and a manpage reference. The common name should

• be short (40 characters or less),

• avoid capital letters aside from trademarks like Solaris or OpenSolaris,

• avoid punctuation, and

• avoid the word service (but do distinguish between client and server).

This information is presented by various forms of svcs(1) to provide the administrator with concise detail
about your service and where to get more technical information. Common names may be localized.

<template>
 <common_name>
 <loctext xml:lang='C'>
 fault manager
 </loctext>
 </common_name>
 <documentation>
 <manpage
 title='fmd'
 section='1M'
 manpath='/usr/share/man' />
 </docmentation>

svc.startd(1M)
Service Development

22

</template>

Write/update an administrative command
If your service already has an administrative command which stops, starts, or restarts your service, update
it to use svcadm(1M), or libscf(3LIB) calls. If an administrative command explicitly starts a daemon
outside of smf(5), the system won't know there are other daemons running. Conflicts between daemons,
incorrect contracts, and lack of visibility using svcs(1) are among the problems that will occur.

Remove your script from /etc/rc?.d locations and /
etc/init.d

If you don't remove your init script, it will still be run in legacy mode. If your /etc/init.d script
is well-documented, you may wish to ease the transition for administrators by providing a compatibility
script. XXX - example.

Method Context
XXX: how to set, etc.

Method Creation
Logging recommendations - no need to stop using syslog, all exits from methods with non-zero exit values
should have an accompanying helpful log message to stderr to guide the administrator to resolution.

svcprop example

Moving configuration to repository
XXX: which properties to move, new properties to create

Importing and Testing
XXX: use of mark/clear

Manifest to repository mapping

Examples
Sun delivers many manifests in /var/svc/manifest. These may be used as templates and examples.
A few to start with on your Solaris system:

• /var/svc/manoifest/system/utmp.xml is a simple standalone daemon, and

• /var/svc/manifest/system/coreadm.xml is a simple transient service

In addition, we'll cover some examples from start to finish here.

svc.startd(1M)
Service Development

23

Example 6.1. Creating a simple standalone daemon manifest

We'll begin with a small toy daemon in this example. The /opt/SUNWtoyd/sbin/toyd command
returns success only after the daemon is up and providing service. It returns failure if it cannot start
successfully. There is always a process associated with this service if it is running correctly. The service
manifest for toyd specified below would be delivered into /var/svc/manifest/application/
SUNW-toyd.xml.

The manifest is created by answering the questions in the section above.

• Our toy daemon is an application service, not critical to system operation. Thus, we name it
application/toy.

• Multiple copies of the toy daemon running simultaneously would cause problems, as the daemon isn't
written to handle that. It should be specified as single_instance

• As this is a standard system daemon which always has at least one process associated with it while it
is running, we use a contract service model.

• Our daemon doesn't require any specific setup, so we can just execute the daemon directly. There's no
requirement for an additional method script for start and stop. The start method is therefore specified
as /opt/SUNWtoyd/sbin/toyd. The toy daemon is quick to start up - we know a longer than 60
second startup time probably means there's something wrong. To stop the service, it just needs to be
killed, so we use the :kill keyword for the stop method. This is also quick, so we also use a default 60
second timeout. Our daemon doesn't support reloading its configuration without a restart, so we don't
specify a refresh method.

• There are no faults that need to be ignored by the toy daemon service; core dumps and external fatal
signals are errors that should cause the service to be restarted, so we add no ignored faults to the manifest.

• Our toy daemon doesn't do much, but it does require that /opt is mounted so that it has access to
its binaries. We specify a dependency on svc:/system/filesystem/local to reflect that, and
also consider the case where /opt is an NFS automount by specifying an optional dependency on
svc:/system/filesystem/autofs. Our daemon also uses syslog(3C) to log problems, but can
still run even if syslogd(1M) isn't running. An optional dependency on svc:/system/system-log
is in order. None of these services restarting should cause our daemon to restart, so all dependencies
have restart_on set to none.

• There are no individual services which depend on the toy daemon.

• But, we do want the toy daemon to always start as part of multi-user-server, the rc3 milestone.
Thus, we create a dependent for that milestone.

• The toy daemon does have a default instance, and should be, like all delivered services, disabled by
default.

• The toy daemon has a descriptive common name which fits the naming rules specified above: smf(5)
Guide example daemon. Its manpage lives in /opt/SUNWtoyd/man/man1m/toyd.1m.

<?xml version="1.0"?>
<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1">

<service_bundle type='manifest' name='SUNWtoyd:toyd'>

<service
 name='application/toy'

svc.startd(1M)
Service Development

24

 type='service'
 version='1'>

 <create_default_instance enabled='false' />

 <single_instance/>

 <!-- This daemon requires files located on /opt. -->
 <dependency
 name='filesystem'
 grouping='require_all'
 restart_on='none'
 type='service'>
 <service_fmri
 value='svc:/system/filesystem/local' />
 </dependency>

 <!-- /opt may be automounted -->
 <dependency
 name='autofs'
 grouping='optional_all'
 restart_on='none'
 type='service'>
 <service_fmri
 value='svc:/system/filesystem/autofs' />
 </dependency>

 <!-- We use syslog(3C) to log messages. -->
 <dependency
 name='system-log'
 grouping='optional_all'
 restart_on='none'
 type='service'>
 <service_fmri
 value='svc:/system/system-log' />
 </dependency>

 <dependent
 name='toyd_multi-user-server'
 grouping='optional_all'
 restart_on='none'>
 <service_fmri
 value='svc:/milestone/multi-user-server' />
 </dependent>

 <exec_method
 type='method'
 name='start'
 exec='/opt/SUNWtoyd/sbin/toyd'
 timeout_seconds='60' />

 <exec_method
 type='method'
 name='stop'

svc.startd(1M)
Service Development

25

 exec=':kill'
 timeout_seconds='60' />

 <template>
 <common_name>
 <loctext xml:lang='C'>
 smf(5) Guide example daemon
 </loctext>
 </common_name>
 <documentation>
 <manpage title='toyd' section='1M'
 manpath='/opt/SUNWtoyd/man' />
 </documentation>
 </template>
</service>
</service_bundle>

svc.startd(1M)
Service Development

26

Example 6.2. Creating a simple configuration service manifest

This example uses as its basis a simple configuration command which uploads configuration to a fictional
kernel component. The /opt/SUNWkconfig/bin/kconfig -u command returns success after
successfully performing a structured set of ioctl(2) calls with arguments determined by a configuration
file. It returns failure if the configuration file is invalid or the ioctl(2) fails. After the service completes
its startup, no processes are left associated with the service. The service manifest for kconfig specified
below would be delivered into /var/svc/manifest/application/SUNW-kconfig.xml.

This example is appropriate if your software has an existing configuration file. Software which lacks an
existing configuration file with a well-known format, or a configuration file that must be portable amongst
multiple operating systems should use smf(5) properties for configuration. Using those properties will be
handled in another example.

The manifest is created by answering the questions in the section above.

• We name our configuration service application/kconfig, as for this example the kernel
component is assumed to be application-specific. We'd use a system category if it was a core system
component instead.

• There's no reason to allow multiple instances, so this service is specified as single_instance

• The run-once nature of this configuration service along with its lack of long-term processes clearly
require a transient service model.

• kconfig is a simple command, so we can execute it directly as the start method. The start method is
therefore specified as /opt/SUNWtoyd/bin/kconfig. This service is quick to start up - we know
a longer than 60 second startup time probably means there's something wrong. No action is necessary
to stop the service, so we use the :true keyword for the stop method. This is also quick, so we also
use a default 60 second timeout.

• As there are no long-running processes for this service, there are no faults that need to be explicitly
ignored.

• The configuration service does require that /opt is mounted so that it has access to its binaries. We
specify a dependency on svc:/system/filesystem/local to reflect that, and also consider the
case where /opt is an NFS automount by specifying an optional dependency on svc:/system/
filesystem/autofs. None of these services restarting should cause our daemon to restart, so both
dependencies have restart_on set to none.

• There are no individual services which depend on our configuration service.

• But, we do want the service to always start as part of multi-user, the rc2 milestone. Thus, we
create a dependent for that milestone.

• The kconfig service does have a default instance, and should be, like all delivered services, disabled
by default.

• kconfig has a descriptive common name which fits the naming rules specified above: smf(5)
Guide example configuration service. Its manpage lives in /opt/SUNWkconfig/man/man1m/
kconfig.1m.

<?xml version="1.0"?>
<!DOCTYPE service_bundle

svc.startd(1M)
Service Development

27

 SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1">

<service_bundle type='manifest' name='SUNWkconfig:kconfig'>

<service
 name='application/kconfig'
 type='service'
 version='1'>

 <create_default_instance enabled='false' />

 <single_instance/>

 <!- This service requires files located on /opt. ->
 <dependency
 name='filesystem'
 grouping='require_all'
 restart_on='none'
 type='service'>
 <service_fmri value='svc:/system/filesystem/local' />
 </dependency>

 <!- /opt may be automounted ->
 <dependency
 name='autofs'
 grouping='optional_all'
 restart_on='none'
 type='service'>
 <service_fmri value='svc:/system/filesystem/autofs' />
 </dependency>

 <dependent
 name='kconfig_multi-user'
 grouping='optional_all'
 restart_on='none'>
 <service_fmri value='svc:/milestone/multi-user' />
 </dependent>

 <exec_method
 type='method'
 name='start'
 exec='/opt/SUNWkconfig/bin/kconfig'
 timeout_seconds='60' />

 <exec_method
 type='method'
 name='stop'
 exec=':true'
 timeout_seconds='60' />

 <property_group name='startd' type='framework'>
 <propval name='duration' type='astring'
 value='transient' />
 </property_group>

svc.startd(1M)
Service Development

28

 <template>
 <common_name>
 <loctext xml:lang='C'>
 smf(5) Guide example configuration service
 </loctext>
 </common_name>
 <documentation>
 <manpage title='kconfig' section='1M'
 manpath='/opt/SUNWkconfig/man' />
 </documentation>
 </template>
</service>
</service_bundle>

Example 6.3. Converting an existing init.d(4) service

Example 6.4. Creating a new smf(5) service

29

Chapter 7. inetd(1M) Service
Development
inetconv(1M)

Start with inetconv(1M), and include other modifications such as adding templates and refining the name.
More to come on this and: * packaging * removing pre-converted inetd.conf services.

1. Create an inetd.conf(4)-style file which contains only your service's entries

2. Run inetconv -i "your inetd.conf file".

/etc/services

Describing the service

Examples
Sun delivers many manifests in /var/svc/manifest. /var/svc/manifest/network/
telnet.xml is an inetd(1M)-based daemon.

30

Chapter 8. Delegated Administration
RBAC integration, how to specify, how to manage, etc.

31

Chapter 9. Service Packaging

Delivery Locations
methods are delivered with your service. If your service is delivered in /opt/SUNWfoo, your method should
be delivered as /opt/SUNWfoo/lib/svc/svc-foo. If your method would otherwise share a name with your
service's executable, prefixing the method with svc- helps to easily differentiate the two.

Using the manifest class-action scripts

32

Chapter 10. Service Testing and XXX
Service debugging modes

XXX: pre and post temporary methods

Temporary disable

Changing the restarter of a service
XXX where to put this?

33

Chapter 11. Compatibility
init

smf(5) maintains compatibility for most applications started by init(1M) by placement in the /etc/
rc?.d directories, and for applications delivered into inetd.conf.

Some init services, however, must be converted to smf to preserve their boot-time ordering. An init service
needs to convert if it affects other infrastructure services, like the early setup of devices, filesystems, or
network configuration. A service also needs to convert if it requires input from the console during the boot
process. (Such services are strongly discouraged.)

Services that are started from the rc directories are referred to as legacy services.

inetd
XXX -- autoconvert on upgrade, running inetconv with no manifest modification, when we print warnings,
see inetd development chapter

inittab

34

Chapter 12. Troubleshooting
A number of standard procedures and tricks can ease troubleshooting during service development. This
chapter covers some of those techniques.

XXX -- likely different organization.

Problem: Service not running
(include uninitialized explanation)

Problem: Manifest won't import

Problem: Service restarting too rapidly

Problem: Repository corrupt or missing

Problem: System hangs during boot
If the system hangs during boot (e.g. you never receive a console login prompt or a graphical login screen),
you can use smf(5) to essentially watch boot happen. svc.startd(1M) makes a concerted effort to bring up
a console login prompt early in boot, and to bring up an sulogin(1M) prompt if something goes wrong,
but there are some cases where the system appears hung and there's no login prompt to be seen. They're
rare, but not completely impossible.

At the boot prompt (ok on sparc, Select (b)oot or (i)nterpreter: on x86), type b -m
milestone=none. That'll get you to here:

 Select (b)oot or (i)nterpreter: b -m milestone=none
 SunOS Release 5.10 Version gate:2005-01-10 32-bit
 Copyright 1983-2005 Sun Microsystems, Inc. All rights reserved.
 Use is subject to license terms.
 Booting to milestone "none".
 Requesting System Maintenance Mode
 (See /lib/svc/share/README for more information.)
 Console login service(s) cannot run

 Root password for system maintenance (control-d to bypass):

Log in. If you run svcs now, you'll note that all services are disabled or uninitialized. The
disabled services are temporarily disabled by svc.startd(1M) because that's how a limited milestone
is implemented: we temporarily disable all services that aren't part of that milestone's subgraph. The
uninitialized services are managed by a different restarter than svc.startd. Their restarters haven't shown
up yet to manage their state, so they remain uninitialized. Now, to start up the rest of the system. Run
svcadm milestone all, then use svcs to watch your system start up. If you're looking to debug
a specific problem, wait until the svcs(1M) output stabilizes, then run svcs -x to see what services

Troubleshooting

35

are causing trouble. Look at the services' logfiles for more details on what's going wrong. Finally, when
you're done poking around, just exit the login shell to resume normal console login.

