

123

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3

The Modular Debugger

T

his chapter broadly explains how to use the Modular Debugger, MDB, to
debug systems and applications. It leads to the full reference for MDB, which is
available in the Solaris

 Modular Debugger Guide

. We have structured this chapter
in the following main sections:

�

“Introduction to the Modular Debugger” on page 123 — background and the-
ory of MDB.

�

“Getting Started with MDB” on page 129 — a hands-on tour of MDB features.

�

“Debugging Kernel Cores” on page 154 — a hands-on guide to kernel-related
MDB features. Start here if you want skip the longer tutorial on MDB, and
jump right into MDB’s core commands.

�

“

kmdb

, the Kernel Modular Debugger” on page 178 — Debugging a live ker-
nel with

kmdb

.

�

“

kmdb

 Implementation” on page 185 — The architecture and implementation
of the kernel MDB.

�

References:

GDB-to-MDB Migration

;

MDB Command Reference

.

3.1 Introduction to the Modular Debugger

If you were a detective investigating the scene of a crime, you might interview wit-
nesses and ask them to describe what happened and who they saw. However, if

With contributions from Mike Shapiro, Eric Schrock and Matt Simmons

chpt_mdb_os.fm Page 123 Monday, January 30, 2006 1:11 PM

124

Chapter 3

�

The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

there were no witnesses or these descriptions proved insufficient, you might con-
sider collecting fingerprints and forensic evidence that could be examined for DNA
to help solve the case. Often, software program failures divide into analogous cate-
gories: problems that can be solved with source-level debugging tools; and prob-
lems that require low-level debugging facilities, examination of core files, and
knowledge of assembly language to diagnose and correct. MDB facilitates analysis
of this second class of problems.

It might not be necessary to use MDB in every case, just as a detective doesn’t
need a microscope and DNA evidence to solve every crime. However, when pro-
gramming a complex low-level software system such as an operating system, you
might frequently encounter these situations. That’s why MDB is designed as a
debugging framework that lets you construct your own custom analysis tools to aid
in the diagnosis of these problems. MDB also provides a powerful set of built-in
commands with which you can analyze the state of your program at the assembly
language level.

3.1.1 MDB

MDB provides a completely customizable environment for debugging programs,
including a dynamic module facility that programmers can use to implement their
own debugging commands to perform program-specific analysis. Each MDB mod-
ule can examine the program in several different contexts, including live and post-
mortem. The Solaris Operating System includes a set of MDB modules that assist
programmers in debugging the Solaris kernel and related device drivers and ker-
nel modules. Third-party developers might find it useful to develop and deliver
their own debugging modules for supervisor or user software.

3.1.2 MDB Features

MDB offers an extensive collection of features for analyzing the Solaris kernel and
other target programs. Here’s what you can do:

�

Perform postmortem analysis of Solaris kernel crash dumps and user process
core dumps.

MDB includes a collection of debugger modules that facilitate sophisti-
cated analysis of kernel and process state, in addition to standard data dis-
play and formatting capabilities. The debugger modules allow you to
formulate complex queries to do the following:

– Locate all the memory allocated by a particular thread

– Print a visual picture of a kernel STREAM

chpt_mdb_os.fm Page 124 Monday, January 30, 2006 1:11 PM

3.1 INTRODUCTION TO THE MODULAR DEBUGGER

125

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

– Determine what type of structure a particular address refers to

– Locate leaked memory blocks in the kernel

– Analyze memory to locate stack traces

�

Use a first-class programming API to implement your own debugger com-
mands and analysis tools without having to recompile or modify the debug-
ger itself.

In MDB, debugging support is implemented as a set of loadable modules
(shared libraries on which the debugger can run

dlopen

(3C)), each of which
provides a set of commands that extends the capabilities of the debugger
itself. The debugger in turn provides an API of core services, such as the abil-
ity to read and write memory and access symbol table information. MDB pro-
vides a framework for developers to implement debugging support for their
own drivers and modules; these modules can then be made available for
everyone to use.

�

Learn to use MDB if you are already familiar with the legacy debugging tools

adb

 and

crash

.
MDB is backward compatible with these existing debugging solutions. The

MDB language itself is designed as a superset of the adb language; all exist-
ing adb macros and commands work within MDB, so developers who use adb
can immediately use MDB without knowing any MDB-specific commands.
MDB also provides commands that surpass the functionality available from
the crash utility.

�

Benefit from enhanced usability features.
MDB provides a host of usability features:

– Command-line editing

– Command history

– Built-in output pager

– Syntax error checking and handling

– Online help

– Interactive session logging

3.1.3 MDB Features

The MDB infrastructure was first added in Solaris 8. Many new features have
been added throughout Solaris releases, as shown in Table 0.1.

chpt_mdb_os.fm Page 125 Monday, January 30, 2006 1:11 PM

126

Chapter 3

�

The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.1.4 Terms

Throughout this chapter, MDB is used to describe the common debugger core—the
set of functionality common to both

mdb

 and

kmdb

.

mdb

 refers to the userland
debugger.

kmdb

 refers to the in-situ kernel debugger.

3.2 MDB Debugger Concepts

This section discusses the significant aspects of MDB's design and the benefits
derived from this architecture.

3.2.1 Building Blocks

The target is the program being inspected by the debugger. MDB currently pro-
vides support for the following types of targets:

�

User processes

�

User process core files

�

Live operating system without kernel execution control (through

/dev/kmem

and

/dev/ksyms

)

�

Live operating system with kernel execution control (through

kmdb

(1))

�

Operating system crash dumps

�

User process images recorded inside an operating system crash dump

�

ELF object files

�

Raw data files

Each target exports a standard set of properties, including one or more address
spaces, one or more symbol tables, a set of load objects, and a set of threads. Fig-

Table 0.1

MDB History

Solaris
Revision

Annotation

Solaris 8 MDB introduced

Solaris 9 Kernel type information (e.g.,

::print

)

Solaris 10 User-level type information (Common Type Format)

Solaris Next

kmdb

 replaces

kadb

chpt_mdb_os.fm Page 126 Monday, January 30, 2006 1:11 PM

3.2 MDB DEBUGGER CONCEPTS

127

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

ure 3.1 shows an overview of the MDB architecture, including two of the built-in
targets and a pair of sample modules.

A debugger command, or

dcmd

 (pronounced dee-command) in MDB terminol-
ogy, is a routine in the debugger that can access any of the properties of the cur-
rent target. MDB parses commands from standard input, then executes the
corresponding dcmds. Each dcmd can also accept a list of string or numerical argu-
ments, as shown in “MDB Command Syntax” on page 131. MDB contains a set of
built-in dcmds described in Section 3.3.8 , “dcmds,” that are always available. The
programmer can also extend the capabilities of MDB itself by writing dcmds, using
a programming API provided with MDB.

A

walker

 is a set of routines that describe how to walk, or iterate, through the
elements of a particular program data structure. A walker encapsulates the data
structure’s implementation from dcmds and from MDB itself. You can use walkers
interactively or as a primitive to build other dcmds or walkers. As with dcmds, you
can extend MDB by implementing additional walkers as part of a debugger mod-
ule.

Figure 3.1 MDB Architecture

chpt_mdb_os.fm Page 127 Monday, January 30, 2006 1:11 PM

128

Chapter 3

�

The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

A debugger module, or

dmod

 (pronounced dee-mod), is a dynamically loaded
library containing a set of dcmds and walkers. During initialization, MDB
attempts to load dmods corresponding to the load objects present in the target. You
can subsequently load or unload dmods at any time while running MDB. MDB pro-
vides a set of standard dmods for debugging the Solaris kernel.

A macro file is a text file containing a set of commands to execute. Macro files
typically automate the process of displaying a simple data structure. MDB pro-
vides complete backward compatibility for the execution of macro files written for

adb

. The set of macro files provided with the Solaris installation can therefore be
used with either tool.

3.2.2 Modularity

The benefit of MDB's modular architecture extends beyond the ability to load a
module containing additional debugger commands. The MDB architecture defines
clear interface boundaries between each of the layers shown in Figure 3.1. Macro
files execute commands written in the MDB or adb language. Dcmds and walkers
in debugger modules are written with the MDB Module API, and this forms the
basis of an application binary interface that allows the debugger and its modules
to evolve independently.

The MDB namespace of walkers and dcmds also defines a second set of layers
between debugging code that maximizes code sharing and limits the amount of
code that must be modified as the target program itself evolves. For example, one
of the primary data structures in the Solaris kernel is the list of

proc_t

 struc-
tures representing active processes in the system. The

::ps

 dcmd must iterate
over this list to produce its output. However, the code to iterate over the list is not
in the

::ps

 dcmd but is encapsulated in the genunix module’s proc walker.
MDB provides both

::ps

 and

::ptree

 dcmds, but neither has any knowledge
of how

proc_t

 structures are accessed in the kernel. Instead, they invoke the proc
walker programmatically and format the set of returned structures appropriately.
If the data structure used for

proc_t

 structures ever changed, MDB could pro-
vide a new proc walker and none of the dependent dcmds would need to change.
You can also access the proc walker interactively with the

::walk

 dcmd to create
novel commands as you work during a debugging session.

In addition to facilitating layering and code sharing, the MDB Module API pro-
vides dcmds and walkers with a single stable interface for accessing various prop-
erties of the underlying target. The same API functions access information from
user process or kernel targets, simplifying the task of developing new debugging
facilities.

chpt_mdb_os.fm Page 128 Monday, January 30, 2006 1:11 PM

3.3 GETTING STARTED WITH MDB

129

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

In addition, a custom MDB module can perform debugging tasks in a variety of
contexts. For example, you might want to develop an MDB module for a user pro-
gram you are developing. Once you have done so, you can use this module when
MDB examines a live process executing your program, a core dump of your pro-
gram, or even a kernel crash dump taken on a system on which your program was
executing.

The Module API provides facilities for accessing the following target properties:

�

Address Spaces — The module API provides facilities for reading and writing
data from the target's virtual address space. Functions for reading and writ-
ing using physical addresses are also provided for kernel debugging modules.

�

Symbol Table — The module API provides access to the static and dynamic
symbol tables of the target's primary executable file, its runtime link editor,
and a set of load objects (shared libraries in a user process or loadable mod-
ules in the Solaris kernel).

� External Data — The module API provides a facility for retrieving a collec-
tion of named external data buffers associated with the target. For example,
MDB provides programmatic access to the proc(4) structures associated with
a user process or user core file target.

In addition, you can use built-in MDB dcmds to access information about target
memory mappings, to load objects, to obtain register values, and to control the exe-
cution of user process targets.

3.3 Getting Started with MDB

In this section, we take a tour of MDB basics, from startup through elements (com-
mand syntax, expressions, symbols, and other core concepts), through simple pro-
cedures illustrated by examples.

3.3.1 Invoking MDB

MDB is available on Solaris systems as two commands that share common fea-
tures: mdb and kmdb. You can use the mdb command interactively or in scripts to
debug live user processes, user process core files, kernel crash dumps, the live
operating system, object files, and other files. You can use the kmdb command to
debug the live operating system kernel and device drivers when you also need to
control and halt the execution of the kernel. To start mdb, execute the mdb(1) com-
mand.

chpt_mdb_os.fm Page 129 Monday, January 30, 2006 1:11 PM

130 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

The following example shows how mdb can be started to examine a live kernel.

To start mdb with a kernel crash image, specify the namelist and core image
names on the command line.

To start mdb with a process target, enter either a command to execute or a pro-
cess ID with the -p option.

To start kmdb, boot the system or execute the mdb command with the -K option
as described in Section 2.8 , “Diagnosing with kmdb and moddebug,” on page 120.

3.3.2 Logging Output to a File

It’s often useful to log output to a file, so arrange for that early on by using the
::log dcmd.

sol8# mdb -k
Loading modules: [unix krtld genunix specfs dtrace ufs ip sctp usba uhci s1394 fcp fctl
emlxs nca lofs zfs random nfs audiosup sppp crypto md fcip logindmux ptm ipc]
>

sol8# cd /var/crash/myserver

sol8# ls /var/crash/*
bounds unix.1 unix.3 unix.5 unix.7 vmcore.1 vmcore.3 vmcore.5 vmcore.7
unix.0 unix.2 unix.4 unix.6 vmcore.0 vmcore.2 vmcore.4 vmcore.6

sol8# mdb -k unix.1 vmcore.1
Loading modules: [unix krtld genunix specfs dtrace ufs ip sctp usba uhci s1394 fcp fctl
emlxs nca lofs zfs random nfs audiosup sppp crypto md fcip logindmux ptm ipc]
>

mdb /usr/bin/ls
>

mdb -p 121
Loading modules: [ld.so.1 libumem.so.1 libc.so.1 libuutil.so.1]

> ::log mymdb.out
mdb: logging to "mymdb.out"

chpt_mdb_os.fm Page 130 Monday, January 30, 2006 1:11 PM

3.3 GETTING STARTED WITH MDB 131

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.3.3 MDB Command Syntax

The MDB debugger lets us interact with the target program and the memory
image of the target. The syntax is an enhanced form of that used with debuggers
like adb, in which basic form is expressed as value and a command.

The language syntax is designed around the concept of computing the value of
an expression (typically a memory address in the target), and applying a com-
mand to that expression. A command in MDB can be of several forms. It can be a
macro file, a metacharacter, or a dcmd pipeline. A simple command is a metachar-
acter or dcmd followed by a sequence of zero or more blank-separated words. The
words are typically passed as arguments. Each command returns an exit status
that indicates it succeeded, failed, or was invoked with invalid arguments.

For example, if we wanted to display the contents of the word at address
fec4b8d0, we could use the / metacharacter with the word X as a format speci-
fier, and optionally a count specifying the number of iterations.

MDB retains the notion of dot (.) as the current address or value, retained from
the last successful command. A command with no supplied expression uses the
value of dot for its argument.

A pipeline is a sequence of one or more simple commands separated by |.
Unlike the shell, dcmds in MDB pipelines are not executed as separate processes.

[value] [,count] command

> fec4b8d0 /X
lotsfree:
lotsfree: f5e
> fec4b8d0,4 /X
lotsfree:
lotsfree: f5e 7af 3d7 28

> /X
lotsfree:
lotsfree: f5e

> . /X
lotsfree:
lotsfree: f5e

chpt_mdb_os.fm Page 131 Monday, January 30, 2006 1:11 PM

132 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

After the pipeline has been parsed, each dcmd is invoked in order from left to
right. The full definition of a command involving pipelines is as follows.

Each dcmd’s output is processed and stored as described in “dcmd Pipelines” in
Section 3.3.8 , “dcmds”. After the left-hand dcmd is complete, its processed output
is used as input for the next dcmd in the pipeline. If any dcmd does not return a
successful exit status, the pipeline is aborted.

For reference, Table 3.2 lists the full set of expression and pipeline combina-
tions that form commands.

3.3.4 Expressions

Arithmetic expansion is performed when an MDB command is preceded by an
optional expression representing a numerical argument for a dcmd. A list of com-
mon expressions is summarized as follows.

[expr] [,count] pipeline [words...]

Table 3.2 General MDB Command Syntax

Command Description

pipeline [!word...] [;] basic

expr pipeline [!word...] [;] set dot, run once

expr, expr pipeline [!word...] [;] set dot, repeat

,expr pipeline [!word...] [;] repeat

expr [!word...] [;] set dot, last pipeline, run once

,expr [!word...] [;] last pipeline, repeat

expr, expr [!word...] [;] set dot, last pipeline, repeat

!word... [;] shell escape

chpt_mdb_os.fm Page 132 Monday, January 30, 2006 1:11 PM

3.3 GETTING STARTED WITH MDB 133

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

Table 3.3 Arithmetic Expressions

Operator Expression

integer 0i binary
0o octal
0t decimal
0x hex

0t[0-9]+\.[0-9]+ IEEE floating point

'cccccccc' little-endian character const

<identifier variable lookup

identifier symbol lookup

(expr) the value of expr

. the value of dot

& last dot used by dcmd

+ dot+increment

^ dot-increment (increment is effected by
the last formatting dcmd)

Table 3.4 Unary Operators

Operator Expression

#expr logical NOT

~expr bitwise NOT

-expr integer negation

%expr object-file pointer dereference

%/[csil]/expr object-file typed dereference

%/[1248]/expr object-file sized dereference

*expr virtual-address pointer dereference

*/[csil]/expr virtual-address typed dereference

*/[1248]/expr virtual-address sized dereference

[csil] is char-, short-, int-, or long-sized

chpt_mdb_os.fm Page 133 Monday, January 30, 2006 1:11 PM

134 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

An example of a simple expression is adding an integer to an address.

3.3.5 Symbols

MDB can reference memory or objects according to the value of a symbol of the tar-
get. A symbol is the name of either a function or a global variable in the target.

For example, you compute the address of the kernel’s global variable lotsfree
by entering it as an expression, and display it by using the = metacharacter. You
display the value of the lotsfree symbol by using the / metacharacter.

Table 3.5 Binary Operators

Operator Description

expr * expr integer multiplication

expr % expr integer division

left # right left rounded up to next right multiple

expr + expr integer addition

expr - expr integer subtraction

expr << expr bitwise left shift

expr >> expr bitwise right shift (logical)

expr == expr logical equality

expr != expr logical inequality

expr & expr bitwise AND

expr ^ expr bitwise XOR

expr | expr bitwise OR

> d7c662e0+0t8/X
0xd7c662e8: d2998b80
> d7c662e0+0t8::print int
0xd7c662e8: d2998b80

> lotsfree=X
 fec4b8d0

> lotsfree/D
lotsfree:
lotsfree: 3934

chpt_mdb_os.fm Page 134 Monday, January 30, 2006 1:11 PM

3.3 GETTING STARTED WITH MDB 135

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

Symbol names can be resolved from kernel and userland process targets. In the
kernel, the resolution of the symbol names can optionally be defined with a scope
by specifying the module or object file name. In a process, symbols’ scope can be
defined by library or object file names. They take the following form.

The target typically searches the primary executable’s symbol tables first, then
one or more of the other symbol tables. Notice that ELF symbol tables contain only
entries for external, global, and static symbols; automatic symbols do not appear in
the symbol tables processed by MDB.

Additionally, MDB provides a private user-defined symbol table that is searched
before any of the target symbol tables are searched. The private symbol table is
initially empty and can be manipulated with the ::nmadd and ::nmdel dcmds.

The ::nm -P option displays the contents of the private symbol table. The pri-
vate symbol table allows the user to create symbol definitions for program func-
tions or data that were either missing from the original program or stripped out.

These definitions are then used whenever MDB converts a symbolic name to an
address, or an address to the nearest symbol. Because targets contain multiple
symbol tables and each symbol table can include symbols from multiple object files,
different symbols with the same name can exist. MDB uses the backquote “ ̀”
character as a symbol-name scoping operator to allow the programmer to obtain
the value of the desired symbol in this situation.

Table 3.6 Resolving Symbol Names

Target Form

kernel {module`}{file`}symbol

process {LM[0-9]+`}{library`}{file`}symbol

> ::nm
Value Size Type Bind Other Shndx Name
0x00000000|0x00000000|NOTY |LOCL |0x0 |UNDEF |
0xfec40038|0x00000000|OBJT |LOCL |0x0 |14 |_END_
0xfe800000|0x00000000|OBJT |LOCL |0x0 |1 |_START_
0xfec00000|0x00000000|NOTY |LOCL |0x0 |10 |__return_from_main
...

chpt_mdb_os.fm Page 135 Monday, January 30, 2006 1:11 PM

136 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.3.6 Formatting Metacharacters

The /, \, ?, and = metacharacters denote the special output formatting dcmds.
Each of these dcmds accepts an argument list consisting of one or more format
characters, repeat counts, or quoted strings. A format character is one of the ASCII
characters shown in Table 3.7.

3.3.7 Formatting Characters

Format characters read or write and format data from the target. They are com-
bined with the formatting metacharacters to read, write, or search memory. For
example, if we want to display or set the value of a memory location, we could rep-
resent that location by its hexadecimal address or by its symbol name. Typically,
we use a metacharacter with a format or a dcmd to indicate what we want MDB to
do with the memory at the indicated address.

In the following example, we display the address of the kernel’s lotsfree sym-
bol. We use the = metacharacter to display the absolute value of the symbol,
lotsfree and the X format to display the address in 32-bit hexadecimal notation.

In a more common example, we can use the / metacharacter to format for dis-
play the value at the address of the lotsfree symbol.

Table 3.7 Formatting Metacharacters

Metacharacter Description

/ Read or write virtual address from . (dot)

\ Read or write physical address from .

? Read or write primary object file, using
virtual address from .

= Read or write the value of .

> lotsfree=X
fec4b8d0

> lotsfree/D
lotsfree:
lotsfree: 4062

chpt_mdb_os.fm Page 136 Monday, January 30, 2006 1:11 PM

3.3 GETTING STARTED WITH MDB 137

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

Optionally, a repeat count can be supplied with a format. A repeat count is a
positive integer preceding the format character and is always interpreted in base
10 (decimal). A repeat count can also be specified as an expression enclosed in
square brackets preceded by a dollar sign ($[]). A string argument must be
enclosed in double-quotes (" "). No blanks are necessary between format argu-
ments.

If MDB is started in writable (-w) mode, then write formats are enabled. Note
that this should be considered MDB’s dangerous mode, especially if operating on
live kernels or applications. For example, if we wanted to rewrite the value indi-
cated by lotsfree to a new value, we could use the W write format with a valid
MDB value or arithmetic expression as shown in the summary at the start of this
section. For example, the W format writes the 32-bit value to the given address. In
this example, we use an integer value, represented by the 0t arithmetic expres-
sion prefix.

A complete list of format strings can be found with the ::formats dcmd.

A summary of the common formatting characters and the required metacharac-
ters is shown in Table 3.8 through Table 3.10.

> lotsfree/4D
lotsfree:
lotsfree: 3934 1967 983 40

> lotsfree/W 0t5000
lotsfree:
lotsfree: f5e

> ::formats
+ - increment dot by the count (variable size)
- - decrement dot by the count (variable size)
B - hexadecimal int (1 byte)
C - character using C character notation (1 byte)
D - decimal signed int (4 bytes)
E - decimal unsigned long long (8 bytes)
...

chpt_mdb_os.fm Page 137 Monday, January 30, 2006 1:11 PM

138 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

Table 3.8 Metacharacters and Formats for Reading

Metacharacter Description

[/\?=][BCVbcdhoquDHOQ+-^NnTrtaIiSsE] value is immediate or
$[expr]

/ format VA from . (dot)

\ format PA from .

? format primary object
file, using VA from .

= format value of .

Format Description Format Description

B (1) hex + dot += increment

C (1) char (C-encoded) - dot -= increment

V (1) unsigned ^ (var) dot -= incr*count

b (1) octal N newline

c (1) char (raw) n newline

d (2) signed T tab

h (2) hex, swap endianness r whitespace

o (2) octal t tab

q (2) signed octal a dot as symbol+offset

u (2) decimal I (var) address and instruction

D (4) signed i (var) instruction

H (4) hex, swap endianness S (var) string (C-encoded)

O (4) octal s (var) string (raw)

Q (4) signed octal E (8) unsigned

U (4) unsigned F (8) double

X (4) hex G (8) octal

Y (4) decoded time32_t J (8) hex

f (4) float R (8) binary

K (4|8) hex uintptr_t e (8) signed

P (4|8) symbol g (8) signed octal

p (4|8) symbol y (8) decoded time64_t

chpt_mdb_os.fm Page 138 Monday, January 30, 2006 1:11 PM

3.3 GETTING STARTED WITH MDB 139

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

Table 3.9 Metacharacters and Formats for Writing

Metacharacter Description

[/\?][vwWZ] value... value is immediate or $[expr]

/ write virtual addresses

\ write physical addresses

? write object file

Format Description

v (1) write low byte of each value, starting at dot

w (2) write low 2 bytes of each value, starting at dot

W (4) write low 4 bytes of each value, starting at dot

Z (8) write all 8 bytes of each value, starting at dot

Table 3.10 Metacharacters and Formats for Searching

Metacharacter Description

[/\?][lLM] value [mask] value and mask are immediate or $[expr]

/ search virtual addresses

\ search physical addresses

? search object file

Format Description

l (2) search for 2-byte value, optionally
masked

L (4) search for 4-byte value, optionally
masked

M (8) search for 8-byte value, optionally
masked

chpt_mdb_os.fm Page 139 Monday, January 30, 2006 1:11 PM

140 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.3.8 dcmds

The metacharacters we explored in the previous section are actually forms of
dcmds. The more general form of a dcmd is ::name , where name is the command
name, as summarized by

A list of dcmds can be obtained with ::dcmds. Alternatively, the ::dmods com-
mand displays information about both dcmds and walkers, conveniently grouped
per MDB module.

Help on individual dcmds is available with the help dcmd. Yes, almost every-
thing in MDB is implemented as a dcmd!

::{module`}d
expr>var write the value of expr into var

> ::dmods -l
genunix
...
 dcmd pfiles - print process file information
 dcmd pgrep - pattern match against all processes
 dcmd pid2proc - convert PID to proc_t address
 dcmd pmap - print process memory map
 dcmd project - display kernel project(s)
 dcmd prtconf - print devinfo tree
 dcmd ps - list processes (and associated thr,lwp)
 dcmd ptree - print process tree
...

> ::help ps

NAME
 ps - list processes (and associated thr,lwp)

SYNOPSIS
 ::ps [-fltzTP]

ATTRIBUTES

 Target: kvm
 Module: genunix
 Interface Stability: Unstable

chpt_mdb_os.fm Page 140 Monday, January 30, 2006 1:11 PM

3.3 GETTING STARTED WITH MDB 141

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

For example, we can optionally use ::ps as a simple dcmd with no arguments.

Optionally, we could use the same ::ps dcmd with an address supplied in hexa-
decimal.

3.3.9 Walkers

A walker is used to traverse a connect set of data. Walkers are a type of plugin that
is coded to iterate over the specified type of data. In addition to the ::dcmds dcmd,
the ::walkers dcmd lists walkers.

> ::ps
S PID PPID PGID SID UID FLAGS ADDR NAME
R 0 0 0 0 0 0x00000001 fffffffffbc23640 sched
R 3 0 0 0 0 0x00020001 ffffffff812278f8 fsflush
R 2 0 0 0 0 0x00020001 ffffffff81228520 pageout
R 1 0 0 0 0 0x42004000 ffffffff81229148 init
R 1782 1 1782 1782 1 0x42000000 ffffffff8121cc38 lockd
R 524 1 524 524 0 0x42000000 ffffffff8b7fd548 dmispd
R 513 1 513 513 0 0x42010000 ffffffff87bd2878 snmpdx
R 482 1 7 7 0 0x42004000 ffffffff87be90b8 intrd
R 467 1 466 466 0 0x42010000 ffffffff87bd8020 smcboot

> ffffffff87be90b8::ps
S PID PPID PGID SID UID FLAGS ADDR NAME
R 482 1 7 7 0 0x42004000 ffffffff87be90b8 intrd

> ffffffff87be90b8 ::ps -ft
S PID PPID PGID SID UID FLAGS ADDR NAME
R 482 1 7 7 0 0x42004000 ffffffff87be90b8 /usr/perl5/bin/perl
/usr/lib/intrd
 T 0xffffffff8926d4e0 <TS_SLEEP>

> ::walkers
Client_entry_cache - walk the Client_entry_cache cache
DelegStateID_entry_cache - walk the DelegStateID_entry_cache cache
File_entry_cache - walk the File_entry_cache cache
HatHash - walk the HatHash cache
...

chpt_mdb_os.fm Page 141 Monday, January 30, 2006 1:11 PM

142 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

For example, the ::proc walker could be used to traverse set of process struc-
tures (proc_ts). Many walkers also have a default data item to walk if none is
specified.

There are walkers to traverse common generic data structure indexes. For
example, simple linked lists can be traversed with the ::list walker, and AVL
trees with the ::avl walker.

3.3.10 Macros

MDB provides a compatibility mode that can interpret macros built for adb. A
macro file is a text file containing a set of commands to execute. Macro files typi-
cally automate the process of displaying a simple data structure. These older mac-
ros can therefore be used with either tool. The development of macros is
discouraged, since they are difficult to construct and maintain. Following is an
example of using a macro to display a data structure.

3.3.11 Pipelines

Walkers and dcmds can build on each other, combining to do more powerful things
by placement into an mdb “pipeline.”

> ::walk proc
fffffffffbc23640
ffffffff812278f8
ffffffff81228520
...

> ffffffff9a647ae0::walk avl
ffffffff9087a990
fffffe85ad8aa878
fffffe85ad8aa170
...
> fffffffffbc23640::list proc_t p_prev
fffffffffbc23640
ffffffff81229148
ffffffff81228520
...

> d8126310$<ce
 ce instance structure
0xd8126310: dip instance dev_regs
 d8c8e840 d84b65c8 d2999900
...

chpt_mdb_os.fm Page 142 Monday, January 30, 2006 1:11 PM

3.3 GETTING STARTED WITH MDB 143

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

The purpose of a pipeline is to pass a list of values, typically virtual addresses,
from one dcmd or walker to another. Pipeline stages might map a pointer from one
type of data structure to a pointer to a corresponding data structure, sort a list of
addresses, or select the addresses of structures with certain properties.

MDB executes each dcmd in the pipeline in order from left to right. The left-
most dcmd executes with the current value of dot or with the value specified by an
explicit expression at the start of the command. When a | operator is encoun-
tered, MDB creates a pipe (a shared buffer) between the output of the dcmd to its
left and the MDB parser, and an empty list of values.

To give you a taste of the power of pipelines, here’s an example, running against
the live kernel. The ::pgrep dcmd allows you to find all processes matching a pat-
tern, the thread walker walks all of the threads in a process, and the ::find-
stack dcmd gets a stack trace for a given thread. Connecting them into a pipeline,
you can yield the stack traces of all sshd threads on the system (note that the mid-
dle one is swapped out). MDB pipelines are quite similar to standard UNIX pipe-
lines and afford debugger users a similar level of power and flexibility.

> ::pgrep sshd
S PID PPID PGID SID UID FLAGS ADDR NAME
R 100174 1 100174 100174 0 0x42000000 0000030009216790 sshd
R 276948 100174 100174 100174 0 0x42010000 000003002d9a9860 sshd
R 276617 100174 100174 100174 0 0x42010000 0000030013943010 sshd
> ::pgrep sshd | ::walk thread
3000c4f0c80
311967e9660
30f2ff2c340
> ::pgrep sshd | ::walk thread | ::findstack
stack pointer for thread 3000c4f0c80: 2a10099d071
[000002a10099d071 cv_wait_sig_swap+0x130()]
 000002a10099d121 poll_common+0x530()
 000002a10099d211 pollsys+0xf8()
 000002a10099d2f1 syscall_trap32+0x1e8()
stack pointer for thread 311967e9660: 2a100897071
[000002a100897071 cv_wait_sig_swap+0x130()]
stack pointer for thread 30f2ff2c340: 2a100693071
[000002a100693071 cv_wait_sig_swap+0x130()]
 000002a100693121 poll_common+0x530()
 000002a100693211 pollsys+0xf8()
 000002a1006932f1 syscall_trap32+0x1e8()

chpt_mdb_os.fm Page 143 Monday, January 30, 2006 1:11 PM

144 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

The full list of built-in dcmds can be obtained with the ::dmods dcmd.

3.3.12 Piping to UNIX Commands

MDB can pipe output to UNIX commands with the ! pipe. A common task is to use
grep to filter output from a dcmd. We’ve shown the output from ::ps for illustra-
tion; actually, a handy ::pgrep command handles this common task.

3.3.13 Obtaining Symbolic Type Information

The MDB environment exploits the Compact Type Format (CTF) information in
debugging targets. This provides symbolic type information for data structures in
the target; such information can then be used within the debugging environment.

> ::dmods -l mdb

mdb
 dcmd $< - replace input with macro
 dcmd $<< - source macro
 dcmd $> - log session to a file
 dcmd $? - print status and registers
 dcmd $C - print stack backtrace
...

> ::ps !grep inet
R 255 1 255 255 0 0x42000000 ffffffff87be9ce0 inetd

chpt_mdb_os.fm Page 144 Monday, January 30, 2006 1:11 PM

3.3 GETTING STARTED WITH MDB 145

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

Several dcmds consume CTF information, most notably ::print. The ::print
dcmd displays a target data type in native C representation. The following exam-
ple shows ::print in action.

The ::print dcmd is most useful to print data structures in their typed for-
mat. For example, using a pipeline we can look up the address of the p_pidp mem-
ber of the supplied proc_t structure and print its structure’s contents.

/* process ID info */

struct pid {
 unsigned int pid_prinactive :1;
 unsigned int pid_pgorphaned :1;
 unsigned int pid_padding :6; /* used to be pid_ref, now an int */
 unsigned int pid_prslot :24;
 pid_t pid_id;
 struct proc *pid_pglink;
 struct proc *pid_pgtail;
 struct pid *pid_link;
 uint_t pid_ref;
};

See sys/proc.h

> ::print -t "struct pid"
{
 unsigned pid_prinactive :1
 unsigned pid_pgorphaned :1
 unsigned pid_padding :6
 unsigned pid_prslot :24
 pid_t pid_id
 struct proc *pid_pglink
 struct proc *pid_pgtail
 struct pid *pid_link
 uint_t pid_ref
}

> ::pgrep inet
S PID PPID PGID SID UID FLAGS ADDR NAME
R 1595 1 1595 1595 0 0x42000400 d7c662e0 inetd

> d7c662e0::print proc_t p_pidp |::print -t "struct pid"
{
 unsigned pid_prinactive :1 = 0
 unsigned pid_pgorphaned :1 = 0x1
 unsigned pid_padding :6 = 0
 unsigned pid_prslot :24 = 0xae
 pid_t pid_id = 0x63b
 struct proc *pid_pglink = 0xd7c662e0
 struct proc *pid_pgtail = 0xd7c662e0
 struct pid *pid_link = 0
 uint_t pid_ref = 0x3
}

chpt_mdb_os.fm Page 145 Monday, January 30, 2006 1:11 PM

146 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

The ::print command also understands how to traverse more complex data
structures. For example, here we traverse an element of an array.

Several other dcmds, listed below, use the CTF information. Starting with
Solaris 9, the kernel is compiled with CTF information, making type information
available by default. Starting with Solaris 10, CTF information is also available in
userland, and by default some of the core system libraries contain CTF. The
CTF-related commands are summarized in Table 3.11.

3.3.14 Variables

A variable is a variable name, a corresponding integer value, and a set of
attributes. A variable name is a sequence of letters, digits, underscores, or periods.

> d7c662e0::print proc_t p_user.u_auxv[9]
{
 p_user.u_auxv[9].a_type = 0x6
 p_user.u_auxv[9].a_un = {
 a_val = 0x1000
 a_ptr = 0x1000
 a_fcn = 0x1000
 }
}

Table 3.11 CTF-related dcmds

dcmd Description

addr::print [type] [field...] Use CTF info to print out a full structure
or particular fields thereof.

::sizeof type
::offsetof type field
::enum enumname

Get information about a type.

addr::array [type count] [var] Walk the count elements of an array of
type type, starting at addr.

addr::list type field [var] Walk a circular or NULL-terminated list of
type type, which starts at addr and uses
field as its linkage.

::typegraph
addr::whattype
addr::istype type
addr::notype

Use the type inference engine—works on
non-debug text.

chpt_mdb_os.fm Page 146 Monday, January 30, 2006 1:11 PM

3.3 GETTING STARTED WITH MDB 147

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

A variable can be assigned a value with > dcmd and read with < dcmd. Addition-
ally, the variable can be the ::typeset dcmd, and its attributes can be manipu-
lated with the ::typeset dcmd. Each variable’s value is represented as a 64-bit
unsigned integer. A variable can have one or more of the following attributes:

� Read-only (cannot be modified by the user)

� Persistent (cannot be unset by the user)

� Tagged (user-defined indicator)

The following examples shows assigning and referencing a variable.

> 0t27>myvar

> <myvar=D
 27
> $v
myvar = 1b
. = 1b
0 = f5e
b = fec00000
d = 85737
e = fe800000
m = 464c457f
t = 1a3e70

chpt_mdb_os.fm Page 147 Monday, January 30, 2006 1:11 PM

148 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

The CPU’s registers are also exported as variables.

Commands for working with variables are summarized in Table 3.12.

> ::vars
uesp = 0
eip = 0
myvar = 1b
cs = 0
savfp = 0
ds = 0
trapno = 0
es = 0
. = 1b
0 = f5e
1 = 0
2 = 0
ss = 0
9 = 0
fs = 0
gs = 0
_ = 0
eax = 0
b = fec00000
d = 85737
e = fe800000
eflags = 0
ebp = 0
m = 464c457f
ebx = 0
t = 1a3e70
ecx = 0
hits = 0
edi = 0
edx = 0
err = 0
esi = 0
esp = 0
savpc = 0
thread = 0

Table 3.12 Variables

Variable Description

0 Most recent value [/\?=]ed

9 Most recent count for $< dcmd

b Base VA of the data section

d Size of the data

e VA of entry point

hits Event callback match count

chpt_mdb_os.fm Page 148 Monday, January 30, 2006 1:11 PM

3.3 GETTING STARTED WITH MDB 149

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.3.15 Walkers, Variables, and Expressions Combined

Variables can be combined with arithmetic expressions and evaluated to construct
more complex pipelines, in which data is manipulated between stages. In a simple
example, we might want to iterate only over processes that have a uid of zero. We
can easily iterate over the processes by using a pipeline consisting of a walker and
type information, which prints the cr_uids for every process.

Adding an expression allows us to select only those that match a particular con-
dition. The ::walk dcmd takes an optional variable name, in which to place the
value of the walk. In this example, the walker sets the value of myvar and also
pipes the output of the same addresses into ::print, which extracts the value of
proc_t->p_cred->cr_uid. The ::eval dcmd prints the variable myvar only
when the expression is true; in this case when the result of the previous dcmd (the
printed value of cr_uid) is equal to 1. The statement given to ::eval to execute

m Magic number of primary object file, or zero

t Size of text section

thread TID of current representative thread

> ::walk proc | ::print proc_t p_cred->cr_uid
cr_uid = 0
cr_uid = 0x19
cr_uid = 0x1
cr_uid = 0
...

Table 3.12 Variables (continued)

Variable Description

chpt_mdb_os.fm Page 149 Monday, January 30, 2006 1:11 PM

150 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

retrieves the value of the variable myvar and formats it with the K format
(uint_ptr_t).

3.3.16 Working With Debugging Targets

MDB can control and interact with live mdb processes or kmdb kernel targets. Typ-
ical debugging operations include starting, stopping, and stepping the target. We
discuss more about controlling specific process or kmdb targets in Section 2.5 ,
“Debugging Processes within a Kernel Image” and Section 2.8 , “Diagnosing with
kmdb and moddebug”. The common commands for controlling targets are summa-
rized in Table 3.13.

> ::walk proc myvar |::print proc_t p_cred->cr_uid |::grep .==1 |::eval <myvar=K
fec1d280
d318d248
d318daa8
d318e308
...
> ::walk proc myvar | ::print proc_t p_cred->cr_uid |::grep .==1 |::eval <myvar=K
|::print -d proc_t p_pidp->pid_id
p_pidp->pid_id = 0t4189
p_pidp->pid_id = 0t4187
p_pidp->pid_id = 0t4067
p_pidp->pid_id = 0t4065
...

Table 3.13 Debugging Target dcmds

dcmd Description

::status Print summary of current
target.

$r
::regs

Display current register val-
ues for target.

$c
::stack
$C

Print current stack trace ($C:
with frame pointers).

addr[,b]
::dump [-g sz] [-e]

Dump at least b bytes start-
ing at address addr. -g sets
the group size; for 64-bit
debugging, -g 8 is useful.

addr::dis Disassemble text, starting
around addr.

chpt_mdb_os.fm Page 150 Monday, January 30, 2006 1:11 PM

3.3 GETTING STARTED WITH MDB 151

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

[addr] :b
[addr] ::bp [+/-dDestT] [-c cmd] [-n
count] sym ... addr [cmd ...]

Set breakpoint at addr.

$b
::events [-av] $b [-av]

Display all breakpoints.

addr ::delete [id | all]
addr :d [id | all]

Delete a breakpoint at addr.

:z Delete all breakpoints.

::cont [SIG]
:c [SIG]

Continue the target pro-
gram, and wait for it to ter-
minate.

id ::evset [+/-dDestT] [-c cmd] [-n count]
id ...

Modify the properties of
one or more software event
specifiers.

::next [SIG]
:e [SIG]

Step the target program
one instruction, but step
over subroutine calls.

::step [branch | over | out] [SIG]
:s SIG
:u SIG

Step the target program
one instruction.

addr [,len]::wp [+/-dDestT] [-rwx] [-ip]
[-c cmd] [-n count]

addr [,len]:a [cmd...]
addr [,len]:p [cmd...]
addr [,len]:w [cmd...]

Set a watchpoint at the
specified address.

Table 3.13 Debugging Target dcmds

dcmd Description

chpt_mdb_os.fm Page 151 Monday, January 30, 2006 1:11 PM

152 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.3.17 Displaying Stacks

We can print a stack of the current address with the $c command or with $C,
which also prints the stack frame address for each stack level.

3.3.18 Displaying Registers

We can print a stack of the current address with the $c command or with $C,
which also prints the stack frame address for each stack level.

> $c
atomic_add_32+8(0)
nfs4_async_inactive+0x3b(dc1c29c0, 0)
nfs4_inactive+0x41()
fop_inactive+0x15(dc1c29c0, 0)
vn_rele+0x4b(dc1c29c0)
snf_smap_desbfree+0x59(dda94080)

> $C
d2a58828 atomic_add_32+8(0)
d2a58854 nfs4_async_inactive+0x3b(dc1c29c0, 0)
d2a58880 nfs4_inactive+0x41()
d2a5889c fop_inactive+0x15(dc1c29c0, 0)
d2a588b0 vn_rele+0x4b(dc1c29c0)
d2a588c0 snf_smap_desbfree+0x59(dda94080)

> ::regs (or $r)
%cs = 0x0158 %eax = 0x00000000
%ds = 0xd9820160 %ebx = 0xde453000
%ss = 0x0000 %ecx = 0x00000001
%es = 0xfe8d0160 %edx = 0xd2a58de0
%fs = 0xfec30000 %esi = 0xdc062298
%gs = 0xfe8301b0 %edi = 0x00000000

%eip = 0xfe82ca58 atomic_add_32+8
%ebp = 0xd2a58828
%esp = 0xd2a58800

%eflags = 0x00010282
 id=0 vip=0 vif=0 ac=0 vm=0 rf=1 nt=0 iopl=0x0
 status=<of,df,IF,tf,SF,zf,af,pf,cf>

 %uesp = 0xfe89ab0d
%trapno = 0xe
 %err = 0x2

chpt_mdb_os.fm Page 152 Monday, January 30, 2006 1:11 PM

3.3 GETTING STARTED WITH MDB 153

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.3.19 Disassembling the Target

We can print a stack of the current address with the $c command or with $C,
which also prints the stack frame address for each stack level.

Note that in this example, the contents of %eax from $r is zero, causing the
movl instruction to trap with a NULL pointer reference at atomic_add_32+4.

3.3.20 Setting Breakpoints

We can set breakpoints in MDB by using :b. Typically, we pass a symbol name to
:b (the name of the function of interest).

We can start the target program and then set a breakpoint for the printf func-
tion.

In this example, we stopped at the first symbol matching “printf”, which is
actually in the procedure linkage table (PLT) (see the Linker and Libraries man-
ual for a description of how dynamic linking works in Solaris). To match the
printf we likely wanted, we can increase the scope of the symbol lookup. The :c
command continues execution until the next breakpoint or until the program fin-
ishes.

> atomic_add_32+8::dis
atomic_add_32: movl 0x4(%esp),%eax
atomic_add_32+4: movl 0x8(%esp),%ecx
atomic_add_32+8: lock addl %ecx,(%eax)
atomic_add_32+0xb: ret

> printf:b

> :r

mdb: stop at 0x8050694
mdb: target stopped at:
PLT:printf: jmp *0x8060980

> libc`printf:b

> :c
mdb: stop at libc.so.1`printf
mdb: target stopped at:
libc.so.1`printf: pushl %ebp

chpt_mdb_os.fm Page 153 Monday, January 30, 2006 1:11 PM

154 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.4 Debugging Kernel Cores

In this section we explore the rudimentary facilities within MDB for analyzing
kernel crash images. The objective is not to provide an all-encompassing kernel
crash analysis tutorial, but rather to introduce the most relevant MDB dcmds and
techniques.

A more comprehensive guide to crash dump analysis can be found in some of the
recommended reference texts, for example, Panic! by Chris Drake and Kimberly
Brown for SPARC [8], and Crash Dump Analysis by Frank Hoffman for x86/x64
[12].

3.4.1 Locating and Attaching the Target

If a system has crashed, then we should have a core image saved in /var/crash
on the target machine. The mdb debugger should be invoked from a system with
the same architecture and Solaris revision as the crash image. The first steps are
to locate the appropriate saved image and then to invoke mdb.

3.4.2 Examining Kernel Core Summary Information

The kernel core contains important summary information from which we can
extract the following:

� Revision of the kernel

� Hostname

� CPU and platform architecture of the system

� Panic string

� Module causing the panic

cd /var/crash/nodename

ls
bounds unix.1 unix.3 unix.5 unix.7 vmcore.1 vmcore.3 vmcore.5 vmcore.7
unix.0 unix.2 unix.4 unix.6 vmcore.0 vmcore.2 vmcore.4 vmcore.6

mdb -k unix.7 vmcore.7
Loading modules: [unix krtld$c
 genunix specfs dtrace ufs ip sctp usba uhci s1394 fcp fctl nca lofs zfs random nfs
audiosup sppp crypto md fcip logindmux ptm ipc]
>

chpt_mdb_os.fm Page 154 Monday, January 30, 2006 1:11 PM

3.4 DEBUGGING KERNEL CORES 155

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

We can use the ::showrev and ::status dcmds to extract this information.

> ::showrev
Hostname: zones-internal
Release: 5.11
Kernel architecture: i86pc
Application architecture: i386
Kernel version: SunOS 5.11 i86pc snv_27
Platform: i86pc
> ::status
debugging crash dump vmcore.2 (32-bit) from zones-internal
operating system: 5.11 snv_27 (i86pc)
panic message: BAD TRAP: type=e (#pf Page fault) rp=d2a587c8 addr=0 occurred in module
"unix" due to a NULL pointer dereference
dump content: kernel pages only
> ::panicinfo
 cpu 0
 thread d2a58de0
 message BAD TRAP: type=e (#pf Page fault) rp=d2a587c8 addr=0 occurred in module
"unix" due to a NULL pointer dereference
 gs fe8301b0
 fs fec30000
 es fe8d0160
 ds d9820160
 edi 0
 esi dc062298
 ebp d2a58828
 esp d2a58800
 ebx de453000
 edx d2a58de0
 ecx 1
 eax 0
 trapno e
 err 2
 eip fe82ca58
 cs 158
 eflags 10282
 uesp fe89ab0d
 ss 0
 gdt fec1f2f002cf
 idt fec1f5c007ff
 ldt 140
 task 150
 cr0 8005003b
 cr2 0
 cr3 4cb3000
 cr4 6d8

chpt_mdb_os.fm Page 155 Monday, January 30, 2006 1:11 PM

156 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.4.3 Examining the Message Buffer

The kernel keeps a cyclic buffer of the recent kernel messages. In this buffer we
can observe the messages up to the time of the panic. The ::msgbuf dcmd shows
the contents of the buffer.

3.4.4 Obtaining a Stack Trace of the Running Thread

We can obtain a stack backtrace of the current thread by using the $C command.
Note that the displayed arguments to each function are not necessarily accurate.
On each platform, the meaning of the shown arguments is as follows:

� SPARC: The values of the arguments if they are available from a saved stack
frame, assuming they are not overwritten by use of registers during the
called function. With SPARC architectures, a function’s input argument regis-
ters are sometimes saved on the way out of a function—if the input registers
are reused during the function, then values of the input arguments are over-
written and lost.

� x86: Accurate values of the input arguments. Input arguments are always
saved onto the stack and can be accurately displayed

> ::msgbuf
MESSAGE
/pseudo/zconsnex@1/zcons@5 (zcons5) online
/pseudo/zconsnex@1/zcons@6 (zcons6) online
/pseudo/zconsnex@1/zcons@7 (zcons7) online
pseudo-device: ramdisk1024
...
panic[cpu0]/thread=d2a58de0:
BAD TRAP: type=e (#pf Page fault) rp=d2a587c8 addr=0 occurred in module "unix" due to a
NULL pointer dereference

sched:
#pf Page fault
Bad kernel fault at addr=0x0
pid=0, pc=0xfe82ca58, sp=0xfe89ab0d, eflags=0x10282
cr0: 8005003b<pg,wp,ne,et,ts,mp,pe> cr4: 6d8<xmme,fxsr,pge,mce,pse,de>
cr2: 0 cr3: 4cb3000
 gs: fe8301b0 fs: fec30000 es: fe8d0160 ds: d9820160
 edi: 0 esi: dc062298 ebp: d2a58828 esp: d2a58800
 ebx: de453000 edx: d2a58de0 ecx: 1 eax: 0
 trp: e err: 2 eip: fe82ca58 cs: 158
 efl: 10282 usp: fe89ab0d ss: 0
...

chpt_mdb_os.fm Page 156 Monday, January 30, 2006 1:11 PM

3.4 DEBUGGING KERNEL CORES 157

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

� x64: The values of the arguments, assuming they are available. As with the
SPARC architectures, input arguments are passed in registers and may be
overwritten.

3.4.5 Which Process?

If the stack trace is of a kernel housekeeping or interrupt thread, the process
reported for the thread will be that of p0—“sched.” The process pointer for the
thread can be obtained with ::thread, and ::ps will then display summary infor-
mation about that process. In this example, the thread is an interrupt thread (as
indicated by the top entry in the stack from $C), and the process name maps to
sched.

> $C
d2a58828 atomic_add_32+8(0)
d2a58854 nfs4_async_inactive+0x3b(dc1c29c0, 0)
d2a58880 nfs4_inactive+0x41()
d2a5889c fop_inactive+0x15(dc1c29c0, 0)
d2a588b0 vn_rele+0x4b(dc1c29c0)
d2a588c0 snf_smap_desbfree+0x59(dda94080)
d2a588dc dblk_lastfree_desb+0x13(de45b520, d826fb40)
d2a588f4 dblk_decref+0x4e(de45b520, d826fb40)
d2a58918 freemsg+0x69(de45b520)
d2a5893c FreeTxSwPacket+0x3b(d38b84f0)
d2a58968 CleanTxInterrupts+0xb4(d2f9cac0)
d2a589a4 e1000g_send+0xf6(d2f9cac0, d9ffba00)
d2a589c0 e1000g_m_tx+0x22()
d2a589dc dls_tx+0x16(d4520f68, d9ffba00)
d2a589f4 str_mdata_fastpath_put+0x1e(d3843f20, d9ffba00)
d2a58a40 tcp_send_data+0x62d(db0ecac0, d97ee250, d9ffba00)
d2a58aac tcp_send+0x6b6(d97ee250, db0ecac0, 564, 28, 14, 0)
d2a58b40 tcp_wput_data+0x622(db0ecac0, 0, 0)
d2a58c28 tcp_rput_data+0x2560(db0ec980, db15bd20, d2d45f40)
d2a58c40 tcp_input+0x3c(db0ec980, db15bd20, d2d45f40)
d2a58c78 squeue_enter_chain+0xe9(d2d45f40, db15bd20, db15bd20, 1, 1)
d2a58cec ip_input+0x658(d990e554, d3164010, 0, e)
d2a58d40 i_dls_link_ether_rx+0x156(d4523db8, d3164010, db15bd20)
d2a58d70 mac_rx+0x56(d3520200, d3164010, db15bd20)
d2a58dac e1000g_intr+0xa6(d2f9cac0, 0)
d2a58ddc intr_thread+0x122()

> d2a58de0::thread -p
 ADDR PROC LWP CRED
d2a58de0 fec1d280 0 d9d1cf38
> fec1d280::ps -t
S PID PPID PGID SID UID FLAGS ADDR NAME
R 0 0 0 0 0 0x00000001 fec1d280 sched
 T t0 <TS_STOPPED>

chpt_mdb_os.fm Page 157 Monday, January 30, 2006 1:11 PM

158 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.4.6 Disassembling the Suspect Code

Once we’ve located the thread of interest, we often learn more about what hap-
pened by disassembling the target and looking at the instruction that reportedly
caused the panic. MDB’s ::dis dcmd will disassemble the code around the target
instruction that we extract from the stack backtrace.

> $C
d2a58828 atomic_add_32+8(0)
d2a58854 nfs4_async_inactive+0x3b(dc1c29c0, 0)
d2a58880 nfs4_inactive+0x41()
d2a5889c fop_inactive+0x15(dc1c29c0, 0)
d2a588b0 vn_rele+0x4b(dc1c29c0)
...
> nfs4_async_inactive+0x3b::dis
nfs4_async_inactive+0x1a: pushl $0x28
nfs4_async_inactive+0x1c: call +0x51faa30 <kmem_alloc>
nfs4_async_inactive+0x21: addl $0x8,%esp
nfs4_async_inactive+0x24: movl %eax,%esi
nfs4_async_inactive+0x26: movl $0x0,(%esi)
nfs4_async_inactive+0x2c: movl -0x4(%ebp),%eax
nfs4_async_inactive+0x2f: movl %eax,0x4(%esi)
nfs4_async_inactive+0x32: movl 0xc(%ebp),%edi
nfs4_async_inactive+0x35: pushl %edi
nfs4_async_inactive+0x36: call +0x51b7cdc <crhold>
nfs4_async_inactive+0x3b: addl $0x4,%esp
nfs4_async_inactive+0x3e: movl %edi,0x8(%esi)
nfs4_async_inactive+0x41: movl $0x4,0xc(%esi)
nfs4_async_inactive+0x48: leal 0xe0(%ebx),%eax
nfs4_async_inactive+0x4e: movl %eax,-0x8(%ebp)
nfs4_async_inactive+0x51: pushl %eax
nfs4_async_inactive+0x52: call +0x51477f4 <mutex_enter>
nfs4_async_inactive+0x57: addl $0x4,%esp
nfs4_async_inactive+0x5a: cmpl $0x0,0xd4(%ebx)
nfs4_async_inactive+0x61: je +0x7e <nfs4_async_inactive+0xdf>
nfs4_async_inactive+0x63: cmpl $0x0,0xd0(%ebx)
> crhold::dis
crhold: pushl %ebp
crhold+1: movl %esp,%ebp
crhold+3: andl $0xfffffff0,%esp
crhold+6: pushl $0x1
crhold+8: movl 0x8(%ebp),%eax
crhold+0xb: pushl %eax
crhold+0xc: call -0x6e0b8 <atomic_add_32>
crhold+0x11: movl %ebp,%esp
crhold+0x13: popl %ebp
crhold+0x14: ret
> atomic_add_32::dis
atomic_add_32: movl 0x4(%esp),%eax
atomic_add_32+4: movl 0x8(%esp),%ecx
atomic_add_32+8: lock addl %ecx,(%eax)
atomic_add_32+0xb: ret

chpt_mdb_os.fm Page 158 Monday, January 30, 2006 1:11 PM

3.4 DEBUGGING KERNEL CORES 159

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.4.7 Displaying General-Purpose Registers

In this example, the system had a NULL pointer reference at
atomic_add_32+8(0). The faulting instruction was atomic, referencing the mem-
ory at the location pointed to by %eax. By looking at the registers at the time of the
panic, we can see that %eax was indeed NULL. The next step is to attempt to find
out why %eax was NULL.

3.4.8 Navigating the Stack Backtrace

The function prototype for atomic_add_32() reveals that the first argument is a
pointer to the memory location to be added. Since this was an x86 machine, the

> ::regs
%cs = 0x0158 %eax = 0x00000000
%ds = 0xd9820160 %ebx = 0xde453000
%ss = 0x0000 %ecx = 0x00000001
%es = 0xfe8d0160 %edx = 0xd2a58de0
%fs = 0xfec30000 %esi = 0xdc062298
%gs = 0xfe8301b0 %edi = 0x00000000

%eip = 0xfe82ca58 atomic_add_32+8
%ebp = 0xd2a58828
%esp = 0xd2a58800

%eflags = 0x00010282
 id=0 vip=0 vif=0 ac=0 vm=0 rf=1 nt=0 iopl=0x0
 status=<of,df,IF,tf,SF,zf,af,pf,cf>

 %uesp = 0xfe89ab0d
%trapno = 0xe
 %err = 0x2

void
atomic_add_32(volatile uint32_t *target, int32_t delta)
{
 *target += delta;
}

> atomic_add_32::dis
atomic_add_32: movl 0x4(%esp),%eax
atomic_add_32+4: movl 0x8(%esp),%ecx
atomic_add_32+8: lock addl %ecx,(%eax)
atomic_add_32+0xb: ret
> $C
d2a58828 atomic_add_32+8(0)
d2a58854 nfs4_async_inactive+0x3b(dc1c29c0, 0)
d2a58880 nfs4_inactive+0x41()
d2a5889c fop_inactive+0x15(dc1c29c0, 0)
d2a588b0 vn_rele+0x4b(dc1c29c0)
...

chpt_mdb_os.fm Page 159 Monday, January 30, 2006 1:11 PM

160 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

arguments reported by the stack backtrace are known to be useful, and we can
look to see where the NULL pointer was handed down—in this case
nfs4_async_inactive().

Looking at the disassembly, it appears that there is an additional function call,
which is omitted from the stack backtrack (typically due to tail call compiler opti-
mization). The call is to crhold(), passing the address of a credential structure

> $C
d2a58828 atomic_add_32+8(0)
d2a58854 nfs4_async_inactive+0x3b(dc1c29c0, 0)
d2a58880 nfs4_inactive+0x41()
d2a5889c fop_inactive+0x15(dc1c29c0, 0)
d2a588b0 vn_rele+0x4b(dc1c29c0)
...
> nfs4_async_inactive+0x3b::dis
nfs4_async_inactive+0x1a: pushl $0x28
nfs4_async_inactive+0x1c: call +0x51faa30 <kmem_alloc>
nfs4_async_inactive+0x21: addl $0x8,%esp
nfs4_async_inactive+0x24: movl %eax,%esi
nfs4_async_inactive+0x26: movl $0x0,(%esi)
nfs4_async_inactive+0x2c: movl -0x4(%ebp),%eax
nfs4_async_inactive+0x2f: movl %eax,0x4(%esi)
nfs4_async_inactive+0x32: movl 0xc(%ebp),%edi
nfs4_async_inactive+0x35: pushl %edi
nfs4_async_inactive+0x36: call +0x51b7cdc <crhold>
nfs4_async_inactive+0x3b: addl $0x4,%esp
nfs4_async_inactive+0x3e: movl %edi,0x8(%esi)
nfs4_async_inactive+0x41: movl $0x4,0xc(%esi)
nfs4_async_inactive+0x48: leal 0xe0(%ebx),%eax
nfs4_async_inactive+0x4e: movl %eax,-0x8(%ebp)
nfs4_async_inactive+0x51: pushl %eax
nfs4_async_inactive+0x52: call +0x51477f4 <mutex_enter>
nfs4_async_inactive+0x57: addl $0x4,%esp
nfs4_async_inactive+0x5a: cmpl $0x0,0xd4(%ebx)
nfs4_async_inactive+0x61: je +0x7e <nfs4_async_inactive+0xdf>
nfs4_async_inactive+0x63: cmpl $0x0,0xd0(%ebx)
...

chpt_mdb_os.fm Page 160 Monday, January 30, 2006 1:11 PM

3.4 DEBUGGING KERNEL CORES 161

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

from the arguments to nfs4_async_inactive(). Here we can see that
crhold() does in fact call atomic_add_32().

Next, we look into the situation in which nfs4_async_inactive() was called.
The first argument is a vnode pointer, and the second is our suspicious credential
pointer. The vnode pointer can be examined with the CTF information and the
::print dcmd. We can see that we were performing an nfs4_async_inactive
function on the vnode referencing a pdf file in this case.

/*
 * Put a hold on a cred structure.
 */
void
crhold(cred_t *cr)
{
 atomic_add_32(&cr->cr_ref, 1);
}

> crhold::dis
crhold: pushl %ebp
crhold+1: movl %esp,%ebp
crhold+3: andl $0xfffffff0,%esp
crhold+6: pushl $0x1
crhold+8: movl 0x8(%ebp),%eax
crhold+0xb: pushl %eax
crhold+0xc: call -0x6e0b8 <atomic_add_32>
crhold+0x11: movl %ebp,%esp
crhold+0x13: popl %ebp
crhold+0x14: ret

 */
void
nfs4_async_inactive(vnode_t *vp, cred_t *cr)
{

> $C
d2a58828 atomic_add_32+8(0)
d2a58854 nfs4_async_inactive+0x3b(dc1c29c0, 0)
> dc1c29c0::print vnode_t
{
...
 v_type = 1 (VREG)
 v_rdev = 0
...
 v_path = 0xdc3de800 "/zones/si/root/home/ftp/book/solarisinternals_projtaskipc.pdf"
...
}

chpt_mdb_os.fm Page 161 Monday, January 30, 2006 1:11 PM

162 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

Looking further at the stack backtrace and the code, we can try to identify
where the credentials were derived from. nfs4_async_inactive() was called by
nfs4_inactive(), which is one of the standard VOP methods (VOP_INACTIVE).

The credential can be followed all the way up to vn_rele(), which derives the
pointer from CRED(), which references the current thread’s t_cred.

We know which thread called vn_rele()—the interrupt thread with a thread
pointer of d2a58de0. We can use ::print to take a look at the thread’s t_cred.

Interestingly, it’s not NULL! A further look around the code gives us some clues as

> $C
d2a58828 atomic_add_32+8(0)
d2a58854 nfs4_async_inactive+0x3b(dc1c29c0, 0)
d2a58880 nfs4_inactive+0x41()
d2a5889c fop_inactive+0x15(dc1c29c0, 0)
d2a588b0 vn_rele+0x4b(dc1c29c0)

vn_rele(vnode_t *vp)
{
 if (vp->v_count == 0)
 cmn_err(CE_PANIC, "vn_rele: vnode ref count 0");
 mutex_enter(&vp->v_lock);
 if (vp->v_count == 1) {
 mutex_exit(&vp->v_lock);
 VOP_INACTIVE(vp, CRED());
...

#define CRED() curthread->t_cred

> d2a58de0::print kthread_t t_cred
t_cred = 0xd9d1cf38

chpt_mdb_os.fm Page 162 Monday, January 30, 2006 1:11 PM

3.4 DEBUGGING KERNEL CORES 163

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

to what’s going on. In the initialization code during the creation of an interrupt
thread, the t_cred is set to NULL:

Our curthread->t_cred is not NULL, but NULL was passed in when CRED()
accessed it in the not-too-distant past—an interesting situation indeed. It turns
out that the NFS client code wills credentials to the interrupt thread’s t_cred, so
what we are in fact seeing is a race condition, where vn_rele() is called from the
interrupt thread with no credentials. In this case, a bug was logged accordingly
and the problem was fixed!

3.4.9 Looking at the Status of the CPUs

Another good source of information is the ::cpuinfo dcmd. It shows a rich set of
information of the processors in the system. For each CPU, the details of the
thread currently running on each processor are shown. If the current CPU is han-
dling an interrupt, then the thread running the interrupt and the preempted

/*
 * Create and initialize an interrupt thread.
 * Returns non-zero on error.
 * Called at spl7() or better.
 */
void
thread_create_intr(struct cpu *cp)
{
...
 /*
 * Nobody should ever reference the credentials of an interrupt
 * thread so make it NULL to catch any such references.
 */
 tp->t_cred = NULL;

chpt_mdb_os.fm Page 163 Monday, January 30, 2006 1:11 PM

164 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

thread are shown. In addition, a list of threads waiting in the run queue for this
processor is shown.

In this example, we can see that the idle thread was preempted by a level 6
interrupt. Three threads are on the run queue: the thread that was running imme-
diately before preemption and two other threads waiting to be scheduled on the
run queue. We can traverse these manually, by traversing the stack of the thread
pointer with ::findstack.

The CPU containing the thread that caused the panic will, we hope, be reported
in the panic string and, furthermore, will be used by MDB as the default thread
for other dcmds in the core image. Once we determine the status of the CPU, we
can observe which thread was involved in the panic.

> :da509de0:findstack
stack pointer for thread da509de0: da509d08
 da509d3c swtch+0x165()
 da509d60 cv_timedwait+0xa3()
 da509dc8 taskq_d_thread+0x149()
 da509dd8 thread_start+8()

> ::cpuinfo -v
 ID ADDR FLG NRUN BSPL PRI RNRN KRNRN SWITCH THREAD PROC
 0 fec225b8 1b 3 0 105 no no t-1 d2a58de0 sched
 | | |
 RUNNING <--+ | +--> PIL THREAD
 READY | 6 d2a58de0
 EXISTS | - d296cde0 (idle)
 ENABLE |
 +--> PRI THREAD PROC
 60 da509de0 sched
 60 da0cdde0 zsched
 60 da0d6de0 zsched

1 fec226b8 0b 0 0 105 no no t-1 d2f50de0 sched
...

Run Queue

Interrupt Thread

Preempted Thread

CPU Status

chpt_mdb_os.fm Page 164 Monday, January 30, 2006 1:11 PM

3.4 DEBUGGING KERNEL CORES 165

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

Additionally, we can use the CPU’s run queue (cpu_dispq) to provide a stack
list for other threads queued up to run. We might do this just to gather a little
more information about the circumstance in which the panic occurred.

3.4.10 Traversing Stack Frames in SPARC Architectures

We briefly mentioned in Section 3.4.4 , “Obtaining a Stack Trace of the Running
Thread” some of the problems we encounter when trying to glean argument val-
ues from stack backtraces. In the SPARC architecture, the values of the input
arguments’ registers are saved into register windows at the exit of each function.
In most cases, we can traverse the stack frames to look at the values of the regis-
ters as they are saved in register windows. Historically, this was done by manu-
ally traversing the stack frames (as illustrated in Panic!). Conveniently, MDB has
a dcmd that understands and walks SPARC stack frames. We can use the

> fec225b8::walk cpu_dispq |::thread
 ADDR STATE FLG PFLG SFLG PRI EPRI PIL INTR DISPTIME BOUND PR
da509de0 run 8 0 13 60 0 0 n/a 7e6f9c -1 0
da0cdde0 run 8 2000 13 60 0 0 n/a 7e8452 -1 0
da0d6de0 run 8 2000 13 60 0 0 n/a 7e8452 -1 0
> fec225b8::walk cpu_dispq |::findstack
stack pointer for thread da509de0: da509d08
 da509d3c swtch+0x165()
 da509d60 cv_timedwait+0xa3()
 da509dc8 taskq_d_thread+0x149()
 da509dd8 thread_start+8()
stack pointer for thread da0cdde0: da0cdd48
 da0cdd74 swtch+0x165()
 da0cdd84 cv_wait+0x4e()
 da0cddc8 nfs4_async_manager+0xc9()
 da0cddd8 thread_start+8()
stack pointer for thread da0d6de0: da0d6d48
 da0d6d74 swtch+0x165()
 da0d6d84 cv_wait+0x4e()
 da0d6dc8 nfs4_async_manager+0xc9()
 da0d6dd8 thread_start+8()

chpt_mdb_os.fm Page 165 Monday, January 30, 2006 1:11 PM

166 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

::stackregs dcmd to display the SPARC input registers and locals (%l0-%l7) for
each frame on the stack.

SPARC input registers become output registers, which are then saved on the
stack. The common technique when trying to qualify registers as valid arguments
is to ascertain, before the registers are saved in the stack frame, whether they
have been overwritten during the function. A common technique is to disassemble
the target function, looking to see if the input registers (%i0-%i7) are reused in the
function’s code body. A quick and dirty way to look for register usage is to use
::dis piped to a UNIX grep; however, at this stage, examining the code for use of
input registers is left as an exercise for the reader. For example, if we are looking
to see if the values of the first argument to cpu_halt() are valid, we could see if

> ::stackregs
000002a100d074c1 vpanic(12871f0, e, e, fffffffffffffffe, 1, 185d400)
 %l0-%l3: 0 2a100d07f10 2a100d07f40 ffffffff
 %l4-%l7: fffffffffffffffe 0 1845400 1287000
 px_err_fabric_intr+0xbc: call -0x1946c0 <fm_panic>

000002a100d07571 px_err_fabric_intr+0xbc(600024f9880, 31, 340, 600024d75d0,
30000842020, 0)
 %l0-%l3: 0 2a100d07f10 2a100d07f40 ffffffff
 %l4-%l7: fffffffffffffffe 0 1845400 1287000
 px_msiq_intr+0x1ac: call -0x13b0 <px_err_fabric_intr>

000002a100d07651 px_msiq_intr+0x1ac(60002551db8, 0, 127dcc8, 6000252e9e0, 30000828a58,
30000842020)
 %l0-%l3: 0 2a100d07f10 2a100d07f40 2a100d07f10
 %l4-%l7: 0 31 30000842020 600024d21d8
 current_thread+0x174: jmpl %o5, %o7

000002a100d07751 current_thread+0x174(16, 2000, ddf7dfff, ddf7ffff, 2000, 12)
 %l0-%l3: 100994c 2a100cdf021 e 7b9
 %l4-%l7: 0 0 0 2a100cdf8d0
 cpu_halt+0x134: call -0x29dcc <enable_vec_intr>

000002a100cdf171 cpu_halt+0x134(16, d, 184bbd0, 30001334000, 16, 1)
 %l0-%l3: 60001db16c8 0 60001db16c8 ffffffffffffffff
 %l4-%l7: 0 0 0 10371d0
 idle+0x124: jmpl %l7, %o7

000002a100cdf221 idle+0x124(1819800, 0, 30001334000, ffffffffffffffff, e, 1818400)
 %l0-%l3: 60001db16c8 1b 0 ffffffffffffffff
 %l4-%l7: 0 0 0 10371d0
 thread_start+4: jmpl %i7, %o7

000002a100cdf2d1 thread_start+4(0, 0, 0, 0, 0, 0)
 %l0-%l3: 0 0 0 0
 %l4-%l7: 0 0 0 0

chpt_mdb_os.fm Page 166 Monday, January 30, 2006 1:11 PM

3.4 DEBUGGING KERNEL CORES 167

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

%i0 is reused during the cpu_halt() function, before we branch out at
cpu_halt+0x134.

As we can see in this case, %i0 is reused very early in cpu_halt() and would
be invalid in the stack backtrace.

> cpu_halt::dis !grep i0
cpu_halt+0x24: ld [%g1 + 0x394], %i0
cpu_halt+0x28: cmp %i0, 1
cpu_halt+0x90: add %i2, 0x120, %i0
cpu_halt+0xd0: srl %i4, 0, %i0
cpu_halt+0x100: srl %i4, 0, %i0
cpu_halt+0x144: ldub [%i3 + 0xf9], %i0
cpu_halt+0x150: and %i0, 0xfd, %l7
cpu_halt+0x160: add %i2, 0x120, %i0

chpt_mdb_os.fm Page 167 Monday, January 30, 2006 1:11 PM

168 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.4.11 Listing Processes and Process Stacks

We can obtain the list of processes by using the ::ps dcmd. In addition, we can
search for processes by using the pgrep(1M)-like ::pgrep dcmd.

> ::ps -f
S PID PPID PGID SID UID FLAGS ADDR NAME
R 0 0 0 0 0 0x00000001 fec1d280 sched
R 3 0 0 0 0 0x00020001 d318d248 fsflush
R 2 0 0 0 0 0x00020001 d318daa8 pageout
R 1 0 0 0 0 0x42004000 d318e308 /sbin/init
R 9066 1 9066 9066 1 0x52000400 da2b7130 /usr/lib/nfs/nfsmapid
R 9065 1 9063 9063 1 0x42000400 d965a978 /usr/lib/nfs/nfs4cbd
R 4125 1 4125 4125 0 0x42000400 d9659420 /local/local/bin/httpd -k start
R 9351 4125 4125 4125 40000 0x52000000 da2c0428 /local/local/bin/httpd -k start
R 4118 1 4117 4117 1 0x42000400 da2bc988 /usr/lib/nfs/nfs4cbd
R 4116 1 4116 4116 1 0x52000400 d8da7240 /usr/lib/nfs/nfsmapid
R 4105 1 4105 4105 0 0x42000400 d9664108 /usr/apache/bin/httpd
R 4263 4105 4105 4105 60001 0x52000000 da2bf368 /usr/apache/bin/httpd
...
> ::ps -t
S PID PPID PGID SID UID FLAGS ADDR NAME
R 0 0 0 0 0 0x00000001 fec1d280 sched
 T t0 <TS_STOPPED>
R 3 0 0 0 0 0x00020001 d318d248 fsflush
 T 0xd3108a00 <TS_SLEEP>
R 2 0 0 0 0 0x00020001 d318daa8 pageout
 T 0xd3108c00 <TS_SLEEP>
R 1 0 0 0 0 0x42004000 d318e308 init
 T 0xd3108e00 <TS_SLEEP>
R 9066 1 9066 9066 1 0x52000400 da2b7130 nfsmapid
 T 0xd942be00 <TS_SLEEP>
 T 0xda68f000 <TS_SLEEP>
 T 0xda4e8800 <TS_SLEEP>
 T 0xda48f800 <TS_SLEEP>
...

::pgrep httpd
> ::pgrep http
S PID PPID PGID SID UID FLAGS ADDR NAME
R 4125 1 4125 4125 0 0x42000400 d9659420 httpd
R 9351 4125 4125 4125 40000 0x52000000 da2c0428 httpd
R 4105 1 4105 4105 0 0x42000400 d9664108 httpd
R 4263 4105 4105 4105 60001 0x52000000 da2bf368 httpd
R 4111 4105 4105 4105 60001 0x52000000 da2b2138 httpd
...

chpt_mdb_os.fm Page 168 Monday, January 30, 2006 1:11 PM

3.4 DEBUGGING KERNEL CORES 169

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

We can observe several aspects of the user process by using the ptool-like dcmds.

3.4.12 Global Memory Summary

The major buckets of memory allocation are available with the ::memstat dcmd.

> ::pgrep nscd
S PID PPID PGID SID UID FLAGS ADDR NAME
R 575 1 575 575 0 0x42000000 ffffffff866f1878 nscd

> 0t575 |::pid2proc |::walk thread |::findstack
(or)
> ffffffff82f5f860::walk thread |::findstack
stack pointer for thread ffffffff866cb060: fffffe8000c7fdd0
[fffffe8000c7fdd0 _resume_from_idle+0xde()]
 fffffe8000c7fe10 swtch+0x185()
 fffffe8000c7fe80 cv_wait_sig_swap_core+0x17a()
 fffffe8000c7fea0 cv_wait_sig_swap+0x1a()
 fffffe8000c7fec0 pause+0x59()
 fffffe8000c7ff10 sys_syscall32+0x101()
...

> ffffffff866f1878::ptree
fffffffffbc23640 sched
 ffffffff82f6b148 init
 ffffffff866f1878 nscd

> ffffffff866f1878::pfiles
FD TYPE VNODE INFO
 0 CHR ffffffff833d4700 /devices/pseudo/mm@0:null
 1 CHR ffffffff833d4700 /devices/pseudo/mm@0:null
 2 CHR ffffffff833d4700 /devices/pseudo/mm@0:null
 3 DOOR ffffffff86a0eb40 [door to 'nscd' (proc=ffffffff866f1878)]
 4 SOCK ffffffff835381c0

> ffffffff866f1878::pmap
 SEG BASE SIZE RES PATH
ffffffff85e416c0 0000000008046000 8k 8k [anon]
ffffffff866ab5e8 0000000008050000 48k /usr/sbin/nscd
ffffffff839b1950 000000000806c000 8k 8k /usr/sbin/nscd
ffffffff866ab750 000000000806e000 520k 480k [anon]
...

> ::memstat
Page Summary Pages MB %Tot
------------ ---------------- ---------------- ----
Kernel 49022 191 19%
Anon 68062 265 27%
Exec and libs 3951 15 2%
Page cache 4782 18 2%
Free (cachelist) 7673 29 3%
Free (freelist) 118301 462 47%

Total 251791 983
Physical 251789 983

chpt_mdb_os.fm Page 169 Monday, January 30, 2006 1:11 PM

170 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.4.13 Listing Network Connections

We can use the ::netstat dcmd to obtain the list of network connections.

3.4.14 Listing All Kernel Threads

A stack backtrace of all threads in the kernel can be obtained with the ::thread-
list dcmd. (If you are familiar with adb, this is a modern version of adb’s
$<threadlist macro). With this dcmd, we can quickly and easily capture a use-
ful snapshot of all current activity in text form, for deeper analysis.

> ::netstat
TCPv4 St Local Address Remote Address Zone
da348600 6 10.0.5.104.63710 10.0.5.10.38189 7
da348a80 0 10.0.5.106.1016 10.0.5.10.2049 2
da34fc40 0 10.0.5.108.1018 10.0.5.10.2049 3
da3501c0 0 10.0.4.106.22 192.18.42.17.64836 2
d8ed2800 0 10.0.4.101.22 192.18.42.17.637
...

> ::threadlist
 ADDR PROC LWP CMD/LWPID
fec1dae0 fec1d280 fec1fdc0 sched/1
d296cde0 fec1d280 0 idle()
d2969de0 fec1d280 0 taskq_thread()
d2966de0 fec1d280 0 taskq_thread()
d2963de0 fec1d280 0 taskq_thread()
d2960de0 fec1d280 0 taskq_thread()
d29e3de0 fec1d280 0 taskq_thread()
d29e0de0 fec1d280 0 taskq_thread()
...
> ::threadlist -v
 ADDR PROC LWP CLS PRI WCHAN
fec1dae0 fec1d280 fec1fdc0 0 96 0
 PC: 0xfe82b507 CMD: sched
 stack pointer for thread fec1dae0: fec33df8
 swtch+0x165()
 sched+0x3aa()
 main+0x365()

d296cde0 fec1d280 0 0 -1 0
 PC: 0xfe82b507 THREAD: idle()
 stack pointer for thread d296cde0: d296cd88
 swtch+0x165()
 idle+0x32()
 thread_start+8()
...

echo “::threadlist” |mdb -k >mythreadlist.txt

chpt_mdb_os.fm Page 170 Monday, January 30, 2006 1:11 PM

3.4 DEBUGGING KERNEL CORES 171

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.4.15 Other Notable Kernel dcmds

The ::findleaks dcmd efficiently detects memory leaks in kernel crash dumps
when the full set of kmem debug features has been enabled. The first execution of
::findleaks processes the dump for memory leaks (this can take a few min-
utes), then coalesces the leaks by the allocation stack trace. The findleaks report
shows a bufctl address and the topmost stack frame for each memory leak that
was identified. See Section 16.4.9.1 , “Finding Memory Leaks,” on page 718 for
more information on ::findleaks.

If the -v option is specified, the dcmd prints more verbose messages as it exe-
cutes. If an explicit address is specified prior to the dcmd, the report is filtered and
only leaks whose allocation stack traces contain the specified function address are
displayed.

The ::vatopfn dcmd translates virtual addresses to physical addresses, using
the appropriate platform translation tables.

The ::whatis dcmd attempts to determine if the address is a pointer to a
kmem-managed buffer or another type of special memory region, such as a thread
stack, and reports its findings. When the -a option is specified, the dcmd reports
all matches instead of just the first match to its queries. When the -b option is
specified, the dcmd also attempts to determine if the address is referred to by a
known kmem bufctl. When the -v option is specified, the dcmd reports its progress

> ::findleaks
CACHE LEAKED BUFCTL CALLER
70039ba8 1 703746c0 pm_autoconfig+0x708
70039ba8 1 703748a0 pm_autoconfig+0x708
7003a028 1 70d3b1a0 sigaddq+0x108
7003c7a8 1 70515200 pm_ioctl+0x187c
--
 Total 4 buffers, 376 bytes

> fec4b8d0::vatopfn
 level=1 htable=d9d53848 pte=30007e3
Virtual fec4b8d0 maps Physical 304b8d0

chpt_mdb_os.fm Page 171 Monday, January 30, 2006 1:11 PM

172 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

as it searches various kernel data structures. See Section 16.4.9.2 , “Finding Ref-
erences to Data,” on page 719 for more information on ::whatis.

The ::kgrep dcmd lets you search the kernel for occurrences of a supplied
value. This is particularly useful when you are trying to debug software with mul-
tiple instances of a value.

3.5 Examining User Process Stacks Within a Kernel Image

A kernel crash dump can save memory pages of user processes in Solaris. We
explain how to save process memory pages and how to examine user processes by
using the kernel crash dump.

3.5.1 Enabling Process Pages in a Dump

We must modify the dump configuration to save process pages. We confirm the
dump configuration by running dumpadm with no option.

If Dump content is not all pages or curproc, no process memory page will be
dumped. In that case, we run dumpadm -c all or dumpadm -c curproc.

> 0x705d8640::whatis
705d8640 is 705d8640+0, allocated from streams_mblk

> 0x705d8640::kgrep
400a3720
70580d24
7069d7f0
706a37ec
706add34

/usr/sbin/dumpadm
 Dump content: all pages
 Dump device: /dev/dsk/c0t0d0s1 (swap)
 Savecore directory: /var/crash/example
 Savecore enabled: yes

chpt_mdb_os.fm Page 172 Monday, January 30, 2006 1:11 PM

3.5 EXAMINING USER PROCESS STACKS WITHIN A KERNEL IMAGE 173

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.5.2 Invoking MDB to Examine the Kernel Image

We gather a crash dump and confirm that user pages are contained.

The dump content line shows that this dump includes user pages.

3.5.3 Locating the Target Process

Next, we search for process information with which we are concerned. We use
nscd as the target of this test case. The first thing to find is the address of the pro-
cess.

The address of the process is ffffffff866f1878. As a sanity check, we can look
at the kernel thread stacks for each process—we’ll use these later to double-check

/usr/bin/mdb unix.0 vmcore.0
 Loading modules: [unix krtld genunix ufs_log ip nfs random ptm
 logindmux]

> ::status
debugging crash dump vmcore.0 (64-bit) from rmcferrari
operating system: 5.11 snv_31 (i86pc)
panic message: forced crash dump initiated at user request
dump content: all kernel and user pages

> ::pgrep nscd
S PID PPID PGID SID UID FLAGS ADDR NAME
R 575 1 575 575 0 0x42000000 ffffffff866f1878 nscd

chpt_mdb_os.fm Page 173 Monday, January 30, 2006 1:11 PM

174 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

that the user stack matches the kernel stack, for those threads blocked in a sys-
tem call.

It appears that the first few threads on the process are blocked in the pause(),
door(), and nanosleep() system calls. We’ll double-check against these later
when we traverse the user stacks.

3.5.4 Extracting the User-Mode Stack Frame Pointers

The next things to find are the stack pointers for the user threads, which are
stored in each thread’s lwp.

> 0t575::pid2proc |::print proc_t p_tlist |::list kthread_t t_forw |::findstack
stack pointer for thread ffffffff866cb060: fffffe8000c7fdd0
[fffffe8000c7fdd0 _resume_from_idle+0xde()]
 fffffe8000c7fe10 swtch+0x185()
 fffffe8000c7fe80 cv_wait_sig_swap_core+0x17a()
 fffffe8000c7fea0 cv_wait_sig_swap+0x1a()
 fffffe8000c7fec0 pause+0x59()
 fffffe8000c7ff10 sys_syscall32+0x101()
stack pointer for thread ffffffff866cc140: fffffe8000c61d70
[fffffe8000c61d70 _resume_from_idle+0xde()]
 fffffe8000c61db0 swtch+0x185()
 fffffe8000c61e10 cv_wait_sig+0x150()
 fffffe8000c61e50 door_unref+0x94()
 fffffe8000c61ec0 doorfs32+0x90()
 fffffe8000c61f10 sys_syscall32+0x101()
stack pointer for thread ffffffff866cba80: fffffe8000c6dd10
[fffffe8000c6dd10 _resume_from_idle+0xde()]
 fffffe8000c6dd50 swtch_to+0xc9()
 fffffe8000c6ddb0 shuttle_resume+0x376()
 fffffe8000c6de50 door_return+0x228()
 fffffe8000c6dec0 doorfs32+0x157()
 fffffe8000c6df10 sys_syscall32+0x101()
stack pointer for thread ffffffff866cb720: fffffe8000c73cf0
[fffffe8000c73cf0 _resume_from_idle+0xde()]
 fffffe8000c73d30 swtch+0x185()
 fffffe8000c73db0 cv_timedwait_sig+0x1a3()
 fffffe8000c73e30 cv_waituntil_sig+0xab()
 fffffe8000c73ec0 nanosleep+0x141()
 fffffe8000c73f10 sys_syscall32+0x101()
...

> ffffffff866f1878::walk thread |::print kthread_t t_lwp->lwp_regs|::print "struct
regs" r_rsp |=X
 8047d54 fecc9f80 febbac08 fea9df78 fe99df78
fe89df78 fe79df78
 fe69df78 fe59df78 fe49df78 fe39df58 fe29df58
fe19df58 fe09df58
 fdf9df58 fde9df58 fdd9df58 fdc9df58 fdb9df58
fda9df58 fd99df58
 fd89d538 fd79bc08

chpt_mdb_os.fm Page 174 Monday, January 30, 2006 1:11 PM

3.5 EXAMINING USER PROCESS STACKS WITHIN A KERNEL IMAGE 175

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

Each entry is a thread’s stack pointer in the user process’s address space. We can
use these to traverse the stack in the user process’s context.

3.5.5 Switching MDB to Debug a Specific Process

An mdb command, <proc address>::context, switches a context to a specified
user process.

After the context is switched, several mdb commands return process information
rather than kernel information. For example:

3.5.6 Constructing the Process Stack

Unlike examining the kernel, where we would ordinarily use the stack-related mdb
commands like ::stack or ::findstack, we need to use stack pointers to
traverse a process stack. In this case, nscd is an x86 32-bit application. So a “stack
pointer + 0x38” and a “stack pointer + 0x3c” shows the stack pointer and the pro-
gram counter of the previous frame.

> ffffffff866f1878::context
debugger context set to proc ffffffff866f1878

> ::nm
Value Size Type Bind Other Shndx Name
0x0000000000000000|0x0000000000000000|NOTY |LOCL |0x0 |UNDEF |
0x0000000008056c29|0x0000000000000076|FUNC |GLOB |0x0 |10 |gethost_revalidate
0x0000000008056ad2|0x0000000000000024|FUNC |GLOB |0x0 |10 |getgr_uid_reaper
0x000000000805be5f|0x0000000000000000|OBJT |GLOB |0x0 |14 |_etext
0x0000000008052778|0x0000000000000000|FUNC |GLOB |0x0 |UNDEF |strncpy
0x0000000008052788|0x0000000000000000|FUNC |GLOB |0x0 |UNDEF |_uncached_getgrnam_r
0x000000000805b364|0x000000000000001b|FUNC |GLOB |0x0 |12 |_fini
0x0000000008058f54|0x0000000000000480|FUNC |GLOB |0x0 |10 |nscd_parse
0x0000000008052508|0x0000000000000000|FUNC |GLOB |0x0 |UNDEF |pause
0x00000000080554e0|0x0000000000000076|FUNC |GLOB |0x0 |10 |getpw_revalidate
...

> ::mappings
 BASE LIMIT SIZE NAME
 8046000 8048000 2000 [anon]
 8050000 805c000 c000 /usr/sbin/nscd
 806c000 806e000 2000 /usr/sbin/nscd
 806e000 80f0000 82000 [anon]
 fd650000 fd655000 5000 /lib/nss_files.so.1
 fd665000 fd666000 1000 /lib/nss_files.so.1
 fd680000 fd690000 10000 [anon]
 fd6a0000 fd79e000 fe000 [anon]
 fd7a0000 fd89e000 fe000 [anon]
...

chpt_mdb_os.fm Page 175 Monday, January 30, 2006 1:11 PM

176 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

Each individual stack frame is defined as follows:

/*
 * In the Intel world, a stack frame looks like this:
 *
 * %fp0->| |
 * |-------------------------------|
 * | Args to next subroutine |
 * |-------------------------------|-\
 * %sp0->| One-word struct-ret address | |
 * |-------------------------------| > minimum stack frame
 * %fp1->| Previous frame pointer (%fp0)| |
 * |-------------------------------|-/
 * | Local variables |
 * %sp1->|-------------------------------|
 *
 * For amd64, the minimum stack frame is 16 bytes and the frame pointer must
 * be 16-byte aligned.
 */

struct frame {
 greg_t fr_savfp; /* saved frame pointer */
 greg_t fr_savpc; /* saved program counter */
};

#ifdef _SYSCALL32

/*
 * Kernel's view of a 32-bit stack frame.
 */
struct frame32 {
 greg32_t fr_savfp; /* saved frame pointer */
 greg32_t fr_savpc; /* saved program counter */
};

See sys/stack.h

/*
 * In the x86 world, a stack frame looks like this:
 *
 * |--------------------------|
 * 4n+8(%ebp) ->| argument word n |
 * | ... | (Previous frame)
 * 8(%ebp) ->| argument word 0 |
 * |--------------------------|--------------------
 * 4(%ebp) ->| return address |
 * |--------------------------|
 * 0(%ebp) ->| previous %ebp (optional) |
 * |--------------------------|
 * -4(%ebp) ->| unspecified | (Current frame)
 * | ... |
 * 0(%esp) ->| variable size |
 * |--------------------------|
 */

See sys/stack.h

chpt_mdb_os.fm Page 176 Monday, January 30, 2006 1:11 PM

3.5 EXAMINING USER PROCESS STACKS WITHIN A KERNEL IMAGE 177

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

We can explore the stack frames from “Extracting the User-Mode Stack Frame
Pointers” on page 174.

Thus, we observe user stacks of pause(), door_return(), and sleep(), as
we expected.

> ffffffff866f1878::walk thread |::print kthread_t t_lwp->lwp_regs|::print "struct
regs" r_rsp |=X
 8047d54 fecc9f80 febbac08 fea9df78 fe99df78
fe89df78 fe79df78
 fe69df78 fe59df78 fe49df78 fe39df58 fe29df58
fe19df58 fe09df58
 fdf9df58 fde9df58 fdd9df58 fdc9df58 fdb9df58
fda9df58 fd99df58
 fd89d538 fd79bc08

> 8047d54/X
0x8047d54: fedac74f
> fedac74f/
libc.so.1`pause+0x67: 8e89c933 = xorl %ecx,%ecx

> febbac08/X
0xfebbac08: feda83ec
> feda83ec/
libc.so.1`_door_return+0xac: eb14c483 = addl $0x14,%esp

> fea9df78/X
0xfea9df78: fedabe4c
> fedabe4c/
libc.so.1`_sleep+0x88: 8908c483 = addl $0x8,%esp

chpt_mdb_os.fm Page 177 Monday, January 30, 2006 1:11 PM

178 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.5.7 Examining the Process Memory

In the process context, we can examine process memory as usual. For example:

3.6 kmdb, the Kernel Modular Debugger

The userland debugger, mdb, debugs the running kernel and kernel crash dumps.
It can also control and debug live user processes as well as user core dumps. kmdb
extends the debugger’s functionality to include instruction-level execution control
of the kernel. mdb, by contrast, can only observe the running kernel.

The goal for kmdb is to bring the advanced debugging functionality of mdb, to
the maximum extent practicable, to in-situ kernel debugging. This includes load-
able-debugger module support, debugger commands, ability to process symbolic
debugging information, and the various other features that make mdb so powerful.
kmdb is often compared with tracing tools like DTrace. DTrace is designed for

tracing in the large—for safely examining kernel and user process execution at a
function level, with minimal impact upon the running system. kmdb, on the other
hand, grabs the system by the throat, stopping it in its tracks. It then allows for
micro-level (per-instruction) analysis, allowing users observe the execution of indi-
vidual instructions and allowing them to observe and change processor state.
Whereas DTrace spends a great deal of energy trying to be safe, kmdb scoffs at
safety, letting developers wreak unpleasantness upon the machine in furtherance
of the debugging of their code.

> libc.so.1`_sleep+0x88::dis
libc.so.1`_sleep+0x67: pushq $-0x13
libc.so.1`_sleep+0x69: call -0x5cb59 <0xfed4f2d4>
libc.so.1`_sleep+0x6e: addl $0x4,%esp
libc.so.1`_sleep+0x71: movl %esp,%eax
libc.so.1`_sleep+0x73: movl %eax,0x22c(%rsi)
libc.so.1`_sleep+0x79: leal 0x14(%rsp),%eax
libc.so.1`_sleep+0x7d: pushq %rax
libc.so.1`_sleep+0x7e: leal 0x10(%rsp),%eax
libc.so.1`_sleep+0x82: pushq %rax
libc.so.1`_sleep+0x83: call +0xc419 <0xfedb8260>
libc.so.1`_sleep+0x88: addl $0x8,%esp
libc.so.1`_sleep+0x8b: movl %edi,0x22c(%rsi)
libc.so.1`_sleep+0x91: movb 0xb3(%rsi),%cl
libc.so.1`_sleep+0x97: movb %cl,0xb2(%rsi)
libc.so.1`_sleep+0x9d: jmp +0x14 <libc.so.1`_sleep+0xb1>
libc.so.1`_sleep+0x9f: leal 0x14(%rsp),%eax
libc.so.1`_sleep+0xa3: pushq %rax
libc.so.1`_sleep+0xa4: leal 0x10(%rsp),%eax
libc.so.1`_sleep+0xa8: pushq %rax
libc.so.1`_sleep+0xa9: call +0xc3f3 <0xfedb8260>
libc.so.1`_sleep+0xae: addl $0x8,%esp

chpt_mdb_os.fm Page 178 Monday, January 30, 2006 1:11 PM

3.6 kmdb, THE KERNEL MODULAR DEBUGGER 179

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.6.1 Diagnosing With kmdb and moddebug

Diagnosing problems with kmdb builds on the techniques used with mdb. In this
section, we cover some basic examples of how to use kmdb to boot the system.

3.6.1.1 Starting kmdb From the Console

kmdb can be started from the command line of the console login with mdb and the
-K option.

3.6.2 Booting With the Kernel Debugger

If you experience hangs or panics during Solaris boot, whether during installation
or after you've already installed, using the kernel debugger can be a big help in
collecting the first set of “what happened” information.

You invoke the kernel debugger by supplying the -k switch in the kernel boot
arguments. So a common request from a kernel engineer starting to examine a
problem is often “try booting with kmdb.”

Sometimes it’s useful either to set a breakpoint to pause the kernel startup and
examine something, or to just set a kernel variable to enable or disable a feature or
to enable debugging output. If you use -k to invoke kmdb but also supply the -d
switch, the debugger will be entered before the kernel really starts to do anything
of consequence, so you can set kernel variables or breakpoints.

mdb -K

Welcome to kmdb
Loaded modules: [audiosup cpc uppc ptm ufs unix zfs krtld s1394 sppp nca lofs
genunix ip logindmux usba specfs pcplusmp nfs md random sctp]
[0]> $c
kmdbmod`kaif_enter+8()
kdi_dvec_enter+0x13()
kmdbmod`kctl_modload_activate+0x112(0, fffffe85ad938000, 1)
kmdb`kdrv_activate+0xfa(4c6450)
kmdb`kdrv_ioctl+0x32(ab00000000, db0001, 4c6450, 202001, ffffffff8b483570,
fffffe8000c48edc)
cdev_ioctl+0x55(ab00000000, db0001, 4c6450, 202001, ffffffff8b483570,
fffffe8000c48edc)
specfs`spec_ioctl+0x99(ffffffffbc4cc880, db0001, 4c6450, 202001,
ffffffff8b483570, fffffe8000c48edc)
fop_ioctl+0x2d(ffffffffbc4cc880, db0001, 4c6450, 202001, ffffffff8b483570,
fffffe8000c48edc)
ioctl+0x180(4, db0001, 4c6450)
sys_syscall+0x17b()
[0]> :c

chpt_mdb_os.fm Page 179 Monday, January 30, 2006 1:11 PM

180 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

To enter the debugger at boot with Solaris 10, enter b -kd at the appropriate
prompt; this is slightly different whether you’re installing or booting an already
installed system.

If, instead, you’re doing this with a system where GRUB boots Solaris, you add
the -kd to the “kernel” line in the GRUB menu entry (you can edit GRUB menu
entries for this boot by using the GRUB menu interface, and the “e” (for edit) key).

Either way, you’ll drop into the kernel debugger in short order, which will
announce itself with this prompt:

Now we’re in the kernel debugger. The number in square brackets is the CPU
that is running the kernel debugger; that number might change for later entries
into the debugger.

3.6.3 Investigating Hangs

For investigating hangs, try turning on module debugging output. You can set the
value of a kernel variable by using the /W command (“write a 32-bit value”). Here's
how you set moddebug to 0x80000000 and then continue execution of the kernel.

ok boot kmdb -d
Loading kmdb...

Welcome to kmdb
[0]>

[0]>

[0]> moddebug/W 80000000
[0]> :c

chpt_mdb_os.fm Page 180 Monday, January 30, 2006 1:11 PM

3.6 kmdb, THE KERNEL MODULAR DEBUGGER 181

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

This command gives you debug output for each kernel module that loads. The
bit masks for moddebug are shown below. Often, 0x80000000 is sufficient for the
majority of initial exploratory debugging.

3.6.4 Collecting Information About Panics

When the kernel panics, it drops into the debugger and prints some interesting
information; usually, however, the most interesting thing is the stack backtrace;
this shows, in reverse order, all the functions that were active at the time of panic.
To generate a stack backtrace, use

A few other useful information commands during a panic are ::msgbuf and
::status, as shown in Section 3.4 , “Debugging Kernel Cores,” on page 154.

If you’re running the kernel while the kernel debugger is active and you experi-
ence a hang, you may be able to break into the debugger to examine the system

/*
 * bit definitions for moddebug.
 */
#define MODDEBUG_LOADMSG 0x80000000 /* print "[un]loading..." msg */
#define MODDEBUG_ERRMSG 0x40000000 /* print detailed error msgs */
#define MODDEBUG_LOADMSG2 0x20000000 /* print 2nd level msgs */
#define MODDEBUG_FINI_EBUSY 0x00020000 /* pretend fini returns EBUSY */
#define MODDEBUG_NOAUL_IPP 0x00010000 /* no Autounloading ipp mods */
#define MODDEBUG_NOAUL_DACF 0x00008000 /* no Autounloading dacf mods */
#define MODDEBUG_KEEPTEXT 0x00004000 /* keep text after unloading */
#define MODDEBUG_NOAUL_DRV 0x00001000 /* no Autounloading Drivers */
#define MODDEBUG_NOAUL_EXEC 0x00000800 /* no Autounloading Execs */
#define MODDEBUG_NOAUL_FS 0x00000400 /* no Autounloading File sys */
#define MODDEBUG_NOAUL_MISC 0x00000200 /* no Autounloading misc */
#define MODDEBUG_NOAUL_SCHED 0x00000100 /* no Autounloading scheds */
#define MODDEBUG_NOAUL_STR 0x00000080 /* no Autounloading streams */
#define MODDEBUG_NOAUL_SYS 0x00000040 /* no Autounloading syscalls */
#define MODDEBUG_NOCTF 0x00000020 /* do not load CTF debug data */
#define MODDEBUG_NOAUTOUNLOAD 0x00000010 /* no autounloading at all */
#define MODDEBUG_DDI_MOD 0x00000008 /* ddi_mod{open,sym,close} */
#define MODDEBUG_MP_MATCH 0x00000004 /* dev_minorperm */
#define MODDEBUG_MINORPERM 0x00000002 /* minor perm modctls */
#define MODDEBUG_USERDEBUG 0x00000001 /* bpt after init_module() */

See sys/modctl.h

[0]> $c

[0]> ::msgbuf - which will show you the last things the kernel printed onscreen, and
[0]> ::status - which shows a summary of the state of the machine in panic.

chpt_mdb_os.fm Page 181 Monday, January 30, 2006 1:11 PM

182 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

state; you can do this by pressing the <F1> and <A> keys at the same time (a sort
of "F1-shifted-A" keypress). (On SPARC systems, this key sequence is
<Stop>-<A>.) This should give you the same debugger prompt as above, although
on a multi-CPU system you may see that the CPU number in the prompt is some-
thing other than 0. Once in the kernel debugger, you can get a stack backtrace as
above; you can also use ::switch to change the CPU and get stack backtraces on
the different CPU, which might shed more light on the hang. For instance, if you
break into the debugger on CPU 1, you could switch to CPU 0 with

3.6.5 Working With Debugging Targets

For the most part, the execution control facilities provided by kmdb for the kernel
mirror those provided by the mdb process target. Breakpoints (:bp), watchpoints
(::wp), ::continue, and the various flavors of ::step can be used.

We discuss more about debugging targets in Section 3.3 , “Getting Started with
MDB” and Section 3.4 , “Debugging Kernel Cores”. The common commands for
controlling kmdb targets are summarized in Table 3.14.

[1]> 0::switch

Table 3.14 Core kmdb dcmds

dcmd Description

::status Print summary of current tar-
get.

$r
::regs

Display current register values
for target.

$c
::stack
$C

Print current stack trace ($C:
with frame pointers).

addr[,b]
::dump [-g sz] [-e]

Dump at least b bytes starting
at address addr. -g sets the
group size; for 64-bit debug-
ging, -g 8 is useful.

addr::dis Disassemble text, starting
around addr.

chpt_mdb_os.fm Page 182 Monday, January 30, 2006 1:11 PM

3.6 kmdb, THE KERNEL MODULAR DEBUGGER 183

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

[addr] :b
[addr] ::bp [+/-dDestT] [-n count] sym
... addr

Set breakpoint at addr.

$b Display all breakpoints.

::branches Display the last branches taken
by the CPU. (x86 only)

addr ::delete [id | all]
addr :d [id | all]

Delete a breakpoint at addr.

:z Delete all breakpoints.

function ::call [arg [arg ...]] Call the specified function,
using the specified arguments.

[cpuid] ::cpuregs [-c cpuid] Display the current gen-
eral-purpose register set.

[cpuid] ::cpustack [-c cpuid] Print a C stack backtrace for
the specified CPU.

::cont
:c

Continue the target program.

$M List the macro files that are
cached by kmdb for use with
the $< dcmd

::next
:e

Step the target program one
instruction, but step over sub-
routine calls.

::step [branch | over | out] Step the target program one
instruction.

$<systemdump Initiate a panic/dump.

::quit [-u]
$q

Cause the debugger to exit.
When the -u option is used,
the system is resumed and the
debugger is unloaded.

addr [,len]::wp [+/-dDestT] [-rwx] [-ip]
[-n count]

addr [,len]:a [cmd ...]
addr [,len]:p [cmd ...]
addr [,len]:w [cmd ...]

Set a watchpoint at the speci-
fied address.

Table 3.14 Core kmdb dcmds (continued)

dcmd Description

chpt_mdb_os.fm Page 183 Monday, January 30, 2006 1:11 PM

184 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.6.6 Setting Breakpoints

Setting breakpoints with kmdb is done in the same way as with generic mdb tar-
gets, using the :b dcmd. Refer to Table 3.13 for a complete list of debugger dcmds.

3.6.7 Forcing a Crash Dump With halt -d

This example shows how to force a crash dump and reboot of the x86-based sys-
tem by using the halt -d and boot commands. Use this method to force a crash
dump of the system. Afterwards, reboot the system manually.

3.6.8 Forcing a Dump With kmdb

If you cannot use the reboot -d or the halt -d command, you can use the kernel
debugger, kmdb, to force a crash dump. The kernel debugger must have been

mdb -K
Loaded modules: [crypto]
kmdb: target stopped at:
kmdbmod`kaif_enter+8: popfq
[0]> resume:b
[0]> :c
kmdb: stop at resume
kmdb: target stopped at:
resume: movq %gs:0x18,%rax
[0]> :z
[0]> :c
#

halt -d
4ay 30 15:35:15 wacked.Central.Sun.COM halt: halted by user

panic[cpu0]/thread=ffffffff83246ec0: forced crash dump initiated at user request

fffffe80006bbd60 genunix:kadmin+4c1 ()
fffffe80006bbec0 genunix:uadmin+93 ()
fffffe80006bbf10 unix:sys_syscall32+101 ()

syncing file systems... done
dumping to /dev/dsk/c1t0d0s1, offset 107675648, content: kernel
NOTICE: adpu320: bus reset
100% done: 38438 pages dumped, compression ratio 4.29, dump succeeded

Welcome to kmdb
Loaded modules: [audiosup crypto ufs unix krtld s1394 sppp nca uhci lofs
genunix ip usba specfs nfs md random sctp]
[0]>
kmdb: Do you really want to reboot? (y/n) y

chpt_mdb_os.fm Page 184 Monday, January 30, 2006 1:11 PM

3.7 kmdb IMPLEMENTATION 185

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

loaded, either at boot or with the mdb -k command, for the following procedure to
work. Enter kmdb by using L1–A on SPARC, F1-A on x86, or break on a tty.

3.7 kmdb Implementation

The best way to understand kmdb is by first understanding how mdb does things.
We begin with an overview of the portions of mdb that are relevant to our later dis-
cussion of kmdb. For more information about mdb and its operation, consult the
Modular Debugger AnswerBook. Having set the stage, we next discuss the major
design goals behind kmdb. With those goals in mind, we return to the list of compo-
nents we discussed from an mdb perspective, analyzing them this time from the
point of view of kmdb, showing how their implementation fulfills kmdb’s design
goals. Finally, we embark on a whirlwind tour of some of the lower-level compo-
nents of kmdb that weren’t described in earlier sections.

3.7.1 MDB Components and Their Implementation in MDB

In this section, we review the parts of MDB that are particularly relevant for our
later discussion of kmdb, focusing on how those components are implemented in
mdb. That is, we concentrate only on those components whose implementation
changes significantly in kmdb. The design of MDB is sufficiently modular that we

[0]> $<systemdump
panic[cpu0]/thread=ffffffff83246ec0: forced crash dump initiated at user request

fffffe80006bbd60 genunix:kadmin+4c1 ()
fffffe80006bbec0 genunix:uadmin+93 ()
fffffe80006bbf10 unix:sys_syscall32+101 ()

syncing file systems... done
dumping to /dev/dsk/c1t0d0s1, offset 107675648, content: kernel
NOTICE: adpu320: bus reset
100% done: 38438 pages dumped, compression ratio 4.29, dump succeeded

chpt_mdb_os.fm Page 185 Monday, January 30, 2006 1:11 PM

186 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

could replace the components requiring change without disrupting the remainder
of the debugger. The components described are shown in Figure 3.2.

3.7.1.1 The Target Layer

The MDB answerbook describes targets as follows:

The target is the program being inspected by the debugger.
[...] Each target exports a standard set of properties,
including one or more address spaces, one or more symbol
tables, a set of load objects, and a set of threads.

Targets are implemented by means of an ops vector, with each target imple-
menting a subset of the functions in the vector. In-situ targets, such as the user
process or proc, implement virtually all operations. Targets that debug entities
whose execution cannot be controlled, such as the kvm target used for crash dump
analysis, implement a smaller subset of the operations. As with many other parts
of MDB, the targets are modular and are designed to be easily replaceable depend-
ing on the requirements of the debugging environment.

Figure 3.2 MDB Components

chpt_mdb_os.fm Page 186 Monday, January 30, 2006 1:11 PM

3.7 kmdb IMPLEMENTATION 187

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

Figure 3.2 shows three of the targets used by MDB. The first is the proc target,
which is used for the debugging and control of user processes as well as the analy-
sis of user core dumps. The proc target is implemented on top of libproc, which
provides the primitives used for process control. The interfaces provided by lib-
proc simplify the implementation of the proc target by hiding the differences
between in-situ and postmortem debugging (one is done with a live process,
whereas the other uses a corefile). The target itself is largely concerned with map-
ping the requests of the debugger to the interfaces exposed by libproc.

Also shown in Figure 3.2 is the kvm target, which is used for both live and post-
mortem kernel debugging. Like the proc target, the kvm target uses a support
library (libkvm) to abstract the differences between live and postmortem debug-
ging. While the capabilities of the kvm and proc targets are largely the same when
used for postmortem debugging, they differ when the subjects are live. The proc
target fully controls process execution, whereas the kvm target allows only the
inspection and alteration of kernel state. Allowing the debugger to control the exe-
cution of the kernel that is responsible for running the debugger would be difficult
at best. Consequently, most debugging done with the kvm target is of the postmor-
tem variety.

The third target shown in Figure 3.2 is used for the “debugging” of raw files.
This allows the data-presentation abilities of MDB to be brought to bear upon flat
(usually binary) files. This target lays the foundation for the eventual replacement
of something like fsdb, the filesystem debugger.

3.7.1.2 Debugger Module Management

Today’s kernels are made up of a great many modules, each implementing a differ-
ent subsystem and each requiring different tools for analysis and debugging. The
same can be said for modern, large-scale user processes, which can incorporate
tens or even hundreds of shared libraries and subsystems. A modern modular
debugger should, therefore, allow for the augmentation of its basic tool set as
needed. MDB allows subsystem-specific debugging facilities to be provided through
shared objects known as debugger modules, or dmods. Each dmod provides debug-
ging commands (also known as dcmds) and walkers (iterators) that debug a given
subsystem. These modules interface with MDB through the module API layer and
use well-defined interfaces for data retrieval and analysis. This is enforced by the
fact that, in the case of both major targets (kvm and proc), the debugger runs in a
separate address space from the entity being analyzed. The dcmds are therefore
forced to use the module API to access the target. While some dmods link with
other support libraries to reduce the duplication of code, most dmods stand alone,
consuming only the header files from the subsystems they support.

chpt_mdb_os.fm Page 187 Monday, January 30, 2006 1:11 PM

188 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

While the core debugger uses its own code for the management of debugger
modules and their metadata, it relies upon a system library, libdl, for the
mechanics of module unloading and unloading. It is libdl, for example, that
knows how to load the dmod into memory, and it is libdl that knows how to inte-
grate that dmod into the debugger’s address space.

3.7.1.3 Terminal I/O

MDB was designed with an eye toward the eventual implementation of something
like kmdb and thus performs most terminal interaction directly. Having built up a
list of terminal attributes, MDB handles cursor and character manipulation
directly. The MDB subsystem that performs terminal I/O is known as termio.

While termio handles a great deal itself, there is one aspect of terminal manage-
ment that is provided by a support library. MDB uses libcurses to retrieve the
list of terminal attributes for the current terminal from the terminfo database. The
current terminal type is retrieved from the environment variable TERM.

3.7.1.4 Other Stuff

MDB is a large program, with many more subsystems than are described here.
One of the benefits arising from the modular design of the debugger is that these
other subsystems don’t need to change even when used in an environment as radi-
cally different as kmdb is from MDB. For example, MDB implements its own rou-
tines for the management of ELF symbol tables. ELF being ELF regardless of
source, the same subsystem can be used, as is, in both MDB and kmdb. A descrip-
tion of the MDB subsystems unaffected by kmdb is beyond the scope of this docu-
ment.

3.7.2 Major kmdb Design Decisions

In this section we explore the major design rationale.

3.7.2.1 The Kernel/Debugger Interface (KDI)

When we implement an in-situ kernel debugger, we must determine the extent to
which the debugger will be intermingled with the kernel being debugged. Should
the debugger call kernel functions to accomplish its duties, or should the debugger
be entirely self-contained? The legacy Solaris in-situ kernel debugger, kadb, hewed
to the latter philosophy to a significant extent. The kadb module was as self-con-
tained as possible, to the point where it contained copies of certain low-level ker-
nel routines. That said, there were some kernel routines to which kadb needed
access. During debugger startup, it would search for a number of functions by
name, saving pointers to them for later use.

chpt_mdb_os.fm Page 188 Monday, January 30, 2006 1:11 PM

3.7 kmdb IMPLEMENTATION 189

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

There are a number of problems with kadb’s approach. First of all, by duplicat-
ing low-level kernel code in the debugger, we introduce duplication. Furthermore,
this duplication, due to the layout of the Solaris source code, results in the copies
being significantly separated. It’s hard enough to maintain code rife with duplica-
tion when the duplicates are co-located. Maintaining duplicates located in wildly
disparate locations is next to impossible. During initial analysis of kadb as part of
the kmdb project, we discovered several duplicated functions in kadb that had not
kept up with hardware-specific changes to the versions in the kernel. The second
problem concerns the means by which kadb gained access to the kernel functions
it did use. Searching for those functions by name is dangerous because it leaves
the debugger vulnerable to changes in the kernel. A change in the signature of a
kernel function used by kadb, for example, would not be caught until kadb failed
while trying to use said function.

To some extent, the nature of a kernel debugger requires duplication. The ker-
nel debugger cannot, for example, hold locks, and therefore requires lock-free ver-
sions of any kernel code that it must call. The lock-free version of a function may
not be safe when used in a running kernel context and therefore must be kept sep-
arate from the normal version. Rather than placing that duplicate copy within the
debugger itself, we decided to co-locate the duplicate with the original. This
reduces the chances of code rot, since an engineer changing the normal version is
much more likely to notice the debugger-specific version sitting right next to it.

Access to kernel functionality was formalized through an interface known as the
KDI, or Kernel/Debugger Interface. The KDI is an ops vector through which all
kernel function calls must pass. Each function called by the debugger has a mem-
ber in this vector. Whereas an assessment of kernel functionality used by kadb
required a search for symbol lookup routines and their consumers, a similar
assessment in kmdb simply requires the review of the single ops vector. Further-
more, our use of an ops vector allowed us to use the compiler to monitor the evolu-
tion of kernel functions used by kmdb. Any change to a KDI function significant
enough to change the function signature will be caught by the compiler during the
initialization of the KDI ops vector. Furthermore, the initialization of said vector is
easily visible to code analysis tools such as cscope, allowing engineers to quickly
determine whether kmdb is a consumer of a given function. With kadb, such a
check would require a check of the symbol lookup routines, something that is not
automatically done by the code analysis tools used today.

3.7.2.2 Implementation As a Kernel Module

kadb was implemented as a stand-alone module. In Solaris, this means that the
kadb module was an executable, directly loadable by the boot loader. It had no
static dependencies on other modules, thus leading to the symbol lookup problems

chpt_mdb_os.fm Page 189 Monday, January 30, 2006 1:11 PM

190 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

discussed above. When the use of kadb was requested, the boot process ran some-
thing like this:

1. Boot loader loads kadb.

2. kadb initializes.

3. kadb loads normal stand-alone, UNIX.

4. kadb loads the UNIX interpreter, krtld.

5. kadb passes control to krtld.

6. krtld loads the UNIX dependencies (genunix, CPU module, platform mod-
ule, etc.).

7. krtld transfers control to UNIX.

While this allowed the debugger to take early control of the system (it could
debug from the first instruction in krtld), that ability came with some significant
penalties. The decision to load a 32-bit or 64-bit kernel being made after kadb had
loaded and initialized, kadb had to be prepared to debug either variety. The need
for kadb to execute prior to the loading of UNIX itself meant that it could not use
any functions located in the kernel until the kernel was loaded. While some essen-
tial functions were dynamically located later, the result of this restriction was the
location of many low-level kernel functions in the debugger itself. A further pen-
alty comes in the form of increased debugger complexity. kadb’s need to load UNIX
and krtld requires that it know how to process ELF files and how to load mod-
ules into the address space. The boot loader already needs to know how to do that,
as does krtld. With kadb as a stand-alone module, the number of separate copies
of ELF-processing and module-loading code goes up to three.

The remaining limitations have to do with the timing of the decision to load
kadb. As stated above, kadb was a stand-alone module and as such could only be
loaded at boot. Moreover, an administrator was required to decide, before reboot-
ing, whether to load kadb. Once loaded, it could not be unloaded. While the inabil-
ity to unload the debugger isn’t a major limitation, the inability to dynamically
load it, is. Not knowing whether kadb would be needed during the life of a given
system boot, administrators would be faced with an unfortunate choice. On the one
hand, they could always load kadb at boot. This kept it always ready for use, but
at the cost of the wiring down of a chunk of kernel address space. This could be
avoided, of course, by making the other choice—not loading the debugger at boot.
Administrators then ran the risk of not having the debugger around when they
needed it.

chpt_mdb_os.fm Page 190 Monday, January 30, 2006 1:11 PM

3.7 kmdb IMPLEMENTATION 191

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

The implementation of kmdb as a normal kernel module solves all of these prob-
lems, with only a minor activation-time penalty compared to kadb. When kmdb is
loaded at boot, the boot process looks something like this:

1. Boot loader loads UNIX.

2. Boot loader loads the UNIX interpreter, krtld.

3. Boot loader passes control to krtld.

4. krtld loads the UNIX dependencies (genunix, CPU module, platform mod-
ule, etc.).

5. krtld loads kmdb.

6. krtld transfers control to UNIX.

As shown above, kmdb loads after the primary kernel modules have been
selected and loaded. kmdb can therefore assume that it will be running with the
same bit width as that of the underlying kernel. That is, a 32-bit kmdb will never
have to deal with a 64-bit kernel, and vice versa.

By loading after the primaries, kmdb can have static symbol dependencies on
the other primary kernel modules. It is this ability that allows the KDI to exist.
Even better, kmdb can rely on krtld’s selection of the proper CPU and platform
modules for this machine. Rather than having to carry around several proces-
sor-specific implementations of the same function (or compiling one module for
each of four platform types, as kadb did), kmdb can, using the KDI, simply use the
proper implementation of a given function from the proper module. When a new
platform-specific KDI function is implemented, the developer implements it in a
platform-specific way in each platform module. krtld selects the proper platform
module on boot, and kmdb automatically ends up using the proper version for the
host machine.

Last but certainly not least, the implementation of kmdb as a normal kernel
module allows it to be dynamically loaded and unloaded. It can still be loaded at
boot, but it can also be loaded on-demand by the administrator. If dynamically
loaded, it can also be unloaded when no longer needed. This can be a consolation to
wary administrators who would otherwise object to the running of a kernel debug-
ger on certain types of machines.

The only disadvantage of the use of a normal kernel module versus a stand-
alone one is the loss of the ability to debug the early stages of krtld. In practice,
this has not turned out to be a problem, because the early stages of krtld are
fairly straightforward and stable.

Every attempt has been made to minimize the effects of the two load types (boot
and runtime). Obviously initialization differs in some respects, a number of com-

chpt_mdb_os.fm Page 191 Monday, January 30, 2006 1:11 PM

192 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

mon kernel subsystems simply won’t be available during the initialization of
boot-loaded kmdb. Largely, though, these differences are dealt with under the cov-
ers and are not visible to the user.

3.7.3 The Structure of kmdb

We can best understand the inner workings of kmdb by first reviewing the debug-
ger’s external structure. kmdb’s external structure is dictated, to some extent, by
the environments in which it will be used. Those requirements are

� The debugger must be loadable at boot.

� The debugger must be loadable at runtime.

� The debugger must restrict its contact with the running kernel to a set of
operations defined in advance.

To satisfy the first two requirements, kmdb exists as two separate kernel mod-
ules. The first, misc/kmdbmod, contains the meat of the debugger; it is the module
loaded by krtld when kmdb is loaded at boot. The second module, drv/kmdb,
exists solely to gather property values from the device tree and to present an
ioctl-based interface to controlling userland programs such as mdb(1). When kmdb
is to be loaded at runtime, mdb opens /dev/kmdb and uses the ioctl interface to
command it to activate. The opening of /dev/kmdb causes drv/kmdb to load.
drv/kmdb has a dependency on misc/kmdbmod, which gets loaded as well. Upon
receipt of the appropriate ioctl, drv/kmdb calls into misc/kmdbmod, and the
debugger is initialized.

If the debugger was loaded at boot, only misc/kmdbmod will be loaded. The
module loading subsystem is not fully initialized at that point. Userland does not
exist yet, and given that drv/kmdb exists only to convey ioctl requests from user-
land to misc/kmdbmod, there is no need to force drv/kmdb to load until an
attempt is made to open /dev/kmdb. When someone does attempt to control the
debugger through ioctls to /dev/kmdb, drv/kmdb is loaded. It then sends com-
mands to misc/kmdbmod as in the runtime case above.

We now focus our attention more closely on misc/kmdbmod, which itself is com-
posed of two parts. The first, referred to as the debugger, contains the core debug-
ger functionality, as well as the primary subsystems needed to allow the core to
control the kernel. The second, referred to as the controller, interacts with the run-
ning kernel.

The debugger interacts with the outside world only through a set of well-defined
interfaces. One of these is the KDI; the other is composed of a set of functions
passed during initialization by the controller. Aside from these interactions, the
debugger must, by nature, function as a fully self-contained entity. Put in compila-

chpt_mdb_os.fm Page 192 Monday, January 30, 2006 1:11 PM

3.7 kmdb IMPLEMENTATION 193

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

tion terms, the debugger, which is built separately from the controller, must not
have any unresolved symbols at link time. It is the debugger, and only the debug-
ger, that is active when kmdb has control of the machine.

Behind the scenes, as it were, the controller works to ensure that the debug-
ger’s runtime needs are met. The debugger has a limited set of direct interactions
with the kernel. And it can only be active when the world has stopped. Those two
facts necessarily limit the sorts of things the debugger can do. For example, it can
neither perform the early stages of kmdb initialization nor load or unload kernel
modules.

The former takes place before debugger initialization starts and is taken care of
by the controller. A memory region, known as Oz, is allocated and is set aside for
use by the debugger. Other initialization tasks performed by the controller include
the creation of trap tables or IDTs, as appropriate, after which control is passed to
the debugger for the completion of initialization.

Kernel module loading and unloading, which is discussed in more detail below,
is a task that must be performed by the running kernel. The debugger must rely
on the controller to perform these sorts of tasks for it.

Figure 3.3 KMDB Structure

chpt_mdb_os.fm Page 193 Monday, January 30, 2006 1:11 PM

194 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

In the text that follows, we use the words driver, debugger, and controller to
refer to the components we’ve just discussed. These three components are indi-
cated in Figure 3.3 by regions surrounded by dotted lines. When we discuss the
entire entity, we refer to it as kmdb. References to the core debugger refer to the set
of blue boxes labeled MDB. One unfortunate note: The term “controller” is a rela-
tively recent invention. In many instances, the source code refers to the driver
when it means the controller. This doesn’t cause nearly as many issues as one
might imagine because of the minor role played by the entity we refer to as the
driver.

3.7.4 MDB Components and Their Implementation in kmdb

We now use our earlier discussion of mdb to motivate our review of the major sub-
systems used by kmdb. Recall that the three subsystems discussed were the target
layer, module management, and terminal management (termio). The implementa-
tion of kmdb is largely the story of the replacement of support libraries with sub-
systems designed to work in kmdb’s unique environment. Figure 3.3 shows how these
replacement subsystems relate to the core debugger.

3.7.4.1 The Target Layer

The target layer itself is unchanged in kmdb. What changes is the target imple-
mentation itself. Gone are the proc, kvm, and file targets, replaced with a single
target called kmdb_kvm. We continue to call it kmdb_kvm to avoid confusion with
the kvm target used by mdb.

kmdb_kvm can be thought of as a hybrid of the proc and kvm targets. It includes
the execution control aspects of proc, such as the ability to set breakpoints and
watchpoints, as well as support for single-stepping, continuation, and so forth. This
functionality is coupled with the kernel-oriented aspects of the kvm target. The
kmdb_kvm target is common between SPARC and x86 machines and for the most
part handles the bits of kernel analysis, management, and control that are generic
to the two architectures. With the exceptions of stack trace construction and the
display of saved registers, all architecture-specific functionality is abstracted into
the DPI. The DPI’s relationship to kmdb_kvm is very similar to that of libkvm to
the kvm target or to that of libproc to the proc target.

A significant portion of kmdb_kvm is devoted to the monitoring of kernel state.
As an example, target implementations are required to provide symbol lookup rou-
tines for use by the core debugger. Provision of this information requires access to
kernel module symbol tables, which are easily accessed by kmdb_kvm. What is not
so simple, however, is dealing with the constant churn in the set of loaded mod-
ules. Whenever kmdb regains control of the machine, kmdb_kvm scans the entire

chpt_mdb_os.fm Page 194 Monday, January 30, 2006 1:11 PM

3.7 kmdb IMPLEMENTATION 195

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

module list, looking for modules that have loaded or unloaded. The tracking state
(symbol table references, and so forth) of kmdb_kvm modules that have unloaded
is destroyed, while new state is created for modules that have been loaded. Chal-
lenges arise when a module has unloaded and then reloaded since kmdb last had
control. This churn must be detected, and tracking state rebuilt.

The tracking of module movement, for lack of a better term, illustrates the
interaction between the debugger and the controller. While the debugger could cer-
tainly rescan the entire list upon every entry, that approach would be wasteful.
Instead, the controller subscribes to the kernel’s module change notification ser-
vice and bumps a counter whenever a change has occurred. kmdb_kvm can, upon
reentry, check the value of that counter. If the value has changed since kmdb_kvm
last saw it, a module list rescan is necessary.

While this interaction with the controller results in a useful optimization for
module state management, it becomes crucial for the management of deferred
breakpoints. Deferred breakpoints are breakpoints requested for modules that
haven’t yet loaded. The user’s expectation is that the breakpoint will activate when
the named module loads. The debugger is responsible for the creation, deletion,
enabling, disabling, activation, and deactivation of breakpoints. The user creates
the breakpoint by using the breakpoint command (::bp). This being a deferred
breakpoint for a module that hasn’t been loaded, the debugger leaves the break-
point in a disabled state. When that module has loaded, the breakpoint is enabled.
Enabled breakpoints are activated by the debugger when the world is resumed.
The activation is what makes the breakpoint actually happen. In kmdb_kvm, the
DPI installs a breakpoint instruction at the specified virtual address. The key
design question: How do we detect the loading of the requested module?

The simplest, cleanest, and slowest approach would be to have kmdb_kvm place
an internal breakpoint on the kernel’s module loading routine. Whenever a mod-
ule is loaded, the debugger would activate, would check the identity of the loaded
module, and would decide whether to enable the breakpoint. Debugger entry isn’t
cheap. All CPUs must be stopped, and their state must be saved. This particular
stop would happen after a module load, so we would need to rescan the module
list. All in all, this is something that we really don’t want to have to do every time
a module is loaded or unloaded.

If we involve the controller, we can eliminate the unnecessary debugger activa-
tions, entering the debugger only when a module named in a deferred breakpoint
is loaded or unloaded. How do we do this? We bend the boundaries between the
debugger and controller slightly, exposing the list of deferred breakpoints to code
that runs when the world is turning. Tie this into the controller’s registration with
the kernel’s module change notification service, and we end up entering the debug-
ger only when a change has occurred in a module named in a deferred breakpoint.
We use a quasi-lock-free data structure to allow access to the deferred breakpoint

chpt_mdb_os.fm Page 195 Monday, January 30, 2006 1:11 PM

196 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

list both from within the debugger (when the world is stopped) and within the
module change check (when the world is running).

Like the proc and kvm targets, kmdb_kvm is also home to dcmds that could not
be implemented elsewhere. Implemented in the target, they have access to every-
thing the target does and can thus do things that dcmds implemented in dmods
could only dream of doing. As implied above, kmdb_kvm (as well as kvm and proc)
implement dcmds that provide stack tracing and register access.

3.7.4.2 Debugger Module Management

As discussed earlier, mdb uses libdl for the management of dmods, which are
implemented as shared objects. The implementation of kmdb is similar, but with-
out libdl. Nor does the debugger have the way to actually load or unload mod-
ules. Other than that, kmdb and mdb are the same.

We decompose module management into two pieces: the requesting of module
loads and unloads, and the implementation of a libdl replacement atop the
results of the loading and unloading.

3.7.4.3 Module Loads and Unloads: the Work Request Queue (WR)

kmdb implements debugger modules as kernel modules. While we engage in some
sleight of hand to keep the dmods off the kernel’s main module list, the mechanics
of loading and unloading dmods is largely the same as that used for “normal” ker-
nel modules. The primary difference is in the means by which a load or unload is
requested. Recall that the debugger, which will receive the load or unload request
from the user, can only run when the world is stopped. Also note that the loading
or unloading of a kernel module is a process that uses many different kernel sub-
systems. The kernel runtime linker (krtld), the disk driver, VM system, file sys-
tem, and many others come into play. Use of these subsystems of course entails the
use of locks, threads, and various other things that are anathema to the debugger.

To load a dmod, the debugger must therefore ask the controller to do it. The con-
troller runs when the world is turning and is more than capable of loading and
unloading kernel modules. The only thing we need is a channel for communication
between the two. That channel is provided by the Work Request Queue, or WR.
The WR consists of two queues: one for messages from the debugger to the control-
ler and one for messages from the controller to the debugger. The rough sequence
of events for a module load is as follows:

1. User requests a dmod load with ::load.

2. The kmdb module layer receives the request and passes it to the WR
debugger → controller queue.

3. The world is resumed.

chpt_mdb_os.fm Page 196 Monday, January 30, 2006 1:11 PM

3.7 kmdb IMPLEMENTATION 197

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

4. The controller receives the request.

5. The controller loads the module.

6. The controller returns the requests to the debugger as a (successful) reply on
the controller → debugger queue.

7. The controller initiates a debugger reentry.

8. The debugger receives the reply and makes the contents of the dmod avail-
able to the debugger core.

A few details bear mentioning. The debugger can be activated at any time—even
in the midst of the controller’s processing of a load request. The controller must
keep this in mind when checking and manipulating the WR queues. The queues
themselves are lock-free and have very strict rules regarding the methods used to
access them. For example, the controller may only add to the end of the
controller → debugger queue. It sets the next pointer on its request and updates
the tail pointer for the queue. Even though the queue is doubly linked, there’s no
easy way for the controller, which may be interrupted at any time by the debugger,
to set the prev pointer. Accordingly, the debugger’s first action upon preparing to
process the controller → debugger queue is to traverse it, from tail to head, build-
ing the prev pointers. The debugger doesn’t have to worry about being inter-
rupted by the controller and can thus take its time. Similar rules are in place for
the debugger → controller queue.

Every request must be tracked and sent back as a reply at some point. Even
fire-and-forget requests, such as those establishing new module search paths, must
be returned as replies, even if those replies don’t come until the debugger is
unloaded. To see why this is necessary, consider the source of the memory underly-
ing the requests. Requests from the debugger are allocated from debugger mem-
ory by the debugger’s allocator and can thus only be freed by the debugger.
Requests initiated by the controller (for example, an automatic dmod load trig-
gered by the loading of the corresponding kernel module) are allocated by the con-
troller from kernel memory and can thus be freed only by the kernel. Replies
therefore serve a dual purpose—they provide status to the requester and also
return the request to the requester for freeing.

We’d like to minimize the impact of the debugger on the running system to the
extent practicable and so don’t want the controller to poll for updates to the WR
queues. Instead, we want the debugger to tell the controller when work is avail-
able for processing. This isn’t as simple as it may seem. In the real world, we
would use semaphores or condition variables to signal the availability of work. To
use kernel synchronization objects, the debugger would need to call into the ker-
nel to release them. The kernel is most definitely not prepared for a
cv_broadcast() call with every CPU stuck in the debugger. Unpleasantness

chpt_mdb_os.fm Page 197 Monday, January 30, 2006 1:11 PM

198 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

would ensue. The lightest-weight way to communicate with the controller is to post
a soft interrupt, the implementation of which is essentially the setting of a bit in
the kernel’s cpu_t structure. When the world has resumed, normal Normal inter-
rupt processing will encounter this bit and will call the soft interrupt handler reg-
istered by the controller. That handler bangs on a semaphore, which triggers the
controller’s WR processing. Note that these problems apply only for communica-
tions from the debugger to the controller. The debugger can simply poll for mes-
sages sent in the opposite direction. Since the debugger is activated relatively
infrequently, the occasional check of a message-waiting bit doesn’t impose a bur-
den. When users request a debugger activation, the last thing on their mind is
whether the debugger is wasting a few cycles to check for messages.
libdl supplies a synchronous loading and unloading interface to mdb, thus con-

siderably simplifying its management of dmods. kmdb has no such luxury. As the
reader might surmise from the preceding discussion, kmdb’s loading and unload-
ing of dmods is decidedly asynchronous. Every attempt is made to preserve the
user’s illusion of a blocking load, but the asynchronous nature occasionally pokes
its head into the open. A breakpoint encountered before the completion of the load,
for example, causes an early debugger reentry. The user is told that a load or an
unload is still pending and is told how to allow it to complete.

3.7.4.4 libdl Wrapper

MDB’s dmod management code uses the libdl interfaces for manipulating dmods.
dlopen() loads modules, dlclose() unloads them, and dlsym() looks up sym-
bols. The debugger implements its own versions of these functions (using the same
function signatures) to support the illusion of libdl. Underneath, the debugger’s
symbol table facilities are retargeted to implement dlsym()’s searches of dmod
symbol tables.

3.7.4.5 Terminal I/O

To implement terminal I/O handling, we need three things: access to the terminal
type, the ability to manipulate that terminal, and routines for actually sending I/O
to and from that terminal. The second of these can be further subdivided into the
retrieval of terminal characteristics and the use of that knowledge to manipulate
the terminal. mdb implements the most difficult of these—the routines that actu-
ally manipulate the terminal according to the gathered characteristics. mdb han-
dles the tracking of cursor position, in-line editing, and the implementation of a
parser and knows how to use the individual terminal attributes (echo this to make
the cursor move right, echo that to enable bold, etc.) to accomplish those tasks.

Left to mdb and kmdb are terminal type determination, attribute retrieval, and
I/O to the terminal itself. For mdb, this is relatively straightforward. The terminal

chpt_mdb_os.fm Page 198 Monday, January 30, 2006 1:11 PM

3.7 kmdb IMPLEMENTATION 199

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

type can be gathered from the environment, attributes can be retrieved from the
terminfo database with libcurses, and I/O accomplished with stdin, stdout, and
stderr.
kmdb, as is its wont, has a more difficult time of things. There is no environ-

ment from which to gather the current terminal type. There’s no easy access to the
terminfo database. Completing the trifecta, the I/O methods vary with the type of
platform, progress of the boot process, and phase of the moon. As a bonus, kmdb’s
termio implementation handles interrupt (^C) processing. We discuss each in turn.
While the preceding sections had happy endings, in that pleasing solutions were
found for the enumerated problems, the reader is warned that there are no happy
endings in terminal management. Tales of wading through terminal types, to say
nothing of the terminfo/termcap databases, are generally suitable only for fright-
ening small children and always end in woe and the gnashing of teeth.

3.7.4.6 Retrieving the Terminal Type

At first glance, gaining access to the terminal type would seem straightforward.
Sadly, no. kmdb can be loaded at boot or at runtime. It can be used on a locally
attached console/framebuffer, or it can be used through a serial console. If loaded
at runtime, the invocation could be made from a console login, or it could be made
from an rsh (or telnet or …) session. Boot-loaded kmdb on a serial console is the
worst because we have no information regarding the type of terminal attached to
the other end of the serial connection. We end up assuming the worst, which is a
80 × 24 VT100. Boot-loaded kmdb on a machine with a locally attached console or
framebuffer is easier because we know the terminal type and terminal dimensions
for SPARC and x86 consoles. Also easy is a runtime-loaded kmdb from a console
login. Assuming that the user set the terminal type correctly, we can use the value
of the TERM environment variable. But unfortunately we can’t trust $TERM to be
set correctly, so we ignore $TERM if the console is locally attached. We end up with
a pile of heuristics, which generally come up with the right answer. If they don’t,
they can always be overridden.

3.7.4.7 Terminal Attributes

After considering the mess that is access to $TERM, retrieval of terminfo data is
almost trivial. We don’t want to compile in a copy of the terminfo database, and we
can’t rely on the ability to gain access to it while the debugger is running. We com-
promise by hard-coding a selection of terminal types into the debugger. The build
process extracts the attributes for each selected terminal from the terminfo data-
base and compiles them into the debugger. Terminal type selection in kmdb is thus
limited to the types selected during the build. It turns out, though, that the vast
majority of common terminal types can be covered by a set of 15 terminal types.

chpt_mdb_os.fm Page 199 Monday, January 30, 2006 1:11 PM

200 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.7.4.8 Console I/O

Access to the terminal entails the reading of input, the writing of output, and the
retrieval of hardware parameters (terminal size and so forth), generally through
an ioctl-based interface. MDB’s modular I/O subsystem makes our job somewhat
easier. Each I/O module provides an ops vector, exposing interfaces for reading,
writing, ioctls, and so forth. kmdb has its own I/O module, called promio. promio
acts as a front end for promif, which we discuss in a moment. For the most part,
promio is a pass-through, with the exception of the ioctl function. promio inter-
prets the ioctls sent from termio and invokes the appropriate promif functions to
gather the necessary information. In addition to the aforementioned terminal size
ioctl (TIOCGWINSZ), promio’s ioctl handler is prepared to deal with requests to
get (TCGETS) and set (TCSETSW) hardware parameters. The parameters of inter-
est to kmdb are largely concerned with echoing and newlines.
promif interfaces the debugger with the system’s OpenBoot PROM (OBP).

While x86 systems don’t have PROMs, Solaris (and thus kmdb) try very hard to
pretend that they do. For the most part, this means functions called
prom_something() are named to mimic their SPARC counterparts. Whereas the
SPARC versions jump into OBP, the x86 versions do whatever is necessary to
implement the same functionality without a PROM. promif exposes two classes of
interface: those that deal with console (terminal) I/O, and those that are merely
wrappers around PROM routines. We cover the former group here.

Both SPARC and x86 systems get help from the boot loader (OBP on SPARC) for
console I/O during the initial stages of boot. SPARC systems without USB key-
boards can use OBP for console I/O even after boot. x86 systems and SPARC sys-
tems with USB keyboards use a kernel subsystem known as polled I/O. Exposed to
kmdb through the KDI, polled I/O is a method for interacting directly with the I/O
hardware, be it a serial driver, the USB stack, or something completely different
without blocking. Rather than waiting for interrupts, as can be done while the
world is turning, the polled I/O subsystem is designed to poll I/O devices until
input is available or output has been sent. The bottom line is that the method used
for console I/O changes during the boot process. The portion of promif dedicated to
console I/O hides this complexity from consumers, exposing only routines for read-
ing and writing bytes. Consumers need not concern themselves with where those
bytes come from or go to.

3.7.4.9 Interrupt (^C) Management

Given that kmdb console I/O is synchronous, there is no easy way for an interrupt
(^C) from a user to get to the core debugger. In userland, the kernel detects inter-
rupts asynchronously, generates a signal, and inflicts it upon the process. There is
no parallel in kmdb. The debugger doesn’t know about pending interrupts until it

chpt_mdb_os.fm Page 200 Monday, January 30, 2006 1:11 PM

3.7 kmdb IMPLEMENTATION 201

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

reads the interrupt character from the keyboard. With a simplistic I/O implemen-
tation, reading only when we need to, a user would never be able to interrupt any-
thing.
promif works around this limitation by implementing a read-ahead buffer.

That buffer is drained when the debugger needs input from the user. It is filled
whenever input is available by a nonblocking reader. Attempts are made to fill the
buffer whenever input is requested, when data is to be output, or when an attempt
is made to read or write the kernel’s address space. If an interrupt character is dis-
covered during a buffer fill, control passes to the interrupt-handling routine, which
halts the command that was executing. Debugger commands that aren’t con-
stantly writing to the console, reading from the kernel, or writing to the kernel are
very rare (and probably of questionable utility). In practice, this means that a
buffer fill attempt will be made soon after the user presses ^C. As a future
enhancement, we could, barring the implementation of an asynchronous inter-
rupt-delivery mechanism, expand the number of fill points. In practice, though,
this doesn’t seem like it would be necessary.

3.7.5 Conclusion

A significant portion of the design and implementation of kmdb was spent filling in
the gaping holes left when mdb was separated from its supporting libraries. Cer-
tainly, we didn’t realize how much is provided by those supporting libraries until
we attempted to take them away. These gaps were filled by replacement sub-
systems whose operations were complicated by the restrictive environment in
which kmdb operates. The balance of kmdb’s implementation was spent in the
development of the KDI functions and in the implementation of the DPI, more on
which below. The DPI provides the low-level code that allows the remainder of
kmdb to be largely architecture neutral.

3.7.6 Remaining Components

In this section, we cover some remaining discussion items related to the implemen-
tation of kmdb.

3.7.6.1 The Debugger/PROM Interface (DPI)

The DPI has a somewhat sordid history, the twists and turns of which have influ-
enced the way it appears today.
kadb on x86, having no PROM, did everything itself. The SPARC version on the

other hand, depended on a great many services provided by OBP. OBP provided

chpt_mdb_os.fm Page 201 Monday, January 30, 2006 1:11 PM

202 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

trap handling for the debugger. It also took care of debugger entry, the saving of a
portion of processor state, among other things.
kmdb was initially planned to be released in conjunction with an enhanced OBP.

This new OBP would accord more sophisticated debugging facilities, thus freeing
kmdb from having to deal with many low-level, hardware-specific details. For
example, the new OBP would manage software breakpoints itself. It would cap-
ture and park processors during debugger execution. It would also manage watch-
points.

Recognizing that not all systems would have this new OBP, we initially
designed kmdb with a pluggable interface that would allow for its use on systems
with both types of OBP. That interface is called the Debugger/PROM interface, or
DPI. SPARC would have one module for the old-style OBP interface, which we
called the kadb-style interface (or kaif). SPARC would have a second module for
the new-style OBP interface, the name for which has been buried in the sands of
time. The debugger would choose between the two modules according to an assess-
ment of OBP features. x86 systems would have a single module, also called kaif.

Some time into the implementation of kmdb (well after the terms DPI and kaif
had cemented themselves throughout the source code), the plans for the new-style
OBP were dropped. This turned out to be for the best, the reasons for which are
beyond the scope of this document. As a result, modern-day kmdb has one module
for each architecture. The intervening layer, the DPI, is not strictly necessary. It
may not have been invented had it not been for our earlier plans to accommodate
multiple styles of OBP interaction. It remains, though, and serves as a useful
repository for some functionality common to the two kaif implementations.

The bulk of the kaif module is devoted to the performance of the following five
tasks:

1. Coordination of debugger entry

2. Manipulation of processor state

3. Source analysis for execution control

4. Management of breakpoints and watchpoints

5. Trap handling

3.7.6.2 Coordination of Debugger Entry

kmdb is single threaded and establishes a master-slave relationship between the
CPUs on the machine. The first CPU to encounter an event that triggers debugger
entry, such as a breakpoint, watchpoint, or deliberate entry, becomes the master.
The master then cross-traps the remaining CPUs, causing them to enter the
debugger as slaves. Slaves spin in busy loops until the world is resumed or until

chpt_mdb_os.fm Page 202 Monday, January 30, 2006 1:11 PM

3.7 kmdb IMPLEMENTATION 203

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

one of them switches places with the master. If multiple CPUs encounter debug-
ger entry events at the same time and thus race for debugger entry, only one will
win. The first to grab the master lock wins, with the remainder becoming slaves.

3.7.6.3 Manipulation of Processor State

When processors enter the debugger, they save their register state into per-proces-
sor save areas. This state is then exposed to the user of the debugger. The kaif
module coordinates the saving of this state and also implements the search rou-
tines that allow for its retrieval.

3.7.6.4 Source Analysis for Execution Control

MDB supports a number of execution control primitives. In addition to break-
points and watchpoints, which we discuss^ shortly, it provides for single-step,
step-over, step-out, and continue. Single-step halts execution at the next instruc-
tion. Step-over is similar, except that it does not step into subroutines. That is, it
steps to the next instruction in the current routine. Step-out steps to the next
instruction in the calling routine. Continue resumes system execution on all pro-
cessors (single-step resumes execution only on the processor being stepped).

Single-step is implemented directly by the kaif module. On x86, this entails
the setting of EFLAGS.TF. On SPARC, we set breakpoints at the next possible exe-
cution points. If the next instruction is a branch, for example, we may have to set
two breakpoints to cover both possible results of the branch.

Step-over and step are implemented independently of single-step. For step-over,
MDB calls into the target, which calls into the DPI and kaif, asking whether the
next instruction requires special processing. If the next instruction is a call, kaif
returns with the address of the instruction after the call. MDB places a break-
point at that location and uses continue to “step” over the call. If the next instruc-
tion is not a call, the kaif module so indicates, and MDB uses normal single-step.
When the user requests a step-out, MDB requests, through the target and the DPI,
that the kaif module locate the next instruction in the calling function.

Whereas single-step releases a single processor to execute a single instruction,
continue releases all processors and fully resumes the world. Continue also posts
the soft interrupt to the controller if necessary, in support of debugger module
management.

3.7.6.5 Management of Breakpoints and Watchpoints

Both SPARC and x86 rely on software breakpoints. That is, a specific instruction
(int $3 on x86, and ta 0x7e on SPARC) is written at a given location. When con-
trol reaches that location, the debugger is entered. Breakpoints are activated by

chpt_mdb_os.fm Page 203 Monday, January 30, 2006 1:11 PM

204 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

installation of one of these instructions and are deactivated by restoration of the
original instruction.

Watchpoints are implemented by hardware on both platforms. Space on proces-
sors being at a premium and watchpoints being relatively rarely used (though
oh-so-helpful), processors don’t provide many of them and impose restrictions on
the ones they do. SPARC, for example, has two watchpoints—one physical and one
virtual. SPARC watchpoint sizes are restricted to 8 bytes or any non-zero power of
256. x86 implements four watchpoints, even allowing watchpoints on individual
I/O port numbers, but imposes restrictions on their size and access type. Hard-
ware activates watchpoints by writing to the appropriate hardware registers and
deactivates them by clearing those registers. The kaif ensures that the target
activates only the supported number of watchpoints. It also checks to make sure
that the watchpoints requested meet the hardware limitations. No attempt is
made to synthesize more flexible watchpoints.

3.7.6.6 Trap Handling

On SPARC, kmdb has drastically reduced its dependency upon OBP as the project
has progressed. This is somewhat ironic in light of our earlier attempts to increase
that dependency. Whereas kadb allowed OBP to handle traps and to coordinate
entrance into the debugger, kmdb has its own trap table, handles its own debugger
entry, and even handles its own MMU misses.
kmdb also installs its own trap table on x86, although the trap table there is

called an IDT. Not having ever had an OBP upon which to become dependent,
Solaris x86 in-situ debuggers have always handled their own traps and debugger
entry.

When kmdb gains control of the machine, it switches to its trap table. When the
world resumes, the trap table used prior to debugger entry is restored. While kmdb
is running, traps that are immediately resolvable by the handler (MMU misses to
valid addresses, for example) are handled and control is returned to the execution
stream that caused the trap. Traps that are not resolvable by the handler cause a
debugger reentry. In some cases, such as when an access is being made to the ker-
nel’s address space, the debugger takes precautions against traps resulting from
those accesses. Reentry caused by such a trap would cause control to be trans-
ferred back to the code that initiated the access, with a return code set indicating
that an error occurred. Unexpected traps are signs that something has gone wrong
and are grounds for entry into a debugger fault state. The stack trace leading up to
the access is displayed, and the user is offered the option to induce a crash dump.

chpt_mdb_os.fm Page 204 Monday, January 30, 2006 1:11 PM

3.8 KERNEL BUILT-IN MDB DCMDS 205

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.8 Kernel Built-in MDB dcmds

 dcmd $< - replace input with macro
 dcmd $<< - source macro
 dcmd $> - log session to a file
 dcmd $? - print status and registers
 dcmd $C - print stack backtrace
 dcmd $G - enable/disable C++ demangling support
 dcmd $M - list macro aliases
 dcmd $P - set debugger prompt string
 dcmd $Q - quit debugger
 dcmd $V - get/set disassembly mode
 dcmd $W - reopen target in write mode
 dcmd $X - print floating-point registers
 dcmd $Y - print floating- point registers
 dcmd $b - list traced software events
 dcmd $c - print stack backtrace
 dcmd $d - get/set default output radix
 dcmd $e - print listing of global symbols
 dcmd $f - print listing of source files
 dcmd $g - get/set C++ demangling options
 dcmd $i - print signals that are ignored
 dcmd $l - print the representative thread's lwp id
 dcmd $m - print address space mappings
 dcmd $p - change debugger target context
 dcmd $q - quit debugger
 dcmd $r - print general-purpose registers
 dcmd $s - get/set symbol matching distance
 dcmd $v - print non-zero variables
 dcmd $w - get/set output page width
 dcmd $x - print floating-point registers
 dcmd $y - print floating-point registers
 dcmd / - format data from virtual as
 dcmd :A - attach to process or core file
 dcmd :R - release the previously attached process
 dcmd :a - set read access watchpoint
 dcmd :b - set breakpoint at the specified address
 dcmd :c - continue target execution
 dcmd :d - delete traced software events
 dcmd :e - step target over next instruction
 dcmd :i - ignore signal (delete all matching events)
 dcmd :k - forcibly kill and release target
 dcmd :p - set execute access watchpoint
 dcmd :r - run a new target process
 dcmd :s - single-step target to next instruction
 dcmd :t - stop on delivery of the specified signals
 dcmd :u - step target out of current function
 dcmd :w - set write access watchpoint
 dcmd :z - delete all traced software events
 dcmd = - format immediate value
 dcmd > - assign variable
 dcmd ? - format data from object file
 dcmd @ - format data from physical as
 dcmd \ - format data from physical as
 dcmd array - print each array element's address
 dcmd attach - attach to process or corefile
 dcmd bp - set breakpoint at the specified addresses or symbols
 dcmd cat - concatenate and display files
 dcmd cont - continue target execution
 dcmd context - change debugger target context
 dcmd dcmds - list available debugger commands
 dcmd delete - delete traced software events
 dcmd dem - demangle C++ symbol names
 dcmd dis - disassemble near addr

chpt_mdb_os.fm Page 205 Monday, January 30, 2006 1:11 PM

206 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

 dcmd disasms - list available disassemblers
 dcmd dismode - get/set disassembly mode
 dcmd dmods - list loaded debugger modules
 dcmd dump - dump memory from specified address
 dcmd echo - echo arguments
 dcmd enum - print an enumeration
 dcmd eval - evaluate the specified command
 dcmd events - list traced software events
 dcmd evset - set software event specifier attributes
 dcmd files - print listing of source files
 dcmd fltbp - stop on machine fault
 dcmd formats - list format specifiers
 dcmd fpregs - print floating point registers
 dcmd grep - print dot if expression is true
 dcmd head - limit number of elements in pipe
 dcmd help - list commands/command help
 dcmd kill - forcibly kill and release target
 dcmd list - walk list using member as link pointer
 dcmd load - load debugger module
 dcmd log - log session to a file
 dcmd map - print dot after evaluating expression
 dcmd mappings - print address space mappings
 dcmd next - step target over next instruction
 dcmd nm - print symbols
 dcmd nmadd - add name to private symbol table
 dcmd nmdel - remove name from private symbol table
 dcmd objects - print load objects information
 dcmd offsetof - print the offset of a given struct or union member
 dcmd print - print the contents of a data structure
 dcmd quit - quit debugger
 dcmd regs - print general-purpose registers
 dcmd release - release the previously attached process
 dcmd run - run a new target process
 dcmd set - get/set debugger properties
 dcmd showrev - print version information
 dcmd sigbp - stop on delivery of the specified signals
 dcmd sizeof - print the size of a type
 dcmd stack - print stack backtrace
 dcmd stackregs - print stack backtrace and registers
 dcmd status - print summary of current target
 dcmd step - single-step target to next instruction
 dcmd sysbp - stop on entry or exit from system call
 dcmd term - display current terminal type
 dcmd typeset - set variable attributes
 dcmd unload - unload debugger module
 dcmd unset - unset variables
 dcmd vars - print listing of variables
 dcmd version - print debugger version string
 dcmd vtop - print physical mapping of virtual address
 dcmd walk - walk data structure
 dcmd walkers - list available walkers
 dcmd whence - show source of walk or dcmd
 dcmd which - show source of walk or dcmd
 dcmd wp - set a watchpoint at the specified address
 dcmd xdata - print list of external data buffers

krtld
 dcmd ctfinfo - list module CTF information
 dcmd modctl - list modctl structures
 dcmd modhdrs - given modctl, dump module ehdr and shdrs
 dcmd modinfo - list module information
 walk modctl - list modctl structures

chpt_mdb_os.fm Page 206 Monday, January 30, 2006 1:11 PM

3.8 KERNEL BUILT-IN MDB DCMDS 207

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

mdb_kvm
 ctor 0x8076f20 - target constructor
 dcmd $? - print status and registers
 dcmd $C - print stack backtrace
 dcmd $c - print stack backtrace
 dcmd $r - print general-purpose registers
 dcmd regs - print general-purpose registers
 dcmd stack - print stack backtrace
 dcmd stackregs - print stack backtrace and registers
 dcmd status - print summary of current target

chpt_mdb_os.fm Page 207 Monday, January 30, 2006 1:11 PM

208 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.9 GDB-to-MDB Reference

Table 3-15 GDB-to-MDB Migration

GDB MDB Description

Starting Up

gdb program mdb path mdb -p
pid

Start debugging a command or running
process. GDB will treat numeric arguments
as pids, while MDB explicitly requires the
-p option

gdb program
core

mdb [program]
core

Debug a corefile associated with program.
For MDB, the program is optional and is
generally unnecessary given the corefile
enhancements made during Solaris 10.

Exiting

quit ::quit Both programs also exit on Ctrl-D.

Getting Help

help

help command ::help ::help
dcmd ::dcmds
::walkers

List all the available walkers or dcmds, as
well as get help on a specific dcmd (MDB).
Another useful trick is ::dmods -l mod-
ule, which lists walkers and dcmds pro-
vided by a specific module.

Running
Programs

run arglist ::run arglist Run the program with the given argu-
ments. If the target is currently running or
is a corefile, MDB will restart the program if
possible.

kill ::kill Forcibly kill and release target.

show env ::getenv Display current environment.

set env var
string

::setenv
var=string

Set an environment variable.

get env var ::getenv var Get a specific environment variable.

chpt_mdb_os.fm Page 208 Monday, January 30, 2006 1:11 PM

3.9 GDB-TO-MDB REFERENCE 209

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

Shell
Commands

shell cmd ! cmd Execute the given shell command.

Breakpoints
and
Watchpoints

break func

break *addr addr::bp Set a breakpoint at the given address or
function.

break
file:line

— Break at the given line of the file. MDB
does not support source-level debugging.

break ... if
expr

— Set a conditional breakpoint. MDB doesn’t
support conditional breakpoints, though
you can get a close approximation with the
-c option (though its complicated enough
to warrant its own post).

watch expr addr::wp -rwx
[-L size]

Set a watchpoint on the given region of
memory.

info break

info watch ::events Display active watchpoints and break-
points. MDB shows you signal events as
well.

delete [n] ::delete n Delete the given breakpoint or watch-
points.

Program Stack

backtrace n ::stack $C Display stack backtrace for the current
thread.

— thread::find-
stack -v

Display a stack for a given thread. In the
kernel, thread is the address of kthread_t.
In userland, it’s the thread identifier.

info ... — Display information about the current
frame. MDB doesn’t support the debug-
ging data necessary to maintain the frame
abstraction.

Table 3-15 GDB-to-MDB Migration

GDB MDB Description

chpt_mdb_os.fm Page 209 Monday, January 30, 2006 1:11 PM

210 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

Execution
Control

continue

c :c Continue target.

stepi

si ::step] Step to the next machine instruction. MDB
does not support stepping by source lines.

nexti ni ::step over [Step over the next machine instruction,
skipping any function calls.

finish ::step out Continue until returning from the current
frame.

jump *address address>reg Jump to the given location. In MDB, reg
depends on your platform. For SPARC it’s
pc, for i386 its eip, and for amd64 it’s rip.

Display

print expr addr::print
expr

Print the given expression. In GDB you can
specify variable names as well as addresses.
For MDB, you give a particular address and
then specify the type to display (which can
include dereferencing of members, etc.).

print /f addr/f Print data in a precise format. See ::for-
mats for a list of MDB formats.

disassem addr addr::dis Disassemble text at the given address or
the current PC if no address is specified.

Table 3-15 GDB-to-MDB Migration

GDB MDB Description

chpt_mdb_os.fm Page 210 Monday, January 30, 2006 1:11 PM

3.10 DCMD AND WALKER REFERENCE 211

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.10 dcmd and Walker Reference

3.10.1 Commands
 pipeline [!word...] [;] basic
 expr pipeline [!word...] [;] set dot, run once
 expr, expr pipeline [!word...] [;] set dot, repeat
 ,expr pipeline [!word...] [;] repeat
 expr [!word...] [;] set dot, last pipeline, run once
 ,expr [!word...] [;] last pipeline, repeat
 expr, expr [!word...] [;] set dot, last pipeline, repeat
 !word... [;] shell escape

3.10.2 Comments
 // Comment to end of line

3.10.3 Expressions
 Arithmetic
 integer 0i binary, 0o octal, 0t decimal, 0x hex
 0t[0-9]+\.[0-9]+ IEEE floating point
 'cccccccc' Little-endian character const
 <identifier variable lookup
 identifier symbol lookup
 (expr) the value of expr
 . the value of dot
 & last dot used by dcmd
 + dot+increment
 ^ dot-increment
 increment is effected by the last formatting dcmd.

 Unary Ops
 #expr logical NOT
 ~expr bitwise NOT
 -expr integer negation
 %expr object file pointer dereference
 %/[csil]/expr object file typed dereference
 %/[1248]/expr object file sized dereference
 *expr virtual address pointer dereference
 */[csil]/expr virtual address typed dereference
 */[1248]/expr virtual address sized dereference

 [csil] is char-, short-, int-, or long-sized

 Binary Ops
 expr * expr integer multiplication
 expr % expr integer division
 left # right left rounded up to next right multiple
 expr + expr integer addition
 expr - expr integer subtraction
 expr << expr bitwise left shift
 expr >> expr bitwise right shift (logical)
 expr == expr logical equality
 expr != expr logical inequality
 expr & expr bitwise AND
 expr ^ expr bitwise XOR
 expr | expr bitwise OR

chpt_mdb_os.fm Page 211 Monday, January 30, 2006 1:11 PM

212 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.10.4 Symbols
 kernel {module`}{file`}symbol
 proc {LM[0-9]+`}{library`}{file`}symbol

3.10.5 dcmds
 ::{module`}d
 expr>var write the value of expr into var

3.10.6 Variables
 0 Most recent value [/\?=]ed.
 9 Most recent count for $< dcmd
 b base VA of the data section
 d size of the data
 e VA of entry point
 hits Event callback match count
 m magic number of primary object file, or zero
 t size of text section
 thread TID of current representative thread.

 registers are exported as variables (g0, g1, ...)

3.10.7 Read Formats
 / format VA from .
 \ format PA from .
 ? format primary object file, using VA from .
 = format value of .

 B (1) hex + dot += increment
 C (1) char (C-encoded) - dot -= increment
 V (1) unsigned ^ (var) dot -= incr*count
 b (1) octal N newline
 c (1) char (raw) n newline
 d (2) signed T tab
 h (2) hex, swap endianness r whitespace
 o (2) octal t tab
 q (2) signed octal a dot as symbol+offset
 u (2) decimal I (var) address and instruction
 D (4) signed i (var) instruction
 H (4) hex, swap endianness S (var) string (C-encoded)
 O (4) octal s (var) string (raw)
 Q (4) signed octal E (8) unsigned
 U (4) unsigned F (8) double
 X (4) hex G (8) octal
 Y (4) decoded time32_t J (8) hex
 f (4) float R (8) binary
 K (4|8) hex uintptr_t e (8) signed
 P (4|8) symbol g (8) signed octal
 p (4|8) symbol y (8) decoded time64_t

chpt_mdb_os.fm Page 212 Monday, January 30, 2006 1:11 PM

3.10 DCMD AND WALKER REFERENCE 213

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.10.8 Write Formats
 [/\?][vwWZ] value... value is immediate or $[expr]

 / write virtual addresses
 \ write physical addresses
 ? write object file

 v (1) write low byte of each value, starting at dot
 w (2) write low 2 bytes of each value, starting at dot
 W (4) write low 4 bytes of each value, starting at dot
 Z (8) write all 8 bytes of each value, starting at dot

3.10.9 Search Formats
 [/\?][lLM] value [mask] value and mask are immediate or $[expr]

 / search virtual addresses
 \ search physical addresses
 ? search object file

 l (2) search for 2-byte value, optionally masked
 L (4) search for 4-byte value, optionally masked
 M (8) search for 8-byte value, optionally masked

3.10.10 General dcmds
 ::help dcmd
 Give help text for 'dcmd.'
 ::dmods -l [module...]
 List dcmds and walkers grouped by the dmod which provides them.
 ::log -e file
 Log session to file.
 ::quit / $q
 Quit.

chpt_mdb_os.fm Page 213 Monday, January 30, 2006 1:11 PM

214 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.10.11 Target-Related dcmds
 ::status
 Print summary of current target.
 $r / ::regs
 Display current register values for target.
 $c / ::stack / $C
 Print current stack trace ($C: with frame pointers).
 addr[,b]::dump [-g sz] [-e]
 Dump at least b bytes starting at address addr. -g sets
 the group size -- for 64-bit debugging, '-g 8' is useful.
 addr::dis
 Disassemble text, starting around addr.

 [addr] :b
 [addr] ::bp [+/-dDestT] [-c cmd] [-n count] sym ... addr [cmd ...]
 Set breakpoint at addr.
 $b
 ::events [-av]
 $b [-av]
 Display all the breakpoints.
 addr ::delete [id | all]
 addr :d [id | all]
 Delete a breakpoint at addr.
 :z
 Deletes all breakpoints
 ::cont [SIG]
 :c [SIG]
 Continue the target program, and wait for it to terminate
 id ::evset [+/-dDestT] [-c cmd] [-n count] id ...
 Modify the properties of one or more software event specifiers.
 ::next [SIG]
 :e [SIG]
 Step the target program one instruction, but step over subroutine calls.
 ::step [branch | over | out] [SIG]
 :s SIG
 :u SIG
 Step the target program one instruction.
 addr [,len]::wp [+/-dDestT] [-rwx] [-ip] [-c cmd] [-n count]
 addr [,len]:a [cmd...]
 addr [,len]:p [cmd...]
 addr [,len]:w [cmd...]
 Set a watchpoint at the specified address.

3.10.12 CTF-Related
 addr::print [type] [field...]
 Use CTF info to print out a full structure, or
 particular fields thereof.
 ::sizeof type / ::offsetof type field / ::enum enumname
 Get information about a type
 addr::array [type count] [var]
 Walk the count elements of an array of type 'type'
 starting at address.
 addr::list type field [var]
 Walk a circular or NULL-terminated list of type 'type',
 which starts at addr and uses 'field' as its linkage.
 ::typegraph / addr::whattype / addr::istype type / addr::notype
 bmc's type inference engine -- works on non-debug

chpt_mdb_os.fm Page 214 Monday, January 30, 2006 1:11 PM

3.10 DCMD AND WALKER REFERENCE 215

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.10.13 Kernel: proc-Related
 0tpid::pid2proc
 Convert the process ID 'pid' (in decimal) into a proc_t ptr.
 as::as2proc
 Convert a 'struct as' pointer to its associated proc_t ptr.
 vn::whereopen
 Find all processes with a particular vnode open.
 ::pgrep pattern
 Print out proc_t ptrs which match pattern.
 [procp]::ps
 Process table, or (with procp) the line for particular proc_t.
 ::ptree
 Print out a ptree(1)-like indented process tree.
 procp::pfiles
 Print out information on a process' file descriptors.

 [procp]::walk proc
 walks all processes, or the tree rooted at procp

3.10.14 Kernel: Thread-Related
 threadp::findstack
 Print out a stack trace (with frame pointers) for threadp.
 [threadp]::thread
 Give summary information about all threads or a particular thread.

 [procp]::walk thread
 Walk all threads, or all threads in a process (with procp).

3.10.15 Kernel: Synchronization-Related
 [sobj]::wchaninfo [-v]
 Get information on blocked-on condition variables. With
 sobj, info about that wchan. With -v, lists all threads
 blocked on the wchan.
 sobj::rwlock
 Dump out a rwlock, including detailed blocking information.

 sobj::walk blocked
 Walk all threads blocked on sobj, a synchronization object.

3.10.16 Kernel: CPU-Related
 ::cpuinfo [-v]
 Give information about CPUs on the system and what they
 are doing. With '-v', show threads on the run queues.
 ::cpupart
 Give information about CPU partitions (psrset(1m)s).
 addr::cpuset
 Print out a cpuset as a list of included CPUs.
 [cpuid]::ttrace
 Dump out traptrace records, which are generated in DEBUG
 kernels. These include all traps and various other events of
 interest.

 ::walk cpu
 Walk all cpu_ts on the system.

chpt_mdb_os.fm Page 215 Monday, January 30, 2006 1:11 PM

216 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.10.17 Kernel: Memory-Related
 ::memstat
 Display memory usage summary.
 pattern::kgrep [-d dist|-m mask|-M invmask]
 Search the kernel heap for pointers equal to pattern.
 addr::whatis [-b]
 Try to identify what a given kernel address is. With
 '-b', give bufctl address for the buffer (see
 $<bufctl_audit, below).

3.10.18 Kernel: kmem-Related
 ::kmastat
 Give statistics on the kmem caches and vmem arenas in the system
 ::kmem_cache
 Information about the kmem caches on the system
 [cachep]::kmem_verify
 Validate all buffers in the system, checking for corruption.
 With cachep, shows the details of a particular cache.
 threadp::allocdby / threadp::freedby
 Show buffers that were last allocated/freed by a particular
 thread, and are still in that state.
 ::kmalog [fail | slab]
 Dump out the transaction log, showing recent kmem activity.
 With fail/slab, outputs records of allocation failures and
 slab creations (which are always enabled)
 ::findleaks [-dvf]
 Find memory leaks, coalesced by stack trace.
 ::bufctl [-v]
 Print a summary line for a bufctl -- can also filter them
 -v dumps out a kmem_bufctl_audit_t.

 ::walk cachename
 Print out all allocated buffers in the cache named cachename.

 [cp]::walk kmem/[cp]::walk freemem/[cp]::walk bufctl/[cp]::walk freectl
 Walk {allocated,freed}{buffers,bufctls} for all caches,
 or the particular kmem_cache_t cp.

chpt_mdb_os.fm Page 216 Monday, January 30, 2006 1:11 PM

3.10 DCMD AND WALKER REFERENCE 217

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

3.10.19 Process: Target-Related
 flt ::fltbp [+/-dDestT] [-c cmd] [-n count] flt ...
 Trace the specified machine faults.
 signal :i
 Ignore the specified signal and allow it to be delivered
 transparently to the target.
 $i
 Display the list of signals that are ignored by the debugger and
 will be handled directly by the target.
 $l
 Print the LWPID of the representative thread if the target is a user process.

 $L
 Print the LWPIDs of each LWP in the target if the target is a user
 process.
 ::kill
 :k
 Forcibly terminate the target if it is a live user process.
 ::run [args ...]
 :r [args ...]
 Start a new target program running with the specified arguments and
 attach to it.
 [signal] ::sigbp [+/-dDestT] [-c cmd] [-n count] SIG ...
 [signal] :t [+/-dDestT] [-c cmd] [-n count] SIG ...
 Trace delivery of the specified signals.
 ::step [branch | over | out] [SIG]
 :s SIG
 :u SIG
 Step the target program one instruction.
 [syscall] ::sysbp [+/-dDestT] [-io] [-c cmd] [-n count] syscall ...
 Trace entry to or exit from the specified system calls.

3.10.20 Kernel: kmdb-Related
 ::help dcmd
 gives help text for 'dcmd'
 ::dmods -l [module...]
 Lists dcmds and walkers grouped by the dmod which provides them

 ::status
 Print summary of current target.
 $r
 ::regs
 Display current register values for target.
 $c
 ::stack
 $C
 Print current stack trace ($C: with frame pointers).
 addr[,b]
 ::dump [-g sz] [-e]
 Dump at least b bytes starting at address addr. -g sets the group size;
 for 64-bit debugging, -g 8 is useful.
 addr::dis
 Disassemble text, starting around addr.
 [addr] :b
 [addr] ::bp [+/-dDestT] [-n count] sym ... addr
 Set breakpoint at addr.
 $b
 Display all the breakpoints.
 ::branches
 Display the last branches taken by the CPU. (x86 only)

chpt_mdb_os.fm Page 217 Monday, January 30, 2006 1:11 PM

218 Chapter 3 � The Modular Debugger

D
R

A
FT

 F
R

O
M

 S
ol

ar
is

 I
nt

er
na

ls
 2

nd
 E

di
tio

n:
 S

ee
 s

ol
ar

is
in

te
rn

al
s.

co
m

 addr ::delete [id | all]
 addr :d [id | all]
 Delete a breakpoint at addr.
 :z
 Delete all breakpoints.
 function ::call [arg [arg ...]]
 Call the specified function, using the specified arguments.
 [cpuid] ::cpuregs [-c cpuid]
 Display the current general-purpose register set.
 [cpuid] ::cpustack [-c cpuid]
 Print a C stack backtrace for the specified CPU.
 ::cont
 :c
 Continue the target program.
 $M
 List the macro files that are cached by kmdb for use with the $< dcmd
 ::next
 :e
 Step the target program one instruction, but step over subroutine calls.
 ::step [branch | over | out]
 Step the target program one instruction.
 $<systemdump
 Initiate a panic/dump.
 ::quit [-u]
 $q
 Cause the debugger to exit. When the -u option is used,
 the system is resumed and the debugger is unloaded.
 addr [,len]::wp [+/-dDestT] [-rwx] [-ip] [-n count]

 addr [,len]:a [cmd ...]
 addr [,len]:p [cmd ...]
 addr [,len]:w [cmd ...]
 Set a watchpoint at the specified address.

chpt_mdb_os.fm Page 218 Monday, January 30, 2006 1:11 PM

