
CrossBow: Solaris Network Virtualization &
Resource Control

1. CrossBow (the name):
It makes some sense to explain the relatonship between the technology (Network Virtualization and
Resource Control) and the project name (CrossBow). It is believed that Crossbow was invented in
341B.C. in China but the use became prevalent in middle ages specially when steel was used to
make the weapon. More powerful Crossbows could penetrate the armour at 200 yards and gave the
typical horse mounted knights real nightmares. But the biggest differentiator was the simplicity in
their use. Crossbow could be used effectively after a week of training, while a comparable single-
shot skill with a longbow could take years of practice.

Similary, if you take a look at the existing QOS mechanisms on a end host, they are very difficult to
use and normally take a very skilled administrator to use effectively. Even then, the existing QOS
mechanism come with heavy performance penalties which is also pretty common with any kind of
virtualization as well. In Solaris land, we have invented a new way of imposing bandwidth resource
control as attribute to a real or a virtual NIC such that it is built in as part of the Solaris network
stack and comes without any performance penalties. Since the virtualization aspects and/or resource
control aspects are just the attributes of the NIC/VNIC (specified when a NIC or Virtual NIC is
created), a normal user and configure them without needing a docterate in QOS or virtualization.
"CrossBow" was the most suitable name for this project since we are trying to achieve similar
results in the field of virtualization and resource control as the weapon did in medivial times in the
battlefield.

2. CrossBow (the background):
Crossbow provides the building blocks for network virtualization and resource control by creating
virtual stacks around any service (HTTP, HTTPS, FTP, NFS, etc.), protocol (TCP, UDP, SCTP,
etc.), or Virtual machines like Containers, Xen and ldoms.

The project allows the system administrator to carve out any physical NIC into multiple virtual
NICs which are pretty similar to real NICs and are administered just like real NICs. Each Virtual
NIC can be assigned its own priority and band-width on a shared NIC without causing any
performance degradation. The virtual NICs can have their own NIC hardware resources (Rx/Tx
rings, DMA channels), MAC addresses, kernel threads and queues which are private to the VNIC
and are not shared accross all traffic. In case of Solaris Containers, the Container can be assigned a
virtual Stack Instance as well along with one or more virtual NICs. As such traffic for one VNIC
can be totally isolated from other traffic and assigned any kind of limits or guarantees on amount of
bandwidth it can use.

3. Overview:
Project Crossbow extends Solaris reach in several markets.

3a. OS/Network/Server Consolidation:

The application, network and server consolidation environments where both OS and network

virtualization play a big role. This market is typically driven by the cost of owning and managing
physical machines and physical networks. The sweet spot for these horizontally scaled environment
are the 2-4 socket machines which appear as 4-8 CPU machines in case of x86/x64 systems and
32-64 CPU machines in case of SUN's new Niagara based servers. From total cost of ownership
perspective, these blades have only one physical NIC (1Gb or 10Gb) but are trying to run multiple
virtual machines (Xen, Containers, ldoms) which have to share the NIC resources and the available
bandwidth.

The problem gets worse because for 3 decades we have been designing application to go as fast as
possible and any congestion control is the job of the transport layer (if at all). So if one virtual
machine is using UDP based traffic, then other virtual machines on the same system using TCP
traffic will suffer badly. Even within same transport (TCP for instance), bulk througput applications
like ftp/http etc will have a very negetive impact on interactive traffic and latency sensitive
applications.

The goal of the project Crossbow is to different virtual machines share the common NIC in a fair
manner and allow system administrators to set preferential policies where necessary (e.g. the ISP
selling limited B/W on a common pipe) without any performance impact.

3b. Traditional QOS and application consolidation:

Exisiting host based QOS mechanism are very complex to setup and typically come with a sizable
performance penalty and increase in latency. The big part of the problem is the interrupt based
delivery mechanism for inbound packets and the QOS being implemented by a separate layer
(typically between NIC driver and IP). The network and transport layer of the host stack is unware
about the QOS layer. The packets are already delivered to the host memory by means of interrupts
and the QOS layer needs to classify the packets to various queues before it can apply the policies. In
case the packet can not be processed because the bandwidth usage for that class is exceeded, it sits
in a queue while still consuming system memory.

Project Crossbow integrates stack virtualization and QOS as part of the stack architecture itself to
offer a large subset of QOS type functionality at zero performance penalty and simple
administrative interfaces. It also integrates diffserv with the stack where a virtual NIC can set and
read the diffserv based labels. Since Crossbow architecture is limited in differentiating the traffic
based on layer 2, 3, and 4 headers only i.e. the VLAN tag, local mac address, local IP address,
protocol, and ports; the functionality offered is a subset of exisiting QOS mechanism although it
covers 90% of the use cases without any performance penalty. This is the prime reason why project
Crossbow refers to the bandwidth related policies as 'Bandwidth resource control' instead of QOS.

3c. Horizontally scaled markets:

This is the market segment made up of low priced volume servers (typically 2-4 socket machines)
which offer services which require little or no sharing of data between them. The small servers can
be standalone machines in a rack or blades in a chasis. Grids are another way to use volume servers
to achieve the output of the traditional large SMP machines or main frames.

In case of blades which share a common 10Gb NIC to the chasis, Crossbow again provides the
sharing of bandwidth in a fair manner. In addition, the Crossbow provided APIs for network
management, virtualization and bandwidth resource control can be use by 3rd party management
softwares to propogate the common policy throughout the server farm or all the blades in the chasis.
In a Solaris based homogenous environments, its very easy to mark an application or a virtual
machine (based on port or IP address) as critical and propogate the same policy through all the

machines. The diffserv labels can be added appropriately such that the policy is honoured by all
machines and network element in the center.

4. Technical problems in exisiting architectures:
As mentioned earlier, the host based QOS systems work as a layer between the network stack and
as such are pretty inefficient in providing the QOS services required of them. But that is not all.

The exisiting interrupt driven packet delivery model pecludes any kind of policy enforcement and
fair sharing. When a NIC interrupt is raise, it is at a highest priority and the CPU has to context
switch whatever processing to deal with the interrupt. Most of the time, the processing of a critical
packet is interrupted to deal with the arrival of a non critical packet.

The anonymous packet processing in the kernel is another major problem in virtualizing the stack
and enforcing any kind of bandwidth resource control (including fairness). 80% of the work is
already done for an incoming packet when the stack determines that no one is actually interested in
the packet and it needs to drop it. In other words, the cost of dropping unwanted packets is too high.

Everything in the host flows through common queues and is processed by common threads which
make enforcing policies based on traffic type very difficult. Recv or xmit of each packet impacts
processing on any other packet on that particular CPU.

In most of the virtualized environments, the pseudo NIC in the virtual machines has no way of
knowing about the hardware capabilities of the real hardware (even simple things like hardware
checksum) because of the presense of the bridge in between and ends up making negetive
performance impact. In addition, there is no mechanism to share the NIC in a fair manner. The
transition of typical packet from the dom0 to domU also causes severe performance problems.

5. CrossBow Architecture:
The Crossbow architecture starts out by integrating network virtualization and resource control as
part of the stack architecture. The Solaris 10 network stack has already been designed for the next
decade where the connection to CPU affinity is maintained and the upper stack has tight control
over the NIC resources.

Crossbow builds on top of that by pushing the classification of packets based on services, protocols
or virtual machines as far below as possible. If the NIC hardware itself has ability to divide onboard
memory into segements/queues (know as Rx and Tx rings) which can preferably haev their own
DMA channels and MSI-X interrupts, the stack programs the NIC classifier to classify packets
based on configured policies to different Rx rings. Each Rx/Tx ring is owned by a CPU and a
separate kernel queue know as serialization queue which controls the rate of packet arrival into the
system based on configured bandwidth.

The Rx/Tx ring, the associated DMA channel, MSI-X interrupt, the serialization queue, the CPU,
and processing threads are all unique for the service, protocol or virtual machine in question and
can be assigned a unique MAC address and a Virtual NIC which becomes the administration entity
that can be administered like a normal NIC. The NIC classifier drives the incoming packets to the
correct RX ring from where the Squeue owning the Rx ring (and VNIC) will pull the packets via
polling mode based on fair sharing of resources or configured bandwidth. The interrupt mode is
used only when the Squeue has no packets to process and the Rx ring is empty. Each individual Rx
ring is dynamically switched between interrupt and polling mode. Incoming packets that exceed the
configured bandwidth limit remain in the NIC itself in their corresponding Rx ring and are pulled in

the system only when they are ready to be processed.

The creation of an administrative entity (VNIC) is optional and typically associated with a virtual
machine like Solaris containers, Xen or ldoms. For application or protocol based resource control, a
separate data path is created to provide the isolation and resource control but a VNIC is not
configured.

As mentioned above the VNIC is just an administrative entity. If the classification has already been
done by the NIC to a particular Rx ring, the packets as delivered directly to IP layer by means of
function calls when Rx ring is interrupt mode or the squeue residing in IP layer pulls the packet
chain directly from the Rx ring when in the polling mode. In essence, the entire data link layer is
bypassed resulting in improved performance and lower latencies. If the VNIC is placed in
promiscous mode, the data link bypass is abandoned and the Rx ring delivers packets via the VNIC
layer which creates a copy of the packet for promiscous stream. Similarly, in polling mode, the
squeues poll entry point are changed to point at VNIC which is turns pulls the packets from Rx
rings, makes a copy and then gives the chain to the Squeue poll thread.

The entire layered architecture is built on function pointers know as 'upcall_func' and
'downcall_func' with corresponding 'upcall_arg' and 'downcall_arg' for context. Every layer
provides a pointer of its recv function as 'upcall_func' and a context as 'upcall_arg' to the layer
below. Similarly, every layer provides pointer to its transmit function as 'downcall_func' and a
context cookie as 'downcall_arg' to layer above. This is how the packet path is constructed. Any
layer can short circuit itself out by providing the 'upcall_func' and 'upcall_arg' of the layer above to
layer below (and same for transmit side if needed). All context cookies for a layer work on
reference based system when each layer pointed to it gets a reference and ensure that data structures
don't get freed till all references are dropped.

In case, the NIC hardware does not have classification capability (unlikely since most of intel,
broadcom and SUN 1Gb NICs and pretty much all 10Gb NICs shipping for past several years have
this capability) or have run out of the classification capability, the architecture provides a
classification capability in the mac layer and employs soft rings which are similar to functionality as
NIC hardware classifier and RX rings. The NIC hardware layer coupled with lower MAC layer and
soft rings are termed as 'Pseudo Hardware layer'. A request by administartor to create a new VNIC
or flow will always return successful from the pseudo hardware layer. The pseudo hardware layer
manages the hardware and software classification capability and Rx rings and soft rings
transparently from upper layers.

6. Crossbow layers, data structures and packet flow:
Its easier to illustrate this with 2 flows. The first one is for IP_addr = a.b.c.d && TCP and it goes
through normal path via Upper dls etc. This is under the assumption that either snoop (or someone
else in DLS) is interested in this flow and we can't bypass data link processing. The squeue poll
function in this case is dls_poll_ring and argument is dls_impl_t.

The 2nd flow is for IP_addr = m.n.o.p && port = 80 && TCP which is unique and no one is
interested in snooping it. In this case, the dls layer allows itself to be pypassed by setting the
upcall_func and upcall_arg for soft_ring/Rx_rings to directly call into IP. The squeue is directly
polling the H/W Rx ring in this case.

7. The administrative model:
Crossbow introduces a new command called 'netrcm' and further augments 'dladm' which was
introduced as part of the new high performance device driver framework (GLDv3) in Solaris 10.

'dladm (1M)' - This is primarily used to create, modify and destroy VNIC based on mac or IP
addresses. The created VNIC is visible and managed by ifconfig just like any otehr NIC and can get
its IP address assigned via DHCP if necessary.

The examples below can illustrate this better:

 Example 1: Configuring VNICs

 To create two VNICs interfaces with vinc-ids 1 and 2
 over a single physical device bge0, enter the following com-
 mands:

 # dladm create-vnic -d bge0 1
 # dladm create-vnic -d bge0 2
 The new links will be called vnic1 and vnic2.

 Example 2: Configuring VNICs and allocating bandwidth & priority

 To create two VNIC interfaces with vinc-ids 1 and 2
 over a single physical device bge0 and make vnic1 a higher
 priority VNIC using factory assigned MAC address with guarantee
 to use upto 90% of the bandwidth and vnic2 having a lower priority
 with a random MAC address and a hard limit of 100Mbps:

 # dladm create-vnic -d bge0 -m factory -b 90% -G -p high 1
 # dladm create-vnic -d bge0 -m random -b 100M -L -p low 2

 Example 3: Configure a VNIC by choosing a factory MAC address

 To create a VNIC interface with vinc-id 1 by first
 listing the factory available MAC address and then using one
 of them:

 # dladm show-dev -d bge0 -m
 bge0
 link: up speed: 1000 Mbps duplex: full
 MAC addresses:
slot-ident Address In Use
1 0:e0:81:27:d4:47 Yes
2 8:0:20:fe:4e:a5 No

 # dladm create-vnic -d bge0 -m factory -n 2 1

 # dladm show-dev -d bge0
 bge0
 link: up speed: 1000 Mbps duplex: full
 MAC addresses:
slot-ident Address In Use
1 0:e0:81:27:d4:47 Yes
2 8:0:20:fe:4e:a5 Yes

 Example 4: Configuring VNICs sharing a MAC address

 To create two VNICs with vnic-id 1 and 2 by first listing the
 available factory assigned MAC addresses and then picking one
 that will be shared by the newly created VNICs

 # dladm show-dev -d bge0 -m
 bge0
 link: up speed: 1000 Mbps duplex: full
 MAC addresses:
slot-ident Address In Use
1 0:e0:81:27:d4:47 Yes
2 8:0:20:fe:4e:a5 No

 # dladm create-vnic -d bge0 -m shared -n 2 1
 # dladm create-vnic -d bge0 -m shared -n 2 2

 Example 5: Creating a VNIC with user specified MAC address

 To create a VNIC with vnic-id 1 by providing a user specified
 mac address

 # dladm create-vnic -d bge0 -m 8:0:20:fe:4e:b8

'netrcm (1M)' - This command is primarily used to provide isolation and private resources to an
application traffic or protocol. In addition, we can also configure bandwidth limits and guarantees
for the flows. Again some example can illustrate the usage better:

 Example 1: Create a policy around mission critical port 443 traffic
 which is https service.

 To create a policy around inbound https traffic on a https server
 so that https gets it dedicated NIC hardware and kernel TCP/IP
 resources. The policy-id specified is https-1 which is used to
 later modify of delete the policy.

 # netrcm add-policy -d bge0 -H transport = TCP local port = 443 https-1

 Example 2: Modify an existing policy to add bandwidth resource control

 To modify https-1 policy to add bandwidth control and give it a
 high priority

 # netrcm modify-policy -d bge0 -b 90% -G -p high https-1

 Example 3: Limit the bandwidth usage of UDP protocol

 To create a policy for UDP protocol so that it can not consume more
 than 10% of available bandwidth. The policy-id is called limit-udp-1.

 # netrcm add-policy -d bge0 -b 90% -L -p low limit-udp-1

8. Crossbow Observability - Stats, history and APIs:
Apart from the functionality related to network virtualization and bandwidth resource control,
Crossbow offers a whole range of news tools and mechanism to understand the bandwidth usage.
Administrators can see real time bandwidth usage for various VNICs or configured flows (via
'netrcm') without causing any performance penalties.

The Rx rings and squeues dealing with a particular flow keep track of normal stats which are pulled
by a userland daemon from time to time. The daemon also logs the information in special log files
which allows users to see history at any given time. A user can request usage for a time period in
past to understand the system behaviour.

Crossbow will provide more tools to help capacity planning by allowing the system to be put under
capacity planning mode where bandwdith usage for top traffic is monitored and displayed.

All the observability and administrative interfaces can be accessed by APIs which allow other
applications to use and manage the system.

9. Resources:
Crossbow project page on OpenSolaris is a good source of information http://www.opensolaris.org/
os/project/crossbow

The Crossbow mailing list is where all the day to day business for the project is conducted. Anyone
can join the mailing list crossbow-discuss@opensolaris.org.

Crossbow slide presentation can be found here Crossbow Team members are:

 * Kais Belgaied
 * Stephanie Brucker
 * Eric Cheng
 * Nicolas Droux
 * Markus Flierl
 * Carol Gayo
 * Mohan Iyer
 * Darrin Johnson
 * Michael Lim
 * Rajagopal Kunhappan
 * Erik Nordmark
 * Ethan Solomita
 * Thirumalai Srinivasan
 * Sunay Tripathi
 * Nicky Veitch
 * Bill Watson
 * Roamer Lu

Email: first.last@sun.com

http://blogs.sun.com/roller/resources/sunay/crossbow.pdf

	CrossBow: Solaris Network Virtualization & Resource Control
	1. CrossBow (the name):
	2. CrossBow (the background):
	3. Overview:
	3a. OS/Network/Server Consolidation:
	3b. Traditional QOS and application consolidation:
	3c. Horizontally scaled markets:

	4. Technical problems in exisiting architectures:
	5. CrossBow Architecture:
	6. Crossbow layers, data structures and packet flow:
	7. The administrative model:
	8. Crossbow Observability - Stats, history and APIs:
	9. Resources:

