JavaOne

Sun's 2005 Warldwide ava Developer Conference-

DTrace and Java:

Understanding the Application and the
Entire Stack

Adam H. Leventhal
Solaris Kernel Development
Sun Microsystems

Jarod Jenson
Aeysis, Inc.

Session 5211

java.sun.com/javaone/sf

JSun's 2005 Worldwide Java Developer Conference*

The State of Systemic Analysis

Observabillity tools abound

Utilities for observing I/O, networking, applications
written in C, C++, Java, perl, etc.

Application-centric tools extremely narrow in scope
and not designed for use on production systems

Tools with system-wide scope present a static view
of system behavior — no way to dive deeper

JSun's 2005 Worldwide Java Developer Conference*

Introducing DTrace

DTrace is the dynamic tracing facility new in
Solaris 10

Allows for dynamic instrumentation of the OS and
applications (including Java applications)

Avalilable on stock systems — typical system has
more than 30,000 probes

Dynamically interpreted language allows for
arbitrary actions and predicates

Jsun's 2005 Worldwide Java Developer Conference*

Introducing DTrace, cont.

Designed explicitly for use on production systems
Zero performance impact when not in use

Completely safe — no way to cause panics,
crashes, data corruption or pathological
performance degradation

Powerful data management primitives eliminate
need for most postprocessing

Unwanted data is pruned as close to the source as
possible

JSun's 2005 Worldwide Java Developer Conference*

Providers

A provider allows for instrumentation of a particular
area of the system

Providers make probes available to the framework

Providers transfer control to the DTrace framework
when an enabled probe is hit

DTrace has several providers, e.g.:
The pid provider for C and C++ applications

The syscall provider for system calls
The io provider for system 1/O

Jsun's 2005 Worldwide Java Developer Conference*

The D Language

D is a C-like language specific to DTrace with
some constructs similar to awk(1)

Global, thread-local and probe-local variables
Built-in variables like execname and timestamp

Predicates can use arbitrary expressions to select
which data is traced and which Is discarded

Actions to trace data, record stack backtraces, stop
processes at points of interest, etc.

DEMO

Some simple DTrace invocations

2005 JavaOne™ Conference | Session5211 | 7

'|ava.sun.com/'lavaone/sf

JSun's 2005 Worldwide Java Developer Conference*

Aggregations

Often the patterns are more interesting than each
iIndividual datum

Want to aggregate data to look for larger trends

DTrace supports the aggregation of data as a first
class operation

An aggregation is the result of an aggregating
function

count(), min(), max(), avg(), quantize()
May be keyed by an arbitrary tuple

DEMO

Using aggregations

2005 JavaOne™ Conference | Session5211 | 9

'|ava.sun.com/'lavaone/sf

Jsun's 2005 Worldwide Java Developer Conference-

Systemic Analysis with DTrace

DTrace is a powerful tool for finding problems with
the correctness or performance of an application

Real strength is in understanding the interaction
between the application and the rest of the system

Business solutions are increasingly constructed
from heterogeneous components

Finding the system bottleneck requires
understanding the interaction between those
components and the operating system

Jsun's 2005 Worldwide Java Developer Conference*

Systemic Analysis with DTrace

Higher layers of abstraction allow for greater
everage

Do more with less — both intended and unintended

Can be vital to understand how high level actions
Impact the underlying resources at the lowest level

DEMO

Observing low-level impact

2005 JavaOne™ Conference | Session5211 | 12

'|ava.sun.com/'lavaone/sf

JSun's 2005 Worldwide Java Developer Conference*

DTrace and Java

Initially, the only DTrace interaction with Java was
an action to record a Java stack backtrace

Rather limited, but still extremely useful

Use the jstack () from any DTrace probe to
deduce the Java call chain

Especially useful to understand I/O and scheduler
behavior and interaction with the underlying
system libraries

DEMO

Using the jstack () action

2005 JavaOne™ Conference | Session5211 | 14

'|ava.sun.com/'lavaone/sf

Jsun's 2005 Worldwide Java Developer Conference*

DTrace/Java Limitations

The jstack() action is very useful

Would like to be able to instrument method entry
and return — as the pid provider enables for C and

C++ applications

Also need some probes for JVM services such a
object allocation, class loading, garbage collection

Jsun's 2005 Worldwide Java Developer Conference*

DTrace JVM Agent

Existing JVM instrumentation interfaces allow for
Instrumentation at a number of points of interest

JVM Tool Interface (JVMTI)
JVM Profiler Interface (JVMPI)

The DTrace agent creates DTrace probes using
the JVMTI and JVMPI interfaces

Brings Java observability into the folds of the
DTrace framework

Offers DTrace probes via the dvm provider

dvm Provider Probes

Some basic Java “lifecycle” probes
vm-init, vm-death, thread-start, thread-end

Class loading probes
class-load, class-unload

GC and memory allocation probes
gc-start, gc-finish, object-alloc, object-free

Probes dealing with method invocation
method-entry, method-return

Jsun's 2005 Worldwide Java Developer Conference*

DEMO

Some examples of the dvm provider

2005 JavaOne™ Conference | Session5211 | 18

'|ava.sun.com/'lavaone/sf

Jsun's 2005 Worldwide Java Developer Conference*

Not the Final Story

The DTrace Java agent allows for extensive
observability into Java and leverages the power of
the DTrace framework

Unfortunately requires the application to be started
with special options to the JVM
No dvm provider unless the application was started with
these options

Some performance impact even when probes are not
enabled — violates one of the constraints of DTrace

Jsun's 2005 Worldwide Java Developer Conference*

Future Work

Work in the JVM and the DTrace framework is
ongoing to improve the interaction

Goal to provide similar functionality of the DTrace
Java agent

Ensure zero overhead when disabled

Expose more information from the JVM such as
method arguments

Jsun's 2005 Worldwide Java Developer Conference*

Summary

DTrace allows for unprecedented systemic
analysis — critical for increasingly complex systems

The Java agent fills the gap in DTrace's coverage
of the system

Java developers can optimize applications for
system performance

System administrators can identify system
bottlenecks in Java applications

Jsun's 2005 Worldwide Java Developer Conference*

For More Information

List
The DTrace home page
http://www.sun.com/bigadmin/content/dtrace/

DTrace JVM agent
https://solaris10-dtrace-vm-agents.dev.java.net/

The Solaris Dynamic Tracing Guide
http://docs.sun.com/app/docs/doc/817-6223

Some blog entries about the DTrace JVM agent

http://blogs.sun.com/roller/page/ahl/20050418#dtracing_java
http://blogs.sun.com/roller/page/bmc/20050418#your_java_fell _into_my
http://blogs.sun.com/roller/page/ahl/20050529#java_debugging w_dtrace
http://blogs.sun.com/roller/page/kto/20050413#java_vm_agents_and_solaris1

Q&A

Adam Leventhal
ahl@sun.com

Jarod Jenson
Jarod@aeysis.com

2005 JavaOne™ Conference | Session5211 | 23

'|ava.sun.com/'lavaone/sf

JavaOne

Sun's 2005 Warldwide ava Developer Conference-

DTrace and Java:

Understanding the Application and the
Entire Stack

Adam H. Leventhal
Solaris Kernel Development
Sun Microsystems

Jarod Jenson
Aeysis, Inc.

Session 5211

java.sun.com/javaone/sf

