
2005 JavaOne
SM

 Conference | Session 5211

Session 5211

DTrace and Java:
Understanding the Application and the
Entire Stack

Adam H. Leventhal
Solaris Kernel Development
Sun Microsystems

Jarod Jenson
Aeysis, Inc.

2005 JavaOne
SM

 Conference | Session 5211 | 2

The State of Systemic Analysis

● Observability tools abound
● Utilities for observing I/O, networking, applications

written in C, C++, Java, perl, etc.
● Application-centric tools extremely narrow in scope

and not designed for use on production systems
● Tools with system-wide scope present a static view

of system behavior – no way to dive deeper

2005 JavaOne
SM

 Conference | Session 5211 | 3

Introducing DTrace

● DTrace is the dynamic tracing facility new in
Solaris 10

● Allows for dynamic instrumentation of the OS and
applications (including Java applications)

● Available on stock systems – typical system has
more than 30,000 probes

● Dynamically interpreted language allows for
arbitrary actions and predicates

2005 JavaOne
SM

 Conference | Session 5211 | 4

Introducing DTrace, cont.

● Designed explicitly for use on production systems
● Zero performance impact when not in use
● Completely safe – no way to cause panics,

crashes, data corruption or pathological
performance degradation

● Powerful data management primitives eliminate
need for most postprocessing

● Unwanted data is pruned as close to the source as
possible

2005 JavaOne
SM

 Conference | Session 5211 | 5

Providers

● A provider allows for instrumentation of a particular
area of the system

● Providers make probes available to the framework
● Providers transfer control to the DTrace framework

when an enabled probe is hit
● DTrace has several providers, e.g.:

● The pid provider for C and C++ applications
● The syscall provider for system calls
● The io provider for system I/O

2005 JavaOne
SM

 Conference | Session 5211 | 6

The D Language

● D is a C-like language specific to DTrace with
some constructs similar to awk(1)

● Global, thread-local and probe-local variables
● Built-in variables like execname and timestamp
● Predicates can use arbitrary expressions to select

which data is traced and which is discarded
● Actions to trace data, record stack backtraces, stop

processes at points of interest, etc.

2005 JavaOne
SM

 Conference | Session 5211 | 7

DEMO
Some simple DTrace invocations

2005 JavaOne
SM

 Conference | Session 5211 | 8

Aggregations

● Often the patterns are more interesting than each
individual datum

● Want to aggregate data to look for larger trends
● DTrace supports the aggregation of data as a first

class operation
● An aggregation is the result of an aggregating

function
● count(), min(), max(), avg(), quantize()

● May be keyed by an arbitrary tuple

2005 JavaOne
SM

 Conference | Session 5211 | 9

DEMO
Using aggregations

2005 JavaOne
SM

 Conference | Session 5211 | 10

Systemic Analysis with DTrace

● DTrace is a powerful tool for finding problems with
the correctness or performance of an application

● Real strength is in understanding the interaction
between the application and the rest of the system

● Business solutions are increasingly constructed
from heterogeneous components

● Finding the system bottleneck requires
understanding the interaction between those
components and the operating system

2005 JavaOne
SM

 Conference | Session 5211 | 11

Systemic Analysis with DTrace

● Higher layers of abstraction allow for greater
leverage

● Do more with less – both intended and unintended
● Can be vital to understand how high level actions

impact the underlying resources at the lowest level

2005 JavaOne
SM

 Conference | Session 5211 | 12

DEMO
Observing low-level impact

2005 JavaOne
SM

 Conference | Session 5211 | 13

DTrace and Java

● Initially, the only DTrace interaction with Java was
an action to record a Java stack backtrace

● Rather limited, but still extremely useful
● Use the jstack() from any DTrace probe to

deduce the Java call chain
● Especially useful to understand I/O and scheduler

behavior and interaction with the underlying
system libraries

2005 JavaOne
SM

 Conference | Session 5211 | 14

DEMO
Using the jstack() action

2005 JavaOne
SM

 Conference | Session 5211 | 15

DTrace/Java Limitations

● The jstack() action is very useful
● Would like to be able to instrument method entry

and return – as the pid provider enables for C and
C++ applications

● Also need some probes for JVM services such a
object allocation, class loading, garbage collection

2005 JavaOne
SM

 Conference | Session 5211 | 16

DTrace JVM Agent

● Existing JVM instrumentation interfaces allow for
instrumentation at a number of points of interest
● JVM Tool Interface (JVMTI)
● JVM Profiler Interface (JVMPI)

● The DTrace agent creates DTrace probes using
the JVMTI and JVMPI interfaces

● Brings Java observability into the folds of the
DTrace framework

● Offers DTrace probes via the dvm provider

2005 JavaOne
SM

 Conference | Session 5211 | 17

dvm Provider Probes

● Some basic Java “lifecycle” probes
● vm-init, vm-death, thread-start, thread-end

● Class loading probes
● class-load, class-unload

● GC and memory allocation probes
● gc-start, gc-finish, object-alloc, object-free

● Probes dealing with method invocation
● method-entry, method-return

2005 JavaOne
SM

 Conference | Session 5211 | 18

DEMO
Some examples of the dvm provider

2005 JavaOne
SM

 Conference | Session 5211 | 19

Not the Final Story

● The DTrace Java agent allows for extensive
observability into Java and leverages the power of
the DTrace framework

● Unfortunately requires the application to be started
with special options to the JVM
● No dvm provider unless the application was started with

these options
● Some performance impact even when probes are not

enabled – violates one of the constraints of DTrace

2005 JavaOne
SM

 Conference | Session 5211 | 20

Future Work

● Work in the JVM and the DTrace framework is
ongoing to improve the interaction

● Goal to provide similar functionality of the DTrace
Java agent

● Ensure zero overhead when disabled
● Expose more information from the JVM such as

method arguments

2005 JavaOne
SM

 Conference | Session 5211 | 21

Summary

● DTrace allows for unprecedented systemic
analysis – critical for increasingly complex systems

● The Java agent fills the gap in DTrace's coverage
of the system

● Java developers can optimize applications for
system performance

● System administrators can identify system
bottlenecks in Java applications

2005 JavaOne
SM

 Conference | Session 5211 | 22

For More Information

List
● The DTrace home page

http://www.sun.com/bigadmin/content/dtrace/
● DTrace JVM agent

https://solaris10-dtrace-vm-agents.dev.java.net/
● The Solaris Dynamic Tracing Guide

http://docs.sun.com/app/docs/doc/817-6223
● Some blog entries about the DTrace JVM agent

● http://blogs.sun.com/roller/page/ahl/20050418#dtracing_java
● http://blogs.sun.com/roller/page/bmc/20050418#your_java_fell_into_my
● http://blogs.sun.com/roller/page/ahl/20050529#java_debugging_w_dtrace
● http://blogs.sun.com/roller/page/kto/20050413#java_vm_agents_and_solaris1

2005 JavaOne
SM

 Conference | Session 5211 | 23

Q&A
Adam Leventhal
ahl@sun.com

Jarod Jenson
jarod@aeysis.com

2005 JavaOne
SM

 Conference | Session 5211

Session 5211

DTrace and Java:
Understanding the Application and the
Entire Stack

Adam H. Leventhal
Solaris Kernel Development
Sun Microsystems

Jarod Jenson
Aeysis, Inc.

