Automatic Performance Tuning in the Zettabyte File System

Val Henson
vhenson@eng.sun.com

Matt Ahrens
ahrens@eng.sun.com

Jeff Bonwick
bonwick@eng.sun.com

Sun Microsystems, Inc.
17 Network Circle
Menlo Park, CA 94025

ABSTRACT

As storage systems become ever larger and more complex,
file systems and other storage software needs to move away
from static configuration and manual performance tuning
and towards dynamic configuration and automatic run-time
performance tuning. The Zettabyte File System (ZFS) in-
cludes many self-tuning and self-managing algorithms. In
this paper we present three of those algorithms: dynamic
striping, automatic block size selection, and automatic file-
name based performance tuning.

1. INTRODUCTION

Traditionally, file systems have relied on an administrator to
allocate and manage storage. Performance tuning after a file
system is created is difficult or impossible without rebuild-
ing the file system from scratch. Growing storage capacity
and an increasing number of factors affecting performance
make manual tuning of storage system performance a labor-
intensive and inefficient process. We need new algorithms
that are automatic and change dynamically with workload:
in other words, software needs to tune performance itself.

In this paper, we’ll describe three techniques for automatic
performance tuning in the Zettabyte File System (ZFS). The
first technique, dynamic disk striping, provides the perfor-
mance benefit of normal disk striping without the admin-
istrative hassle. The second technique is dynamic block
size selection. The third technique is a proposal for a feed-
back system for file system optimization using an automatic
model generator to predict file size and lifetime using file-
names.

2. ZFSINANUTSHELL

ZFS is a general purpose local file system in development
at Sun Microsystems. The three main goals of ZFS are im-
mense capacity, strong data integrity, and simple adminis-
tration. To achieve the first two goals, ZFS uses 128-bit
block addresses, scalable algorithms, self-validating check-

sums, and a copy-on-write transactional model. To simplify
administration, we based ZFS around the idea of pooled
storage. A storage pool is a collection of storage devices
which many file systems can draw from as needed. A Stor-
age Pool Allocator (SPA) consumes physical blocks from all
the devices in a storage pool and exports virtually addressed
blocks of various sizes. The SPA exports individual virtually
addressed blocks, rather than exporting a single contiguous
logical volume as volume managers do. The Data Man-
agement Unit (DMU) consumes the blocks exported by the
SPA and exports generic objects (flat files). These objects
are then used by the “file system” layer, the ZFS POSIX
Layer (ZPL), to implement a standard POSIX-compliant
file system.

3. DYNAMIC STRIPING

“Static striping”, in which data is striped across disks in
chunks of a certain size, has a number of problems. A great
deal of research has gone into calculating disk striping pa-
rameters[3, 5], but the essential difficulty is that the stripe
layout is statically determined at stripe group creation time,
but workloads change dynamically. Some flexibility can be
gained by striping the same data more than once with dif-
ferent widths, but even with partial coalescence of the du-
plicated data the storage overhead is prohibitive — more
than 50%][5]. Static striping also causes the performance of
the entire stripe group to be limited by the performance of
the slowest disk in the group, since a streaming I/O cannot
complete faster than the slowest disk can read or write the
blocks stored on it[1].

Dynamic striping takes advantage of the fact that ZFS can
write any block to any device in the storage pool. ZFS is
a copy-on-write, write-anywhere file system: each write to
a block causes the block to be written in a new location.
When the SPA is presented with a sequence of blocks to
write out, it automatically fans out the writes across all the
available devices in the storage pool. Unlike static striping,
each block in the file can be written to any location on any
disk. Dynamic striping requires absolutely no administrator
configuration beyond the act of creating the storage pool
with the following command:

zpool create my_pool diskl disk2 ...

When a new device is added to the pool, the SPA begins
fanning out writes to it immediately. Similarly, when a de-

vice is removed, the SPA migrates the data off the device to
be removed, removing it from the “dynamic stripe group.”
Data is automatically redistributed across all disks as it is
written. For example, if we increase the number of disks
from 7 to 10, new data will be striped across all 10 disks,
while old data will remain striped across the original 7. If
the file system is reasonably active, the effective stripe width
for reads will gradually increase from 7 to 10 over time, with-
out any further action. Adding and removing disks can be
thought of as dynamically changing the stripe width.

Dynamic striping allows ZFS to cope with heterogeneous
devices, since it can allocate blocks from disks in proportion
to their performance. Adding one slow device to a storage
pool will not degrade performance, since ZFS can simply
write fewer blocks to the slow device compared to the faster
devices.

4. BLOCK SIZE SELECTION

ZF'S supports multiple block sizes within a file system, from
512 bytes up to 1 MB. To do this, it divides up the available
storage into metaslabs, in the style of the slab allocator[2].
By analogy to stem cells in a developing embryo, metaslabs
start life as undifferentiated “stem slabs” and are divided
into blocks of a certain size when they are first allocated
from. ZFS automatically chooses the best block size on a
per-file basis. It also allows the administrator to specify a
particular block size on a per-file or per-file-system basis.

We divided applications into several classes of most com-
monly observed write behavior: (a) write entire file at once
sequentially, (b) append slowly, (c¢) append quickly, (d) ran-
dom record update. We observed that since ZFS is copy-on-
write, we could upgrade a single-block file from one block
size to the next larger block size with no penalty except when
a it ends on a power of two boundary — if the file ends on
any other boundary, we will have to rewrite the entire first
block of the file anyway, so we might as well write it out
as part of a more efficient larger block. We also decided to
concentrate on optimizing block size for normal sequential
write access patterns and allow record-based applications to
explicitly set their own preferred block size for maximum
performance, since they usually are hand-tuned for perfor-
mance already (although we are working on an algorithm to
automatically detect this access pattern and optimize block
size for it).

Based on these observations, our algorithm for selecting
block size is a function of file length. The block size is that
which would result in the smallest amount of time taken to
write the entire file. Using this algorithm, most files smaller
than the maximum block size will use at most a few blocks.
As a file grows and shrinks, its block size changes to the most
optimal block size for its length. Our algorithm results in
about 13% disk space waste on an NFS server used by a
few hundred software engineers, which is acceptable given
modern disk capacity.

5. AUTOMATIC FILENAME-BASED PER-
FORMANCE TUNING

Daniel Ellard, et al. have recently produced a new method
of predicting file size and lifetime based on the filename cho-

sen by an application[4]. Their system automatically gener-
ates a model without any user input. We propose extending
Ellard’s work by automatically rerunning the model gener-
ator whenever file system activity deviates too far from the
current model. The model generator daemon would trace
file system activity at a low sample rate until the workload
changed, and then up the sample rate in order to generate
a new model which is automatically fed back into the file
system.

This system would allow automatic profiling and tuning of
the file system without administrator intervention except
for setting up the model generator daemon to run automat-
ically. It throttles itself when there is no work to be done,
regenerates a new model when the workload changes, and
can be removed entirely if it provides no benefit.

6. CONCLUSIONS

We present three methods of automatic performance tun-
ing that require little or no administrator effort to set up
and no administrative effort to maintain. Dynamic strip-
ing provides all the performance benefits of static striping
without requiring hand-tuning for specific workloads, or the
rebuilding of stripe groups as workloads change or devices
are added. Automatic block size selection on a per-file basis
saves disk space and I/O time simultaneously without tun-
ing block size by hand for different workloads. An automatic
model generator for file system activity based on filenames
could make file systems self-tuning in the face of fluctuat-
ing workloads without administrator intervention. All three
techniques share the key qualities of dynamic adaptation,
algorithmic simplicity, and near-zero administrative cost.

7. ADDITIONAL AUTHORS

Mark Maybee (Sun Microsystems, Inc. email: maybee@central.sun.com).

8. REFERENCES

[1] Remzi H. Arpaci-Dusseau and Andrea C.
Arpaci-Dusseau. Fail-stutter fault tolerance. In The 8th
Workshop on Hot Topics in Operating Systems
(HotOS-VIII), pages 33-40, 2001.

[2] Jeff Bonwick. The slab allocator: An object-caching
kernel memory allocator. In Proceedings of the 199/
USENIX Summer Technical Conference, 1994.

[3] Peter M. Chen and David A. Patterson. Maximizing
performance in a striped disk array. In Proceedings of

the 17th Annual Int’l Symp. on Computer Architecture,
ACM SIGARCH Computer Architecture News, 1990.

[4] Daniel Ellard, Jonathan Ledlie, and Margo Seltzer. The
utility of file names. Technical Report TR-05-03,
Computer Science Group, Harvard University, March
2003.

[5] Peter Triantafillou and Christos Faloutsos. Overlay
striping and optimal parallel I/O for modern
applications. Parallel Computing, 24(1):21-43, 1998.

