
DB2 9 DBA certification exam 731 prep, Part 4:
Monitoring DB2 activity
Skill Level: Introductory

Roger E. Sanders (rsanders@netapp.com)
Senior Manager - IBM Alliance Engineering
Network Appliance, Inc.

05 Jul 2006

This tutorial introduces you to the set of monitoring tools that are available with DB2®
9 and to show you how each are used to monitor how well (or how poorly) your
database system is operating. This is the fourth tutorial in a series of seven that you
can use to help prepare for the DB2 9 for Linux®, UNIX®, and Windows™ Database
Administration Certification (Exam 731).

Section 1. Before you start

About this series

If you are preparing to take the DB2 DBA certification exam 731, you've come to the
right place -- a study hall, of sorts. This series of seven DB2 certification preparation
tutorials covers the major concepts you'll need to know for the test. Do your
homework here and ease the stress on test day.

About this tutorial

Tuning and configuring a DB2 database can be a complex process that sometimes
overwhelms new DBAs. There are, however, a great number of tools, functions, and
applications included with DB2 that, once mastered, make this task simple.

This tutorial is designed to introduce you to the set of monitoring tools that are
available with DB2 9 and to show you how each are used to monitor how well (or
how poorly) your database system is operating. In this tutorial, you will learn:

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 1 of 57

mailto:rsanders@netapp.com
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert731.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert731.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/legal/copytrade.shtml

• How the database system monitor works

• How snapshot information is collected

• How event monitors are created and how event monitor data is collected

• How the health monitor and the Health Center are used

• How comprehensive explain data and explain snapshot data differ

• How comprehensive explain data and explain snapshot data is collected

• How Visual Explain is used to view explain snapshot data

This is the fourth tutorial in a series of seven tutorials to help you prepare for the
DB2 9 for Linux, UNIX, and Windows Database Administration Certification (Exam
731). The material in this tutorial primarily covers the objectives in Section 4 of the
exam, entitled "Analyzing DB2 Activity." You can view these objectives at:
http://www-03.ibm.com/certify/tests/obj731.shtml.

Objectives

After completing this tutorial, you should be able to:

• Capture snapshots using GET SNAPSHOT or SQL functions

• Create and activate event monitors

• Configure the health monitor using the Health Center

• Capture and analyze explain/Visual Explain information

• Identify the functions of DB2's problem determination tools (for example,
db2pd and db2mtrk)

Prerequisites

To take the DB2 9 DBA exam, you must have already passed the DB2 9
Fundamentals exam 730. We recommend that you take the DB2 Fundamentals
tutorial series before starting this series.

To help you understand some of the material presented in this tutorial, you should
be familiar with the following terms:

• Structured Query Language (SQL): A standardized language used to
define objects and manipulate data in a relational database.

• DB2 optimizer: A component of the SQL precompiler that chooses an
access plan for a Data Manipulation Language (DML) SQL statement by
modeling the execution cost of several alternative access plans and
choosing the one with the minimal estimated cost.

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 2 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www-03.ibm.com/certify/tests/obj731.shtml
http://www-03.ibm.com/certify/tests/test_index.shtml
http://www-03.ibm.com/certify/tests/test_index.shtml
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert730.html?S_TACT=105AGX19&S_CMP=sum
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert730.html?S_TACT=105AGX19&S_CMP=sum
http://www.ibm.com/legal/copytrade.shtml

System requirements

You do not need a copy of DB2 to complete this tutorial. However, you will get more
out of the tutorial if you download the free trial version of IBM DB2 9 to work along
with this tutorial.

Section 2. Capturing snapshot data

The database system monitor

Database monitoring is a vital activity that, when performed on a regular basis,
provides continuous feedback on the health of a database system. Because
database monitoring is such an integral part of database administration, DB2 9
comes equipped with a monitoring utility known as the database system monitor.
Although the name "database system monitor" suggests that only one monitoring
tool is provided, in reality the database system monitor is composed of two distinct
tools that can be used to capture and return system monitor information: a snapshot
monitor and one or more event monitors. The snapshot monitor allows you to
capture a picture of the state of a database at a specific point in time while event
monitors capture and log data as specific database events occur. Information
collected by both tools is stored in entities that are referred to as monitor elements
(or data elements). Each monitor element used is identified by a unique name and is
designed to hold a specific type of information. The following types of elements are
used to store monitor data:

• Counters. Counters keep a total count of the number of times an activity
or event has occurred. Counter values increase throughout the life of the
monitor; often a counter monitor element is resettable. An example of a
counter element would be the total number of SQL statements that have
been executed against a database.

• Gauges. Gauges keep a count of the number times an activity or event
has occurred at a specific point in time. Unlike counter values, gauge
values can go up or down, and their value at any given point in time is
usually dependent upon the level of database activity. An example of a
gauge element would be the number of applications that are currently
connected to a database.

• Watermarks. Watermarks indicate the highest (maximum) or lowest
(minimum) value an item has seen since monitoring began. An example
of a watermark element would be the largest number of rows that were

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 3 of 57

http://www.ibm.com/developerworks/downloads/im/udb/?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/legal/copytrade.shtml

affected by an update operation.

• Information. As the name implies, information elements provide
reference-type details of all monitoring activities performed. Examples of
information elements would include buffer pool names, database names
and aliases, path details, etc.

• Timestamps. Timestamps indicates the date and time an activity or event
took place. Timestamp values are provided as the number of seconds
and microseconds that have elapsed since January 1, 1970. An example
of a timestamp element would be the date and time the first connection to
a database was established.

• Time. Time elements keep track of the amount of time that was spent
performing an activity or event. Time values are provided as the number
of seconds and microseconds that have elapsed since the activity or
event was started and some time elements are resettable. An example of
a time element would be the amount of time that was spent performing a
sort operation.

The database system monitor can utilize any combination of these elements to
capture monitor data, and once collected, several methods can be used to present
the data stored in each element used; for both snapshot monitors and event
monitors, you have the option of storing all data collected in files or database tables,
viewing it on-screen, or processing it using a custom application. (The database
system monitor returns monitor data to a client application using a self-describing
data stream. With a snapshot monitoring application you call the appropriate
snapshot APIs to capture a snapshot and then process the data stream returned;
with an event monitoring application, you prepare to receive the data produced via a
file or a named pipe, activate the appropriate event monitor, and process the data
stream as it is received.)

The snapshot monitor

The snapshot monitor is designed to collect information about the state of a DB2
UDB instance and the databases it controls at a specific point in time (in other
words, at the time the snapshot is taken). Snapshots are useful for determining the
status of a database system, and when taken at regular intervals, they can provide
valuable information that can be used to observe trends and identify potential
problem areas. Snapshots can be taken by executing the GET SNAPSHOT command
from the DB2 Command Line Processor (CLP), by using the appropriate snapshot
table functions in a query, or by using the snapshot monitor APIs in a C or C++
application. Additionally, snapshots can be tailored to return specific types of
monitoring data values (for example, a snapshot could be configured to return just
information about buffer pools).

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 4 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Snapshot monitor switches

Often, the collection of system monitor data requires additional processing
overhead. For example, in order to calculate the execution time of SQL statements,
the DB2 Database Manager must make a call to the operating system to obtain
timestamps before and after any SQL statement is executed. These types of system
calls can be expensive. Another side effect of using the system monitor is that the
amount of memory consumed is increased - the DB2 Database Manager uses
memory to store the data collected for every monitor element being tracked by the
system monitor.

To help minimize the overhead involved in collecting system monitor information, a
group of switches known as the snapshot monitor switches can be used to control
what information is collected when a snapshot is taken; the type and amount of
information collected is determined by the way these snapshot monitor switches
have been set. Each snapshot monitor switch has two settings: ON and OFF. When
a snapshot monitor switch is set to OFF, monitor information is not collected for
elements that fall under that switch's control. The opposite is true if the switch is set
to ON. (Keep in mind that a considerable amount of monitoring information is not
under switch control and will always be collected regardless of how the snapshot
monitor switches have been set.) The snapshot monitor switches available, along
with a description of the type of information that is collected when each is set to ON,
can be seen in Table 1.

Table 1. Snapshot monitor switches
Monitor Group Monitor Switch DBM Configuration

Parameter
Information Provided

Buffer Pools BUFFERPOOL dft_mon_bufferpool Amount of buffer pool
activity (in other words,
number of read and
write operations
performed and the
amount of time taken
for each read/write
operation).

Locks LOCK dft_mon_lock Number of locks held
and number of
deadlock cycles
encountered.

Sorts SORT dft_mon_sort Number of sort
operations performed,
number of heaps used,
number of overflows
encountered, and sort
performance.

SQL Statements STATEMENT dft_mon_stmt SQL statement
processing start time,
SQL statement
processing end time,
and SQL statement
identification.

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 5 of 57

http://www.ibm.com/legal/copytrade.shtml

Tables TABLE dft_mon_table Amount of table activity
performed such as
number of rows read,
number of rows written,
etc.

Timestamps TIMESTAMP dft_mon_timestamp Times and timestamp
information.

Transactions UOW dft_mon_uow Transaction start times,
transaction completion
times, and transaction
completion status.

By default, all of the switches shown in Table 1 are set to OFF, with the exception of
the TIMESTAMP switch, which is set to ON and initialized when an instance is first
started.

Viewing current snapshot monitor switch settings

It was mentioned earlier that the type and amount of information collected when a
snapshot is taken is controlled, to some extent, by the way the snapshot monitor
switches have been set. Before you take a snapshot, it is important that you know
which snapshot monitor switches have been turned on and which snapshot monitor
switches remain off. How can you find out what the current setting of each snapshot
monitor switch available is? The easiest way is by executing the GET MONITOR
SWITCHES command from the DB2 Command Line Processor (CLP). The basic
syntax for this command is:

GET MONITOR SWITCHES <AT DBPARTITIONNUM [PartitionNum]>

where PartitonNum identifies the database partition (in a multi-partitioned database
environment) for which the status of the snapshot monitor switches available is to be
obtained and displayed.

Note : Parameters shown in angle brackets (< >) are optional; parameters or options
shown in normal brackets ([]) are required; and a comma, followed by ellipses (...)
indicate that the preceding parameter can be repeated multiple times.

If you wanted to obtain and display the status of the snapshot monitor switches for a
single-partition database, you could do so by executing a GET MONITOR SWITCHES
command that looks something like this:

GET MONITOR SWITCHES

When this command is executed from the Command Line Processor, you should
see something like the output shown below.

Output from GET MONITOR SWITCHES command

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 6 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Monitor Recording Switches
Switch list for db partition number 0

Buffer Pool Activity Information (BUFFERPOOL) = OFF
Lock Information (LOCK) = OFF
Sorting Information (SORT) = OFF
SQL Statement Information (STATEMENT) = OFF
Table Activity Information (TABLE) = OFF
Take Timestamp Information (TIMESTAMP) = ON 06-12-2006 10:30:00.028810
Unit of Work Information (UOW) = OFF

Upon close examination of this output, notice that the TIMESTAMP snapshot
monitoring switch has been turned on and that all other switches are off. The
timestamp value that follows the TIMESTAMP monitoring switch's state tells you the
exact date and time the TIMESTAMP monitoring switch was turned on (which in this
case is June 12, 2006, at 10:30 AM).

Changing the state of a snapshot monitor switch

Once you know which snapshot monitor switches have been turned ON and which
snapshot monitor switches have been turned OFF, you may find it necessary to
change one or more switch settings before you begin the monitoring process.
Snapshot monitor switch settings can be changed at the instance level by modifying
the appropriate DB2 Database Manager configuration parameters (see Table 1) with
the UPDATE DATABASE MANAGER CONFIGURATION command.

On the other hand, snapshot monitor switch settings can be changed at the
application level by executing the UPDATE MONITOR SWITCHES command. The
basic syntax for this command is:

UPDATE MONITOR SWITCHES USING [[SwitchID] ON | OFF ,...]

where SwitchID identifies one or more snapshot monitor switches whose state is to
be changed. This parameter may contain any or all of the following values:
BUFFERPOOL, LOCK, SORT, STATEMENT, TABLE, TIMESTAMP, and UOW.

If you wanted to change the state of the LOCK snapshot monitor switch to ON at the
application level), you could do so by executing an UPDATE MONITOR SWITCHES
command that looks like this:

UPDATE MONITOR SWITCHES USING LOCKS ON

Likewise, if you wanted to change the state of the BUFFERPOOL snapshot monitor
switch to OFF, you could do so by executing a UPDATE MONITOR SWITCHES
command that looks like this:

UPDATE MONITOR SWITCHES USING BUFFERPOOL OFF

Setting snapshot monitor switches at the instance level (using the UPDATE
DATABASE MANAGER CONFIGURATION command) affects all databases under the
instance's control (in other words, every application that establishes a connection to
a database under the instance's control will inherit the switch settings made in the

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 7 of 57

http://www.ibm.com/legal/copytrade.shtml

instance's configuration). Additionally, snapshot monitor switch settings made at the
instance level remain persistent across instance restarts.

Setting monitor switches at the application level (using the UPDATE MONITOR
SWITCHES command) only affects the database a single application is interacting
with. In addition, switch setting made are only persistent for the life of the
application.

Capturing snapshot monitor data

As soon as a database is activated or a connection to a database is established, the
snapshot monitor begins collecting monitor data. However, before any data collected
can be viewed, a snapshot must be taken. (A snapshot is essentially a picture of
what the monitor elements being used look like at a specific point in time.)
Snapshots can be taken by embedding the db2GetSnapshot() API in an
application program, or by executing the GET SNAPSHOT command. The basic
syntax for this command is:

GET SNAPSHOT FOR
[DATABASE MANAGER | DB MANAGER | DBM] |
ALL DATABASES |
ALL APPLICATIONS |
ALL BUFFERPOOLS |
ALL REMOTE_DATABASES |
ALL REMOTE_APPLICATIONS |
ALL ON [DatabaseAlias] |
DATABASE ON [DatabaseAlias] |
APPLICATIONS ON [DatabaseAlias] |
TABLES ON [DatabaseAlias] |
TABLESPACES ON [DatabaseAlias] |
LOCKS ON [DatabaseAlias] |
BUFFERPOOLS ON [DatabaseAlias] |
DYNAMIC SQL ON [DatabaseAlias]

where DatabaseAlias identifies the alias assigned to the database that snapshot
monitor information is to be collected for.

If you want to take a snapshot that only contains data collected on locks being held
by applications interacting with a database named PAYROLL, you could do so by
executing the following command:

GET SNAPSHOT FOR LOCKS ON PAYROLL

The output produced by this command would look something like that shown in
below. (Keep in mind that this is a simple example. A real monitoring situation
usually generates a large amount of data.)

Sample output from GET SNAPSHOT command

Database Lock Snapshot

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 8 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Database name = PAYROLL
Database path = C:\DB2\NODE0000\SQL00002\
Input database alias = PAYROLL
Locks held = 2
Applications currently connected = 1
Agents currently waiting on locks = 0
Snapshot timestamp = 06-12-2004 08:39:40.750316

Application handle = 8
Application ID = *LOCAL.DB2.00E286133931
Sequence number = 0001
Application name = db2bp.exe
CONNECT Authorization ID = DB2ADMIN
Application status = UOW Waiting
Status change time = Not Collected
Application code page = 1252
Locks held = 2
Total wait time (ms) = Not Collected

List Of Locks
Lock Name = 0x94928D848F9F949E7B89505241
Lock Attributes = 0x00000000
Release Flags = 0x40000000
Lock Count = 1
Hold Count = 0
Lock Object Name = 0
Object Type = Internal P Lock
Mode = S

Lock Name = 0x96A09A989DA09A7D8E8A6C7441
Lock Attributes = 0x00000000
Release Flags = 0x40000000
Lock Count = 1
Hold Count = 0
Lock Object Name = 0
Object Type = Internal P Lock
Mode = S

As you can see, the GET SNAPSHOT command can be used to capture several
different types of monitoring data, including:

• DB2 Database Manager instance data

• Database data for all active databases under an instance's control

• Application data

• Buffer pool activity data

• Tablespace data

• Table data

• Lock data (information about all locks held)

• Dynamic SQL data (point-in-time information about SQL statements being
held in the SQL statement cache)

You may also have noticed that there is a direct correlation between the snapshot
monitor switches available and the different types of monitoring data that can be
collected when a snapshot is taken. If a particular snapshot monitor switch is turned
off and a snapshot of the monitoring elements associated with that switch is taken,
the monitoring data captured may not contain any values at all. (In the previous
example, some values were listed as Not Collected because the corresponding

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 9 of 57

http://www.ibm.com/legal/copytrade.shtml

snapshot monitor switch was turned off. Furthermore, if no locks had been acquired
at the time the snapshot was taken, the value for Locks held would have been 0 and
the List of Locks information shown would not have been produced.)

Capturing snapshot monitor data using SQL

With earlier versions of DB2 UDB, the only way to capture snapshot monitor data
was by executing the GET SNAPSHOT command or by calling its corresponding API
from an application program. With DB2 UDB version 8.1, the ability to capture
snapshot monitor data by constructing a query was introduced. This method relied
on twenty special snapshot monitor table functions that have been depreciated in
version 9.1. Now, snapshot monitor data can be obtained by using a new set of SQL
routines to access data stored in special administrative views. These routines and
views are described in Table 2.

Table 2. Snapshot administrative SQL routines and views
Administrative View Routine Description

APPLICATIONS N/A This administrative view
contains information about
connected database
applications.

APPL_PERFORMANCE N/A This administrative view
contains information about the
rate of rows selected versus
rows read per application.

BP_HITRATIO N/A This administrative view
contains bufferpool hit ratios,
including total, data, and index.

BP_READ_IO N/A This administrative view
contains bufferpool read
performance information.

BP_WRITE_IO N/A This administrative view
contains bufferpool write
performance information.

CONTAINER_UTILIZATION N/A This administrative view
contains information about table
space containers and utilization
rates.

LOCKS_HELD N/A This administrative view
contains information on current
locks held.

LOCKWAITS N/A This administrative view
contains information on locks
that are waiting to be granted.

LOG_UTILIZATION N/A This administrative view
contains information about log
utilization for the currently
connected database.

LONG_RUNNING_SQL N/A This administrative view

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 10 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

contains information about the
longest running SQL statements
in the currently connected
database.

QUERY_PREP_COST N/A This administrative view
contains a list of SQL
statements, along with
information about the time
required to prepare each
statement.

N/A SNAP_WRITE_FILE This procedure writes system
snapshot data to a file in the
tmp subdirectory of the instance
directory.

SNAPAGENT SNAP_GET_AGENT The administrative view and
table function returns
information about agents from
an application snapshot, in
particular, the agent logical data
group.

SNAPAGENT_MEMORY_POOL SNAP_GET_AGENT_MEMORY_POOLThis administrative view and
table function returns
information about memory
usage at the agent level.

SNAPAPPL SNAP_GET_APPL The administrative view and
table function returns
information about applications
from an application snapshot, in
particular, the appl logical data
group.

SNAPAPPL_INFO SNAP_GET_APPL_INFO The administrative view and
table function returns
information about applications
from an application snapshot, in
particular, the appl_info logical
data group.

SNAPBP SNAP_GET_BP The administrative view and
table function returns
information about buffer pools
from a bufferpool snapshot, in
particular, the bufferpool logical
data group.

SNAPBP_PART SNAP_GET_BP_PART The administrative view and
table function returns
information about buffer pools
from a bufferpool snapshot, in
particular, the
bufferpool_nodeinfo logical data
group.

SNAPCONTAINER SNAP_GET_CONTAINER_V91 The administrative view and
table function returns table
space snapshot information
from the tablespace_container
logical data group.

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 11 of 57

http://www.ibm.com/legal/copytrade.shtml

SNAPDB SNAP_GET_DB_V91 The administrative view and
table function returns snapshot
information from the database
(dbase) and database storage
(db_storage_group) logical
groupings.

SNAPDB_MEMORY_POOL SNAP_GET_DB_MEMORY_POOLThe administrative view and
table function returns
information about memory
usage at the database level for
UNIX(R) platforms only.

SNAPDBM SNAP_GET_DMB The administrative view and
table function returns the
snapshot monitor DB2 database
manager (dbm) logical grouping
information.

SNAPDBM_MEMORY_POOL SNAP_GET_DBM_MEMORY_POOLThe administrative view and
table function returns
information about memory
usage at the database manager
level.

SNAPDETAILLOG SNAP_GET_DETAILLOG_V91 The administrative view and
table function returns snapshot
information from the detail_log
logical data group.

SNAPDYN_SQL SNAP_GET_DYN_SQL_V91 The administrative view and
table function returns snapshot
information from the dynsql
logical data group.

SNAPFCM SNAP_GET_FCM The administrative view and
table function returns
information about the fast
communication manager (FCM)
from a database manager
snapshot, in particular, the fcm
logical data group.

SNAPFCM_PART SNAP_GET_FCM_PART The administrative view and
table function returns
information about the fast
communication manager (FCM)
from a database manager
snapshot, in particular, the
fcm_node logical data group.

SNAPHADR SNAP_GET_HADR The administrative view and
table function returns
information about high
availability disaster recovery
from a database snapshot, in
particular, the hadr logical data
group.

SNAPLOCK SNAP_GET_LOCK The administrative view and
table function returns snapshot
information about locks, in
particular, the lock logical data

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 12 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

group.

SNAPLOCKWAIT SNAP_GET_LOCKWAIT The administrative view and
table function returns snapshot
information about lock waits, in
particular, the lockwait logical
data group.

SNAPSTMT SNAP_GET_STMT The administrative view and
table function returns
information about statements
from an application snapshot.

SNAPSTORAGE_PATHS SNAP_GET_STORAGE_PATHS The administrative view and
table function returns a list of
automatic storage paths for the
database including file system
information for each storage
path, specifically, from the
db_storage_group logical data
group

SNAPSUBSECTION SNAP_GET_SUBSECTION The administrative view and
table function returns
information about application
subsections, namely the
subsection logical monitor
grouping.

SNAPSWITCHES SNAP_GET_SWITCHES The administrative view and
table function returns
information about the database
snapshot switch state.

SNAPTAB SNAP_GET_TAB_V91 The administrative view and
table function returns snapshot
information from the table
logical data group.

SNAPTAB_REORG SNAP_GET_TAB_REORG The administrative view and
table function return table
reorganization information.

SNAPTBSP SNAP_GET_TBSP_V91 The administrative view and
table function returns snapshot
information from the tablespace
logical data group.

SNAPTBSP_PART SNAP_GET_TBSP_PART_V91 The administrative view and
table function returns snapshot
information from the
tablespace_nodeinfo logical
data group.

SNAPTBSP_QUIESCER SNAP_GET_TBSP_QUIESCER The administrative view and
table function returns
information about quiescers
from a table space snapshot.

SNAPTBSP_RANGE SNAP_GET_TBSP_RANGE The administrative view and
table function returns
information from a range
snapshot.

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 13 of 57

http://www.ibm.com/legal/copytrade.shtml

SNAPUTIL SNAP_GET_UTIL The administrative view and
table function returns snapshot
information on utilities from the
utility_info logical data group.

SNAPUTIL_PROGRESS SNAP_GET_UTIL_PROGRESS The administrative view and
table function returns
information about utility
progress, in particular, the
progress logical data group.

TBSP_UTILIZATION N/A This administrative view
contains table space
configuration and utilization
information.

TOP_DYNAMIC_SQL N/A This administrative view
contains the top dynamic SQL
statements sortable by number
of executions, average
execution time, number of sorts,
or sorts per statement.

If you wanted to obtain lock information for the currently connected database for
example, you could do so by executing a query that looks something like this:

SELECT AGENT_ID, LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_STATUS
FROM SYSIBMADM.SNAPLOCK

The SNAP_GET_LOCK table function returns the same information as the SNAPLOCK
administrative view, but allows you to retrieve the information for a specific database
or a specific database on a specific database partition (instead of the current
connected database). A query using the SNAP_GET_LOCK table function would look
something like this:

SELECT AGENT_ID, LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_STATUS
FROM TABLE(SNAP_GET_LOCK('',-1)) AS T

When used with the SNAP_GET_LOCKWAIT table function, the SNAP_GET_LOCK
table function provides information equivalent to the GET SNAPSHOT FOR LOCKS
ON [DatabaseAlias] command.

Resetting snapshot monitor counters

Earlier, you saw that one of the element types that monitor elements use to store
data is a counter and that counters keep a running total of the number of times an
activity or event occurs. Counter values increase throughout the life of the monitor.
So when exactly does counting begin? Counting typically begins as soon as a
snapshot monitor switch is turned on or when connection to a database is
established (if instance level monitoring is used, counting begins the first time an
application establishes a connection to a database under the instance's control).

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 14 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

However, there may be times when it is desirable to reset all counters to zero
without turning snapshot monitor switches off and back on and without terminating
and reestablishing database connections. By far the easiest way to quickly reset all
snapshot monitor counters to zero is by executing the RESET MONITOR command.
The basic syntax for this command is:

RESET MONITOR ALL

or

RESET MONITOR FOR [DATABASE | DB] [DatabaseAlias]

where DatabaseAlias identifies the alias assigned to the database that snapshot
monitor counters are to be reset for.

If you wanted to reset the snapshot monitor counters for all databases under an
instance's control to zero, you could do so by attaching to that instance and
executing a RESET MONITOR command that looks like this:

RESET MONITOR ALL

On the other hand, if you wanted to reset just the snapshot monitor counters
associated with a database named SAMPLE to zero, you could do so by executing a
RESET MONITOR command that looks like this:

RESET MONITOR FOR DATABASE SAMPLE

It is important to note that you cannot selectively reset counters for a particular
monitoring group that is controlled by a snapshot monitor switch using the RESET
MONITOR command. To perform this type of operation, you must turn the appropriate
snapshot monitor switch off and back on or terminate and reestablish database
connections.

Section 3. Capturing event monitor data

Event monitors

You have just seen that the snapshot monitor provides a way to capture and record
information about the state of an instance or a database at a specific point in time. In
contrast, event monitors collect monitor data as specific events or transitions occur.
Event monitors provide a way to collect monitor data when events or activities occur

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 15 of 57

http://www.ibm.com/legal/copytrade.shtml

that cannot be monitored using the snapshot monitor.

For example, suppose you want to capture monitor data whenever a deadlock cycle
occurs. If you're familiar with the concept of deadlocks, you know that a special
process known as the deadlock detector (daemon) runs quietly in the background
and "wakes up" at predefined intervals to scan the locking system for deadlock
cycles. If a deadlock cycle is found, the deadlock detector randomly selects, rolls
back, and terminates one of the transactions involved in the cycle. As a result, the
selected transaction receives an SQL error code, and all locks acquired on its behalf
are released so that the remaining transactions can proceed. Information about such
a series of events cannot be captured by the snapshot monitor because, in all
likelihood, the deadlock cycle will have been broken long before a snapshot can be
taken. An event monitor, on the other hand, could capture important information
about such an event because it would be activated the moment the deadlock cycle
was detected.

There is another significant difference between these two monitors - the snapshot
monitor exists as a background process that begins capturing monitor data once a
connection to a database has been established. In contrast, event monitors must be
specifically created before they can be used. Several different event monitors can
exist, and each event monitor is activated only when a specific type of event or
transition occurs. Table 3 shows the types of events that can cause an event monitor
to be activated, along with the kind of monitor data that is collected for each event
type.

Table 3. Event types and the data collected for each
Event Type Data Collected When Data Is

Collected
Associated Group
(Target Table) Names

DATABASE The values of all
database-level counters

When the database is
deactivated, or when
the last application
connected to the
database disconnects

DB, CONTROL

BUFFERPOOLS The values of all buffer
pool counters,
prefetchers, and page
cleaners, as well as
direct I/O for each
buffer pool used

When the database is
deactivated or when the
last application
connected to the
database disconnects

BUFFERPOOL,
CONTROL

TABLESPACES The values of all buffer
pool counters,
prefetchers, page
cleaners, as well as
direct I/O for each
tablespace used

When the database is
deactivated or when the
last application
connected to the
database disconnects

TABLESPACE,
CONTROL

TABLES The number of rows
read and the number of
rows written for each
table

When the database is
deactivated or when the
last application
connected to the
database disconnects

TABLE, CONTROL

DEADLOCKS Comprehensive When a deadlock cycle CONNHEADER,

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 16 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

information regarding
applications involved,
including the
identification of all SQL
statements involved
(along with statement
text) and a list of locks
held by each

is detected DEADLOCK, DLCONN,
DLLOCK, CONTROL

CONNECTIONS The values of all
application-level
counters

When an application
that is connected to the
database disconnects

CONNHEADER,
CONN, CONTROL

STATEMENTS Statement start/stop
time, amount of CPU
used, text of dynamic
SQL statements,
SQLCA (the return
code of the SQL
statement), and other
metrics such as fetch
count. For partitioned
databases: amount of
CPU used, execution
time, table information,
and table queue
information

When an SQL
statement finishes
executing, or, for
partitioned databases,
when a subsection of
an SQL statement
finishes executing

CONNHEADER,
STMT, SUBSECTION,
CONTROL

TRANSACTIONS Transaction start/stop
time, previous
transaction time,
amount of CPU
consumed, along with
locking and logging
metrics (transaction
records aren't
generated if the
database uses
two-phase commit
processing and an
X/Open XA Interface)

When a transaction is
terminated (by a
COMMIT or
ROLLBACK statement)

CONNHEADER, XACT,
CONTROL

Because event monitors are special database objects that must be created before
they can be used, they can only collect monitor data for events or transitions that
take place in the database for which they have been defined. Event monitors cannot
be used to collect monitor data at the instance level.

Creating event monitors

You can create event monitors directly from the Control Center (select Create Event
Monitor from the Event Monitors menu) or by executing the CREATE EVENT
MONITOR SQL statement. The basic syntax for this statement is:

CREATE EVENT MONITOR [Name]
FOR [DATABASE | BUFFERPOOLS | TABLESPACES | TABLES | DEADLOCKS <WITH DETAIL> |

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 17 of 57

http://www.ibm.com/legal/copytrade.shtml

CONNECTIONS <WHERE [EventCondition]> |
STATEMENTS <WHERE [EventCondition]]> |
TRANSACTIONS <WHERE [EventCondition]> , ...]

WRITE TO [TABLE [GroupName] (TABLE [TableName]) | PIPE [PipeName] | FILE [DirectoryName]]
[MANUALSTART | AUTOSTART]

where

• Name identifies the name to be assigned to the event monitor being
created.

• EventCondition identifies a condition used to determine which
CONNECTION, STATEMENT, or TRANSACTION the event monitor
collects data for.

• GroupName identifies the logical data group for which the target table is
defined. (See Table 3 for the appropriate values to use for this
parameter.)

• TableName identifies the name assigned to the database table that all
event monitor data is to be written to.

• PipeName identifies the name assigned to the named pipe that all event
monitor data is to be written to.

• DirectoryName identifies the name assigned to the directory that one or
more files containing event monitor data is be written to.

Let's say you want to create an event monitor that captures the values of all
application-level counters and writes them to a database table named CONN_DATA
every time an application terminates its connection to a database. To do that,
execute a CREATE EVENT MONITOR statement that looks something like this:

CREATE EVENT MONITOR CONN_EVENTS FOR CONNECTIONS WRITE TO TABLE CONN (TABLE CONN_DATA)

Now let's say you want to create an event monitor that captures monitor data for
both buffer pool and tablespace events and writes all data collected to a directory
named /export/home/bpts_data. To do that, execute a CREATE EVENT MONITOR
statement that looks something like this:

CREATE EVENT MONITOR BPTS_EVENTS FOR BUFFERPOOLS, TABLESPACES WRITE TO FILE
'/export/home/BPTS_DATA'

As you can see, when creating an event monitor you must specify the type of event
that will cause the event monitor to be activated, as well as the location where all
data collected is to be written.

Output from an event monitor can be written to one or more database tables, one or
more external files, or a named pipe. Table and pipe event monitors stream event
records directly to the table or named pipe specified. File event monitors, on the
other hand, stream event records to a series of eight-character numbered files that

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 18 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

have the extension .evt (for example, 00000000.evt, 00000001.evt, and so
on). The data stored in these files should be treated as if it were a single data stream
stored in a single file, even though the data is actually broken up into several small
pieces (the start of the data stream is the first byte found in the file named
00000000.evt and the end of the data stream is the last byte found in the last file
created).

If you specify that output from an event monitor will be stored in database tables, all
target tables are automatically created when the CREATE EVENT MONITOR
statement is executed. (If the creation of a table fails for any reason, an error code is
generated and the CREATE EVENT MONITOR statement fails.) However, if you
specify that output from an event monitor will be written to one or more external files
or a named pipe, the output directory or named pipe specified must exist and the
DB2 Database Manager instance owner must be able to write to it at the time the
event monitor is activated. Additionally, if a named pipe is used, the application
monitoring the named pipe must be running and it must have opened the pipe for
reading before the event monitor is activated.

Starting and stopping event monitors

If you specify the AUTOSTART option when creating an event monitor, the monitor
will start automatically when the database containing the event monitor is started. (A
database is started when it is activated with the ACTIVATE DATABASE command or
when the first connection to the database is established.) If you use the
MANUALSTART option or don't specify either option (in which case, MANUALSTART is
used by default), the resulting event monitor won't collect monitor data until it has
been started. Event monitors can be started (and stopped) by executing the SET
EVENT MONITOR SQL statement. The basic syntax for this statement is:

SET EVENT MONITOR [MonitorName] STATE <=> [MonitorState]

where MonitorName identifies the name of the event monitor whose state is to be
altered and MonitorState identifies the state the specified event monitor is to be
placed in. To start an event monitor (in other words, place it in the 'active' state), you
must specify the value 1 for the MonitorState parameter. To stop an event monitor
(in other words, place it in the 'inactive' state), specify the value 0.

Let's say you want to start an event monitor named CONN_EVENTS that was
created with the MANUALSTART option. Do that by executing the following statement:

SET EVENT MONITOR CONN_EVENTS STATE 1

On the other hand, if you want to stop the CONN_EVENTS event monitor, execute a
statement that looks like this:

SET EVENT MONITOR CONN_EVENTS STATE 0

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 19 of 57

http://www.ibm.com/legal/copytrade.shtml

You can also start and stop event monitors by highlighting the appropriate event
monitor name in the Control Center and selecting an action (Start Event Monitoring
or Stop Event Monitoring) from the Event Monitors menu.

The SQL function EVENT_MON_STATE can be used to determine the current state of
any event monitor that has been defined for a database. This function must be used
in a query that looks something like this:

SELECT EVENT_MON_STATE('CONN_EVENTS') FROM SYSIBM.SYSDUMMY1
(In this example, the table SYSIBM.SYSDUMMY1 is an empty table that is
commonly used as a placeholder.)

Once started, an event monitor sits quietly in the background and waits for one of
the events or transitions it's designed to monitor to take place. When such an event
or transition occurs, the event monitor collects the appropriate monitor data and
writes it to the monitor's output target (table, directory, or named pipe). The event or
transition itself controls when monitor data is collected; the DBA doesn't need to
perform any additional steps (unlike when the snapshot monitor is used).

Forcing an event monitor to generate output

At times, an event monitor that has a low record-generation frequency (such as one
designed to monitor DATABASE events) can contain event monitor data in memory
that hasn't been written to the event monitor's target location yet (because only a
partial event record exists). To examine the contents of an event monitor's active
internal buffers, execute the FLUSH EVENT MONITOR SQL statement. The basic
syntax for this statement is:

FLUSH EVENT MONITOR [MonitorName] <BUFFER>

where MonitorName identifies the event monitor (by name) that you want to force to
write the contents of its active internal buffers to its target location.

To force an event monitor named CONN_EVENTS to write the contents of its active
internal buffers to its target location, execute a FLUSH EVENT MONITOR statement
that looks like this:

FLUSH EVENT MONITOR CONN_EVENTS

By default, records that are written to an event monitor's target location prematurely
are logged in the event monitor log and assigned a partial record identifier. However,
if you specify the BUFFER option when executing the FLUSH EVENT MONITOR
statement, only monitor data present in the event monitor's active internal buffers is
written to the event monitor's target location. No partial record is logged in the event
monitor log.

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 20 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

It is important to note that when event monitors are flushed, counters aren't reset. As
a result, the event monitor record that would have been generated had the FLUSH
EVENT MONITOR statement not been executed will still be generated when the
event monitor is triggered normally.

Viewing event monitor data

Earlier, you saw that event monitor data can be written to one of three different
locations:

1. Files. Event monitor output can be written to one or more files. Two
parameters control the amount of space available for use (MAXFILESIZE
and MAXFILES) and once the space limit is reached the event monitor
will automatically flush all events and stop itself. The default setting for
both parameters is NONE, which indicates that there is no space limit.

2. Pipes. Event monitor output can be written to a named pipe. The name of
the pipe must be provided, but the named pipe itself does not need to
exist when the event monitor is created. It must, however, exist when the
event monitor is activated.

3. Tables. Event monitor output can be written out to one or more tables
that exist in the database. Each monitor element in the event monitor is
mapped to a table of the same name. Data for each individual event is
inserted into the appropriate table as a single row.

At some point, you'll want to examine the data an event monitor has collected. If the
data collected is written to a named pipe, the application at the receiving end of the
pipe is usually responsible for displaying monitor data as it's received. If the data
collected is written to a table or a set of files, you can view that data by using one of
two special utilities: the Event Analyzer and the event monitor productivity tool.

The Event Analyzer is a GUI tool that can be activated by highlighting the desired
event monitor in the Control Center and selecting the appropriate action from the
Event Monitors menu or by executing the command db2eva. Once activated, the
Event Analyzer lets you drill down and view information that a specific event monitor
captured. Figure 1 shows what the Event Analyzer typically looks like when it is first
activated.

Figure 1. The Event Analyzer

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 21 of 57

http://www.ibm.com/legal/copytrade.shtml

The Event Analyzer can only be used to view event monitor data that was collected
and stored in database tables. To view event monitor data that was written to files
(and named pipes), you must use the text-based event monitor productivity tool,
which retrieves information from an event monitor data file or named pipe and
generates a formatted report. (Event monitor files and named pipes contain a binary
stream of logical data groupings that must be formatted before they can be
displayed.)

To activate the event monitor productivity tool, execute the db2evmon command.
The basic syntax for this command looks like this:

db2evmon -db [DatabaseAlias] -evm [MonitorName]

where DatabaseAlias identifies the database (by alias) on which the event monitor
whose data is to be displayed is defined and MonitorName identifies the name
assigned to the event monitor whose data is to be displayed.

or

db2evmon -path [MonitorTarget]

where MonitorTarget identifies the location (directory or named pipe) where data that
has been collected by the event monitor specified is stored.

For example, to format and display all data collected by an event monitor named

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 22 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

CONN_EVENTS that was defined in a database named SAMPLE, execute the
following command (assuming monitor data was written to a file):

db2evmon -db SAMPLE -evm CONN_EVENTS

Assuming the event monitor named CONN_EVENTS was created by executing the
following SQL statement:

CREATE EVENT MONITOR CONN_EVENTS FOR CONNECTIONS WRITE TO FILE
'C:\MONDATA' AUTOSTART
And assuming an application has established a connection to the SAMPLE database
(which caused the event monitor to capture and produce monitoring data), the output
produced when the event monitor productivity tool is used to examine that data
should look something like the sample below.

Output sample produced by the event monitor productivity tool

Reading C:\mondata\00000000.EVT ...

--
EVENT LOG HEADER

Event Monitor name: CONN_EVENTS
Server Product ID: SQL09000
Version of event monitor data: 8
Byte order: LITTLE ENDIAN
Number of nodes in db2 instance: 1
Codepage of database: 1208
Territory code of database: 1
Server instance name: DB2

--

--
Database Name: SAMPLE
Database Path: C:\DB2\NODE0000\SQL00002\
First connection timestamp: 06/22/2006 00:56:40.086671
Event Monitor Start time: 06/22/2006 00:56:40.662668

--

3) Connection Header Event ...
Appl Handle: 55
Appl Id: *LOCAL.DB2.060622045634
Appl Seq number: 00001
DRDA AS Correlation Token: *LOCAL.DB2.060622045634
Program Name : db2bp.exe
Authorization Id: RSANDERS
Execution Id : RSANDERS
Codepage Id: 1252
Territory code: 0
Client Process Id: 1992
Client Database Alias: SAMPLE
Client Product Id: SQL09000
Client Platform: Unknown
Client Communication Protocol: Local
Client Network Name: rsanders-lxp
Connect timestamp: 06/22/2006 00:56:40.086671

4) Connection Event
...

--
Database Name: SAMPLE
Database Path: C:\DB2\NODE0000\SQL00002\
First connection timestamp: 06/22/2006 00:57:36.727014
Event Monitor Start time: 06/22/2006 00:57:37.223404

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 23 of 57

http://www.ibm.com/legal/copytrade.shtml

--

Guidelines for using event monitors

Event monitors should only be used to monitor specific events or short workloads.
They are designed to provide very specific information that can be used to diagnose
problems or undesired behavior of a database/application.

Unlike snapshots, event monitors have an extremely heavy impact on performance.
This is due to the amount of information that is written out for each event object.
Additionally, SQL statement event monitors cause an even heavier performance
impact because of all the extra work the database engine has to perform each time a
query is executed: instead of being able to simply execute a query, the DB2
Database Manager must also generate and record all the characteristics and
runtime information associated with the query. If this information is written to a text
file, that slows things down even further.

While on the subject of files, when creating event monitors that write data to files, it
is a good idea to impose file size limits to control the amount of disk space that event
monitor output will consume. Otherwise, if you are monitoring a high-volume OLTP
system, the output can quickly grow to hundreds of megabytes.

One of the most common uses for event monitors is to capture deadlock information.
(A deadlock event monitor does not write out a lot of data and is triggered
sporadically so it is acceptable not to impose a file size limit.) If an event monitor is
not used, it is almost impossible to determine exactly what locks and applications
were involved in a deadlock cycle. A deadlock event monitor will collect information
on all the applications and their locks when a deadlock cycle occurs. Armed with this
information, the precise SQL statement that caused the deadlock cycle can be
monitored or altered to correct the situation. Don't forget that the application that
DB2 labels as the cause of a deadlock is the last application involved in the
deadlock cycle - the real cause may actually be a transaction that was started much
earlier by another application. Make sure you examine all the locks and applications
involved to corectly determine where the problem originated.

The second most common use for event monitors is to keep track of SQL statement
processing. An SQL statement event monitor can be quite useful because it traps
both dynamic and static SQL statements. This is essential if an application makes
use of precompiled SQL statements that would not be captured using an SQL
snapshot. When an event monitor is used to capture information about every SQL
statement that is executed, the properties of each statement, such as the number of
rows read, selected, deleted, etc., is recorded, and is not presented as an aggregate
total as is the case when a snapshot is captured. Furthermore, because the
execution timeframe and start and stop times are recorded as well, detailed analysis
of transactions and of how the execution of SQL by one application affects the
execution of SQL by others can be performed. However, because of the volume of
information produced and performance overhead required to run an SQL statement
monitor, such a monitor should only be used for short tests or problem

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 24 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

determination, and not in a production environment.

Section 4. Health monitoring and the Health Center

Health monitoring

Although the snapshot monitor and event monitors work differently (the snapshot
monitor is used to capture information about the current state of an instance and/or
database at a given point; event monitors are used to collect monitor data as specific
events or transitions occur), they have one thing in common - both are designed to
help pinpoint problem areas that are already adversely affecting a database
system's performance. With DB2 UDB version 8.1, IBM introduced a new tool to help
database administrators monitor the health of a DB2 UDB system: the health
monitor. This tool adds a management by exception capability to DB2 9 by alerting
administrators to potential system health issues before they become problems that
affect a system's performance.

The health monitor reverses the system health diagnosis model from that of a DBA
hunting for the source of existing problems by running snapshot and event monitors
at different times and analyzing huge amounts of data looking for indications of a
system's unhealthiness to DB2 monitoring itself for healthiness and notifying select
personnel only when potential or existing unhealthy conditions are encountered.

How the health monitor works

The health monitor is a server-side tool that runs quietly in the background and
constantly monitors the health of both a DB2 Database Manager instance and any
databases that fall under its control. Unlike the database system monitor, whose use
introduces additional processing overhead, the health monitor takes advantage of
new monitoring technology that has no significant impact on performance. And, the
health monitor requires no user intervention (another difference between it and the
database system monitor).

The health monitor uses several health indicators to evaluate specific aspects of
instance and database performance. Each health indicator acts as a precise
measurement that the health monitor examines continuously to gauge the health of
a particular aspect of a specific class of database objects. In turn, health indicators
measure a finite set of distinct object states or a continuous range of values to
determine whether an particular object is "healthy" or "unhealthy". Health indicators
have a set of predefined threshold values, and the health monitor constantly
compares the state of the system against these thresholds - you can modify these
threshold values to meet your specific needs. If the health monitor finds that a
particular threshold limit has been exceeded (for example, the amount of log space

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 25 of 57

http://www.ibm.com/legal/copytrade.shtml

available drops below a certain level) or detects an abnormal state for a particular
object (for example, an instance is down), it automatically issues an alert through the
specified reporting channels. Health indicators exist for the following components:

• Instance

• Database

• Logs

• Table space storage

• Sorting

• Package and catalog caches

• Workspaces

• Memory

• Application concurrency

The health monitor can generate three types of alerts: attention, warning, and alarm.
Health indicators that measure distinct states will issue an alert whenever a
non-normal state is registered; health indicators that measure a continuous range of
values use threshold values to define boundaries (or zones) for normal, attention,
warning, and alarm states. For example, if a health indicator value enters the
threshold range that defines an alarm zone, an alarm alert is issued to indicate that
the problem needs immediate attention.

Any time an alert is raised, the health monitor may take any of the following actions
to report it:

• Record the alert information in the Journal (all alarm alerts are written to
the Journal)

• Send alert notifications via e-mail or a pager address to the person
responsible for the system

• Carry out one or more preconfigured actions (for example, running a task)

By default, the health monitor is disabled when an instance is first created. However,
you can enable it at any time by selecting the appropriate menu item from the Health
Center or by assigning the value ON to the health_mon DB2 Database Manager
configuration parameter.

It is important to note that once the health monitor has been activated, if it generates
an alert while any DB2 interface tools are active, the user is signaled using a Health
Beacon. A Health Beacon is simply a button icon that appears on the status line of a
window or notebook - by clicking on a Health Beacon, control is immediately
transferred to the Health Center (which you will look at next), where you can get
additional information about the alert (and recommendations for resolving the
situation that caused the alert to be generated).

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 26 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The Health Center

The Health Center is a GUI tool that is designed to interact with the health monitor.
Figure 2 shows how the Health Center looks when it is first activated on a Windows
XP system (in this case, no alerts have been generated).

Figure 2. The Health Center

Like many of the GUI tools provided with DB2 9, the Health Center is composed of
an objects pane (on the left side of the Health Center screen) and a contents pane
(on the right side of the Health Center). These panes, show various information
about system health, including:

• The status of the database environment. An icon is presented beside
each object displayed in the objects pane that identifies the highest alert
level generated for the object (or for any objects managed by that object).
A green diamond icon beside an object means that the object and any
objects under its control haven't raised any alerts. You can use the toggle
buttons at the top of the objects pane to filter alerts according to their
severity.

• Alerts generated for an instance or a database. When you select an
object in the navigation tree in the objects pane, the alerts for that object
are shown in the contents pane to the right.

• Detailed alert information and recommended actions. When you
double-click on any alert shown in the contents pane, a notebook
containing detailed information about the alert appears. The first page of
this notebook contains details about the alert; the second page contains a
list of recommended actions to follow to resolve the alert. In most cases,
you can perform one of the recommended actions directly from the

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 27 of 57

http://www.ibm.com/legal/copytrade.shtml

notebook. For example, if the recommended action is to make a change
to the DB2 Database Manager or database configuration, the Heath
Center shows the new configuration value along with a button you can
click to make the change. In other cases, the Heath Center might
recommend investigating the problem further by launching a tool, such as
the Command Line Processor or the Memory Visualizer.

You can activate the Health Center at any time by selecting the Health Center action
from the Tools menu of another DB2 9 GUI tool, by selecting the appropriate icon
from the toolbar of another DB2 9 GUI tool, or by executing the command db2hc
from the Command Line Processor. On Windows systems, you can also activate the
Health Center by clicking the Start button and selecting Start > Programs > IBM
DB2 > Monitoring Tools > Health Center.

Note: DB2 9 contains a tool called the Web Health Center, which includes all Health
Center capabilities and adds the ability to access health monitor information directly
from a Web browser or PDA.

Activating health indicators and defining event actions

From the Health Center, you can select the instance and database objects that you
want to monitor, customize the threshold settings of any health indicator, specify
where notifications are to be sent, and define what actions are to be taken if an alert
is issued. By default, most health indicatiors are inactivate when the health monitor
is installed. To activate a health indicator or alter a health indicator's threshold
values, you must first access the Object health Indicator Configuration window of the
Health Center, shown in Figure 3.

Figure 3. The Object Health Indicator Configuration window

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 28 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

To activate a health indicator, you simply double-click the appropriate health
indicator in the Object Health Indicator Configuration window and when the
Configure Health Indicator window is displayed, shown in Figure 4, select the
Evaluate check box.

Figure 4. The Configure Health Indicator window

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 29 of 57

http://www.ibm.com/legal/copytrade.shtml

Using the Configure Health Indicator window, you can also specify what actions are
to be taken when threshold limits for a health indicator are exceeded. Figure 5
shows the Configure Health Indicator window and the fields used to define the
actions that are to be taken when different alerts are generated.

Figure 5. The Configure Health Indicator window

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 30 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Section 5. Analyzing SQL with the Explain facility

What is the explain facility?

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 31 of 57

http://www.ibm.com/legal/copytrade.shtml

When an SQL statement is submitted to the DB2 database engine for processing, it
is analyzed by the DB2 Optimizer to produce what is known as an access plan. Each
access plan contains detailed information about the strategy that will be used to
execute the statement (such as whether or not indexes will be used, what sort
methods, if any, are required, what locks are needed, and what join methods, if any,
will be used). If the SQL statement is coded in an application, the access plan is
generated at precompile time (or at bind time if deferred binding is used) and an
executable form of the access plan produced is stored in the system catalog as an
object that is known as a package. If, however, the statement is submitted from the
Command Line Processor or if the statement is a dynamic SQL statement in an
application program (in other words, an SQL statement that is constructed at
application run time), the access plan is generated at the time the statement is
issued and the executable form produced is stored temporarily in memory (in the
global package cache) rather than in the system catalog. (If an SQL statement is
issued and an executable form of its access plan already exists in the global
package cache, the existing access plan is reused and the DB2 Optimizer is not
invoked again.)

Why is this important? Because, although the database system monitor and the
health monitor can be used to obtain information about how well (or poorly) some
SQL operations perform, they cannot be used to analyze individual SQL statements.
To perform this type of analysis, you must be able to capture and view the
information stored in an SQL statement's access plan. And in order to capture and
view access plan information, you must use the DB2 9 explain facility.

The explain facility allows you to capture and view detailed information about the
access plan chosen for a particular SQL statement, as well as performance
information that can be used to help identify poorly written statements or a weakness
in database design. Specifically, explain data helps you understand how the DB2
Database Manager accesses tables and indexes to satisfy a query. Explain data can
also be used to evaluate any performance tuning action taken. In fact, any time you
change some aspect of the DB2 Database Manager, an SQL statement, or the
database the statement interacts with, you should collect and examine explain data
to find out what effect, if any, your changes have had on performance.

Explain tables

Before explain information can be captured, a special set of tables, known as the
explain tables, must be created. Each explain table used, along with the information
it is designed to hold, can be seen in Table 4.

Table 4. The explain tables
Table Name Contents

EXPLAIN_ARGUMENT Contains the unique characteristics for each
individual operator used, if any.

EXPLAIN_INSTANCE Contains basic information about the source of
the SQL statements being explained as well as
information about the environment in which the
explanation took place. (The

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 32 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

EXPLAIN_INSTANCE table is the main control
table for all explain information. Each row of data
in the other explain tables is explicitly linked to
one unique row in this table.)

EXPLAIN_OBJECT Contains information about the data objects that
are required by the access plan generated for an
SQL statement.

EXPLAIN_OPERATOR Contains all the operators that are needed by the
SQL compiler to satisfy the SQL statement.

EXPLAIN_PREDICATE Contains information that identifies which
predicates are applied by a specific operator.

EXPLAIN_STATEMENT Contains the text of the SQL statement as it
exists for the different levels of explain
information. The original SQL statement as
entered by the user is stored in this table along
with the version used by the DB2 Optimizer to
choose an access plan to satisfy the SQL
statement. (The latter version may bear little
resemblance to the original, as it may have been
rewritten and/or enhanced with additional
predicates by the SQL Precompiler.)

EXPLAIN_STREAM Contains information about the input and output
data streams that exist between individual
operators and data objects. (The data objects
themselves are represented in the
EXPLAIN_OBJECT table while the operators
involved in a data stream can be found in the
EXPLAIN_OPERATOR table.)

Typically, explain tables are used in a development database to aid in application
design, but not in production databases where application code remains fairly static.
Because of this, they are not created along with the system catalog tables as part of
the database creation process. Instead, explain tables must be manually created in
the database that the explain facility is to be used with before the explain facility can
be used. Fortunately, the process used to create the explain tables is pretty
straightforward: using the Command Line Processor, you establish a connection to
the appropriate database and execute a script named EXPLAIN.DDL, which can be
found in the "misc" subdirectory of the "sqllib" directory where the DB2 9 software
was initially installed. (Comments in the header of this file provide information on
how it is to be executed.)

Collecting explain data

The explain facility is comprised of several individual tools and not all tools require
the same kind of explain data. Therefore, two different types of explain data can be
collected:

• Comprehensive explain data. Contains detailed information about an
SQL statement's access plan. This information is stored across several

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 33 of 57

http://www.ibm.com/legal/copytrade.shtml

different explain tables.

• Explain snapshot data. Contains the current internal representation of
an SQL statement, along with any related information. This information is
stored in the SNAPSHOT column of the EXPLAIN_STATEMENT explain
table.

As you might imagine, there are a variety of ways in which both types of explain data
can be collected. The methods available for collecting explain data include:

• Executing the EXPLAIN SQL statement

• Setting the CURRENT EXPLAIN MODE special register

• Setting the CURRENT EXPLAIN SNAPSHOT special register

• Using the EXPLAIN bind option with the PRECOMPILE or BIND command

• Using the EXPLSNAP bind option with the PRECOMPILE or BIND
command

EXPLAIN SQL statement

One way to collect both comprehensive explain information and explain snapshot
data for a single, dynamic SQL statement is by executing the EXPLAIN SQL
statement. The basic syntax for this statement is:

EXPLAIN [ALL | PLAN | PLAN SELECTION]
<FOR SNAPSHOT | WITH SNAPSHOT>
FOR [SQLStatement]

where SQLStatement identifies the SQL statement that explain data and/or explain
snapshot data is to be collected for. (The statement specified must be a valid
INSERT, UPDATE, DELETE, SELECT, SELECT INTO, VALUES, or VALUES INTO
SQL statement.)

If the FOR SNAPSHOT option is specified with the EXPLAIN statement, only explain
snapshot information is collected for the dynamic SQL statement specified. On the
other hand, if the WITH SNAPSHOT option is specified instead, both comprehensive
explain information and explain snapshot data is collected for the dynamic SQL
statement specified. However, if neither option is used, only comprehensive explain
data is collected; no explain snapshot data is produced.

To collect both comprehensive explain data and explain snapshot information for the
SQL statement SELECT * FROM DEPARTMENT, execute an EXPLAIN statement
that looks like this:

EXPLAIN ALL WITH SNAPSHOT FOR SELECT * FROM DEPARTMENT

On the other hand, to collect only explain snapshot data for the same SQL

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 34 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

statement, execute an EXPLAIN statement that looks like this:

EXPLAIN ALL FOR SNAPSHOT FOR SELECT * FROM DEPARTMENT

And finally, to collect only comprehensive explain data for the SQL statement
SELECT * FROM DEPARTMENT, execute an EXPLAIN statement that looks like this:

EXPLAIN ALL FOR SELECT * FROM DEPARTMENT

It is important to note that the EXPLAIN statement does not execute the SQL
statement specified, nor does it display the explain information collected. Other
explain facility tools must be used to view the information collected. (We'll look at
those tools shortly.)

CURRENT EXPLAIN MODE and the CURRENT EXPLAIN
SNAPSHOT special registers

Although the EXPLAIN SQL statement is useful when you want to collect explain
and/or explain snapshot information for a single dynamic SQL statement, it can
become very time consuming to use if a large number of SQL statements need to be
analyzed. A better way to collect the same information for several dynamic SQL
statements is by setting one or both of the special explain facility registers provided
before a group of dynamic SQL statements are executed. Then, as the statements
are prepared for execution, explain and/or explain snapshot information is collected
for each statement processed. (The statements themselves, however, may or may
not be executed once explain and/or explain snapshot information has been
collected.)

The two explain facility special registers that are used in this manner are the
CURRENT EXPLAIN MODE special register and the CURRENT EXPLAIN SNAPSHOT
special register. The CURRENT EXPLAIN MODE special register is set using the SET
CURRENT EXPLAIN MODE SQL statement and the CURRENT EXPLAIN SNAPSHOT
special register is set using the SET CURRENT EXPLAIN SNAPSHOT SQL
statement. The basic syntax for the SET CURRENT EXPLAIN MODE SQL statement
is:

SET CURRENT EXPLAIN MODE <=>
[NO |
YES |
EXPLAIN |
REOPT |
RECOMMEND INDEXES |
EVALUATE INDEXES |
RECOMMEND PARTITIONINGS |
EVALUATE PARTITIONINGS]

The basic syntax for the SET CURRENT EXPLAIN SNAPSHOT SQL statement is:

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 35 of 57

http://www.ibm.com/legal/copytrade.shtml

SET CURRENT EXPLAIN SNAPSHOT <=> [YES | NO | EXPLAIN | REOPT]

As you might imagine, if both the CURRENT EXPLAIN MODE and the CURRENT
EXPLAIN SNAPSHOT special registers are set to NO, the explain facility is disabled
and no explain data is captured. On the other hand, if either special register is set to
EXPLAIN, the explain facility is activated and comprehensive explain information or
explain snapshot data (or both if both special registers have been set) is collected
each time a dynamic SQL statement is prepared for execution. However, the
statements themselves are not executed. If either special register is set to YES, the
behavior is the same as when either register is set to EXPLAIN with one significant
difference; the dynamic SQL statements that explain information is collected for are
executed as soon as the appropriate explain/explain snapshot data has been
collected.

If either the CURRENT EXPLAIN MODE or the CURRENT EXPLAIN SNAPSHOT
special register is set to REOPT the explain facility is activated and explain
information or explain snapshot data (or both if both special registers have been set)
is captured whenever a static or dynamic SQL statement is processed during
statement reoptimization at execution time; that is, when actual values for the host
variables, special registers, or parameter markers used in the statement are
available.

The EXPLAIN and EXPLSNAP precompile/bind options

So far, you have looked at ways in which comprehensive explain information and
explain snapshot data can be collected for dynamic SQL statements. But often,
database applications are comprised of static SQL statements that need to be
analyzed as well. So how can you use the explain facility to analyze static SQL
statements coded in an embedded SQL application? To collect comprehensive
explain information and/or explain snapshot data for static and/or dynamic SQL
statements that have been coded in an embedded SQL application, you rely on the
EXPLAIN and EXPLSNAP precompile/bind options.

As you might imagine, the EXPLAIN precompile/bind option is used to control
whether or not comprehensive explain data is collected for static and/or dynamic
SQL statements that have been coded in an embedded SQL application. Likewise,
the EXPLSNAP precompile/bind option controls whether or not explain snapshot data
is collected. One or both of these options can be specified as part of the
PRECOMPILE command that is used to precompile the source code file that contains
the embedded SQL statements. If deferred binding is used, these options can be
provided with the BIND command that is used to bind the application's bind file to the
database.

Both the EXPLAIN option and the EXPLSNAP option can be assigned the value NO,
YES, ALL, or REOPT. If both options are assigned the value NO (for example,
EXPLAIN NO EXPLSNAP NO), the Explain facility is disabled and no explain data is
captured. On the other hand, if either option is assigned the value YES, the explain
facility is activated and comprehensive explain information or explain snapshot data

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 36 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

(or both if both options are set) is collected for each static SQL statement found in
the application. If either option is assigned the value ALL, the explain facility is
activated and comprehensive explain information or explain snapshot data (or both if
both options are set) is collected for every static and every dynamic SQL statement
found, even if the CURRENT EXPLAIN MODE and/or the CURRENT EXPLAIN
SNAPSHOT special registers have been set to NO.

If either the EXPLAIN or the EXPLSNAP option is assigned the value REOPT explain
information or explain snapshot data (or both if both options have been specified) for
each reoptimizable incremental bind SQL statement will be placed in the explain
tables at run time, even if the CURRENT EXPLAIN MODE and/or the CURRENT
EXPLAIN SNAPSHOT special registers have been set to NO.

Evaluating explain data

So far, you have concentrated on the various ways in which comprehensive explain
and explain snapshot data can be collected. But once the data is collected, how can
it be viewed? To answer this question, you need to take a look at the explain facility
tools that have been designed specifically for presenting explain information in a
meaningful format. These tools include:

• db2expln

• db2exfmt

• Visual Explain

db2expln

Earlier, you saw that when a source code file containing embedded SQL statements
is bound to a database (either as part of the precompile process or during deferred
binding), the DB2 Optimizer analyzes each static SQL statement encountered and
generates a corresponding access plan, which is then stored in the database in the
form of a package. Given the name of the database, the name of the package, the
ID of the package creator, and a section number (if the section number 0 is
specified, all sections of the package is processed), the db2expln tool interprets
and describes the access plan information for any package that is stored in a
database's system catalog. Since the db2expln tool works directly with a package
and not with comprehensive explain or explain snapshot data, it is typically used to
obtain information about the access plans that have been chosen for packages for
which explain data has not been captured. However, because the db2expln tool
can only access information that has been stored in a package, it can only describe
the implementation of the final access plan chosen; it cannot provide information on
how a particular SQL statement was optimized.

Using additional input parameters, the db2expln tool can also be used to explain
dynamic SQL statements (that do not contain parameter markers).

db2exfmt

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 37 of 57

http://www.ibm.com/legal/copytrade.shtml

Unlike the db2expln tool, the db2exfmt tool is designed to work directly with
comprehensive explain or explain snapshot data that has been collected and stored
in the explain tables. Given a database name and other qualifying information, the
db2exfmt tool queries the explain tables for information, format the results, and
produce a text-based report that can be displayed directly on the terminal or written
to an ASCII file.

Visual Explain

Visual Explain is a GUI tool that provides database administrators and application
developers with the ability to view a graphical representation of the access plan that
has been chosen for a particular SQL statement. In addition, Visual Explain allows
you to:

• See the database statistics that were used to optimize the SQL
statement.

• Determine whether or not an index was used to access table data. (If an
index was not used, Visual Explain can help you determine which
columns might benefit from being indexed.)

• View the effects of performance tuning by allowing you to make "before"
and "after" comparisons.

• Obtain detailed information about each operation that is performed by the
access plan, including the estimated cost of each.

However, Visual Explain can only be used to view explain snapshot data; to view
explain data that has been collected and written to the explain tables, the db2exfmt
tool must be used instead.

As you can see, the various tools that are available for displaying comprehensive
explain information and explain snapshot data vary greatly both in their complexity in
the capa-bilities they provide. Table 5 summarizes the different tools available, and
highlights their individual characteristics. To get the most out of the explain facility,
you should consider your environment and your needs when making a decision on
which tool to use.

Table 5. Comparison of explain facility tools available
Desired
Characteristics

Visual Explain db2exfmt db2expln

User interface Graphical Text-based Text-based

"Quick and dirty" static
SQL analysis

No No Yes

Static SQL supported Yes Yes Yes

Dynamic SQL
supported

Yes Yes Yes

CLI applications
supported

Yes Yes No

Detailed DB2 Optimizer Yes Yes No

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 38 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

information available

Suited for analysis of
multiple SQL
statements

No Yes Yes

Section 6. Visual Explain - A closer look

Timerons and SQL translation

Timerons

The most important thing that you need understand in order to analyze explain
information is the concept of the timeron. A timeron is a unit of measurement used
by the DB2 Optimizer for computing the amount of time and resources that a query
will take to complete execution. The timeron is a combination of time, CPU
utilization, disk I/O, and a few other factors. Due to the changing values of these
parameters, the number of timerons needed to execute a query is dynamic and can
change from execution to execution.

The timeron is also an invented unit of measurement; therefore, there is no a
formula that can be used to translate the number of timerons it will take to execute a
query into a time in seconds. That aside, timerons can help you determine if one
query execution path is faster than another. (Don't worry if the number of timerons it
takes to execute a query varies by ten or twenty between compilations - this could
easily be due to changes in CPU activity, disk activity, or database usage.)

SQL translation

Before any SQL statement can be executed against a database, it must first be
prepared. During this process the SQL statement is reduced down to an algebraic
statement that the DB2 Optimizer can then analyze. This algebraic statement is
referred to as the query graph model, and is worked with throughout the optimization
process. Figure 6 shows the stages of optimization and parsing an SQL query must
go through before it can be executed.

Figure 6. The SQL translation process

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 39 of 57

http://www.ibm.com/legal/copytrade.shtml

The final output of the optimization process is an access plan. The access plan is
the path and steps that DB2 takes to execute the SQL statement. This is the
information that is displayed by all of the explain tools available. At first, access
plans appear to be quite complicated. But with practice, you soon discover that they
are actually very easy to read and analyze.

Activating Visual Explain

Whenever comprehensive explain and/or explain snapshot data is collected,
information about how and when the data was collected is recorded in the
EXPLAIN_INSTANCE explain table. This information can be viewed at any time via
the Explained Statement History window. The Explained Statement History window
is activated by highlighting the appropriate database in the Control Center and
selecting Selected > Show Explained Statement History from the Control Center
menu. Figure 7 shows how the Explained Statement History window might look
when explain snapshot data has been collected for one SQL statements.

Figure 7. The Explained Statement History window

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 40 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Once the Explained Statement History window has been opened, Visual Explain can
be used to analyze the explain snapshot data collected for any record shown by
highlighting a record and selecting Statement > Show Access Plan from the
Explained Statement History window's main menu. Figure 8 shows the Access Plan
window that was created in this manner for the following query (which was ran
against the SAMPLE database provided with DB2):

SELECT * FROM EMPLOYEE, DEPARTMENT WHERE WORKDEPT=DEPTNO

Figure 8. The Access Plan Graph window

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 41 of 57

http://www.ibm.com/legal/copytrade.shtml

Alternately, explain snapshot data can be collected for a new query and the
corresponding access plan can be displayed by selecting Statement > Explain
Query... from the Explained Statement History window's main menu. When these
menu items are selected, the Explain Query Statement window opens and prompts
you to enter the text for your query. Figure 9 shows what the Explain Query
Statement window looks like after it has been populated with a simple query.

Figure 9. The Explain Query Statement window

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 42 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Every component of the access plan shown in the Access Plan Graph window can
be clicked to reveal more detailed information on that component. For example, if
the HSJOIN(3) operator in the access plan shown in Figure 8 is selected, detailed
information like that shown in Figure 10 might be displayed in the Operator details
window.

Figure 10. The Operator details window

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 43 of 57

http://www.ibm.com/legal/copytrade.shtml

When analyzing an access plan to locate performance bottlenecks, it is a good idea
to try clicking through all the different object types to get comfortable with the query
information that you have available.

Visual Explain components

You might have noticed that the output provided in the Access Plan window (refer to
Figure 9) consists of a hierarchical graph that represents the various components
that are needed to process the access plan that has been chosen for the query
specified. Each component in the plan is represented as a graphical object known as
a node. Two types of nodes can exist:

• Operator. An operator node is used to identify either an action that must
be performed on data, or output produced from a table or index.

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 44 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• Operand. An operand node is used to identify an entity on which an
operation is performed (for example, a table would be the operand of a
table scan operator).

Operands

Typically, operand nodes are used to identify tables, indexes, and table queues
(table queues are used when intra-partition parallelism is used), which are
symbolized in the hierarchical graph by rectangles (tables), diamonds (indexes), and
parallelograms (table queues). Examples of table and index operands can be seen
in Figure 11.

Figure 11. Table and index operands

Operators

Operator nodes, on the other hand, are used to identify anything from an insert
operation to an index or table scan. Operator nodes, which are symbolized in the
hierarchical graph by ovals, indicate how data is accessed, how tables are joined,
and other factors such as whether or not a sort operation is to be performed. Table 6
lists the more common operators that can appear in an access plan hierarchical
graph.

Table 6. Common Visual Explain operators
Operator Operation performed

CMPEXP Computes expressions. (For debug mode only.)

DELETE Deletes rows from a table.

EISCAN Scans a user-defined index to produce a reduced
stream of rows.

FETCH Fetches columns from a table using a specific
record identifier.

FILTER Filters data by applying one or more predicates
to it.

GENROW Generates a table of rows.

GRPBY Groups rows by common values of designated
columns or functions, and evaluates set
functions.

HSJOIN Represents a hash join, where two or more
tables are hashed on the join columns.

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 45 of 57

http://www.ibm.com/legal/copytrade.shtml

INSERT Inserts rows into a table.

IXAND ANDs together the row identifiers (RIDs) from
two or more index scans.

IXSCAN Scans an index of a table with optional start/stop
conditions, producing an ordered stream of rows.

MSJOIN Represents a merge join, where both outer and
inner tables must be in join-predicate order.

NLJOIN Represents a nested loop join that accesses an
inner table once for each row of the outer table.

PIPE Transfers rows. (For debug mode only.)

RETURN Represents the return of data from the query to
the user.

RIDSCN Scans a list of row identifiers (RIDs) obtained
from one or more indexes.

RPD An operator for remote plans. It is very similar to
the SHIP operator in Version 8 (RQUERY
operator in previous versions), except that it does
not contain an SQL or XQuery statement.

SHIP Retrieves data from a remote database source.
Used in the federated system.

SORT Sorts rows in the order of specified columns, and
optionally eliminates duplicate entries.

TBSCAN Retrieves rows by reading all data directly from
the data pages.

TEMP Stores data in a temporary table to be read back
out (possibly multiple times).

TQUEUE Transfers table data between database agents.

UNION Concatenates streams of rows from multiple
tables.

UNIQUE Eliminates rows with duplicate values for
specified columns.

UPDATE Updates rows in a table.

XISCAN Scans an index of an XML table.

XSCAN Navigates an XML document node subtrees.

XANDOR Allows ANDed and ORed predicates to be
applied to multiple XML indexes.

Examples of some more common operands can be seen in Figure 12. In this
example, three different actions are being performed: Two tables are having table
scans performed, one index scan is being performed, and two data sets are being
joined using the hashjoin algorithm.

Figure 12. Several common operators

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 46 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Connectors and the RETURN operator

Arrows that illustrate how data flows from one node to the next connect all nodes
shown in the hierarchical graph and a RETURN operator normally terminates this
path. The RETURN operator represents the final result set produced and contains
summary information about the query and what is being returned from the completed
SQL. The timeron value displayed with the RETURN the object represents the total
length measurement of the time, in timerons, that was needed to complete the
query. An example RETURN operator can be seen in Figure 13.

Figure 13. The RETURN operator

Factors that influence query performance

How a database environment has been configured and the query optimization level
used to prepare a query can have a tremendous impact on how a query will be
prepared, as well as how it will be executed.

Configuration parameter values

Visual Explain can quickly sumarize all of the parameters that affect query
compilation and display them in a summary window. This window is called the
Optimization Parameters window and it is invoked by selecting Statement > Show
Optimization Parameters from the Access Plan Graph window's main menu. Figure
14 shows what the Optimization Parameters window might look like when it is
activated.

Figure 14. The Optimization Parameters window

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 47 of 57

http://www.ibm.com/legal/copytrade.shtml

Some of the configuration parameters shown on the Optimization Parameters
window include:

• AVG_APPLS (average applications): This parameter indicates the
average number of applications that will be running concurrently against
the database. DB2 uses this information to determine how heavily the sort
space and buffer pools will be used and how much space the query will
likely be able to use.

• SORTHEAP (sort heap): The sort heap is the amount of space available
in memory to perform a sort. If the sort requires more memory than is
available for a sort heap, then part of the sort data will have to be paged
to disk, (which can have a very negative impact on performance).

• LOCKLIST (lock list): This indicates the amount of memory available for
DB2 to store locking information for each application. If the lock list space
is quite small, then DB2 may have to escalate some locks to allow room
for all the locks being held by the applications.

• MAXLOCKS (maximum lock list percentage): This parameter controls
what percentage of the total lock list space one application can have. If an
application tries to use up too much memory by having too many open
locks, DB2 will escalate some of the locks to free up space in the lock list.

• NUM_FREQVALUES (number of frequency values): The number of
frequency values is used by the DB2 Runstats utility to control how many

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 48 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

of the most frequent values DB2 will keep in memory. This information is
used by the optimizer to determine what percentage of the total result set
a predicate in a WHERE clause will eliminate.

• NUM_QUANTILES (number of data quantiles): The number of quantiles
is used by the DB2 Runstats utility to control how many quantiles are
captured for column data. Increasing the number of quantiles will give
DB2 more information on the distribution of data in the database.

• DBHEAP (database heap): The database heap controls the amount of
memory available for database object information. The objects include
indexes, tables, buffer pools, and table spaces. Event monitor and log
buffer information is stored here as well.

• CPUSPEED (CPU speed): The CPU speed of the computer. If the value
is set to -1, then a CPU speed measurement program is used by DB2 to
determine the proper setting.

• BUFFPAGE and buffer pool size: The optimizer uses the size of the
available buffer pools in its optimization data. Increasing or decreasing
the buffer pool size can have a significant impact on the access plan.

Optimization level used

The most important factor that can affect how an access plan is generated for a
query is the optimization level that is used to prepare it. This information tells the
DB2 Optimizer how much effort and what techniques should be used to determine
the best access plan to use to resolve the query. A higher level will cause the
optimizer to use more complex algorithms and algebraic analysis -- and as a result,
will take much more time -- to generate the final plan.

Seven optimization classes are available and each class uses a different subset of
all the rules and statistics available.The optimization classes available are:

• 0 -- Use a minimal amount of optimization

• 1 -- Use a degree of optimization roughly comparable to DB2/6000
Version 1, plus some additional low-cost features not found in Version 1

• 2 -- Use features of optimization class 5, but with a simplified join
algorithm

• 3 -- Perform a moderate amount of optimization; similar to the query
optimization characteristics of DB2 for MVS/ESA

• 5 -- Use a significant amount of optimization, with Heuristic Rules (Unless
otherwise specified, this is the default optimization class used.)

• 7 -- Use a significant amount of optimization, without Heuristic Rules

• 9 -- Use all available optimization techniques

The following guidelines can be helpful when deciding on the best optimization class
to use:

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 49 of 57

http://www.ibm.com/legal/copytrade.shtml

• Use optimization class 0 or 1 for queries that require very little
optimization and rely heavily on primary key index searches or very
simple joins (for example, very simple OLTP).

• Use optimization class 1 for simple queries that involve a small number of
tables and joins involved indexes on the tables (for example, OLTP).

• Use optimization class 5 for a workload that involves complex OLTP or
reports involving many complex joins on multiple tables (for example,
mixed OLTP and reporting).

• Use optimization class 9 for queries that require significant analysis of
data statistics and can run for a long time (over a minute) (for example,
very complex data mining or decision support). The DB2 Optimizer will
take much longer to produce an access plan but the improvements that
can be found in the access plan normally outweigh the extra time needed
to produce it.

Final thoughts on troubleshooting SQL

Entire books have been written on how to improve SQL performance so it's
impossible to cover everything about query performance tuning here. However, here
are a few key points that you should keep in mind when you begin using Visual
Explain to trouble shoot a poorly performing query:

Lack of use of indexes. Is the query using the indexes you expect? Make sure that
table scans are not occurring on tables you thought had indexes on them. This
question can easily be answered by looking at the access plan diagram for the
query. If the indexes do exist, then check the cardinality or the order of the index
keys. It may not be what you expect.

Table cardinality and use of 'SELECT *'. Sometimes the DB2 optimizer will
decide that it is faster to scan an entire table due to the number of columns that you
are bringing back. Perhaps the table is quite small, or perhaps it's just not efficient to
scan an index and then return a large number of rows that return all the columns of
the table. Try to return only the columns that you actually need. Take a look at what
columns are being returned in each section of the query to see if you really need
them and to see if that is why a table scan is occurring. Also, consider using include
columns in an index.

Optimization level set too low. Many DBAs lower the optimization level to 1 to
reduce the amount of time required for query preparation. Sometimes, raising the
optimization level to 5 will allow the optimizer to find a better access plan without you
having to create a new index to improve performance. This value can easily be
adjusted in Visual Explain tool when you elect to generate explain information for a
query using the Explain Query Statement window (see Figure 9). It can also be set
from the Command Line processor by executing the following command:

SET CURRENT QUERY OPTIMIZATION [0|1|2|3|5|7|9]

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 50 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Section 7. Other problem determination tools

db2mtrk utility

You have seen tools that can be used to examine the state of a database at a
specific point in time (the snapshot monitor), collect data whenever a specific event
or transition occurs (event monitors), and examine data access plans produced in
response to queries (explain). There are two more tools that you need to be aware
of if you are trying to locate a problem in your database environment. The first of
these tools is known as the db2mtrk utility.

The db2mtrk utility is designed to provide a complete report of the memory status
for instances, databases and agents. When executed, the db2mtrk command
produces the following information about memory pool allocation:

• Current size

• Maximum size (hard limit)

• Largest size (high water mark)

• Type (identifier indicating function for which the memory pool will be used)

• Agent who allocated the pool (if the memory pool is private)

The db2mtrk utility is invoked by executing the db2mtrk command. The basic
syntax for this command is:

db2mtrk
<-i>
<-d>
<-p>
<-m | -w>
<-r [Interval] <[Count]> >
<-v>
<-h>

where Interval identifies the number of seconds to wait between subsequent calls to
the DB2 memory tracker and Count identifies the number of times to repeat calling
the memory tracker.

How the db2mtrk utility collects and presents information is determined by the
options specified when the db2mtrk command is invoked. Table 7 lists every option
available and describes the behavior of each.

Table 7. db2mtrk command options available

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 51 of 57

http://www.ibm.com/legal/copytrade.shtml

Option Meaning

-i Show instance level memory

-d Show database level memory

-p Show private memory

-m Show maximum values for each memory pool

-w Show high water mark values for each memory
pool

-r Repeat mode

-v Verbose output

-h Display help information

If you want to obtain instance-level, database-level, and private memory pool
allocation information, execute a db2mtrk command that looks like this:

db2mtrk -i -d -p

And when this command is executed, you might see something similar to the output
shown below.

Sample output produced by the db2mtrk utility

Memory for instance

monh other
320.0K 8.1M

Memory for database: SAMPLE

utilh pckcacheh catcacheh bph (1) bph (S32K) bph (S16K) bph (S8K)
64.0K 128.0K 64.0K 1.2M 704.0K 448.0K 320.0K

bph (S4K) shsorth lockh dbh other
256.0K 0 320.0K 4.3M 128.0K

Memory for agent 3632

other apph appctlh
64.0K 64.0K 64.0K

Memory for agent 3184

other apph appctlh
64.0K 64.0K 64.0K

Memory for agent 508

other apph appctlh
448.0K 64.0K 64.0K

The db2pd utility

The db2pd utility is designed to retrieve information from appropriate DB2 database
system memory sets and produce a thorough report that can be used to monitor

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 52 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

and/or troubleshoot a database system (or any component of a database system).
The db2pd utility is invoked by executing the db2pd command. The simplest form of
this command is:

db2pd
<-inst>
<-database [DatabaseName] ,... | -alldatabases>
<-everything>
<-full>

where DatabaseName is the name assigned to one or more databases that
information is to be obtained for.

If the db2pd command is executed with the -everything option specified, the
db2pd utility will collect information for all elements of all databases on all database
partition servers that are local to the server. If the -full option is used, the
information produced will be expanded to its maximum length. (If this option is not
specified, the information produced is truncated to save space on the display.)

In addition to collecting a large set of information for a database system, you can tell
the db2pd utility to focus its collection on one specific area by specifying any of the
following filter options as part of the db2pd command executed:

• -applications

• -fmp

• -agents

• -transactions

• -bufferpools

• -logs

• -locks

• -tablespaces

• -dynamic

• -static

• -fcm

• -memsets

• -mempools

• -memblocks

• -dbmcfg

• -dbcfg

• -catalogcache

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 53 of 57

http://www.ibm.com/legal/copytrade.shtml

• -sysplex

• -tcbstats

• -reorg

• -recovery

• -reopt

• -osinfo

• -storagepaths

• -pages

For example, if you wanted to obtain information about the transaction log files
associated with the SAMPLE database, you could do so by executing a db2pd
command that looks like this:

db2pd -database SAMPLE -logs

And when this command is executed, you might see something similar to the output
shown below.

Sample output produced by the db2pd utility

Database Partition 0 -- Database SAMPLE -- Active -- Up 0 days 00:43:48

Logs:
Current Log Number 0
Pages Written 0
Method 1 Archive Status n/a
Method 1 Next Log to Archive n/a
Method 1 First Failure n/a
Method 2 Archive Status n/a
Method 2 Next Log to Archive n/a
Method 2 First Failure n/a

Address StartLSN State Size Pages Filename
0x04BBD254 0x0000036B0000 0x00000000 1000 1000 S0000000.LOG
0x04BBD2F4 0x000003A98000 0x00000000 1000 1000 S0000001.LOG
0x04BBD394 0x000003E80000 0x00000000 1000 1000 S0000002.LOG

In some cases, when one of these filtering options is used, it in turn has its own set
of options. Refer to the DB2 Command Reference for the complete syntax for the
db2pd command.

Section 8. Summary

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 54 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

This tutorial was designed to introduce you to the set of monitoring tools that are
available with DB2 9 and to show you how each are used to monitor how well (or
how poorly) your database system is operating. Database monitoring is a vital
activity that, when performed on a regular basis, provides continuous feedback on
the health of a database system. Because database monitoring is such an integral
part of database administration, DB2 9 comes equipped with a monitoring utility
known as the database system monitor and although the name "database system
monitor" suggests a single monitoring tool, in reality the database system monitor is
composed of two distinct tools that can be used to capture and return system
monitor information: a snapshot monitor and one or more event monitors.

The snapshot monitor allows you to capture a picture of the state of a database at a
specific point in time while event monitors capture and log data as specific database
events occur. It is important to note that bcause monitoring adds additional
processing overhead, the amount of time spent monitoring a system should be
limited, and monitoring should always be performed with a specific purpose in mind.

With DB2 Version 9, snapshot monitor data can also be obtained by using a set of
SQL routines to access data stored in special administrative views.

Event monitors provide a way to collect monitor data when events or activities occur
that cannot be monitored using the snapshot monitor. Additionally, while the
snapshot monitor exists as a background process that begins capturing monitor data
once a connection to a database has been established, event monitors must be
specifically created before they can be used.

Because event monitors are special database objects that must be created before
they can be used, they can only collect monitor data for events or transitions that
take place in the database for which they have been defined. Event monitors cannot
be used to collect monitor data at the instance level. You can create event monitors
directly from the Control Center (select Create Event Monitor from the Event
Monitors menu) or by executing the CREATE EVENT MONITOR SQL statement.

The health monitor adds a management by exception capability to DB2 9 by alerting
administrators to potential system health issues before they become problems that
affect a system's performance. The health monitor uses several health indicators to
evaluate specific aspects of instance and database performance. Each health
indicator acts as a precise measurement that the health monitor examines
continuously to gauge the health of a particular aspect of a specific class of
database objects. In turn, health indicators measure a finite set of distinct object
states or a continuous range of values to determine whether an particular object is
"healthy" or "unhealthy". Health indicators have a set of predefined threshold values,
and the health monitor constantly compares the state of the system against these
thresholds - if it finds that a particular threshold limit has been exceeded or detects
an abnormal state for a particular object, it automatically issues an alert through the
specified reporting channels.

The explain facility allows you to capture and view detailed information about the
access plan chosen for a particular SQL statement, as well as performance

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 55 of 57

http://www.ibm.com/legal/copytrade.shtml

information that can be used to help identify poorly written statements or a weakness
in database design. Specifically, explain data helps you understand how the DB2
Database Manager accesses tables and indexes to satisfy a query. explain data can
also be used to evaluate any performance tuning action taken. Before explain
information can be captured, a special set of explain tables must be created.

Visual Explain is a GUI tool that provides database administrators and application
developers with the ability to view a graphical representation of the access plan that
has been chosen for a particular SQL statement.

However, Visual Explain can only be used to view explain snapshot data; to view
explain data that has been collected and written to the explain tables, the db2exfmt
tool must be used instead.

The db2mtrk utility is designed to provide a complete report of the memory status
for instances, databases and agents.

The db2pd utility is designed to retrieve information from appropriate DB2 database
system memory sets and produce a thorough report that can be used to monitor
and/or troubleshoot a database system (or any component of a database system).
The db2pd utility is invoked by executing the db2pd command.

developerWorks® ibm.com/developerWorks

Monitoring DB2 activity
Page 56 of 57 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• DB2 9 overview information. Find information about a new data server that
includes patented pureXML® technology.

• Check out the other parts of the DB2 9 DBA exam 731 prep tutorial series.

• You can learn more about monitoring DB2 from the DB2 9 Information Center

• For more information on the DB2 9 for Linux, UNIX, and Windows Database
Administration Certification (Exam 731), check out these links:

• Information Management Training information

• General certification information -- including some book suggestions, exam
objectives, and courses.

Get products and technologies

• A trial version of DB2 9 is available for free download.

• Download DB2 Express-C, a no-charge version of DB2 Express Edition for the
community that offers the same core data features as DB2 Express Edition and
provides a solid base to build and deploy applications.

Discuss

• Participate in the discussion forum for this content.

About the author

Roger E. Sanders
Roger E. Sanders is a Senior Manager - IBM Alliance Engineering at Network
Appliance, Inc. He has been designing and developing databases and database
applications for more than 20 years and has been working with DB2 Universal
Database since it was first introduced with OS/2 1.3 Extended Edition. He has written
articles for IDUG Solutions Journal, Certification Magazine, and developerWorks,
presented and taught classes at IDUG and RUG conferences, participated in the
development of the DB2 certification exams, writes a regular column for DB2
Magazine and is the author of 9 books on DB2 UDB.

ibm.com/developerWorks developerWorks®

Monitoring DB2 activity
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 57 of 57

http://www-306.ibm.com/software/data/db2/v9/pr.html
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert731.html?S_TACT=105AGX19&S_CMP=db2cert
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://www-4.ibm.com/software/data/db2/skills/
http://www-306.ibm.com/software/data/education/cert.html
http://www.ibm.com/developerworks/downloads/im/udb/?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/downloads/im/udbexp/index.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/forums/#IM
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Objectives
	Prerequisites
	System requirements

	Capturing snapshot data
	The database system monitor
	The snapshot monitor
	Snapshot monitor switches
	Viewing current snapshot monitor switch settings
	Changing the state of a snapshot monitor switch
	Capturing snapshot monitor data
	Capturing snapshot monitor data using SQL
	Resetting snapshot monitor counters

	Capturing event monitor data
	Event monitors
	Creating event monitors
	Starting and stopping event monitors
	Forcing an event monitor to generate output
	Viewing event monitor data
	Guidelines for using event monitors

	Health monitoring and the Health Center
	Health monitoring
	How the health monitor works
	The Health Center
	Activating health indicators and defining event actions

	Analyzing SQL with the Explain facility
	What is the explain facility?
	Explain tables
	Collecting explain data
	EXPLAIN SQL statement
	CURRENT EXPLAIN MODE and the CURRENT EXPLAIN SNAPSHOT special registers
	The EXPLAIN and EXPLSNAP precompile/bind options
	Evaluating explain data

	Visual Explain - A closer look
	Timerons and SQL translation
	Activating Visual Explain
	Visual Explain components
	Factors that influence query performance
	Final thoughts on troubleshooting SQL

	Other problem determination tools
	db2mtrk utility
	The db2pd utility

	Summary
	Resources
	About the author

