
DB2 9 DBA exam 731 prep, Part 2: Data
placement
Skill Level: Introductory

Dwaine Snow (dsnow@us.ibm.com)
Senior DB2 Product Manager
IBM Toronto Lab

05 Jul 2006

Learn how to create DB2 databases, and about the mechanisms available for storing
your tables, indexes, and data within the database. This tutorial focuses on
partitioning, compression, and XML, which are all important performance and
application development concepts that you need to know to store and access data
quickly and efficiently. This is the second in a series of seven DB2 DBA certification
prep tutorials that you can use to help prepare for the DB2 V9 for Linux, UNIX, and
Windows Database Administration (Exam 731).

Section 1. Before you start

About this series

If you are preparing to take the DB2 DBA certification exam 731, you've come to the
right place -- a study hall, of sorts. This series of seven DB2 certification preparation
tutorials covers the major concepts you'll need to know for the test. Do your
homework here and ease the stress on test day.

About this tutorial

This tutorial discusses the creation of DB2 databases, as well as the various
methods used for placing and storing objects within a database. This tutorial focuses
on partitioning, compression, and XML, which are all important performance and
application development concepts that you need to know to store and access data
quickly and efficiently. This tutorial is the second in a series of seven tutorials that
you can use to help you prepare for the DB2 Database Administration Certification

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 1 of 34

mailto:dsnow@us.ibm.com
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert731.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert731.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert731.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert731.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/legal/copytrade.shtml

(Exam 731). The material in this tutorial primarily covers the objectives in Section 2
of the exam, titled Data Placement. You can view these objectives at:
http://www-03.ibm.com/certify/tests/obj731.shtml.

You should also review the Resources at the end of this tutorial for more information
about DB2 server management.

Objectives

After completing this tutorial, you should be able to:

• Create databases

• Use schemas

• Determine the various table space states

• Create and manipulate DB2 objects

• Create an SMS table space and understand its characteristics

• Understand the characteristics of, and use, DB2's automatic storage

• Implement table partitioning and MDC on your tables

• Use table compression

• Use XML

Prerequisites

To understand some of the material presented in this tutorial, you should be familiar
with the following terms:

• Object: Anything in a database that can be created or manipulated with
SQL (for example, tables, views, indexes, packages).

• Table: A logical structure that is used to present data as a collection of
unordered rows with a fixed number of columns. Each column contains a
set of values, each value of the same data type (or a subtype of the
column's data type); the definitions of the columns make up the table
structure, and the rows contain the actual table data.

• Record: The storage representation of a row in a table.

• Field: The storage representation of a column in a table.

• Value: A specific data item that can be found at each intersection of a row
and column in a database table.

• Structured Query Language (SQL): A standardized language used to
define objects and manipulate data in a relational database. (For more on
SQL, see the fourth tutorial in this series.

developerWorks® ibm.com/developerWorks

Data placement
Page 2 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www-03.ibm.com/certify/tests/obj731.shtml
http://www.ibm.com/legal/copytrade.shtml

• DB2 optimizer: A component of the SQL precompiler that chooses an
access plan for a Data Manipulation Language (DML) SQL statement by
modeling the execution cost of several alternative access plans and
choosing the one with the minimal estimated cost.

To take the DB2 9 DBA exam, you must have already passed the DB2 9
Fundamentals exam 730. We recommend that you take the DB2 Fundamentals
tutorial series before starting this series.

Although not all materials discussed in the Family Fundamentals tutorial series are
required to understand the concepts described in this tutorial, you should at least
have a basic knowledge of:

• DB2 products

• DB2 tools

• DB2 instances

• Databases

• Database objects

System requirements

You do not need a copy of DB2 to complete this tutorial. However, you will get more
out of the tutorial if you download the free trial version of IBM DB2 9 to work along
with this tutorial.

Section 2. Creating a database

Database directories

A system database directory file exists for each instance of the database manager,
and contains one entry for each database that has been cataloged for this instance.
Databases are implicitly cataloged when the create database command is
issued, and can also be explicitly cataloged with the catalog database
command.

A local database directory file exists in each drive or path in which a database has
been defined. This directory contains one entry for each database accessible from
that location.

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 3 of 34

http://www-03.ibm.com/certify/tests/test_index.shtml
http://www-03.ibm.com/certify/tests/test_index.shtml
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert730.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert730.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/downloads/im/udb/?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/legal/copytrade.shtml

Creating a database

When you create a database, each of the following tasks are done for you:

• Setting up of all the system catalog tables that are needed by the
database

• Allocation of the database recovery log

• Creation of the database configuration file and the default values set

• Binding of the database utilities to the database

The create database command

To create a database, use the command:
create database

You can optionally specify the following:

• Storage paths

• Database partition number for the catalog partition

• Drive or path on which to create the database

• Codeset and territory

• Collating sequence

• Default extent size

• Whether the database should be automatically configured

• Table space definitions for the CATALOG, TEMPORARY, and
USERSPACE1 table spaces

The default database

The create database command creates three default table spaces:
SYSCATSPACE

For the system catalog tables. SYSCATSPACE cannot be dropped.

TEMPSPACE1
For system-created temporary tables. The TEMPSPACE1 table space can be
dropped once another temporary table space has been created.

USERSPACE1
The default table space for user-created objects. The USERSPACE1 table

developerWorks® ibm.com/developerWorks

Data placement
Page 4 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

space can be dropped once another user-created table space has been
created.

The system catalogs

A set of system catalog tables is created and maintained for each database. These
tables contain information about the definitions of the database objects (tables,
views, indexes, and packages, for example) and security information about the type
of access that users have to these objects. These tables are stored in the
SYSCATSPACE table space.

The directory structure

The create database command lets you specify the drive or directory on which
to create the database, depending on the operating system.

If no drive or directory is specified, the database is created on the path specified by
the DFTDBPATH instance (database manager) configuration parameter.

If no drive or directory is specified, and the DFTDBPATH instance level configuration
parameter is not set, the database is created on the drive or path where the create
database command was executed.

The create database command creates a series of subdirectories. The first
subdirectory is named after the instance owner for the instance in which the
database was created. Under this subdirectory, DB2 creates a directory that
indicates which database partition the database was created in.

For a non-partitioned database the directory will be NODE0000. For a partitioned
database, the directory will be named NODExxxx, where xxxx will be the four digit
partition number for the database instance as designated in the db2nodes.cfg file.
For example, for partition number 43, the directory would be NODE0043.

In Windows, instances do not really have an instance owner, so the name of the
instance (for example, DB2) will be used in place of the instance owner's ID.

Because more than one database can be created on the same drive or directory,
each database must have its own unique subdirectory. Under the NODExxxx
directory, there will be an SQLxxxxx directory for every database that was created
on the drive or directory. For example, imagine that we have two databases, DBASM
and SAMPLE, that were both created on the C: drive on Windows. There will be two
directories: SQL00001 and SQL00002.

To determine the directory under which the database was created, enter the
command list database directory on C:. This will produce output similar to
the following:

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 5 of 34

http://www.ibm.com/legal/copytrade.shtml

In the example above, the database SAMPLE was created in the SQL00001
directory and the database DBASM was created in the SQL00002 directory under
the NODExxxx directory.

By default:

• The system catalog table space (SYSCATSPACE) will use the directory
SQLT0000.0

• The system temporary table space (TEMPSPACE1) will use the directory
SQLT0001.0

• The default user table space (USERSPACE1) will use the directory
SQLT0002.0

Example Linux/UNIX create database commands

To create a database on the directory (file system) /database, use the following
command:

create database sample on /database

If this command were executed in the instance named dbinst, on the server where

developerWorks® ibm.com/developerWorks

Data placement
Page 6 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

database partition 0 is defined, the following directory structures would be created:

• /database/dbinst/NODE0000/sqldbdir

• /database/dbinst/NODE0000/SQL00001

Example Windows create database commands

To create a database on the D: drive, use the following command:

create database sample on D:

If this command were executed in the instance named dbinst, on the server where
database partition 0 is defined, the following directory structures would be created:

• D:\dbinst\NODE0000\sqldbdir

• D:\dbinst\NODE0000\SQL00001

Creating the USERSPACE1 table space as DMS

To create a database and define the USERSPACE1 table space to be database
managed space (DMS), using two file containers, use the following commands:

On Linux or UNIX:

create database sample2 user table space managed by database
using(file '/dbfiles/cont0' 5000, file '/dbfiles/cont1' 5000)

On Windows:

create database sample2 user table space managed by database
using(file 'c:\dbfiles\cont0' 5000, file 'c:\dbfiles\cont1' 5000)

Creating the TEMPSPACE1 table space with user-defined
containers

To create a database and define the TEMPSPACE1 table space to use two SMS
containers (see SMS table spaces), use the following commands:

On Linux or UNIX:

create database sample3 temporary tablespace managed by system
using('/dbfiles/cont0', '/dbfiles/cont1')

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 7 of 34

http://www.ibm.com/legal/copytrade.shtml

On Windows:

create database sample3 temporary tablespace managed by system
using('c:\dbfiles\cont0', 'c:\dbfiles\cont1')

Changing the collating sequence for the database

The command (in Linux and UNIX):

create database SAMPLE on /mydbs collate using identity

or on Windows:

create database SAMPLE on D: collate using identity

creates a database and compares strings byte for byte, since the collating sequence
has been set to identity.

Section 3. Automatic storage

What is a automatic storage?

Automatic storage, which is new in DB2 V9, allows you to specify one or more
storage paths for a database. Then when you create table spaces, they are
automatically placed on the storage paths by DB2. You can enable or configure
automatic storage for a database when it is created, as follows:

db2 create database db_name automatic storage yes
db2 create database db_name on db_path1, db_path2

You can add additional storage paths to a database set up for automatic storage
using the add storage parameter, as follows:

db2 alter database db_name add storage on db_path3

Using automatic storage

developerWorks® ibm.com/developerWorks

Data placement
Page 8 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Once your database has been set up for automatic storage, you can create table
spaces using this mechanism. You have several ways to take advantage of
automatic storage once the database has been set up that way. You can simply
create a table space in the database (once you are connected to the database), as
follows:

db2 create tablespace ts_name

Or, you can create a table space and specify its initial size and growth
characteristics, as follows:

db2 create tablespace ts_name
initialsize 10M
increasesize 10M
maxsize 100M

In this example the table space will start out at 10MB, and as it gets close to being
full, DB2 will automatically extend it by 10MB at a time, up to its maximum size of
100MB.

If the database was not set up for automatic storage, you can still use automatic
storage for a table space if you create it and specify its storage:

db2 create tablespace ts_name
managed by automatic storage

Section 4. Using schemas

What is a schema?

A schema is a high-level qualifier for database objects created within a database. It
is a collection of database objects such as tables, views, indexes, or triggers. It
provides a logical classification of database objects.

While you are organizing your data into tables, it may also be beneficial to group
tables and other related objects together. This is done by defining a schema using
the create schema command. Information about the schema is kept in the system
catalog tables of the database to which you are connected. As other objects are
created, they can be placed within this schema.

System schemas

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 9 of 34

http://www.ibm.com/legal/copytrade.shtml

A set of system schemas are created with every database and placed into the
SYSCATSPACE table space:

SYSIBM
The base system catalogs. Direct access is not recommended.

SYSCAT
SELECT authority granted to PUBLIC on this schema. Catalog read-only
views. Recommended way to obtain catalog information.

SYSSTAT
Updatable catalog views -- influences the optimizer.

SYSFUN
User-defined functions.

How is a schema used in DB2?

Use a schema to fully qualify a table or other object name, as follows:

schemaname.tablename

You can have multiple tables with the same name but different schema names.
Thus, the table user1.staff is not the same as user2.staff. As a result, you can use
schemas to create logical databases within a DB2 database.

To create a schema, use the create schema command.

Who can use a schema?

When you can create a schema, you can specify the owner of the schema using the
authorization keyword; if you do not do so, the authorization ID that executed
the create schema statement will be the owner of the schema. Privileges on the
schema can also be granted to users or groups at the same time. (See Part 1 in this
series for more information on privileges.)

Once a schema exists, the owner of the schema can grant CREATE_IN privilege on
the schema to other users or groups.

Specifying the schema when creating an object

The schema name for an object can be explicitly specified as follows:

create table DWAINE.table1 (c1 int, c2 int)

developerWorks® ibm.com/developerWorks

Data placement
Page 10 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www6.software.ibm.com/reg/devworks/dw-db2-cert7311-i?S_TACT=103AMW11&S_CMP=db2-cert7312
http://www.ibm.com/legal/copytrade.shtml

If the user DWAINE connects to the database SAMPLE, and issues the following
statement:

create table t2 (c1 int)

The schema DWAINE is created (as long as IMPLICT_SCHEMA has not been
revoked from the user DWAINE), as well as the table in the database.

The ID used to connect to the database is known as the authorization ID.

Specifying the schema when using DML commands

When using DML commands (for example select, insert, update, delete) on
database objects:

• The object schema can be explicitly specified on the object name, such
as schema1.table1.

• The object schema can be specified using the set current schema or
set current sqlid commands.

• If no object schema is explicitly specified, the schema will be set to the
current authorization ID.

For example, if the user DWAINE connects to the database SAMPLE and issues the
following statement:

select * from t2

DWAINE.T2 is selected from the table, if the table exists. Otherwise an error is
returned.

Section 5. Table space states

Determining a table space's state

To find the state for the table spaces in a database:

list tablespaces show detail

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 11 of 34

http://www.ibm.com/legal/copytrade.shtml

Table space states

A table space can have a number of different states, as shown below.

Section 6. Creating and manipulating various DB2
objects

Introduction

This section discusses the purpose and use of:

• Buffer pools

• Table spaces

• Tables and indexes

developerWorks® ibm.com/developerWorks

Data placement
Page 12 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

• Views

• Identity columns

• Temporary tables

• Constraints

• Triggers

Buffer pools

The database buffer pool area is a piece of memory used to cache a table's index
and data pages as they are being read from disk to be scanned or modified. The
buffer pool area helps to improve database system performance by allowing data to
be accessed from memory instead of from disk. Because memory access is much
faster than disk access, the less often that DB2 needs to read from or write to a disk,
the better the system will perform.

When a database is created, one default buffer pool is created for the database.
This buffer pool, IBMDEFAULTBP, has a page size of 4 KB and is sized depending
on the operating system. For Windows, the default buffer pool is 250 pages or 1 MB;
for UNIX, the default buffer pool is 1,000 pages or 4 MB. The default buffer pool
cannot be dropped, but its size can be changed using the alter bufferpool
command.

Creating a buffer pool

The create bufferpool command has options to specify the following:

Buffer pool name
Specifies the name of the buffer pool. The name cannot be used for any other
buffer pools and cannot begin with the characters SYS or IBM.

immediate
Specifies that the buffer pool will be created immediately if there is enough
memory available on the system. If there is not enough reserved space in the
database shared memory to allocate the new buffer pool, a warning is returned,
and buffer pool creation will be DEFERRED, as described below. (immediate
is the default.)

deferred
Specifies that the buffer pool will be created the next time that the database is
stopped and restarted.

all dbpartitionnumbs
Specifies that the buffer pool will be created on all partitions in the database.
This is the default if no database partition group is specified.

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 13 of 34

http://www.ibm.com/legal/copytrade.shtml

database partition group
Specifies the database partition groups on which the buffer pool will be created.
The buffer pool will be created on all database partitions that are part of the
specified database partition groups.

size
Specifies the size of the buffer pool and is defined in number of pages. In a
partitioned database, this will be the default size for all database partitions
where the buffer pool exists.

numblockpages
Specifies the number of pages to be created in the block-based area of the
buffer pool. The actual value of numblockpages may differ from what was
specified because the size must be a multiple of the blocksize. The
block-based area of the buffer pool cannot be more than 98 percent of the total
buffer pool size. Specifying a value of 0 will disable block I/O for the buffer pool.

blocksize
Specifies the number of pages within a given block in the block-based area of
the buffer pool. The block size must be between 2 and 256 pages; the default
value is 32 pages.

pagesize
Specifies the page size used for the buffer pool. The default page size is 4 KB
or 4,096 bytes. The page size can be specified in either bytes or kilobytes.

extended storage/not extended storage
Specifies whether or not buffer pool victim pages will be copied to a secondary
cache called extended storage. Retrieving data from extended storage is more
efficient than retrieving it from disk but less efficient than retrieving it from the
buffer pool, so it is not applicable to 64-bit environments.

Once a page size and name for a buffer pool have been defined, they cannot be
altered.

Example create bufferpool statements

The following statement:

create bufferpool BP1 size 25000

creates a buffer pool named BP1 with a size of 100 MB (25,000 4 KB pages).
Because the page size is not specified, the buffer pool uses the default page size of
4 KB. Since the IMMEDIATE option is the default, the buffer pool is allocated
immediately and available for use as long as there is enough memory available to
fulfill the request.

The following statement:

developerWorks® ibm.com/developerWorks

Data placement
Page 14 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

create bufferpool BP2 size 25000 pagesize 8 K

creates a buffer pool named BP2 with a size of 200 MB (25,000 8 KB pages). The
buffer pool uses an 8 KB page size. Since the immediate option is the default, the
buffer pool is allocated immediately and be available for use as long as there is
enough memory available to fulfill the request.

The following statement:

create bufferpool BP3 deferred size 1000000

creates a buffer pool named BP3 with a size of 4 GB (1,000,000 4 KB pages).
Because the page size is not specified, the buffer pool uses the default page size of
4 KB. Since the deferred option is specified, the buffer pool is not allocated until
the database is stopped and restarted.

Creating tables

To create a table in a database, you must first be connected to the database. You
must also have SYSADM authority in the instance, or DBADM authority or createtab
privilege in the database.

When creating a table, you can specify the following:

• Schema

• Table name

• Column definitions

• Primary/foreign keys

• Table space for the data, index, and long objects

The figure below shows an example.

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 15 of 34

http://www.ibm.com/legal/copytrade.shtml

Where are tables created?

If a table is created without the in clause, the table data (and its indexes and LOB
data) is placed in the following order:

• In the IBMDEFAULTGROUP table space, if it exists and if the page size
is sufficient

• In a user-created table space, which is of the smallest page size that is
sufficient for the table

• In USERSPACE1, if it exists and has a sufficient page size

The IN, INDEX IN, and LONG IN clauses specify the table spaces in which the
regular table data, index, and long objects are to be stored. Note that this only
applies to DMS table spaces.

Obtaining table information

You can obtain table information with the following commands:

Command Description

list tables List tables for the current user

list tables for all List all tables defined in the database

list tables for schema
schemaname

List tables for the specified schema

describe table tablename Show the structure of the specified table

For example, the following command:

describe table department

developerWorks® ibm.com/developerWorks

Data placement
Page 16 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

produces the following output:

Indexes

An index can:

• Be ascending or descending (the default, if not specified, is ascending)

• Be unique or non-unique (the default, if not specified, is non-unique)

• Be compound

• Be used to enforce clustering

• Be bi-directional -- this is controlled by allow or disallow reverse
scans

• Include additional columns -- This is only applicable for unique indexes.

Here are a number of create unique statements that illustrate these options:

create unique index itemno on albums (itemno) desc
create index clx1 on stock (shipdate) cluster allow reverse scans
create unique index incidx on stock (itemno) include (itemname)
create index item on stock (itemno) disallow reverse scans collect detailed statistics

Identity columns

An identity column is a numeric column in a table that causes DB2 to automatically
generate a unique numeric value for each row that is inserted into the table. A table
can have a maximum of one identity column. The values for the column can be
generated by DB2 always or by default:

• If values are always generated, the DB2 database always generates
them, and applications are not allowed to provide an explicit value.

• If values are generated by default, then the values can be explicitly
provided by an application; DB2 generates a value only if the application
does not provide it. Thus, DB2 cannot guarantee the uniqueness of the

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 17 of 34

http://www.ibm.com/legal/copytrade.shtml

values. This option is intended for data propagation, or loading and
unloading of a table.

Let's look at an example. Given the table created using the following command:

create table inventory (partno INTEGER GENERATED ALWAYS AS IDENTITY
(START WITH 100 INCREMENT BY 1), description CHAR(20))

And the following statements:

Statement Result

insert into inventory VALUES (DEFAULT,'door')
insert into inventory (description) VALUES ('hinge')
insert into inventory VALUES (200,'windor')
insert into inventory (description) VALUES ('frame')

inserts 100,door
inserts 101,hinge
error
inserts 102,frame

Then the statement SELECT * FROM inventory gives the following:

100 door
101 hinge
102 frame

Views

Views are derived from one or more base tables, nicknames, or views, and can be
used interchangeably with base tables when retrieving data. When changes are
made to the data shown in a view, the data is changed in the table itself. A view can
be created to limit access to sensitive data, while allowing more general access to
other data.

The data for a view is not stored separately from the table. In other words, a view
uses no space in the database, other than its definition in the system catalogs.

The creator of a view needs to have at least SELECT privilege on the base tables
referenced in the view definition.

The information about all existing views is stored in:

• SYSCAT.VIEWS

• SYSCAT.VIEWDEP

• SYSCAT.TABLES

The following create view statements show how views work:

create view DEPTSALARY AS SELECT DEPTNO, DEPTNAME, SUM(SALARY)

developerWorks® ibm.com/developerWorks

Data placement
Page 18 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

AS TOTALS FROM PAYROLL GROUP BY DEPTNO,DEPTNAME
create view EMPSALARY AS SELECT EMPNO, EMPNAME, SALARY FROM PAYROLL,

PERSONNEL WHERE EMPNO=EMPNUMB

The with check option

The with check option specifies the constraint that every row that is inserted or
updated through a view must conform to the definition of the view. A row that does
not conform to the definition of the view is a row that does not satisfy the search
conditions of the view.

For example, consider this command:

create view emp_view2 (empno, empname, deptno) AS (SELECT id, name,
dept FROM employee WHERE dept = 10)with check option

When this view is used to insert or update with new values, the with check
option restricts the input values for the dept column.

Constraints

There are a number of types of constraints in DB2:

• Referential integrity constraints

• Unique constraints

• Check constraints

• Informational constraints

You cannot directly modify a constraint; you must instead drop it and create a new
constraint with the characteristics you want.

Each constraint is discussed below.

Referential integrity constraints

Referential integrity constraints are defined when a table is created, or subsequently
using the alter table statement.

The clauses that establish referential integrity are:

• The primary key clause

• The unique constraint clause

• The foreign key clause

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 19 of 34

http://www.ibm.com/legal/copytrade.shtml

• The references clause

For example:

create table artists (artno INT, ... primary key (artno) foreign key dept (workdept)
references department on delete no action)

Let's take a look at the various referential integrity rules.

Insert rules:

• There is an implicit rule to back out of an insert if a parent is not found.

Delete rules:

• Restrict: A parent row is not deleted if dependent rows are found.

• Cascade: Deleting a row in a parent table automatically deletes any
related rows in a dependent table.

• No Action (the default): Enforces presence of parent row for every child
after all other referential constraints are applied.

• Set Null: Foreign key fields set to null; other columns left unchanged.

Update rules:

• Restrict: An update for a parent key will be rejected if a row in a
dependent table matches the original values of key.

• No Action (the default): An update will be rejected for parent key if there is
no matching row in the dependent table.

Unique constraints

A unique constraint can be used as the primary key for a foreign key constraint, just
like an explicitly declared primary key. This allows RI constraints (see Referential
integrity constraints) to be placed on different columns within the same table.

A unique constraint forces the values in the column to be unique; the column cannot
contain null values.

Check constraints

A check constraint is used to enforce data integrity at the table level. It forces values
in the table to conform to the constraint. All subsequent inserts and updates must
conform to the defined constraints on the table, or the statement will fail.

developerWorks® ibm.com/developerWorks

Data placement
Page 20 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

If existing rows in the table do not meet the constraint, the constraint cannot be
defined. Constraint checking can be turned off to speed up the addition of a large
amount of data, but the table will be placed in CHECK PENDING state.

Informational constraints

Informational constraints are rules that can be used by the optimizer, but are not
enforced during runtime. Because other constraints may result in the overhead for
insert, update, or delete operations, informational constraints may be a better
alternative if the application already verifies the data.

Informational constraints can be:

• ENFORCED: The constraint is enforced by the database manager during
normal operations such as insert, update, or delete

• NOT ENFORCED: When used, DB2 may return wrong results when any
data in the table violates the constraint

• ENABLE QUERY OPTIMIZATION: The constraint can be used for query
optimization under appropriate circumstances

• DISABLE QUERY OPTIMIZATION: The constraint can not be used for
query optimization

Triggers

A trigger defines a set of actions that are activated, or triggered, by an action on a
specified base table. The actions triggered may cause other changes to the
database or raise an exception. A trigger can be fired before or after inserts,
updates, or deletes.

Triggers are used for:

• Validation, similar to constraints but more flexible.

• Conditioning, allowing new data to be modified or conditioned to a
predefined value.

• Integrity, similar to referential integrity but more flexible.

Section 7. The DB2 storage triangle

The storage triangle

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 21 of 34

http://www.ibm.com/legal/copytrade.shtml

Within a DB2 database, the storage of the data and indexes is defined and
controlled at four different levels. To accommodate partitioned databases, there is
an abstract layer called partition groups, as shown in the figure above. A partition
group is a grouping or collection of one or more database partitions within a
database. When a table space is created, it is assigned to a partition group and will
only be created on the database partitions that are part of that partition group. Each
table space must have one or more containers that define the physical storage for
the table space. A container can be an operating system directory, a file with a
predetermined size, a raw device such as an unformatted hard drive, a partition on
the hard drive, or a logical volume.

Table spaces

A table space is a logical entity used to define where tables and indexes will be
stored within a database. As all DB2 tables and indexes reside in table spaces, this
allows complete control over where the table and index data is physically stored.

A table space can be created using one or more underlying physical storage devices
called containers. They provide the ability to create a physical database design that
will provide optimal performance in any physical environment.

To get details about the table spaces in a database, use the following commands:

• get snapshot for tablespaces

• list tablespaces

Section 8. SMS table spaces

developerWorks® ibm.com/developerWorks

Data placement
Page 22 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Introduction

System Managed Space (SMS) table spaces use the file system manager provided
by the operating system to allocate and manage the space where the tables are
stored. Within an SMS table space, each container is an operating system directory,
and table objects are created as files within that directory. When creating an SMS
table space, the user must specify the name of the directory for each of the
containers. DB2 will create the tables within the directories used in the table space
by using unique file names for each object.

If a table space is created with more than one container, DB2 will balance the
amount of data written to the containers. Since containers cannot be dynamically
added to an SMS table space once it has been created, it is important to know the
size requirements of the table space and create all required containers when the
table space is created.

Characteristics of SMS table spaces

With SMS table spaces:

• All table data and indexes share the same table space.

• Each table in a table space is given its own file name used by all
containers. The file extension denotes the type of the data stored in the
file.

• There is the possibility for dynamic file growth, with an upper boundary on
size governed by the number of containers, operating system limits on the
size of the file system, and operating system limits on size of individual
files.

• When all space in a single container is allocated, the table space is
considered full even if space remains in other containers.

• New containers can only be added to SMS on a partition that does not yet
have any containers.

• On Linux or UNIX, the file system size may be increased.

SMS table spaces are very easy to administer, and are recommended for the TEMP
table space.

Creating SMS table spaces

To create an SMS table space use the following command:

create table space TS1 managed by system using ('path1', 'path2', 'path3')

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 23 of 34

http://www.ibm.com/legal/copytrade.shtml

When the path is specified for an SMS container, it can be either an absolute path or
a relative path to the directory. If the directory does not exist, DB2 will create it. If the
directory does exist, it cannot contain any files or subdirectories. For example, this
command:

create table space ts1 managed by system using ('D:\DIR1')

specifies the absolute path to the directory. DB2 would create the DIR1 directory on
the D: drive on the database server if it does not already exist.

This command:

create tablespace ts2 managed by system using ('DIR1')

specifies the relative path DIR1. DB2 would create the DIR1 directory under the
database home directory.

The following SQL statements create an SMS table space with three containers on
three separate drives or file systems. Note that the table space name is the same,
as the examples are showing the differences between the UNIX/Linux and Windows
table space definitions.

create tablespace smstbspc managed by system
using ('d:\tbspc1', 'e:\tbspc2', 'f:\ tbspc3')

create tablespace smstbspc managed by system
using ('/dbase/container1', '/dbase/container2', '/dbase/container3')

Altering SMS table spaces

SMS table spaces can only be altered to change the prefetch size. Containers
cannot be added to an SMS table space using the alter command. However,
containers can be redefined, added, or removed during a redirected restore.

Section 9. Multi-dimensional clustering (MDC)

Introduction to MDC

Multi-dimensional clustering (MDC) enables a table to be physically clustered on
more than one key, or dimension, simultaneously. Prior to Version 8, DB2 supported
only single-dimensional clustering of data using clustering indexes. When a

developerWorks® ibm.com/developerWorks

Data placement
Page 24 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

clustering index is defined on a table, DB2 attempts to maintain the physical order of
the data on pages, based on the key order of the clustering index, as records are
inserted into and updated in the table. This can significantly improve the
performance of queries that have predicates containing the keys of the clustering
index because, with good clustering, only a portion of the physical table needs to be
accessed. When the pages are stored sequentially on disk, more efficient
prefetching can be performed.

With MDC, these same benefits are extended to more than one dimension, or
clustering key. In the case of query performance, range queries involving any one or
combination of the specified dimensions of the table will benefit from the underlying
clustering. These queries will need to access only those pages having records with
the specified dimension values, and the qualifying pages will be grouped together in
extents.

A table with a clustering index can become unclustered over time, as available
space is filled in the table. However, an MDC table is able to maintain its clustering
over the specified dimensions automatically and continuously, eliminating the need
to reorganize the table to restore the physical order of the data.

When an MDC table is created, the dimensional keys along which to cluster the
table's data are specified. Each of the specified dimensions can be defined with one
or more columns, the same as an index key. A dimension block index will be
automatically created for each of the dimensions specified, and will be used to
access data quickly and efficiently along each of the specified dimensions. A block
index will also be automatically created, containing all dimension key columns. The
block index will be used to maintain the clustering of the data during insert and
update activity, as well as for quick and efficient access to the data.

Every unique combination of the table's dimension values forms a logical cell, which
is physically comprised of blocks of pages, where a block is a set of consecutive
pages on disk. The set of blocks that contain pages with data having the same key
value of one of the dimension block indexes is called a slice. Every page of the table
will be stored in only one block, and all blocks of the table will consist of the same
number of pages, known as the blocking factor. The blocking factor is equal to the
table space's extent size, so that the block boundaries line up with extent
boundaries.

Creating an MDC table

To create an MDC table, you need to specify the dimensions of the table using the
organize by parameter, as follows:

CREATE TABLE MDCTABLE(
Year INT,
Nation CHAR(25),
Colour VARCHAR(10),
...)
ORGANIZE BY(Year, Nation, Color)

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 25 of 34

http://www.ibm.com/legal/copytrade.shtml

In this example, the table will be organized on the year, nation, and color
dimensions, and will logically look like the figure below.

You cannot alter a table and make it into an MDC table, so use the design advisor, if
possible, before you create the database to see if your tables should be MDC tables
or normal tables.

MDC considerations

The following list summarizes the design considerations for MDC tables.

• When identifying candidate dimensions, search for attributes that are not
too granular, thereby enabling more rows to be stored in each cell. This
approach will make better use of block-level indexes.

• Higher data volumes may improve population density.

• It might be useful to load the data first as non-MDC tables for analysis
only.

• The table space extent size is a critical parameter for efficient space
usage.

• Although an MDC table may require a greater initial understanding of the

developerWorks® ibm.com/developerWorks

Data placement
Page 26 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

data, the payback is that query times will likely improve.

• Some data may be unsuitable for MDC tables and would be better
implemented using a standard clustering index.

• Although a smaller extent size will provide the most efficient use of disk
space, the I/O for the queries should also be considered.

• A larger extent will normally reduce I/O cost, because more data will be
read at a time. This, in turn, makes for smaller dimension block indexes
because each dimension value will need fewer blocks. And, inserts will be
quicker because new blocks will be needed less often.

Section 10. Table (range) partitioning

Introduction to table partitioning

Several technologies in DB2 v8.2 (and prior releases) allow you to break up your
data into smaller "chunks" for greater parallelism for queries, allow for partition
elimination in queries, and in general help improve performance. As discussed in the
previous section, MDC allows DB2 to place data on disk so that rows with the same
value of the dimensional columns are stored together in blocks (a set of pages).
Using this technique, a query that comes in looking for rows that have a particular
dimension value will result in all other partitions being eliminated from the scan and
only qualifying rows are accessed.

Similarly, the database partitioning feature can break up a set of tables such that a
portion of the data resides on a database partition. The database partitions can
reside on separate servers so a large scan can use the processing power of multiple
servers.

DB2 V9 brings a new form of partition that is common in DB2 for z/OS and other
data server vendor's products. Known as table partitioning, this feature allows you to
take a single table and spread it across multiple tablespaces.

This new partitioning capability has a number of benefits, including a simplified
syntax for creating them. Below is the simplified syntax for creating a partitioned
table to store 24 months worth of data in 24 partitions spread across 4 tablespaces:

CREATE TABLE fact
(txn_id char(7), purchase_date date, ...)
IN tbsp1, tbsp2, tbsp3, tbsp4
PARTITION BY RANGE (purchase_date)
(

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 27 of 34

http://www.ibm.com/legal/copytrade.shtml

STARTING FROM ('2005-01-01')
ENDING ('2006-12-31')
EVERY 1 MONTH
)

Table partitioning syntax

The table creation syntax has a short and a long form. Before diving into the syntax,
let's first talk about the partitioning column. Table partitioning allows for the
specification of ranges of data, where each range goes into a separate partition. The
partitioning column, or columns, defines the ranges. A partitioning column can be
any of the DB2 base data types except for LOBs and LONG VARCHAR columns.
You can also specify multiple columns (watch for an example later), and you can
specify generated columns if you want to simulate partitioning on a function.

Here is the short form:

CREATE TABLE t1(c1 INT)
IN tbsp1, tbsp2, tbsp3
PARTITION BY RANGE(c1)
(STARTING FROM (0) ENDING (80) EVERY (10))

Here is the same result using the long form:

CREATE TABLE t1(c1 INT)
PARTITION BY RANGE(c1)
(STARTING FROM (0) ENDING (10) IN tbsp1,

ENDING (20) IN tbsp2,
ENDING (30) IN tbsp3,
ENDING (40) IN tbsp1,
ENDING (50) IN tbsp2,
ENDING (60) IN tbsp3,
ENDING (70) IN tbsp1,
ENDING (80) IN tbsp2)

Quickly adding or removing data ranges

Another benefit is that when you detach a partition you get a separate table that
contains the contents of that partition. You can detach a partition from a table and
then do something with that newly detached partition, which is now a physical table.
For example, you could archive off that table, move it to tertiary storage, copy it to
another location, or whatever you want to do. DB2 V9 will asynchronously clean up
any index keys on that partitioned table without impacting running applications.

Similar to adding a new partition, you simply create a table with the same definition
as the partitioned table, load it with data, and then attach that partition to the main
partitioned table, as follows:

ALTER TABLE FACT_TABLE ATTACH PARTITION
STARTING '06-01-2006'
ENDING '06-30-2006'
FROM TABLE FACT_NEW_MONTH

developerWorks® ibm.com/developerWorks

Data placement
Page 28 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Section 11. Table compression

Introduction to table compression

Row compression works by looking at the contents of the entire table, finding
repeating byte strings, storing those strings in a dictionary, and then replacing those
strings that appear in the table with a symbol that represents the actual data stored
in the dictionary. The major benefit is that DB2 is looking at all the data in the table
and at the data row in its entirety -- not just repeating column values. For example, if
there is a repeating substring within a column, that can be compressed out. If there
is a repeating string that spans columns (like city,state), that can also be
compressed out into a single symbol.

Using table compression

To use row compression you must first set the table to be compression eligible, and
then you must generate the dictionary that contains the common strings from within
the table. To set the table to be eligible for compression, use either of the following
commands:

create table table_name ... compress yes
or
alter table tablename compress yes

Creating the compression dictionary

Creating the compression dictionary allows the table to be compressed. DB2 then
needs to scan the data in the table to find the common strings that it can compress
out of the table and put in the dictionary. To do this you use the reorg command.
The first time you compress a table (or if you want to rebuild the compression
dictionary) you must run the command:

reorg table table_name resetdictionary

This will scan the table, create the dictionary, and then perform the actual table
reorganization, compressing the data as it goes. From this point onward, any insert
into this table or subsequent load of data will honor the compression dictionary and

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 29 of 34

http://www.ibm.com/legal/copytrade.shtml

compress all new data. If in the future you want to run a normal table reorg and not
rebuild the dictionary, you can run the command:

reorg table table_name keepdictionary

Each table has its own dictionary, meaning that a partitioned table will have a
separate dictionary for each partition. This is good because it allows DB2 to adapt to
changes in the data as you roll in a new partition.

Estimating space savings

If you want to just see how much space you can save without actually compressing
the table, you can do that too. The DB2 INSPECT command now has an option to
report the number of pages saved if you decide to compress a given table. The
syntax for this is:

db2 inspect rowcompestimate table name table_name results keep file_name

You then run the command:

db2inspf file_name
output_file_name

to convert the binary output file of inspect into a readable text file called
output_file_name. This file contains the estimated percentage of data pages saved
from compression.

Table compression steps for a new table

If you are starting with a new system, you may want to:

• Create the table with compression yes.

• Load a representative sample of the data into the table.

• Reorg the table with resetdictionary to create a new dictionary.

• Load the rest of the data into the table (this load will respect the dictionary
and compress on the fly as it loads).

Section 12. XML

developerWorks® ibm.com/developerWorks

Data placement
Page 30 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Introduction to XML in DB2

You've been able to store XML data in DB2 for quite some time. Of course, you can
store the object as a CLOB and, with the XML extender, you can shred the
document into relational tables that let you efficiently access subcomponents of an
XML document with a query. But each of these methods has a disadvantage.
Shredded documents can result in loss of document fidelity and make it difficult to
change the XML schema. The biggest benefit of XML is that the schema is
completely flexible, so making it rigid by shredding it into relations is
counterproductive. With CLOB you can keep the flexibility but every time you want to
read components of the XML you need to parse the CLOB at runtime, so
performance is poor.

DB2 V9 introduces a completely new XML storage engine where XML data is stored
hierarchically. XML is hierarchical in nature, so storing the XML hierarchically in the
engine preserves fidelity, allows for flexible schema, and also delivers high
performance sub document access. This new hierarchical storage engine sits inside
the same DB2 data server as the relational engine, so now you can store customer
information alongside their XML purchase orders and search all of the information
efficiently.

XML columns in DB2 tables

XML is stored inside DB2 in a hierarchical format. XML itself is hierarchical starting
from the root tag (or node) and then traversing through the XML string (or
document). In DB2 the XML is stored inside of data pages in this hierarchical
structure. If the XML data is larger than a single data page, then the XML tree is
broken up into subtrees with each subtree stored on a data page and the pages
linked together.

To create a table with XML data simply run the command:

create table table_name (col1 data_type, ..., xml_col_name XML)

This allows you to create the table with your relational columns as you would today,
and for your XML information you just assign the column a datatype of XML. Now
you can store the XML data in that column.

XML indexes

Creating an index is similar to creating a typical index on relational data with the
exception that you are not indexing a column, but rather a component of the XML
schema defined in the above xml_column_name column. The syntax would look
something like the following:

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 31 of 34

http://www.ibm.com/legal/copytrade.shtml

create index index_name on table_name (xml_column_name)
generate key using xmlpattern '/po/purchaser/@pname' as sql varchar(50)

For more information about XML support in DB2 9, see the Resources section.

Section 13. Conclusion

Summary

In this tutorial we discussed:

• Creating databases

• Using schemas

• The different table space states

• Creating and manipulating DB2 objects

• Creating SMS table spaces and their characteristics

• The characteristics and use of DB2's automatic storage

• Implementing table partitioning and MDC

• Using table compression

• Using XML

You are now ready to take the data placement portion of the DBA certification test.
Good Luck!

developerWorks® ibm.com/developerWorks

Data placement
Page 32 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Check out the other parts of the DB2 9 DBA exam 731 prep tutorial series.

• You can learn more about managing DB2 from the following resources:

• DB2 9 Administration Guide: Performance

• The following topics from the DB2 9 Information Center :

• Setting up the DB2 server after manual installation

• Configuring client to server communications

• Configuring DB2 server communications

• DB2 9 Administration Guide: Implementation

• For more information on the DB2 9 for Linux, UNIX, and Windows Database
Administration Certification (Exam 731), check out these links:

• Information Management training information

• General certification information -- including some book suggestions, exam
objectives, and courses.

• For more information about XML support in DB2 9, see these resources:

• DB2 Basics: An introduction to the SQL/XML publishing functions

• DB2 9 Fundamentals exam 730 prep, Part 7: Introducing XQuery

• DB2 9 overview information. Find information about the new data server that
includes patented pureXML technology.

Get products and technologies

• A trial version of DB2 9 is available for free download.

• Download DB2 Express-C, a no-charge version of DB2 Express Edition for the
community that offers the same core data features as DB2 Express Edition and
provides a solid base to build and deploy applications.

About the author

Dwaine Snow
Dwaine R. Snow, a senior product manager for DB2 Data Server, is helping to
determine the future direction of the product and decide what functional
enhancements need to be made to ensure that it meets customer requirements.
Dwaine worked in a DB2 services consultant role with IBM Canada for several years.
He provided on-site assistance with DB2 database and application planning, project

ibm.com/developerWorks developerWorks®

Data placement
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 33 of 34

http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert731.html?S_TACT=105AGX19&S_CMP=db2cert
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://www-4.ibm.com/software/data/db2/skills/
http://www-03.ibm.com/certify/certs/dm_index.shtml
 http://www.ibm.com/developerworks/db2/library/techarticle/dm-0511melnyk/index.html
http://www.ibm.com/developerworks/edu/dm-dw-db2-cert7307.html?S_TACT=105AGX19&S_CMP=db2cert
http://www-306.ibm.com/software/data/db2/v9/pr.html
http://www.ibm.com/developerworks/downloads/im/udb/?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/downloads/im/udbexp/index.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/legal/copytrade.shtml

planning and execution, large complex OLTP and Decision Support system design,
database and application design, and performance tuning, as well as client/server
and legacy system integration.
Dwaine has written a number of books and articles on DB2, including the DB2
Universal Database Advanced DBA Certification Guide and Reference and
Understanding DB2: Learning Visually with Examples, and has presented at
conferences around the world.

developerWorks® ibm.com/developerWorks

Data placement
Page 34 of 34 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Objectives
	Prerequisites
	System requirements

	Creating a database
	Database directories
	Creating a database
	The create database command
	The default database
	The system catalogs
	The directory structure
	Example Linux/UNIX create database commands
	Example Windows create database commands
	Creating the USERSPACE1 table space as DMS
	Creating the TEMPSPACE1 table space with user-defined containers
	Changing the collating sequence for the database

	Automatic storage
	What is a automatic storage?
	Using automatic storage

	Using schemas
	What is a schema?
	System schemas
	How is a schema used in DB2?
	Who can use a schema?
	Specifying the schema when creating an object
	Specifying the schema when using DML commands

	Table space states
	Determining a table space's state
	Table space states

	Creating and manipulating various DB2 objects
	Introduction
	Buffer pools
	Creating a buffer pool
	Example create bufferpool statements
	Creating tables
	Where are tables created?
	Obtaining table information
	Indexes
	Identity columns
	Views
	The with check option

	Constraints
	Referential integrity constraints
	Unique constraints
	Check constraints
	Informational constraints
	Triggers

	The DB2 storage triangle
	The storage triangle
	Table spaces

	SMS table spaces
	Introduction
	Characteristics of SMS table spaces
	Creating SMS table spaces
	Altering SMS table spaces

	Multi-dimensional clustering (MDC)
	Introduction to MDC
	Creating an MDC table
	MDC considerations

	Table (range) partitioning
	Introduction to table partitioning
	Table partitioning syntax
	Quickly adding or removing data ranges

	Table compression
	Introduction to table compression
	Using table compression
	Creating the compression dictionary
	Estimating space savings
	Table compression steps for a new table

	XML
	Introduction to XML in DB2
	XML columns in DB2 tables
	XML indexes

	Conclusion
	Summary

	Resources
	About the author

