
DB2 9 Fundamentals exam 730 prep, Part 6: Data
concurrency
Skill Level: Introductory

Roger E. Sanders (rsanders@netapp.com)
Senior Manager - IBM Alliance Engineering
Network Appliance, Inc.

20 Jul 2006

This tutorial introduces the concept of data consistency and the various mechanisms
that are used by DB2® to maintain consistency in both single- and multi-user
database environments. This is the sixth in a series of seven tutorials to help you
prepare for the DB2® 9 for Linux®, UNIX®, and Windows™ Fundamentals exam
730.

Section 1. Before you start

About this series

Thinking about seeking certification on DB2 fundamentals (Exam 730)? If so, you've
landed in the right spot. This series of seven DB2 certification preparation tutorials
covers all the basics -- the topics you'll need to understand before you read the first
exam question. Even if you're not planning to seek certification right away, this set of
tutorials is a great place to start getting to learn what's new in DB2 9.

About this tutorial

This tutorial will introduce you to the concept of data consistency and to the various
mechanisms that are used by DB2 V9 for Linux, UNIX, and Windows to maintain
data consistency in both single and multi-user database environments.

This is the sixth in a series of seven tutorials you can use to help prepare for the
DB2 9 Fundamentals exam 730. The material in this tutorial primarily covers the
objectives in Section 6 of the test, which is entitled "Data concurrency". You can
view these objectives at: http://www-03.ibm.com/certify/tests/obj730.shtml.

Data concurrency
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 1 of 27

mailto:rsanders@netapp.com
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert730.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert730.html?S_TACT=105AGX19&S_CMP=db2cert
http://www-03.ibm.com/certify/tests/obj730.shtml
http://www.ibm.com/legal/copytrade.shtml

Objectives

After completing this tutorial, you should be able to:

• Identify factors that influence locking

• List objects on which locks can be obtained

• Identify characteristics of DB2 locks

• Identify the isolation level that should be used for a given situation

Prerequisites

To understand some of the material presented in this tutorial, you should be familiar
with the following terms:

• Object: Anything in a database that can be created or manipulated with
SQL (e.g., tables, views, indexes, packages).

• Table: A logical structure that is used to present data as a collection of
unordered rows with a fixed number of columns. Each column contains a
set of values, each value of the same data type (or a subtype of the
column's data type); the definitions of the columns make up the table
structure, and the rows contain the actual table data.

• Record: The storage representation of a row in a table.

• Field: The storage representation of a column in a table.

• Value: A specific data item that can be found at each intersection of a row
and column in a database table.

• Structured Query Language (SQL): A standardized language used to
define objects and manipulate data in a relational database. (For more on
SQL, see the fourth tutorial in this series.

• DB2 optimizer: A component of the SQL precompiler that chooses an
access plan for a Data Manipulation Language (DML) SQL statement by
modeling the execution cost of several alternative access plans and
choosing the one with the minimal estimated cost.

System requirements

You do not need a copy of DB2 9 to complete this tutorial. However, you will get
more out of the tutorial if you download the free trial version of IBM DB2 9 to work
along with this tutorial.

developerWorks® ibm.com/developerWorks

Data concurrency
Page 2 of 27 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/developerworks/downloads/im/udb/?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/legal/copytrade.shtml

Section 2. Transactions

Understanding data consistency

What is data consistency? The best way to answer this question is by example.
Suppose your company owns a chain of restaurants and you have a database that is
designed to keep track of supplies stored at each of those restaurants. To facilitate
the supply-purchasing process, your database contains an inventory table for each
restaurant in the chain. Whenever supplies are received or used by an individual
restaurant, the corresponding inventory table for that restaurant is modified to reflect
the changes.

Now, suppose some bottles of ketchup are physically moved from one restaurant to
another. In order to accurately represent this inventory move, the ketchup bottle
count value stored in the donating restaurant's table needs to be lowered and the
ketchup bottle count value stored in the receiving restaurant's table needs to be
raised. If a user lowers the ketchup bottle count in the donating restaurant's
inventory table but fails to raise the ketchup bottle count in the receiving restaurant's
inventory table, the data will become inconsistent - now the total ketchup bottle
count for the chain of restaurants is no longer accurate.

Data in a database can become inconsistent if a user forgets to make all necessary
changes (as in the previous example), if the system crashes while the user is in the
middle of making changes, or if a database application for some reason stops
prematurely. Inconsistency can also occur when several users are accessing the
same database tables at the same time. In an effort to prevent data inconsistency,
particularly in a multi-user environment, the following data consistency support
mechanisms have been incorporated into DB2's design:

• Transactions

• Isolation levels

• Locks

Transactions and transaction boundaries

A transaction (also known as a unit of work) is a recoverable sequence of one or
more SQL operations, grouped together as a single unit, usually within an
application process. The initiation and termination of a transaction defines points of
database consistency; either the effects of all SQL operations performed within a
transaction are applied to the database (committed), or the effects of all SQL
operations performed are completely undone and thrown away (rolled back).

With embedded SQL applications and scripts run from the Command Center, the

ibm.com/developerWorks developerWorks®

Data concurrency
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 3 of 27

http://www.ibm.com/legal/copytrade.shtml

Script Center, or the Command Line Processor, transactions are automatically
initiated the first time an executable SQL statement is executed, either after a
connection to a database been established or after an existing transaction has been
terminated. Once initiated, a transaction must be explicitly terminated by the user or
application that initiated it, unless a process known as automatic commit is being
used (in which case each individual SQL statement submitted for execution is
treated as a single transaction that is implicitly committed as soon as it is executed).

In most cases, transactions are terminated by executing either the COMMIT or the
ROLLBACK statement. When the COMMIT statement is executed, all changes that
have been made to the database since the transaction was initiated are made
permanent -- that is, they are written to disk. When the ROLLBACK statement is
executed, all changes that have been made to the database since the transaction
was initiated are backed out and the database is returned to the state it was in
before the transaction began. In either case, the database is guaranteed to be
returned to a consistent state at the completion of the transaction.

It is important to note that, while transactions provide generic database consistency
by ensuring that changes to data only become permanent after a transaction has
been successfully committed, it is up to the user or application to ensure that the
sequence of SQL operations performed within each transaction will always result in
a consistent database.

Effects of COMMIT and ROLLBACK operations

As noted, transactions are usually terminated by executing either the COMMIT or
the ROLLBACK SQL statement. To understand how each of these statements work,
it helps to look at an example.

If the following SQL statements are in the order shown:

Listing 1. Simple workload consisting of three transactions

CONNECT TO MY_DB
CREATE TABLE DEPARTMENT (DEPT_ID INTEGER NOT NULL, DEPT_NAME VARCHAR(20))
INSERT INTO DEPARTMENT VALUES(100, 'PAYROLL')
INSERT INTO DEPARTMENT VALUES(200, 'ACCOUNTING')
COMMIT

INSERT INTO DEPARTMENT VALUES(300, 'SALES')
ROLLBACK

INSERT INTO DEPARTMENT VALUES(500, 'MARKETING')
COMMIT

A table named DEPARTMENT is created that looks something like this:

DEPT_ID DEPT_NAME

100 PAYROLL

200 ACCOUNTING

developerWorks® ibm.com/developerWorks

Data concurrency
Page 4 of 27 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

500 MARKETING

That's because when the first COMMIT statement is executed, the creation of the
table named DEPARTMENT, along with the insertion of two records into the
DEPARTMENT table, will be made permanent. On the other hand, when the first
ROLLBACK statement is executed, the third record inserted into the DEPARTMENT
table is removed and the table is returned to the state it was in before the insert
operation was performed. Finally, when the second COMMIT statement is executed,
the insertion of the fourth record into the DEPARTMENT is made permanent and the
database is again returned to a consistent state.

As you can see from this example, a commit or rollback operation only affects
changes that are made within the transaction that the commit or rollback operation
ends. As long as data changes remain uncommitted, other users and applications
are usually unable to see them (there are exceptions, which we will look at later),
and they can be backed out simply by performing a rollback operation. Once data
changes are committed, however, they become accessible to other users and
applications and can no longer be removed by a rollback operation.

Effects of an unsuccessful transaction

We have just seen what happens when a transaction is terminated by a COMMIT or
a ROLLBACK statement. But what happens if a system failure occurs before a
transaction can be completed? In this case, the DB2 database manager will back out
all uncommitted changes in order to restore the database consistency that it
assumes existed when the transaction was initiated. Figure 1 compares the effects
of a successful transaction with those of a transaction that fails before it can be
successfully terminated.

Figure 1. Comparing successful and unsuccessful transactions

ibm.com/developerWorks developerWorks®

Data concurrency
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 5 of 27

http://www.ibm.com/legal/copytrade.shtml

Section 3. Concurrency and isolation levels

Phenomena that can occur when multiple users access a
database

In single-user environments, each transaction runs serially and doesn't encounter
interference from other transactions. However, in multi-user environments,
transactions can (and often do) run simultaneously. As a result, each transaction has
the potential to interfere with other active transactions. Transactions that have the
potential of interfering with one another are said to be interleaved or parallel
transactions, while transactions that run isolated from each other are said to be
serializable, which means that the results of running them simultaneously will be no
different from the results of running them one right after another (serially). When

developerWorks® ibm.com/developerWorks

Data concurrency
Page 6 of 27 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

parallel transactions are used in multi-user environments, four types or phenomena
can occur:

• Lost update: This occurs when two transactions read and then attempt to
update the same data, and one of the updates is lost. For example:
Transaction 1 and Transaction 2 read the same row of data and both
calculate new values for that row based upon the data read. If
Transaction 1 updates the row with its new value and Transaction 2
updates the same row, the update operation performed by Transaction 1
is lost. Because of the way it has been designed, DB2 does not allow this
type of phenomenon to occur.

• Dirty read: This occurs when a transaction reads data that has not yet
been committed. For example: Transaction 1 changes a row of data and
Transaction 2 reads the changed row before Transaction 1 has committed
the change. If Transaction 1 rolls back the change, Transaction 2 will
have read data that is considered to have never existed.

• Nonrepeatable read: This occurs when a transaction reads the same
row of data twice, but gets different data values each time. For example:
Transaction 1 reads a row of data and Transaction 2 changes or deletes
that row and commits the change. When Transaction 1 attempts to reread
the row, it will retrieve different data values (if the row was updated) or
discover that the row no longer exists (if the row was deleted).

• Phantom: This occurs when a row of data that matches search criteria is
not seen initially, but then seen in a later read operation. For example:
Transaction 1 reads a set of rows that satisfy some search criteria and
Transaction 2 inserts a new row that matches Transaction 1's search
criteria. If Transaction 1 re-executes the query that produced the original
set of rows, a different set of rows will be retrieved.

Maintaining database consistency and data integrity, while allowing more than one
application to access the same data at the same time, is known as concurrency.
One of the ways DB2 attempts to enforce concurrency is through the use of isolation
levels, which determine how data used in one transaction is locked or isolated from
other transactions while the first transaction works with it. DB2 uses the following
isolation levels to enforce concurrency:

• Repeatable read

• Read stability

• Cursor stability

• Uncommitted read

The repeatable read isolation level prevents all phenomena, but greatly reduces the
level of concurrency (the number of transactions that can access the same resource
simultaneously) available. The uncommitted read isolation level provides the
greatest level of concurrency, but allows all three phenomena to occur.

ibm.com/developerWorks developerWorks®

Data concurrency
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 7 of 27

http://www.ibm.com/legal/copytrade.shtml

Repeatable read isolation level

The repeatable read isolation level is the most restrictive isolation level available.
When it's used, the effects of one transaction are completely isolated from the
effects of other concurrent transactions: dirty reads, non-repeatable reads, and
phantoms can't occur. With repeatable read, every row that's referenced in any
manner by the owning transaction is locked for the duration of that transaction. As a
result, if the same SELECT statement is issued two or more times within the same
transaction, the result data set produced will always be the same. Furthermore,
transactions running under this isolation level can retrieve the same set of rows
multiple times and perform any number of operations on them until terminated, either
by a commit or a rollback operation. However, other transaction are prohibited from
performing insert, update, or delete operations that would affect any row that has
been accessed by the owning transaction as long as that transaction remains active.
To guarantee this behavior, each row referenced by the owning transaction is locked
- not just the rows that are actually retrieved or modified. So, if a transaction scans
1,000 rows in order to retrieve 10, locks are acquired and held on all 1,000 rows
scanned rather than on just the 10 rows retrieved.

How does the repeatable read isolation level work in a real-world situation? Suppose
you use a DB2 database to keep track of hotel records consisting of reservation and
room rate information and you have a Web-based application that allows individuals
to book rooms on a first-come, first-served basis. If your reservation application runs
under the repeatable read isolation level, a customer scanning the database for a list
of rooms available for a given date range can prevent you (the manager) from
changing the room rate for any of the rooms accessed when resolving the
customer's query. Similarly, other customers won't be able to make or cancel
reservations that would cause the first customer's list of available rooms to change if
the same query were to be run again (as long as the first customer's transaction
remained active). However, you would be allowed to change room rates for any
room record that was not read when the first customer's list was produced. Likewise,
other customers can make or cancel room reservations for any room whose record
was not read in order to produce a response to the first customer's query. This
behavior is illustrated in Figure 2.

Figure 2. Example of the repeatable read isolation level

developerWorks® ibm.com/developerWorks

Data concurrency
Page 8 of 27 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Read stability isolation level

The read stability isolation level isn't quite as restrictive as the repeatable read level;
therefore, it doesn't completely isolate one transaction from the effects of other,
concurrent transactions. The read stability isolation level prevents dirty reads and
non-repeatable reads; however, phantoms can occur. When this isolation level is
used, only the rows that are actually retrieved or modified by the owning transaction
are locked. So, if a transaction scans 1,000 rows in order to retrieve 10, locks are
only acquired and held on the 10 rows retrieved, not on the 1,000 rows scanned. As
a result, if the same SELECT statement is issued two or more times within the same
transaction, the result data set produced may not be the same each time.

As with the repeatable read isolation level, transactions running under the read
stability isolation level can retrieve a set of rows and perform any number of
operations on them until terminated. Other transactions are prohibited from
performing update or delete operations that would affect the set of rows retrieved by
the owning transaction as long as that transaction exists; however, other
transactions can perform insert operations. If rows inserted match the selection
criteria of a query issued by the owning transaction, these rows may appear as
phantoms in subsequent result data sets produced. Changes made to other rows by
other transactions won't be seen until they have been committed.

So how does the read stability isolation level change the way our hotel reservation
application works? When a customer scans the database to obtain a list of rooms
available for a given date range, you will be able to change the rate for any room

ibm.com/developerWorks developerWorks®

Data concurrency
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 9 of 27

http://www.ibm.com/legal/copytrade.shtml

that doesn't appear on the customer's list. Likewise, other customers will be able to
make or cancel reservations that would cause the first customer's list of available
rooms to change if the same query were to be run again. If the first customer queries
the database for available rooms for the same date range, the list produced may
contain new room rates and/or rooms that weren't available the first time the list was
generated. This behavior is illustrated in Figure 3.

Figure 3. Example of the read stability isolation level

Cursor stability isolation level

The cursor stability isolation level is very relaxed in the way it isolates the effects of
one transaction from the effects of other concurrent transactions. It prevents dirty
reads; however, non-repeatable reads and phantoms can and may occur. That's
because in most cases, the cursor stability isolation level only locks the row that is
currently referenced by a cursor that was declared and opened by the owning
transaction.

When a transaction using the cursor stability isolation level retrieves a row from a
table via a cursor, no other transaction can update or delete that row while the
cursor is positioned on it. However, other transactions can add new rows to the table
as well as perform update or delete operations on rows positioned on either side of
the locked row - provided that the locked row itself wasn't accessed using an index.
Once acquired, the lock remains in effect until the cursor is repositioned or until the
owning transaction is terminated. (If the cursor is repositioned, the lock being held
on the previous row read is released and a new lock is acquired for the row the

developerWorks® ibm.com/developerWorks

Data concurrency
Page 10 of 27 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

cursor is now positioned on.) Furthermore, if the owning transaction modifies any
row it retrieves, no other transaction is allowed to update or delete that row until the
owning transaction is terminated, even though the cursor may no longer be
positioned on the modified row. As with the repeatable read and read stability
isolation levels, transactions using the cursor stability isolation level (which is the
default isolation level used) won't see changes made to other rows by other
transactions until those changes have been committed.

If our hotel reservation is running under the cursor stability isolation level, here's how
it will operate. When a customer scans the database for a list of rooms available for
a given date range and then views information about each room on the list
produced, one room at a time, you will be able to change the room rates for any
room in the hotel except for the room the customer is currently looking at (for the
date range specified). Likewise, other customers will be able to make or cancel
reservations for any room in the hotel except the room the customer is currently
looking at (for the date range specified). However, neither you nor other customers
will be able to do anything with the room record the first customer is currently looking
at. When the first customer views information about another room in the list, you and
other customers will be able to modify the room record the first customer was just
looking at (provided the customer did not reserve it); however, no one will be allowed
to change the room record the first customer is now looking at. This behavior is
illustrated in Figure 4.

Figure 4. Example of the cursor stability isolation level

Uncommitted read isolation level

ibm.com/developerWorks developerWorks®

Data concurrency
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 11 of 27

http://www.ibm.com/legal/copytrade.shtml

The uncommitted read isolation level is the least restrictive isolation level available.
In fact, when this isolation level is used, rows retrieved by a transaction are only
locked if another transaction attempts to drop or alter the table the rows were
retrieved from. Because rows usually remain unlocked when this isolation level is
used, dirty reads, non-repeatable reads, and phantoms can occur. Therefore, the
uncommitted read isolation level is typically used for transactions that access
read-only tables and views and for transactions that execute SELECT statements for
which uncommitted data from other transactions will have no adverse affect.

As the name implies, transactions running under the uncommitted read isolation
level can see changes made to rows by other transactions before those changes
have been committed. However, such transactions can neither see nor access
tables, views, and indexes that are created by other transactions until those
transactions themselves have been committed. The same applies to existing tables,
views, or indexes that have been dropped; transactions using the uncommitted read
will only learn that these objects no longer exist when the transaction that dropped
them is committed. (It's important to note that when a transaction running under the
this isolation level uses an updatable cursor, the transaction will behave as if it is
running under the cursor stability isolation level, and the constraints of the cursor
stability isolation level will apply.)

So how would the uncommitted read isolation level affect our hotel reservation
application? Now, when a customer scans the database to obtain a list of available
rooms for a given date range, you will be able to change the room rates for any room
in the hotel over any date range. Likewise, other customers will be able to make or
cancel reservations for any room in the hotel including the room the customer is
currently looking at (for the date range specified). In addition, the list of rooms
produced for the first customer may contain records for rooms that other customers
are in the processing of reserving that are not really available. This behavior is
illustrated in Figure 5.

Figure 5. Example of the uncommitted read isolation level

developerWorks® ibm.com/developerWorks

Data concurrency
Page 12 of 27 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Choosing the proper isolation level

The isolation level used can influence how well the database supports concurrency
and how well concurrent applications perform. Typically, the more restrictive the
isolation level used, the less concurrency is possible - performance for some
applications may be degraded as they wait for locks on resources to be released. So
how do you decide which isolation level to use? The best way is to identify which
types of phenomena are unacceptable, and then select an isolation level that will
prevent those phenomena from occurring:

• Use the repeatable read isolation level if you're executing large queries
and you don't want concurrent transactions to have the ability to make
changes that could cause the query to return different results if run more
than once.

• Use the read stability isolation level when you want some level of
concurrency between applications, yet you also want qualified rows to
remain stable for the duration of an individual transaction.

• Use the cursor stability isolation level when you want maximum
concurrency between applications, yet you don't want queries to see
uncommitted data.

• Use the uncommitted read isolation level if you're executing queries on
read-only tables/views/databases, or if it doesn't matter whether a query
returns uncommitted data values.

ibm.com/developerWorks developerWorks®

Data concurrency
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 13 of 27

http://www.ibm.com/legal/copytrade.shtml

Specifying the isolation level to use

Although isolation levels control behavior at the transaction level, they are actually
set at the application level:

• For embedded SQL applications, the isolation level is specified at
precompile time or when the application is bound to a database (if
deferred binding is used). In this case, the isolation level is set using the
ISOLATION option of the PRECOMPILE or BIND command.

• For Open Database Connectivity (ODBC) and Call Level Interface (CLI)
applications, the isolation level is set at application run time by calling the
SQLSetConnectAttr() function with the SQL_ATTR_TXN_ISOLATION
connection attribute specified. (Alternatively, the isolation level for
ODBC/CLI applications can be set by assigning a value to the
TXNISOLATION keyword in the db2cli.ini configuration file; however, this
approach does not provide the flexibility to change isolation levels for
different transactions within a single application that the first approach
does.)

• For Java Database Connectivity (JDBC) and SQLJ applications, the
isolation level is set at application run time by calling the
setTransactionIsolation() method that resides within DB2's
java.sql connection interface.

When the isolation level for an application isn't explicitly set using one of these
methods, the cursor stability isolation level is used as the default. This default
applies to DB2 commands, SQL statements, and scripts executed from the
Command Line Processor (CLP) as well as to embedded SQL, ODBC/CLI, JDBC,
and SQLJ applications. Therefore, it's also possible to specify the isolation level for
operations that are to be performed from the DB2 Command Line Processor (as well
as for scripts that are to be passed to the DB2 CLP for processing). In this case, the
isolation level is set by executing the CHANGE ISOLATION command before a
connection to a database is established.

With DB2 UDB version 8.1 and later, the ability to specify the isolation level that a
particular query is to run under was provided in the form of the WITH [RR | RS |
CS | UR] clause that can be appended to a SELECT SQL statement. A simple
SELECT statement that uses this clause looks something like this:

SELECT * FROM EMPLOYEE WHERE EMPID = '001' WITH RR

If you have an application that needs to run in a less-restrictive isolation level the
majority of the time (to support maximum concurrency), but contains some queries
for which you must not see phenomena, this clause provides an excellent method
that can be used to help you meet your objective.

developerWorks® ibm.com/developerWorks

Data concurrency
Page 14 of 27 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Section 4. Locks

How locking works

In the section Concurrency and isolation levels, you saw that DB2 isolates
transactions from each other through the use of locks. A lock is a mechanism that is
used to associate a data resource with a single transaction, with the purpose of
controlling how other transactions interact with that resource while it is associated
with the owning transaction. (The transaction that a locked resource is associated
with is said to hold or own the lock.) The DB2 database manager uses locks to
prohibit transactions from accessing uncommitted data written by other transactions
(unless the Uncommitted Read isolation level is used) and to prohibit the updating of
rows by other transactions when the owning transaction is using a restrictive
isolation level. Once a lock is acquired, it is held until the owning transaction is
terminated; at that point, the lock is released and the data resource is made
available to other transactions.

If one transaction attempts to access a data resource in a way that is incompatible
with the lock being held by another transaction (we'll look at lock compatibility
shortly), that transaction must wait until the owning transaction has ended. This is
known as a lock wait event. When a lock wait event occurs, the transaction
attempting to access the data resource simply stops execution until the owning
transaction has terminated and the incompatible lock is released.

Lock attributes

All locks have the following basic attributes:

• Object: The object attribute identifies the data resource that is being
locked. The DB2 database manager acquires locks on data resources,
such as tablespaces, tables, and rows, whenever they are needed.

• Size: The size attribute specifies the physical size of the portion of the
data resource that is being locked. A lock does not always have to control
an entire data resource. For example, rather than giving an application
exclusive control over an entire table, the DB2 database manager can
give an application exclusive control over a specific row in a table.

• Duration: The duration attribute specifies the length of time for which a
lock is held. A transaction's isolation level usually controls the duration of
a lock.

• Mode: The mode attribute specifies the type of access allowed for the
lock owner as well as the type of access permitted for concurrent users of
the locked data resource. This attribute is commonly referred to as the

ibm.com/developerWorks developerWorks®

Data concurrency
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 15 of 27

http://www.ibm.com/legal/copytrade.shtml

lock state.

Lock states

The state of a lock determines the type of access allowed for the lock owner as well
as the type of access permitted for concurrent users of a locked data resource.
Table 1 identifies the lock states that are available, in order of increasing control.

Table 1. Lock states
Lock State (Mode) Applicable Objects Description

Intent None (IN) Tablespaces and tables The lock owner can read data in
the locked table, including
uncommitted data, but cannot
change this data. In this mode,
the lock owner does not acquire
row-level locks; therefore, other
concurrent applications can
read and change data in the
table.

Intent Share (IS) Tablespaces and tables The lock owner can read data in
the locked table, but cannot
change this data. Again,
because the lock owner does
not acquire row-level locks,
other concurrent applications
can both read and change data
in the table. (When a transaction
owns an Intent Share lock on a
table, it acquires a Share lock
on each row it reads.) This lock
is acquired when a transaction
does not convey the intent to
update rows in the table. (The
SELECT FOR UPDATE,
UPDATE ... WHERE, and
INSERT statements convey the
intent to update.)

Next Key Share (NS) Rows The lock owner and all
concurrent transactions can
read, but cannot change, data in
the locked row. This lock is
acquired in place of a Share
lock on data that is read using
the Read Stability or Cursor
Stability transaction isolation
level.

Share (S) Tables and rows The lock owner and any other
concurrent transactions can
read, but cannot change, data in
the locked table or row. As long
as a table is not Share locked,
individual rows in that table can
be Share locked. If, however, a
table is Share locked, row-level

developerWorks® ibm.com/developerWorks

Data concurrency
Page 16 of 27 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Share locks in that table cannot
be acquired by the lock owner. If
either a table or a row is Share
locked, other concurrent
transactions can read the data,
but they cannot change it.

Intent Exclusive (IX) Tablespaces and tables The lock owner and any other
concurrent applications can
read and change data in the
locked table. When the lock
owner reads data from the table,
it acquires a Share lock on each
row it reads, and it acquires
both an Update and an
Exclusive lock on each row it
updates. Other concurrent
applications can both read and
update the locked table. This
lock is acquired when a
transaction conveys the intent to
update rows in the table.

Share With Intent Exclusive
(SIX)

Tables The lock owner can both read
and change data in the locked
table. The lock owner acquires
Exclusive locks on the rows it
updates but does not acquire
locks on rows that it reads;
therefore, other concurrent
applications can read but cannot
update the data in the locked
table.

Update (U) Tables and rows The lock owner can update data
in the locked table and the lock
owner automatically acquires
Exclusive locks on any rows it
updates. Other concurrent
applications can read but cannot
update the data in the locked
table.

Next Key Weak Exclusive (NW) Rows The lock owner can read but
cannot change the locked row.
This lock is acquired on the next
row in a table when a row is
inserted into the index of a
noncatalog table.

Exclusive (X) Tables and rows The lock owner can both read
and change data in the locked
table or row. If an Exclusive lock
is acquired, only applications
using the Uncommitted Read
isolation level are allowed to
access the locked table or
row(s). Exclusive locks are
acquired for data resources that
are going to be manipulated
with the INSERT, UPDATE,

ibm.com/developerWorks developerWorks®

Data concurrency
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 17 of 27

http://www.ibm.com/legal/copytrade.shtml

and/or DELETE statements.

Weak Exclusive (W) Rows The lock owner can read and
change the locked row. This
lock is acquired on a row when
it is inserted into a noncatalog
table.

Super Exclusive (Z) Tablespaces and tables The lock owner can alter a
table, drop a table, create an
index, or drop an index. This
lock is automatically acquired on
a table whenever a transaction
attempts to perform any one of
these operations. No other
concurrent transactions are
allowed to read or update the
table until this lock is removed.

How locks are acquired

In most cases, the DB2 database manager implicitly acquires locks as they are
needed, and these locks remain under the DB2 database manager's control. Except
in situations where the Uncommitted Read isolation level is used, a transaction
never needs to explicitly request a lock. In fact, the only database object that can be
explicitly locked by a transaction is a table. Figure 6 illustrates the logic that is used
to determine which type of lock to acquire for a referenced object.

Figure 6. How locks are acquired

The DB2 database manager always attempts to acquire row-level locks. However,
this behavior can be modified by executing a special form of the ALTER TABLE
statement, as follows:

developerWorks® ibm.com/developerWorks

Data concurrency
Page 18 of 27 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

ALTER TABLE [TableName] LOCKSIZE TABLE

where TableName identifies the name of an existing table for which all transactions
are to acquire table-level locks for when accessing it.

The DB2 database manager can also be forced to acquire a table-level lock on a
table for a specific transaction by executing the LOCK TABLE statement, as follows:

LOCK TABLE [TableName] IN [SHARE | EXCLUSIVE] MODE

where TableName identifies the name of an existing table for which a table-level lock
is to be acquired (provided that no other transaction has an incompatible lock on this
table). If this statement is executed with the SHARE mode specified, a table-level
lock that will allow other transactions to read, but not change, the data stored in it will
be acquired; if executed with the EXCLUSIVE mode specified, a table-level lock that
does not allow other transactions to read or modify data stored in the table will be
acquired.

Section 5. Locks and performance

Lock compatability

If the state of one lock placed on a data resource enables another lock to be placed
on the same resource, the two locks (or states) are said to be compatible. Whenever
one transaction holds a lock on a data resource and a second transaction requests a
lock on the same resource, the DB2 database manager examines the two lock
states to determine whether or not they are compatible. If the locks are compatible,
the lock is granted to the second transaction (provided no other transaction is
waiting for the data resource). If however, the locks are incompatible, the second
transaction must wait until the first transaction releases its lock before it can gain
access to the resource and continue processing. (If there is more than one
incompatible lock in place, the second transaction must wait until all locks are
released.) Refer to the IBM DB2 9 Administration Guide: Performance
documentation (or search the DB2 Information Center for Lock type compatibility
topics) for specific information on which locks are compatible with one another and
which are not.

Lock conversion

When a transaction attempts to access a data resource that it already holds a lock
on, and the mode of access needed requires a more restrictive lock than the one

ibm.com/developerWorks developerWorks®

Data concurrency
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 19 of 27

http://www.ibm.com/legal/copytrade.shtml

already held, the state of the lock held is changed to the more restrictive state. The
operation of changing the state of a lock already held to a more restrictive state is
known as lock conversion. Lock conversion occurs because a transaction can hold
only one lock on a data resource at a time.

In most cases, lock conversion is performed for row-level locks and the conversion
process is pretty straightforward. For example, if a Share (S) or an Update (U)
row-level lock is held and an Exclusive (X) lock is needed, the held lock will be
converted to an Exclusive (X) lock. Intent Exclusive (IX) locks and Share (S) locks
are special cases, however, since neither is considered to be more restrictive than
the other. Thus, if one of these row-level locks is held and the other is requested, the
held lock is converted to a Share with Intent Exclusive (SIX) lock. Similar
conversions result in the requested lock state becoming the new lock state of the
held lock, provided the requested lock state is more restrictive. (Lock conversion
only occurs if a held lock can increase its restriction.) Once a lock's state has been
converted, the lock stays at the highest state obtained until the transaction holding
the lock is terminated.

Lock escalation

All locks require space for storage; because the space available is not infinite, the
DB2 database manager must limit the amount of space that can be used for locks
(this is done through the maxlocks database configuration parameter). In order to
prevent a specific database agent from exceeding the lock space limitations
established, a process known as lock escalation is performed automatically
whenever too many locks (of any type) have been acquired. Lock escalation is the
conversion of several individual row-level locks within the same table to a single
table-level lock. Since lock escalation is handled internally, the only externally
detectable result might be a reduction in concurrent access on one or more tables.

Here's how lock escalation works: When a transaction requests a lock and the lock
storage space is full, one of the tables associated with the transaction is selected, a
table-level lock is acquired on its behalf, all row-level locks for that table are released
(to create space in the lock list data structure), and the table-level lock is added to
the lock list. If this process does not free up enough space, another table is selected
and the process is repeated until enough free space is available. At that point, the
requested lock is acquired and the transaction resumes execution. However, if the
necessary lock space is still unavailable after all the transaction's row-level locks
have been escalated, the transaction is asked (via an SQL error code) to either
commit or rollback all changes that have been made since its initiation and the
transaction is terminated.

Lock timeouts

Any time a transaction holds a lock on a particular data resource (for example, a
table or a row), other transactions may be denied access to that resource until the
owning transaction terminates and frees all locks it has acquired. Without some sort

developerWorks® ibm.com/developerWorks

Data concurrency
Page 20 of 27 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

of lock timeout detection mechanism in place, a transaction might wait indefinitely for
a lock to be released. Such a situation might occur, for example, when a transaction
is waiting for a lock that is held by another user's application to be released, and the
other user has left his or her workstation without performing some interaction that
would allow the application to terminate the owning transaction. Obviously, such a
situation can cause poor application performance. To avoid stalling other
applications when this occurs, a lock timeout value can be specified in a database's
configuration file (via the locktimeout database configuration parameter). When
used, this value controls the amount of time any transaction will wait to obtain a
requested lock. If the desired lock is not acquired before the time interval specified
elapses, the waiting application receives an error and the transaction requesting the
lock is rolled back. Distributed transaction application environments are particularly
prone to these types of situations; you can avoid them by using lock timeouts.

Deadlocks

Although the situation of one transaction waiting indefinitely for a lock to be released
by another transaction can be resolved by establishing lock timeouts, there is one
scenario where contention for locks by two or more transactions cannot be resolved
by a timeout. This situation is known as a deadlock, or more specifically, a deadlock
cycle . The best way to illustrate how a deadlock can occur is by example: Suppose
Transaction 1 acquires an Exclusive (X) lock on Table A and Transaction 2 acquires
an Exclusive (X) lock on Table B. Now, suppose Transaction 1 attempts to acquire
an Exclusive (X) lock on Table B and Transaction 2 attempts to acquire an Exclusive
(X) lock on Table A. Processing by both transactions will be suspended until their
second lock request is granted. However, because neither lock request can be
granted until one of the transactions releases the lock it currently holds (by
performing a commit or rollback operation), and because neither transaction can
release the lock it currently holds (because both are suspended and waiting on
locks), the transactions are stuck in a deadlock cycle. Figure 7 illustrates this
deadlock scenario.

Figure 7. A deadlock cycle

ibm.com/developerWorks developerWorks®

Data concurrency
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 21 of 27

http://www.ibm.com/legal/copytrade.shtml

When a deadlock cycle occurs, each transaction involved will wait indefinitely for a
lock to be released unless some outside agent steps in. With DB2 UDB, this agent is
an asynchronous system background process that is known as the deadlock
detector. The sole responsibility of the deadlock detector is to locate and resolve any
deadlocks found in the locking subsystem. Each database has its own deadlock
detector, which is activated as part of the database initialization process. Once
activated, the deadlock detector stays "asleep" most of the time but "wakes up" at
preset intervals to examine the locking subsystem for deadlock cycles. If the
deadlock detector discovers that a deadlock cycle exists, it randomly selects one of
the transactions in the cycle to terminate and roll back. The transaction chosen
receives an SQL error code and all locks it had acquired are released; the remaining
transaction(s) can then proceed because the deadlock cycle has been broken.

Lock granularity

developerWorks® ibm.com/developerWorks

Data concurrency
Page 22 of 27 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

It was mentioned earlier that any time a transaction holds a lock on a particular data
resource, other transactions may be denied access to that resource until the owning
transaction terminates. Therefore, to optimize for maximum concurrency, row-level
locks are usually better than table-level locks, because they limit access to a much
smaller resource. However, because each lock acquired requires some amount of
processing time and storage space to acquire and manage, a single table-level lock
will require less overhead than several individual row-level locks. Unless otherwise
specified, row-level locks are acquired by default.

The granularity of locks (that is, whether row-level locks or table-level locks are
acquired) can be controlled through the use of the ALTER TABLE ... LOCKSIZE
TABLE, ALTER TABLE ... LOCKSIZE ROW, and LOCK TABLE statements. The
ALTER TABLE ... LOCKSIZE TABLE statement provides a global approach to
granularity that results in table-level locks being acquired by all transactions that
access rows within a particular table. On the other hand, the LOCK TABLE
statement allows table-level locks to be acquired at an individual transaction level.
When either of these statements are used, a single Share (S) or Exclusive (X)
table-level lock is acquired whenever a lock is needed. As a result, locking
performance is usually improved, since only one table-level lock must be acquired
and released instead of several different row-level locks. However, when table-level
locking is used, concurrency can be decreased if long-running transactions acquire
Exclusive rather than Share, table-level locks.

Transactions and locking

From a locking standpoint, all transactions typically fall under one of the following
categories:

• Read-Only: This refers to transactions that contain SELECT statements
(which are intrinsically read-only), SELECT statements that have the FOR
READ ONLY clause specified, or SQL statements that are ambiguous,
but are presumed to be read-only because of the BLOCKING option
specified as part of the precompile and/or bind process.

• Intent-To-Change: This refers to transactions that contain SELECT
statements that have the FOR UPDATE clause specified, or SQL
statements that are ambiguous, but are presumed to be intended for
change because of the way they are interpreted by the SQL precompiler.

• Change: This refers to transactions that contain INSERT, UPDATE,
and/or DELETE statements, but not UPDATE ... WHERE CURRENT OF
... or DELETE ... WHERE CURRENT OF ... statements.

• Cursor-Controlled: This refers to transactions that contain UPDATE ...
WHERE CURRENT OF ... and DELETE ... WHERE CURRENT OF ...
statements.

Read-Only transactions typically use Intent Share (IS) and/or Share (S) locks.
Intent-To-Change transactions, on the other hand, use Update (U), Intent Exclusive

ibm.com/developerWorks developerWorks®

Data concurrency
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 23 of 27

http://www.ibm.com/legal/copytrade.shtml

(IX), and Exclusive (X) locks for tables, and Share (S), Update (U), and Exclusive (X)
locks for rows. Change transactions tend to use Intent Exclusive (IX) and/or
Exclusive (X) locks, while Cursor Controlled transactions often use Intent Exclusive
(IX) and/or Exclusive (X) locks.

When an SQL statement is prepared for execution, the DB2 optimizer explores
various ways to satisfy that statement's request and estimates the execution cost
involved for each approach. Based on this evaluation, the DB2 optimizer then
selects what it believes to be the optimal access plan. (The access plan specifies the
operations required and the order in which those operations are to be performed to
resolve an SQL request.) An access plan can use one of two ways to access data in
a table: by directly reading the table (which is known as performing a table or a
relation scan), or by reading an index on that table and then retrieving the row in the
table to which a particular index entry refers (which is known as performing an index
scan).

The access path chosen by the DB2 optimizer, which is often determined by the
database's design, can have a significant impact on the number of locks acquired
and the lock states used. For example, when an index scan is used to locate a
specific row, the DB2 database manager will most likely acquire one or more Intent
Share (IS) row-level locks. However, if a table scan is used, because the entire table
must be scanned, in sequence, to locate a specific row, the DB2 database manager
may opt to acquire a single Share (S) table-level lock.

Section 6. Summary

This tutorial was designed to introduce you to the concept of data consistency and to
the various mechanisms that are used by DB2 9 to maintain database consistency in
both single- and multi-user environments. A database can become inconsistent if a
user forgets to make all necessary changes, if the system crashes while a user is in
the middle of making changes, or if a database application for some reason stops
prematurely. Inconsistency can also occur when several users/applications access
the same data resource at the same time. For example, one user might read another
user's changes before all tables have been properly updated and take some
inappropriate action or make an incorrect change based on the premature data
values read. In an effort to prevent data inconsistency, particularly in a multi-user
environment, the developers of DB2 9 incorporated the following data consistency
support mechanisms into its design:

• Transactions

• Isolation levels

• Locks

A transaction (also known as a unit of work) is a recoverable sequence of one or

developerWorks® ibm.com/developerWorks

Data concurrency
Page 24 of 27 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

more SQL operations that are grouped together as a single unit, usually within an
application process. The initiation and termination of a transaction define the points
of database consistency; either the effects of all SQL operations performed within a
transaction are applied to the database (committed), or the effects of all SQL
operations performed are completely undone and thrown away (rolled back). In
either case, the database is guaranteed to be in a consistent state at the completion
of each transaction.

Maintaining database consistency and data integrity, while allowing more than one
application to access the same data at the same time, is known as concurrency.
With DB2, concurrency is enforced through the use of isolation levels. Four different
isolation levels are available:

• Repeatable read

• Read stability

• Cursor stability

• Uncommitted read

The repeatable read isolation level prevents all phenomena, but greatly reduces the
level of concurrency (the number of transactions that can access the same resource
simultaneously) available. The uncommitted read isolation level provides the
greatest level of concurrency, but allows dirty reads, nonrepeatable reads, and
phantoms to occur.

Along with isolation levels, DB2 provides concurrency in multi-user environments
through the use of locks. A lock is a mechanism that is used to associate a data
resource with a single transaction, for the purpose of controlling how other
transactions interact with that resource while it is associated with the transaction that
owns the lock. Several different types of locks are available:

• Intent None (IN)

• Intent Share (IS)

• Next Key Share (NS)

• Share (S)

• Intent Exclusive (IX)

• Share with Intent Exclusive (SIX)

• Update (U)

• Next Key Weak Exclusive (NW)

• Exclusive (X)

• Weak Exclusive (W)

• Super Exclusive (Z)

ibm.com/developerWorks developerWorks®

Data concurrency
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 25 of 27

http://www.ibm.com/legal/copytrade.shtml

To maintain data integrity, the DB2 database manager acquires locks implicitly, and
all locks acquired remain under the DB2 database manager's control. Locks can be
placed on tablespaces, tables, and rows.

To optimize for maximum concurrency, row-level locks are usually better than
table-level locks, because they limit access to a much smaller resource. However,
because each lock acquired requires some amount of storage space and processing
time to manage, a single table-level lock will require less overhead than several
individual row-level locks.

developerWorks® ibm.com/developerWorks

Data concurrency
Page 26 of 27 © Copyright IBM Corporation 1994, 2006. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• Check out the other parts of the DB2 9 Fundamentals exam 730 prep tutorial
series.

• Certification exam site. Click the exam number to see more information about
Exams 730 and 731.

• DB2 9 overview. Find information about the new data server that includes
patented pureXML technology.

• DB2 XML evaluation guide: A step-by-step introduction to the XML storage and
query capabilities of DB2 9

• Learn more about DB2 9 from the DB2 9 Information Center.

• Check out the developerWorks DB2 basics series, a group of articles geared
toward beginning users.

Get products and technologies

• A trial version of DB2 9 is available for free download.

• Download DB2 Express-C, a no-charge version of DB2 Express Edition for the
community that offers the same core data features as DB2 Express Edition and
provides a solid base to build and deploy applications.

Discuss

• Participate in the discussion forum for this content.

About the author

Roger E. Sanders
Roger E. Sanders is a Senior Manager - IBM Alliance Engineering at Network
Appliance, Inc. He has been designing and developing databases and database
applications for more than 20 years and has been working with DB2 Universal
Database since it was first introduced with OS/2 1.3 Extended Edition. He has written
articles for IDUG Solutions Journal, Certification Magazine, and developerWorks,
presented and taught classes at IDUG and RUG conferences, participated in the
development of the DB2 certification exams, writes a regular column for DB2
Magazine and is the author of 9 books on DB2 UDB.

ibm.com/developerWorks developerWorks®

Data concurrency
© Copyright IBM Corporation 1994, 2006. All rights reserved. Page 27 of 27

http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert730.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/offers/lp/db2cert/db2-cert730.html?S_TACT=105AGX19&S_CMP=db2cert
http://www-03.ibm.com/certify/tests/test_index.shtml
http://www-306.ibm.com/software/data/db2/v9/pr.html
http://www.ibm.com/developerworks/edu/dm-dw-dm-0606leung-i.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/edu/dm-dw-dm-0606leung-i.html?S_TACT=105AGX19&S_CMP=db2cert
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://www.ibm.com/developerworks/db2/newto/db2basics.html
http://www.ibm.com/developerworks/downloads/im/udb/?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/downloads/im/udbexp/index.html?S_TACT=105AGX19&S_CMP=db2cert
http://www.ibm.com/developerworks/forums/#IM
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this series
	About this tutorial
	Objectives
	Prerequisites
	System requirements

	Transactions
	Understanding data consistency
	Transactions and transaction boundaries
	Effects of COMMIT and ROLLBACK operations
	Effects of an unsuccessful transaction

	Concurrency and isolation levels
	Phenomena that can occur when multiple users access a database
	Repeatable read isolation level
	Read stability isolation level
	Cursor stability isolation level
	Uncommitted read isolation level
	Choosing the proper isolation level
	Specifying the isolation level to use

	Locks
	How locking works
	Lock attributes
	Lock states
	How locks are acquired

	Locks and performance
	Lock compatability
	Lock conversion
	Lock escalation
	Lock timeouts
	Deadlocks
	Lock granularity
	Transactions and locking

	Summary
	Resources
	About the author

